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Tight Bounds for Asymptotic and Approximate Consensus

MATTHIAS FÜGGER, CNRS, LMF, ENS Paris-Saclay, Université Paris-Saclay, Inria, France

THOMAS NOWAK, Université Paris-Saclay, CNRS, France
MANFRED SCHWARZ, TU Wien, Austria

Agreeing on a common value among a set of agents is a fundamental problem in distributed computing, which

occurs in several variants: In contrast to exact consensus, approximate variants are studied in systems where

exact agreement is not possible or required, e.g., in man-made distributed control systems and in the analysis

of natural distributed systems, such as bird flocking and opinion dynamics.

We study the time complexity of two classical agreement problems: non-terminating asymptotic consensus

and terminating approximate consensus. Asymptotic consensus, requires agents to repeatedly set their outputs

such that the outputs converge to a common value within the convex hull of initial values; approximate

consensus requires agents to eventually stop setting their outputs, which must then lie within a predefined

distance of each other.

We prove tight lower bounds on the contraction ratios of asymptotic consensus algorithms subject to

oblivious message adversaries, fromwhichwe deduce bounds on the time complexity of approximate consensus

algorithms. In particular, the obtained bounds show optimality of asymptotic and approximate consensus

algorithms presented by Charron-Bost et al. [ICALP’16] for certain systems, including the strongest oblivious

message adversary in which asymptotic and approximate consensus are solvable. As a corollary we also obtain

asymptotically tight bounds for asymptotic consensus in the classical asynchronous model with crashes.

Central to the lower-bound proofs is an extended notion of valency, the set of reachable limits of an

asymptotic consensus algorithm starting from a given configuration. We further relate topological properties

of valencies to the solvability of exact consensus, shedding some light on the relation of these three fundamental

problems in dynamic networks.

CCS Concepts: • Theory of computation→ Distributed algorithms.

Additional Key Words and Phrases: Asymptotic consensus; approximate consensus; dynamic networks;

message adversaries; crash faults; lower bounds

1 INTRODUCTION
This work is devoted to the problem of achieving symmetry among a set of agents in a distributed

system, which is studied in three variants:

In the asymptotic consensus problem a set of agents, each starting from an initial value in Rd ,
repeatedly update their values such that all agents’ values converge to a common limit within the

convex hull of initial values. The problem is closely related to the approximate consensus problem,

in which agents have to irrevocably decide on values that lie within a predefined distance ε > 0 of

each other. Typically, initial values are constrained to be within an initial distance ∆ ⩾ 0 of each

other; which we will also assume in this work. The approximate consensus problem is weaker than

the exact consensus problem in which agents need to decide on the same value, which must be one
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of the initial values. If the values are further constrained to be from {0, 1}, one speaks of binary
exact consensus.

While exact consensus has traditionally received the most attention, motivated by classical

distributed computing problems such as providing consistency among replicated databases, the

weaker asymptotic and approximate consensus problems have gained importance in systems where

exact consensus is not possible or not required. In particular, asymptotic consensus has been studied

in the context of distributed control [4, 8, 10, 20, 27, 47] in different variants. Indeed, exact consensus

requires quite strong assumptions on the underlying network [31, 54]. Fortunately, exact consensus

is an unnecessarily strong requirement for several applications that require agreement: both the

asymptotic and the approximate consensus problems have not only a variety of applications in the

design of man-made control systems like sensor fusion [6], clock synchronization [42], formation

control [26], rendezvous in space [43] and robot gathering [2, 13, 21], or load balancing [23], but

also for analyzing natural systems like bird flocking [56], firefly synchronization [46], or opinion

dynamics [36]. These problems often have to be solved under harsh environmental restrictions in

which exact consensus is not achievable, or too costly to achieve: with limited computational power

and local storage, under restricted communication abilities, and in presence of communication

uncertainty.

In this work we study the performance of both asymptotic and approximate consensus algorithms

under such harsh conditions. Specifically, we study algorithms subject to oblivious message adver-
saries [9, 14, 41, 57] with round-based computation and a dynamic communication topology whose

directed communication graphs are chosen each round from a predefined set of communication

graphs.

While this model naturally captures highly unstable communication topologies, we further show

that it also allows to assess performance within classical, more stable, distributed fault models.

For example, the detour via dynamic network models allows to prove an asymptotically tight

lower bound on the contraction ratio and thus the time complexity of approximate agreement in

distributed systems where crash-prone agents communicate by asynchronous message passing.

The results in this work thus answer the question raised by Dolev et al. [25, Section 7] whether

algorithms that are not of certain standard forms can produce agreement faster: our lower bounds

allow algorithms that may arbitrarily use information from previous rounds.

In the following we will briefly discuss previous work on asymptotic and approximate consensus,

summarize contributions of this work, and relate it to previous work.We start with a brief discussion

on previous work by Charron-Bost et al. [16–18] on approximate agreement in oblivious message

adversaries.

Approximate Consensus: Algorithms and Solvability. In previous work [17], Charron-Bost

et al. showed that approximate consensus is solvable subject to an oblivious message adversary

if and only if the adversary is rooted, i.e., all its communication graphs contain rooted spanning

trees. These rooted spanning trees need not have any edges in common and can change from one

communication round to the next.

Interestingly, solvability subject to any rooted oblivious message adversary is already provided

by surprisingly simple algorithms [17]: so-called averaging or convex-combination algorithms, in

which agents repeatedly broadcast their current value and update it to some weighted average

of the values they received in this round, until they decide in a precomputed round. Central to

the proof is a contraction of output values by a factor c < 1 every k ⩾ 1 rounds; the parameters c
and k depend on the convex-combination algorithm and the message adversary. In particular,



Charron-Bost et al. [16, 18] show that

∆(t) ⩽ c · ∆(t − k) , (1)

for t ⩾ k , where ∆(t) is the maximum distance among, i.e., the diameter of, agent values at the end

of round t ⩾ 1 and ∆(0) = ∆ is the initial diameter.

One instance of a convex-combination algorithm for scalar input and output values, presented

by Charron-Bost et al. is themidpoint algorithm, in which agents update their value to the midpoint

of the set of received values, i.e., the average of the smallest and the largest of the received values.

For input and output values of higher dimension d > 1, the midpoint algorithm is not well-defined.

While one can show that applying it coordinate-wise in dimension d = 2 results again in a convex-

combination algorithm, this is not anymore the case for dimension d ⩾ 3 since the new output

value may lie outside of the convex hull of received values. An example for a convex-combination

algorithm for arbitrary dimensions is the MidExtremes algorithm [32]. It generalizes the midpoint

algorithm to higher dimensions by having an agent set its output onto the midpoint of the line

segment spanned by two received values that have maximum distance.

Asymptotic Consensus: Algorithms and Solvability. The characterization by Charron-Bost et

al. [15, 17] of solvability of approximate consensus can be immediately generalized to asymptotic

consensus, showing that the problem is solvable subject to an oblivious message adversary if and

only if the adversary is rooted; like approximate consensus: (i) Using the same convex-combination

algorithms, except with the decision rule removed, the proved contraction of the output values by

a factor of c < 1 every k rounds, implies that these algorithms also solve asymptotic agreement

subject to any rooted oblivious message adversary. (ii) The impossibility of solving asymptotic

consensus subject to any non-rooted oblivious message adversaries follows by the same partitioning

argument as in the proof for approximate consensus [15, Theorem 9].

An interesting special case of rooted oblivious message adversaries are those whose graphs

are non-split, that is, any two agents have a common incoming neighbor. Their prominent role is

motivated by two properties: (i) They occur as communication graphs in benign classical distributed

failure models, for example in synchronous systems with crashes, in asynchronous systems with a

minority of crashes, and synchronous systems with send omissions. (ii) Charron-Bost et al. [17]

showed that non-split graphs also play a central role for arbitrary rooted oblivious message

adversaries: they showed that any product of n−1 rooted graphs with n nodes is non-split, allowing

to transform approximate and asymptotic consensus algorithms for non-split oblivious message

adversaries into their amortized variants for rooted oblivious message adversaries.

Approximate andAsymptotic Consensus: Performance.Regarding time complexity, for scalar

input and output values, the amortized midpoint algorithm subject to rooted oblivious message

adversaries was shown [18] to fulfill (1) with c = 1

2
and k = n − 1. On average, the algorithm thus

leads to a contraction of the output range by a factor of
n−1
√

1

2
per round. Stating it like this allows

one to compare algorithms with different values of k . As a consequence of the above contraction
of the output range, values that are initially at most ∆ apart, have distance at most ε > 0 after

(n − 1)⌈log
2

∆
ε ⌉ rounds [16, 18, Theorem 9].

1

While termination times are inherently unsuited to assess the performance of asymptotic con-

sensus algorithms, the measure in (1) may be applied. However, measuring the contraction of the

range of outputs is problematic for the following reason: Take any algorithm that solves asymptotic

consensus and replace it by one that transiently sets an agent output value to 1 in round 1, while ex-

ecuting the original algorithm in successive rounds on the original initial states. The outputs rapidly

1
The result in [16, 18] is stated for the normalized case with ∆ = 1.



contract (temporarily) to a single value within the first round, yielding an arbitrarily fast contraction

of outputs in the first round. In the second round, however, the outputs will expand again. The

result is misleading in this case. Intuitively, we would expect a good measure of convergence to be

invariant to such algorithmic modifications.

Replacing the agent outputs of the configuration at the end of round t by the valency of the
configuration at the end of round t , i.e., the limits that are reachable from this configuration, solves this

problem. Indeed, from the perspective of valency, both of the above algorithms behave identically

since the modification to the algorithm did not prune the set of reachable limits.

Instead of (1), we thus study

δ (t) ⩽ c · δ (t − k) , (2)

where δ (t) is the diameter of the valency of the configuration at the end of round t . To compare

algorithms with different values of k , and since asymptotic consensus algorithms do not have to

guarantee a regular contraction according to (2), we also study the contraction ratio of an algorithm

subject to a message adversary as the supremum over all its executions of

lim sup

t→∞

t
√
δ (t) . (3)

First note that, by definition, the contraction ratio is between 0 and 1. The limit superior ensures

the existence of a contraction ratio in case the limit does not exist and gives a conservative bound.

One also immediately observes: (i) If an asymptotic consensus algorithm guarantees a regular

contraction as in (2), its contraction ratio is
k
√
c , the average contraction per round. (ii) If an

asymptotic consensus algorithm in fact solves exact consensus, the agent outputs will not change

anymore after all agents have decided. Since from this round t on, δ (t) = 0, we have that the

contraction ratio is 0 for this case.

From the fact that convex-combination algorithms set their output to within the convex hull of

the previously received values, it follows that δ (t) ⩽ ∆(t) for all t ⩾ 0 (Lemma 3.1). Consequently,

results on the contraction of outputs by convex-combination algorithms can be directly translated

into upper bounds on their contraction ratio. For example, the contraction of the output range

by the midpoint algorithm subject to a non-split oblivious message adversary of
1

2
per round [18]

implies a contraction ratio of
1

2
or less. Likewise, for higher dimensions, the contraction of the

diameter of the set of output values by the MidExtremes algorithm subject to a non-split oblivious

message adversary, of

√
7/8 per round [32, Theorem 1] implies a contraction ratio of

√
7/8 or less.

A natural question is whether non-convex-combination or non-memoryless algorithms, i.e., algo-
rithms that (i) do not necessarily set their output values to within the convex hull of previously

received values or (ii) whose output is a function not only of the previously received values, allow

faster contraction. In the context of classical failure models, the question for lower bounds inde-

pendent of such assumptions, was raised by Dolev et al. [25]. As an example for (i), consider the

algorithm where each agent sends an equal fraction of its current output value to all out-neighbors

and sets its output to the sum of values received in the current round. Note that the algorithm is

not a convex-combination algorithm as its output may lie outside the convex hull of the values

of its in-neighbors. However, it solves asymptotic consensus for a fixed directed communication

graph. Other examples of algorithms that violate (i) and (ii) are from control theory, where the

usage of overshooting fast second-order controllers is common (see, e.g., [5]).

Contribution.We prove asymptotically tight lower bounds on the contraction ratio of any asymp-

totic consensus algorithm with scalar input and output values, regardless of the structure of the

algorithm: algorithms can be full-information and agents can set their outputs outside the convex

hull of received values. This, e.g., includes using higher-order filters, in contrast to the 0-order



filters of convex-combination algorithms. In particular, the following lower bounds hold for an

oblivious message adversaryM with n agents: If exact consensus is solvable subject toM, an

optimal contraction ratio of 0 can be achieved. Otherwise:

• In a system with n = 2 agents, the contraction ratio is lower-bounded by 1/3 (Theorem 4.1).

This is tight (algorithm presented by Charron-Bost et al. [18] and Lemma 3.1).

• For an arbitrary communication graphG , we define the set deaf(G) = {F1, . . . , Fn}, where Fi
is derived from G by making agent i deaf in Fi , i.e., removing the incoming edges of i in G.
In a system with n ⩾ 3 agents, ifM contains the communication graphs in deaf(G), then the

contraction ratio is lower-bounded by 1/2 (Theorem 5.1). This is tight for oblivious non-split

message adversaries because of the midpoint algorithm [18] and Lemma 3.1.

• We then show that ifM contains certain rooted graphs Ψ, then the contraction ratio is lower

bounded by
n−2
√
1/2 (Theorem 6.1). This is asymptotically tight for oblivious rooted message

adversaries because of the amortized midpoint algorithm [18] and Lemma 3.1. Calling an

oblivious message adversary stronger than another one if its set of communication graphs is

a superset of the other one’s set of communication graphs, this specifically proves optimality

of the amortized midpoint algorithm subject to the strongest oblivious message adversary in

which asymptotic and approximate consensus is solvable: the oblivious message adversary

whose set of communication graphs is the set of all directed rooted communication graphs.

Themaximality of this set follows from the fact that if it contains a non-rooted communication

graph, asymptotic consensus becomes unsolvable [17].

• For arbitrary oblivious message adversaries we show that in a system with n ⩾ 3 agents, any

asymptotic consensus algorithm must have a contraction ratio of at least 1/(D + 1), where D,
the so-called αG-diameter ofM, i.e., the smallest value which allows a connection of any

pair of communication graphs that occur inM via an indistinguishability chain of length at

most D (Theorem 7.12).

• We demonstrate how to apply the above mentioned bound to obtain new lower bounds on

contraction ratios for classical failure models as an immediate corollary. Specifically, we

consider asynchronous message-passing system of size n with up to f < n/2 crashes. For
such systems, algorithms operating in asynchronous rounds are widely used [19, 25, 44]: each

agent broadcasts its round message, waits for n− f messages of the current round, updates its

state based on the received messages and its previous state, and advances to the next round.

• With the above results, we show that it immediately follows that no algorithm operating in

asynchronous rounds can achieve a contraction ratio better than
1

⌈n/f ⌉+1 (Theorem 8.2). This

shows that the asynchronous algorithms for systems of size n > 5f with up to f Byzantine

failures by Dolev et al. [25] and for systems of size n > 2f with up to f crashes by Fekete [29]

have asymptotically optimal contraction ratios for round-based algorithms.

• We then present an algorithm for n > f that does not operate in asynchronous rounds and

achieves a contraction ratio of 0, demonstrating a large gap between round-based and non

round-based algorithms for asymptotic consensus.

Table 1 summarizes lower and upper bounds.

Our lower bounds also hold for asymptotic consensus with input and output values of arbi-

trary dimension. For example, for the oblivious message adversaryM that contains deaf(G) for
a communication graph G with n ⩾ 3 nodes, we obtain: From the fact that the MidExtremes

algorithm has a contraction ratio of

√
7/8 for oblivious non-split message adversaries (MidExtremes

algorithm [32] and Lemma 3.1) and from the lower bound shown in this work (Theorem 5.1), the

optimal contraction ratio for higher dimensions is between 1/2 and
√
7/8 for the oblivious message

adversaryM.



oblivious message adversary asynchronous + f crashes

agents general non-split with general round-based alg. arbitrary alg.

non-split αG-diameter D rooted 0 < f < n
2

0 < f < n

n = 2
1

3

∗
0 or

1

3

∗
1

3

∗
N/A

n ⩾ 3
1

2

∗
0 or

[
1

D+1
∗
, 1
2

] [
n−2
√

1

2

∗

, n−1
√

1

2

] [
1

⌈n/f ⌉+1
∗
, 1

⌈n/f ⌉−1

]
0
∗

Table 1. Summary of lower and upper bounds on contraction ratios for asymptotic consensus with scalar
input and output values. New bounds proved in this work are marked with an ∗. The three leftmost columns
are worst-case contraction ratios for the case the oblivious message adversary is (i) a general non-split, (ii) a
non-split message adversary with αG-diameter D, and (iii) a general rooted message adversary. Contraction
ratios are 0 if and only if exact consensus is solvable. The two rightmost columns summarize the bounds for
the classical model of an asynchronous system with crashes.

Finally, we extend the above results on contraction ratios to derive new lower bounds on the

decision times of any approximate consensus algorithm: Let ∆ > 0 be the largest distance between

initial values. For n = 2 we obtain a lower bound of log
3

∆
ε (Theorem 9.2). For n ⩾ 3 and message

adversaries that include deaf(G) for a communication graph G, we show a lower bound of log
2

∆
ε

(Theorem 9.3), and for n ⩾ 4 and message adversaries that include certain Ψ graphs, we obtain a

lower bound of (n − 2) log
2

∆
ε (Theorem 9.4). For arbitrary oblivious message adversaries in which

exact consensus is not solvable, we show a lower bound of logD+1
∆
εn (Theorem 9.5). Again, the

algorithms by Charron-Bost et al. [18] have matching time complexities; showing optimality of

these algorithms also for solving approximate consensus with scalar input and output values.

A preliminary version of this paper was presented at the conference PODC 2018 [33].

Related Work. The problem of asymptotic consensus in dynamic networks has been extensively

studied in distributed computing and control theory (see, e.g., [4, 8, 10, 20, 27, 47]). The question of

guaranteed convergence speeds and decision times of the corresponding approximate consensus

problems, naturally arise in this context. Algorithms with convergence times exponential in the

number of agents have been proposed. In particular, Cao et al. [10, Equation (26)] proved that the

Equal Neighbor algorithm, which updates its value to the unweighted average of received values,

has a contraction ratio of at most
n−1
√
1 − 1/nn−1 subject to rooted message adversaries, which leads

to an exponential upper bound on the convergence time.

Olshevsky and Tsitsiklis [53], proposed an algorithm with polynomial convergence time in

bidirectional networks with certain stability assumptions on the occurring communication graphs.

The bounds on convergence times were later on refined by Nedic et al. [49]. Chazelle [20] pro-

posed a convex-combination algorithm with polynomial convergence time, which works for any

bidirectional connected message adversary.

To speed up convergence times, algorithms where agents set their output based on values that

have been received in rounds prior to the previous round have also been considered in literature:

Olshevsky [52] proposed a linear convergence time algorithm that uses messages from two rounds,

restricted to a fixed bidirectional communication graph, however. Yuan et al. [58] proposed a linear

convergence-time algorithm for a possibly non-bidirectional fixed topology. It requires storing all

received values. Charron-Bost et al. [18] presented the midpoint algorithm, which has constant

convergence time for non-split message adversaries and the amortized midpoint algorithm with

linear convergence time subject to rooted message adversaries.



To the best of our knowledge, the only study of lower bounds in dynamic networks has been

done by Cao et al. [11]: the authors identified 1 − 1/n as the worst-case scrambling constant of

the Equal Neighbor algorithm in non-split communication graphs, and 1 − 1/nn−1 for that of the
product of n − 1 rooted communication graphs. While scrambling constants can be used to prove

upper bounds on the contraction ratio of asymptotic consensus algorithms, a lower bound on the

scrambling constant does not in general imply a similar lower bound on the contraction ratio.

In the context of classical distributed computing failure scenarios, Dolev et al. [25] studied the

approximate consensus problem: they considered fully-connected synchronous distributed systems

with up to f Byzantine agents, and its asynchronous variant. The two presented algorithms require

n ⩾ 3f + 1 for the synchronous and n ⩾ 5f + 1 for the asynchronous distributed system, the

first of which is optimal in terms of resilience [30]. The latter result was improved to n ⩾ 3f + 1
by Abraham et al. [1]. Both papers also address the question of optimal contraction ratio in such

systems. Since, however, in synchronous systems with n ⩾ 3f + 1 exact consensus is solvable,

leading to a contraction ratio of 0, the authors consider bounds for round-by-round contraction

ratios. Dolev et al. [25] showed that the achieved round-by-round contraction ratio of
1

2
is actually

tight for a certain class of algorithms that repeatedly set their output to the image of a so-called

cautious function applied to the multiset of received values. A lower bound for arbitrary algorithms,

however, remained an open problem. In higher dimensions, i.e, for any d ⩾ 1, Mendes et al. [45]

proposed algorithms with decision time of d · ⌈log
2

√
d∆
ε ⌉ under the optimal resiliency condition

n ⩾ f · (d + 2) + 1. By using the MidExtremes algorithm, Függer and Nowak [32] showed that the

problem is solvable within timeO(log ∆
ε ). Central to this result is the property that the MidExtremes

algorithm subject to non-split oblivious message adversaries guarantees a contraction of output

values by a factor c =
√
7/8 every k = 1 rounds for arbitrary dimensions [32, Theorem 1].

Fekete [28] also studied round-by-round contraction ratios for several failure scenarios in which

exact consensus is solvable. He proved asymptotically tight lower bounds for synchronous dis-

tributed systems in presence of crashes, omission, and Byzantine agents. The bounds hold for

approximate consensus algorithms that potentially take into account information from all previous

rounds. Fekete [29] later presented an algorithm for asynchronous message-passing systems with

a minority of crashes, also proving a tight lower bound on the contraction ratio of any algorithm

operating in asynchronous rounds for such systems. In the nonuniform iterated immediate snapshot

(NIIS) model, Hoest and Shavit [39, Theorem 5.2] proved tight upper and lower bounds on the

round complexity for the approximate consensus problem.

Herlihy et al. [38] studied generalizations of the approximate consensus problem in terms of

combinatorial topology with round-based communication objects.

Determining the solvability of distributed problems, in particular decision problems, has a long

tradition. One of the early general characterizations of solvability is by Biran et al. [7] who de-

termined the class of decision problems solvable with one crash-faulty process. A much more

general approach has been taken by the combinatorial-topology approach, which has characterized

decision-problem solvability in a variety of models [37]. Sharp solvability characterizations are

available, in particular in immediate-snapshot models [37, Theorem 5.2.7]. Coulouma et al. [22]

characterized the oblivious message adversaries that allow solvability of exact consensus. A general

characterization of message adversaries that allow exact consensus to be solved was recently estab-

lished by Nowak et al. [51]. Other recent research efforts in this direction include the investigation

of communication complexity [24] and of distributed network algorithms [12].

Paper Organization. The rest of the paper is organized as follows. Section 2 describes the system

model. In Section 3, we formally define the notions of valency and contraction ratio and deduce

some useful lemmas. We prove a tight lower bound on the contraction ratio for n = 2 agents in



Section 4. In Section 5, we give a tight lower bound for the non-split case with n ⩾ 3 agents, which

we extend to an almost-tight lower bound in the rooted case in Section 6. We relate the problems

of asymptotic and exact consensus in Section 7. In Section 8, we deduce an almost-tight lower

bound for round-based algorithms in asynchronous message passing with crash faults. Section 9

translates our lower bounds for asymptotic consensus to tight and almost-tight time-complexity

lower bounds for approximate consensus. We give concluding remarks in Section 10. Appendices A

and B contain auxiliary lemmas and proofs.

2 SYSTEMMODEL
We consider a set [n] = {1, . . . ,n} of n agents. We assume a distributed, round-based computational

model in the spirit of the Heard-Of model [19] and similar approaches [34, 40, 54, 55]. Computation

proceeds in rounds: In every round, each agent sends a message to its outgoing neighbors, receives

messages from its incoming neighbors, and finally updates its state according to a deterministic

local algorithm, i.e., a transition function that maps the collection of incoming messages to a new

state. Rounds are communication closed in the sense that no agent receives messages in round t
that are sent in a round different from t . Communication starts at round t = 1; round t = 0 only

holds the agents’ initial states.

Communications that occur in a round are modeled by a directed graph with a node for each

agent. An edge (i, j) is present in the communication graph of a round if agent i’s message was

successfully received by agent j in that round. Since an agent can obviously communicate with itself

instantaneously, every communication graph contains a self-loop at each node. In the following, we

use the product of two communication graphsG and H , denotedG ◦H , which is the directed graph

with an edge from i to j if there exists k such that (i,k) and (k, j) are edges inG and H , respectively.

We call an infinite sequence of communication graphs a communication sequence. In each com-

munication sequence, the communication graph at round t is denoted by Gt , and Ini (t) = Ini (Gt )

and Outi (t) = Outi (Gt ) are the sets of incoming and outgoing neighbors (in-neighbors and out-

neighbors for short) of agent i in Gt .

A message adversary is a set of communication sequences. An oblivious message adversary is

defined by a set G of communication graphs; its communication sequences are all sequences in

which all communication graphs are chosen in G. We use the notationM(G) for the oblivious

message adversary defined by the set G of communication graphs and we say that a communication

graph G occurs in oblivious message adversaryM(G) if G ∈ G.
Let us fix an algorithm A. A configuration is a collection of n agent states, one per agent.

Since agents are deterministic, given some configuration C and some communication graph G, the
algorithmA uniquely determines a new configuration, which we simply denoteC .G if no confusion

can arise. The execution E of A starting from the initial configuration C0 with the communication

sequence

(
Gt

)
t⩾1 is the sequence C0,G1, . . . ,Ct−1,Gt ,Ct , . . . of alternating configurations and

communication graphs such that for each round t , we have Ct = Ct−1.Gt . We denote the set of

executions with communication sequences inM, starting from any initial configuration, by EM,A .

We equip this set with the distance dist(E,E ′) = 1/2θ , where θ is the first index at which the

configurations of E and E ′ differ. This is a compact metric space if the algorithm has a finite

number of initial configurations: Compactness of the execution space for models described by

safety properties [3] was shown for various special cases (e.g., [35, Lemma 5.1] or [51, remark after

Lemma 4.9]). A proof for the case of oblivious message adversaries can be found in Lemma A.4 in

the appendix.



Finally, any configuration that occurs in some execution with a communication sequence inM

starting at initial configuration C0 is said to be reachable from C0 by A subject toM. In the sequel,

the algorithm and the message adversary are omitted if no confusion can arise.

2.1 Asymptotic Consensus
We assume that the local state of agent i includes a variable yi in Euclidean d-space, and we let

yi
E
(t) ∈ Rd denote the value of yi at the end of round t in execution E. The value yi

E
(0) is the initial

value of agent i in execution E. We set yE (t) =
(
y1
E
(t), . . . ,yn

E
(t)

)
. We write

diam(A) = sup

x,y∈A
∥x − y∥

for the diameter of A ⊆ Rd and ∆(yE (t)) = diam{y1
E
(t), . . . ,yn

E
(t)} for the diameter of the set of

values at the end of round t .
We say an algorithm solves the asymptotic consensus problem subject to a message adversaryM

if the following holds for every execution E with a communication sequence inM:

• Convergence. Each sequence yi
E
(t) converges as t →∞.

• Agreement. If yi
E
(t) and y jE (t) converge, then their limits are equal.

• Validity. If yi
E
(t) converges, then its limit lies in the convex hull of the set of initial values

y1
E
(0), . . . ,yn

E
(0).

The Validity condition’s requirement is motivated on one hand to rule out trivial solutions: ones

that always output the same value, irrespective of the initial values. Also, staying in the range of

initial values is required for applications such as sensor fusion or clock synchronization.

The consensus function defined by y∗ : EM,A → R
d
, where y∗(E) is the common limit of the n

sequences

(
yi
E
(t)

)
t⩾0, is a priori not continuous when using the metric “dist”, which we defined

earlier, on the set E of executions. Indeed, there exist asymptotic consensus algorithms whose

consensus functions are not continuous— as shown in the next section.

2.2 Solvability of Asymptotic Consensus with Convex-Combination Algorithms
In a previous paper [17], Charron-Bost et al. proved the following characterization of oblivious mes-

sage adversaries for which approximate consensus is solvable. With much of the same arguments,

this can be extended to asymptotic consensus.

Theorem 2.1 (adapted from [17]). The asymptotic consensus problem is solvable subject to an
oblivious message adversaryM if and only if each graph that occurs inM has a rooted spanning tree.

For the proof of the sufficient condition, Charron-Bost et al. focused on convex-combination

algorithms. In particular, they showed [17] that, while not all, a large class of convex-combination

algorithms solve asymptotic consensus subject to rooted message adversaries. Such algorithms

are memoryless, require little computational overhead and, more importantly, have the benefit of

working in anonymous networks. Interestingly, their consensus function y∗ is continuous, as we
show in the next theorem.

Continuity of the consensus function of exact consensus is known (e.g., [50, Lemma 4.4]). We

included a proof for message adversaries in Lemma A.5 in the appendix. The proof heavily relies

on the existence of a decision value, i.e., the common decision value remains fixed from a finite

time on. Asymptotic consensus, on the other hand, does not have such a finite time. A different

argument is thus needed.

Theorem 2.2. The consensus function of every convex-combination algorithm that solves asymptotic
consensus is continuous.
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Fig. 1. The communication graphs T
bi
and Tuni for n = 3

Proof. Let (Es )s⩾0 be a sequence of executions that converges to E, i.e., dist(Es ,E) → 0 as

s →∞. By definition of the distance on the execution space, this means that

∀t ⩾ 0 ∃st ∀s ⩾ st : ys (0) = y(0), ys (1) = y(1), . . . , ys (t) = y(t) (4)

where ys (t) and y(t) denote the vectors yE s (t) and yE (t) of the round-t output values of agents in
execution Es and E, respectively.

Let ε > 0. By definition of the limit y∗ of execution E, there exists some t such that

∀i ∈ [n] : ∥yi (t) − y∗∥ ⩽ ε/3 .

By (4), there is an st such that

∀s ⩾ st ∀i ∈ [n] : ∥yis (t) − y
∗∥ ⩽ ε/3 .

By the triangle inequality, this means

∀s ⩾ st ∀i, j ∈ [n] : ∥yis (t) − y
j
s (t)∥ ⩽ 2ε/3 .

Because the algorithm is a convex-combination algorithm, the limit y∗s lies in the convex hull of the

points y1s (t), . . . ,y
n
s (t). That is, denoting by y

∗
s the common limit in execution Es , we have

∀s ⩾ st ∀i ∈ [n] : ∥yis (t) − y
∗
s ∥ ⩽ 2ε/3 .

Combining these inequalities gives

∀s ⩾ st : ∥y∗s − y
∗∥ ⩽ ∥y∗s − y

i
s (t)∥ + ∥y

i
s (t) − y

∗∥ ⩽
2ε

3

+
ε

3

= ε

where i is any agent. This proves lim

s→∞
y∗s = y

∗
as required. □

As mentioned previously, there exist asymptotic consensus algorithms with non-continuous

consensus functions:

Example 2.3. Take the oblivious message adversaryM =M({Tbi,Tuni})with n = 3 agents where

communication graphTbi is the bi-directional triangle andTuni is a uni-directional cyclic triangle as
depicted in Figure 1. Algorithm A relays all initial values and sets its output value to the minimal

initial value if all of the communication graphs up to the current round were bi-directional, and to

the maximal initial value else.

Since all communication graphs inM are strongly connected, all agents know the set of initial

values at the end of the second round. In particular, algorithmA solves asymptotic consensus subject

to the oblivious message adversaryM. Now consider the executions E(t ) for every t ⩾ 2 where

agents start with values 0, 1, and 2, and where all communication graphs are equal to Tbi except in
round t in which the communication graph is Tuni. Since every agent can locally tell the difference

betweenTbi andTuni, all agents output value 2 from round t on. In the limit execution E(∞), however,
all communication graphs are equal to Tbi without exception and hence all agents output value 0

from round 2 on. We thus have E(t ) → E(∞) but y∗(E(t )) ̸→ y∗(E(∞)) as t → ∞. Algorithm A’s
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Fig. 2. The contraction of the valency along an execution E = C0,G1,C1,G2, . . . with an average contraction
of
√
0.8 · 0.75 =

√
0.6 ≈ 0.774 per round for the first two rounds.

consensus function is hence not continuous. The example easily generalizes to arbitrary n ⩾ 3 by

considering bidirectional and unidirectional ring graphs. □

3 VALENCY AND CONTRACTION RATIO
We now extend the notion of valency, which has been developed for exact consensus [31, 48], to

asymptotic consensus. We fix an algorithmA that solves asymptotic consensus subject to a certain

oblivious message adversaryM with n ⩾ 2 agents. LetC be a configuration reachable byA subject

toM. Then we define the valency of C by

Y ∗
M,A(C) = {y

∗(E) ∈ Rd | C occurs in E ∈ EM,A} .

Observe that if A is a convex-combination algorithm, then the valency of a configuration C
is a compact set of Rd since the consensus function is continuous and the set of executions

in which C occurs is a compact set. Set δM,A(C) = diam

(
Y ∗
M,A
(C)

)
the diameter of the set

of reachable limits whose executions include configuration C . We have δM,A(Ct ) → 0 in any

execution E = C0,G1,C1,G2, . . . by Convergence and Agreement.

Figure 2 depicts the evolution of the valency along an execution E. In the shown example

valencies are intervals. However, in general, this is not the case.

To study the speed of convergence of an algorithmA subject a message adversaryM, bounding

the evolution of δM,A(Ct ) along any execution E = C0,G1,C1,G2, . . . is a natural choice. While we

prove lower bounds on δM,A(Ct ) for arbitrary t ⩾ 0 in this work, we also introduce the contraction
ratio of algorithm A subject to message adversaryM as

sup

E∈EM,A

lim sup

t→∞

t
√
δM,A(Ct )

where we write E = C0,G1,C1,G2, . . . Observe that the contraction ratio, by definition, is between 0

and 1. If exact consensus is solvable subject toM, the optimal contraction ratio 0 can be achieved.

For convex-combination algorithms we obtain the following:

Lemma 3.1. Let C be a configuration of convex-combination algorithm A that solves asymptotic
consensus subject to message adversaryM, and denote by ∆(C) the diameter of the set of outputs inC .
Then δM,A(C) ⩽ ∆(C).

In particular, for a convex-combination algorithm that guarantees contraction of output values by a
factor c < 1 every k ⩾ 1 rounds, i.e., fulfills (1), the contraction ratio is less or equal to k

√
c .

Proof. Denote by Y (C) the set of output values in configuration C , and by hull(X ) the convex
hull of a set X .
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Fig. 3. The rooted communication graphs H0, H1, and H2 for n = 2.

The first statement follows from the fact that convex-combination algorithms by definition set

their outputs within the convex hull of previously received values. Any limit that is reachable

in an execution that contains configuration C by algorithm A subject toM is thus necessarily

within hull(Y (C)). The statement now follows from ∆(C) = diam(Y (C)) = diam(hull(Y (C))) ⩾

diam

(
Y ∗
M,A
(C)

)
= δM,A(C).

The second statement follows from the first statement and the definition of the contraction

ratio. □

This allows us to directly compare different message adversaries and algorithms with each other.

The measure is motivated by the observation that a large class of algorithms lead to a round-wise

contraction of δM,A(Ct ) by a ratio γ < 1: they guarantee that δM,A(Ct ) ⩽ γ tδM,A(C0) for all

t ⩾ 0. Any such algorithm has a contraction ratio of at most γ . In general, however, a round-wise

contraction ratio may be too conservative to assume: algorithms may contract quickly in general,

but rarely have bad round-wise contraction or no contraction at all. The contraction ratio accounts

for this by accumulating over rounds; see, e.g., Figure 2 where the average contraction factor over

two rounds is less than 0.774 while the first round contracts by 0.8.

Example 3.2. Consider the oblivious message adversaryM =M({Tbi,Tuni}) and the algorithmA
from Example 2.3. Also let executions E(t ), for t ⩾ 2, and E(∞) = C0,G1,C1,G2, . . . be as defined in

that example. Then, for all rounds t ⩾ 1:

• 0 ∈ Y ∗
M,A
(Ct ) since algorithm A results in all agent outputs eventually being 0 in execution

E(∞), i.e., y∗(E(∞)) = 0

• 2 ∈ Y ∗
M,A
(Ct ) since algorithm A results in all agent outputs eventually being 2 in execution

E(t+1), i.e., y∗(E(t+1)) = 2

It follows that, for all rounds t ⩾ 1, the valency Y ∗
M,A
(Ct ) of configurationCt at round t contains 0

and 2. In fact, Y ∗
M,A
(Ct ) = {0, 2}. Thus, δM,A(Ct ) = δM,A(C0) for all t ⩾ 1; the valency does

not shrink with increasing number of rounds and the contraction ratio of algorithm A subject to

oblivious message adversaryM is 1. □

Example 3.2 shows that there exist algorithms for which the valency does not shrink at all and

which have a worst-case contraction ratio of 1. The following example demonstrates that there

exist algorithms with contraction factor less than 1, though.

Example 3.3. Consider the midpoint algorithm for n = 2 and the oblivious message adversary

M = M({H0,H1,H2}) with the communication graphs H0, H1, and H2 shown in Figure 3. The

midpoint algorithm for two agents takes the equally weighted average of its own and the remote

agent, if it receives a message from the remote agent, and does not update its value otherwise.

Assume that agent 1 starts with initial value 0 and agent 2 with value 1.

Consider an executions E = C0,G1,C1,G2 . . . First observe that both initial values are in

Y ∗
M,A
(C0): for the execution with only graphs H1 the agent outputs converge to 0, and for the

execution with only graphs H2, the outputs converge to 1. Thus δM,A(C0) = 1.

Distinguishing between the three possible cases for communication graph Gt+1, we obtain:



(1) IfGt+1 = H0, then both y1(t +1) = y2(t +1) =
y1(t )+y2(t )

2
, and thus Y ∗

M,A
(Ct+1) =

{
y1(t )+y2(t )

2

}
.

Consequently δM,A(Ct+1) = 0.

(2) If Gt+1 = H1, then y1(t + 1) = y1(t) and y2(t + 1) =
y1(t )+y2(t )

2
. By similar arguments as for

C0, we have

{
y1(t),

y1(t )+y2(t )
2

}
⊆ Y ∗
M,A
(C1). One also observes that output values less than

y1(t +1) and greater thany2(t +1) are not reachable by the midpoint algorithm. Consequently

δM,A(Ct+1) =
1

2
· δM,A(Ct ).

(3) For Gt+1 = H2, by symmetry to the previous case, δM,A(Ct+1) =
1

2
· δM,A(Ct ).

Consequently, in any execution the valency shrinks by a factor of at least
1

2
per round; the contraction

ratio of the midpoint algorithm subject to oblivious message adversaryM is thus
1

2
. □

Motivated by the two previous examples, we begin a general analysis of valencies along executions

with a lemma on subsets of message adversaries:

Lemma 3.4. LetM,M ′ be two message adversaries withM ′ ⊆ M. If A is an algorithm that
solves asymptotic consensus subject toM, then (i) it also solves asymptotic consensus subject toM ′,
(ii) for every configurationC reachable byA inM ′, we have Y ∗

M′,A
(C) ⊆ Y ∗

M,A
(C), (iii) δM′,A(C) ⩽

δM,A(C), and (iv) the contraction ratio subject toM ′ is less or equal to the contraction ratio subject
toM.

Proof. Statements (i), (ii), and (iii) immediately follow from the definition of valency. It remains

to show statement (iv). From EM′,A ⊆ EM,A and (iii), we deduce

sup

E∈EM′,A
lim sup

t→∞

t
√
δM′,A(Ct ) ⩽ sup

E∈EM,A

lim sup

t→∞

t
√
δM,A(Ct ) ,

which concludes the proof. □

We next establish two branching properties of valency of configurations in execution trees for

oblivious message adversaries.

Lemma 3.5. Let C be a configuration reachable by algorithm A subject to oblivious message
adversaryM =M(G). Then

Y ∗
M,A(C) =

⋃
G ∈G

Y ∗
M,A(C .G) .

Proof. First let y∗ ∈ Y ∗
M,A
(C). By definition of the valency Y ∗

M,A
(C), there exists an execution

E = C0,G1,C1,G2, . . . in EM,A and a t ⩾ 0 such that y∗ = y∗(E) and C = Ct . SetG = Gt+1. Hence

we have Ct+1 = C .G. But this shows that y
∗ ∈ Y ∗

M,A
(C .G) since C .G occurs in execution E whose

limit is y∗. This shows inclusion of the left-hand side in the right-hand side.

Now letG ∈ G and y∗ ∈ Y ∗
M,A
(C .G). Then there is an execution E = C0,G1,C1,G2, . . . in EM,A

and a t ⩾ 1 such that y∗ = y∗(E) andC .G = Ct . SinceC is a reachable configuration, there exists an

execution E ′ = C ′
0
,G ′

1
,C ′

1
,G ′

2
, . . . in EM,A and an s ⩾ 0 such that C ′s = C . Then the sequence

E ′′ = C ′
0
,G ′

1
, . . . ,C ′s ,G,Ct ,Gt+1, . . .

is an execution in EM,A with y∗(E ′′) = y∗(E) = y∗. Hence y∗ ∈ Y ∗
M,A
(C) because C occurs in E ′′.

This shows inclusion of the right-hand side in the left-hand side and concludes the proof. □

Lemma 3.6. Let C be a configuration reachable by algorithm A subject to oblivious message
adversaryM =M(G). Then there exist G,H ∈ G such that

δM,A(C) = diam

(
Y ∗
M,A(C .G) ∪ Y

∗
M,A(C .H )

)
.



Proof. By Lemma 3.5 it is Y ∗
M,A
(C) =

⋃
G ∈G Y

∗
M,A
(C .G). The claimed equality now follows

from Lemma A.1. □

Two configurations C and C ′ are called indistinguishable for agent i , denoted C ∼i C ′, if i is in
the same state in C and in C ′. As an immediate consequence of this definition, since every agent is

an in-neighbor of itself, we obtain:

Lemma 3.7. Let C and C ′ be two reachable configurations and let G and G ′ be communication
graphs that occur in an oblivious message adversaryM. If some agent i has the same in-neighbors in
G and G ′ and if C ∼j C ′ for each of i’s in-neighbors j, then C .G ∼i C .G ′.

An agent i is said to be deaf in a communication graph G if i has only one in-neighbor in G,
namely i itself. We can relate valencies of successor configurations.

Lemma 3.8. Let G and G ′ be two communication graphs that occur in the oblivious message
adversaryM, and let i be an agent that has the same in-neighbors in G and G ′. Further let C and C ′

be two configurations such that C ∼j C ′ for all in-neighbors j of i in G and G ′. Then, if there exists a
communication graph that occurs inM in which i is deaf, we have Y ∗

M,A
(C .G) ∩ Y ∗

M,A
(C ′.G ′) , ∅ .

Proof. From Lemma 3.7, we have C .G ∼i C
′.G ′.

LetDi be a communication graph that occurs inM in which the agent i is deaf. Then we consider

an execution E in which C occurs at some round t0 − 1, G is the communication graph at round t0,
and from there on all communication graphs are equal to Di . Analogously, let E

′
be an execution

identical to E except that the communication graph at round t0 is G
′
instead of G. By inductive

application of Lemma 3.7, we show that for all t ⩾ t0, we have Ct ∼i C
′
t . In particular, we obtain

yi
E
(t) = yi

E′
(t). Thus y∗(E) = y∗(E ′), which shows that Y ∗

M,A
(C .G) and Y ∗

M,A
(C ′.G ′) intersect. □

From Lemma 3.8 we determine the valency of any initial configuration when certain communica-

tion graphs occur in the oblivious message adversary. If every agent is deaf in some communication

graph that occurs in the oblivious message adversaryM, then the next lemma shows that the

diameter of the valency of any initial configuration is equal to the diameter of the set of its initial

values. The proof is similar to classical proofs for the existence of bivalent initial configurations for

exact consensus [31, Lemma 2] [48, Theorem 5.8]; except that it adds a quantitative perspective on

the initial degree of non-univalence.

Lemma 3.9. If, for every agent i , there is a communication graph that occurs in the oblivious message
adversaryM in which i is deaf, then each initial configuration C0 satisfies δM,A(C0) = ∆(C0). In
particular, there is an initial configuration for which δM,A(C0) > 0.

Proof. Since Y ∗
M,A
(C0) is a subset of the convex hull of the set of points y

1(0), . . . ,yn(0) by the

Validity property of asymptotic consensus and since the diameter of the convex hull of the set

{y1(0), . . . ,yn(0)} is equal to ∆(C0), we have the inequality δM,A(C0) ⩽ ∆(C0).

To show the converse inequality, let i and j be two agents such that ∥yi (0) − y j (0)∥ = ∆(C0). Let

E be the execution with initial configuration C0 and a constant communication graph in which

agent i is deaf. Now considerC(i)
0
, an initial configuration such that all initial values are set to yi (0),

and the execution E(i) from C(i)
0

with the same communication sequence as in E.

By a repeated application of Lemma 3.7, we see that at each round t , we have Ct ∼i C
(i)
t . Hence,

y∗(E) = y∗(E(i)).
From the Validity condition, we deduce that an agent that is deaf during the whole execution has

to converge to its own initial value, that is, y∗(E(i)) = yi (0). It then follows that yi (0) ∈ Y ∗
M,A
(C0).



By a similar argument, we see y j (0) ∈ Y ∗
M,A
(C0). Hence

δM,A(C0) ⩾ ∥y
i (0) − y j (0)∥ = ∆(C0) ,

which concludes the proof of the first part of the lemma.

The second part follows from the first by picking any initial configuration whose initial values

are not all equal, that is, ∆(C0) > 0. □

4 TIGHT BOUND FOR TWO AGENTS
In this section, we prove a lower bound of 1/3 on the contraction ratio of algorithms that solve

asymptotic consensus subject to the oblivious message adversary of all rooted (and here also

non-split) communication graphs with two agents. Combined with Algorithm 1, which achieves

this lower bound [18], we have indeed identified a tight bound on the contraction ratio for n =
2. Moreover, the algorithm also shows that the lower bound is achieved by a simple convex-

combination algorithm. In the NIIS model, an analogous bound for n = 2 was proved by Hoest and

Shavit [39].

ALGORITHM 1: Algorithm with contraction ratio 1/3 for n = 2

Initially:
yi ∈ Rd ;

In round t ⩾ 1 do
send yi to other agent;

if y j was received from other agent then
yi ← yi/3 + 2y j/3;

end
end

For n = 2, there are three possible rooted communication graphs that may occur, all of which are

non-split; see Figure 3: (i) H0 in which all messages are received, (ii) H1 in which agent 2 receives

agent 1’s message but not vice versa, and (iii) H2 in which agent 1 receives agent 2’s message but

not vice versa.

A straightforward analysis of Algorithm 1 shows that its contraction ratio is equal to 1/3:

Indeed, in all three cases, H0, H1, and H2 for the communication graph Gt in round t , we have
∆(t) ⩽ ∆(t − 1)/3. That is, we can apply Lemma 3.1 with c = 1/3 and k = 1.

Theorem 4.1. The contraction ratio of any asymptotic consensus algorithm for n = 2 agents subject
to the oblivious message adversary with the three communication graphs H0, H1, and H2 is greater or
equal to 1/3.

Proof. We show the stronger statement that for every initial configuration C0 there is an

execution E = C0,G1,C1,G2, . . . starting from C0 such that

δM,A(Ct ) ⩾
1

3
t · δM,A(C0) (5)

for t ⩾ 0. This, applied to an initial configuration with δM,A(C0) > 0, which exists by Lemma 3.9,

then shows the theorem.

The proof is by inductive construction of an execution E = C0,G1,C1,G2, . . . whose configura-
tions Ct satisfy (5). Equation (5) is trivial for t = 0.



Now assume t ⩾ 0 and that Equation (5) holds for t . There are three possible successor configu-
rations of Ct , one for each of the communication graphs H0, H1, and H2 inM. Set Ck

t+1 = Ct .Hk .

Further let Y = Y ∗
M,A
(Ct ), and Yk = Y

∗
M,A
(Ck

t+1).

We will show that there is some
ˆk ∈ {0, 1, 2} with diam(Y ˆk ) ⩾ diam(Y )/3. We then define

Gt+1 = H ˆk and Ct+1 = C
ˆk
t+1. By the induction hypothesis, we then have

δM,A(Ct+1) ⩾ δM,A(Ct )/3 ⩾ δM,A(C0)/3
t+1 ,

i.e., Equation (5) holds for t + 1.
Assume by contradiction that diam(Yk ) < diam(Y )/3 for all k ∈ {0, 1, 2}. From Lemma 3.5 we

have Y = Y0 ∪Y1 ∪Y2. Noting that agent 1 is deaf in H1 and agent 2 has the same incoming edges as

in H0, and that agent 2 is deaf in H2 and agent 1 has the same incoming edges as in H0, we obtain

from Lemma 3.8 that

Y0 ∩ Y1 , ∅ and Y0 ∩ Y2 , ∅ .

The sets Y0 and Y1 intersecting means

diam(Y0 ∪ Y1) ⩽ diam(Y0) + diam(Y1) <
2

3

diam(Y ) .

Further, the sets Y0 ∪ Y1 and Y2 intersecting means

diam(Y ) = diam(Y0 ∪ Y1 ∪ Y2)

⩽ diam(Y0 ∪ Y1) + diam(Y2) < diam(Y ) ,

a contradiction. This concludes the proof. □

5 TIGHT BOUND FOR NON-SPLIT MESSAGE ADVERSARIES: CONTRACTION IN
PRESENCE OF DEAF GRAPHS

In this section, we prove a lower bound of 1/2 on the contraction ratio of asymptotic consensus

algorithms for n ⩾ 3 agents subject to an oblivious message adversary in which graphs derived

from a communication graph G occur, in which agents are made deaf. As a special case, this

includes the oblivious message adversary of all non-split communication graphs. Formally, a

communication graph G is non-split if for all nodes i and j, there exists a node k such that k is

a common incoming neighbor, i.e., both (k, i) and (k, j) are edges of G. Charron-Bost et al. [18]
presented the midpoint algorithm (given in Algorithm 2) for dimension one with contraction ratio

1/2 for non-split communication graphs. Together, this shows tightness of our lower bound in

dimension one.

ALGORITHM 2: Midpoint algorithm

Initially:
yi ∈ R;

In round t ⩾ 1 do
send yi to all agents;

mi ← min

{
y j | j ∈ Ini (t)

}
;

Mi ← max

{
y j | j ∈ Ini (t)

}
;

yi ← (mi +Mi )/2;

end

Let G be an arbitrary communication graph. Consider a system with n ⩾ 3 agents, and the n
communication graphs F1, . . . , Fn where Fi is obtained by making i deaf in G, i.e., by removing all

the edges towards i except the self-loop (i, i).



With a proof similar to that of Theorem 4.1 but noting that the valencies of all pairs of successor

configurations intersect, we get:

Theorem 5.1. The contraction ratio of any asymptotic consensus algorithm for n ⩾ 3 agents subject
to an oblivious message adversary that includes deaf(G) is greater or equal to 1/2.

Proof. We show the stronger statement that for every initial configuration C0 there is an

execution E = C0,G1,C1,G2, . . . starting at C0 such that

δM,A(Ct ) ⩾
1

2
t δM,A(C0) (6)

for all t ⩾ 0.

It suffices to show (6) for the specific oblivious message adversaryM ′ =M(deaf(G)) because
δM,A(Ct ) ⩾ δM′,A(Ct ) by Lemma 3.4 and δM′,A(C0) = δM,A(C0) by Lemma 3.9 wheneverM ⊇

M ′. We hence supposeM =M ′ in the rest of the proof.

The proof is by inductive construction of an execution E = C0,G1,C1,G2, . . . whose configura-
tions Ct satisfy (6). This, applied to an initial configuration with δM,A(C0) > 0, which exists by

Lemma 3.9, then shows the theorem. For t = 0 the inequality holds trivially.

Now assume t ⩾ 0 and that Equation (6) holds for t . There are n possible successor configurations

based on the applicable communication graphs F1, . . . , Fn . We denote Ck
t+1 = Ct .Fk , for any agent

k . Further let Y = Y ∗
M,A
(Ct ), and Yk = Y

∗
M
(Ck

t+1).

We will show that there exists some agent
ˆk ∈ [n] such that

diam(Y ˆk ) ⩾ diam(Y )/2 . (7)

We then define Gt+1 = F ˆk and Ct+1 = C
ˆk
t+1. By (7) and the induction hypothesis, we have

δM,A(Ct+1) ⩾ δM,A(Ct )/2 ⩾ δM,A(C0)/2
t+1 , (8)

i.e., Equation (6) holds for t + 1.
Assume by contradiction that diam(Yk ) < diam(Y )/2 for all k ∈ [n]. Recall that agent i is deaf

in Fi and has the same in-neighbors in all the communication graphs Fj with j , i . Since n ⩾ 3,

for any pair of agents i, j we may select an agent ℓ different from i and j such that ℓ has the same

in-neighbors in Fi as in Fj . Lemma 3.8 with the assumption that Fℓ is inM shows that for any pair

of agents i, j, we have

Yi ∩ Yj , ∅ . (9)

By Lemma 3.6, there exist k,k ′ ∈ [n] such that diam(Yk ∪ Yk ′) = diam(Y ). In particular, we can

choose i = k and j = k ′, which implies that

diam(Y ) = diam(Yk ∪ Yk ′) ⩽ diam(Yk ) + diam(Yk ′)

< diam(Y )
(10)

which is a contradiction and concludes the proof. □

The oblivious message adversaryM(deaf(Kn)), where Kn is the complete digraph on n nodes, is

a subset of the oblivious message adversary in which all non-split communication graphs occur.

Hence the lower bound holds and, since Algorithm 2 is applicable and achieves a contraction ratio

of 1/2, a tight bound for one-dimensional values follows.

In fact, it would even be sufficient to reduce deaf(G) to the graphs Fi , Fj , Fℓ for three agents
i, j, ℓ ∈ [n]. With the same proof as Theorem 5.1 we get:
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Fig. 4. Rooted communication graph Ψi for n = 6. Self-loops are omitted.

Theorem 5.2. The contraction ratio of any asymptotic consensus algorithm subject to an oblivious
message adversary that includes three different communication graphs from deaf(G) is greater or
equal to 1/2.

The number of three different communication graphs from deaf(G) is best possible. In fact, the

oblivious message adversary with only two communication graphs Fi and Fj from deaf(Kn) allows

to solve exact consensus, which means that a contraction ratio of 0 for asymptotic consensus is

achievable.

6 ALMOST-TIGHT BOUND FOR ROOTED MESSAGE ADVERSARIES: CONTRACTION
IN PRESENCE OF Ψ GRAPHS

We next prove a lower bound of
n−2
√
1/2 on the contraction ratio of asymptotic consensus algorithms

for n ⩾ 4 agents.

For i ∈ {1, 2, 3}, let Ψi (see Figure 4) be the communication graph where agents 4 ⩽ j ⩽ n − 1
form a path with edges from j to j + 1, agents {1, 2, 3} \ i have n as their in-neighbor and 4 as their

out-neighbor, and i has 4 as its out-neighbor. For i ∈ {1, 2, 3}, let σi be the finite communication

sequence of n − 2 repetitions of graph Ψi .
First observe that any communication sequence arising from the concatenation of σi sequences

necessarily is a communication sequence of the oblivious message adversary that contains the

graphs Ψ1, Ψ2, and Ψ3, which are rooted. However, the analysis of the set of these communication

sequences necessitates the use of non-oblivious message adversaries. By such an analysis we obtain:

Theorem 6.1. The contraction ratio of any asymptotic consensus algorithm in an oblivious message
adversary that includes the graphs Ψ1, Ψ2, and Ψ3 is greater or equal to n−2

√
1/2.

Since the amortized midpoint algorithm guarantees a contraction of
n−1
√
1/2 for rooted message

adversaries [18], Theorem 6.1 shows that this is asymptotically optimal for oblivious rooted message

adversaries.

The proof of Theorem 6.1 is similar to that of Theorems 4.1 and 5.1. One difference is that we

construct the lower-bound execution by inductively extending it by n − 2 communication graphs

(that is, some σi ) at a time instead of a single communication graph. The key indistinguishability

argument is that the third agent among 1, 2, and 3 does not see a difference between appending σi
and appending σj .

6.1 Non-Oblivious Message Adversaries
To prove Theorem 6.1, we start by generalizing some of the basic lemmas we proved for the specific

case of oblivious message adversaries. Towards that purpose, we denote for two finite sequences u
and v , their concatenation by u · v . We say a configuration C is reachable by algorithm A subject

to message adversaryM via the finite communication sequence π = G1,G2, . . . ,Gt , with t ⩾ 0,



if π is the prefix of a communication sequence inM and E = C0,G1,C1,G2, . . . ,Ct−1,Gt ,C, · · · ∈
EM,A . For a finite prefix π of a communication sequence inM, we define Σ(π ) to be the set of

communication graphs G such that π ·G is also a prefix of a communication sequence inM.

The following lemmas are generalizations of Lemmas 3.5, 3.6, 3.8, and 3.9. Their proofs are in

large parts analogous to the proof of the versions for oblivious message adversaries; we state them

for completeness in the appendix.

Lemma 6.2. Let C be a configuration reachable by algorithm A subject to message adversaryM
via the finite communication sequence π . Then

Y ∗
M,A(C) =

⋃
G ∈Σ(π )

Y ∗
M,A(C .G) .

Lemma 6.3. Let C be a configuration reachable by algorithm A subject to message adversaryM
via the finite communication sequence π . Then there exist G,H ∈ Σ(π ) such that

δM,A(C) = diam

(
Y ∗
M,A(C .G) ∪ Y

∗
M,A(C .H )

)
.

Lemma 6.4. Let C and C ′ be two reachable configurations subject to message adversaryM via
the finite communication sequences π and π ′, respectively. If C ∼i C ′ and there exist communication
sequence α and α ′ such that π · α ∈ M, π ′ · α ′ ∈ M, and i is deaf in all communication graphs in α
and α ′, then Y ∗

M,A
(C) ∩ Y ∗

M,A
(C ′) , ∅.

Lemma 6.5. Let ∆ ⩾ 0. If there exist agents i , j and communication sequences α (i),α (j) ∈ M such
that agent i is deaf in α (i) and agent j is deaf in α (j), then there is an initial configuration C0 with
δM,A(C0) = ∆. In particular, there is an initial configuration for which δM,A(C0) > 0.

6.2 Proof of Theorem 6.1
The proof of Theorem 6.1 is by means of induction. The following relation is at the heart of the

inductive step:

Lemma 6.6. For i, j, ℓ ∈ {1, 2, 3} with ℓ , i, j we have Ct .σi ∼ℓ Ct .σj .

Proof. We inductively show the following stronger statement. Let σk
i be the sequence of repeti-

tions of graphΨi of lengthk ∈ [n−2]. For agents i, j, ℓ ∈ {1, 2, 3}with ℓ , i, j , andm ∈ {k+3, . . . ,n},
we have Ct .σ

k
i ∼ℓ Ct .σ

k
j and Ct .σ

k
i ∼m Ct .σ

k
j .

Observe that agents ℓ and {4, . . . ,n} have the same in-neighbors in Ψi and Ψj . The base case

k = 1 follows from the observation and Lemma 3.7. For the inductive step k 7→ k + 1, observe that
agent ℓ and {k + 4, . . . ,n} have only incoming edges from agents ℓ and {k + 3, . . . ,n}. From the

hypothesis and Lemma 3.7, the inductive step follows. □

We are now in the position to show Theorem 6.1 by induction. Let message adversaryMseq

contain any communication sequence arising from the concatenation of σi sequences defined at

the start of the section.

We show the stronger statement that for every initial configuration C0 there is an execution

E = C0,G1,C1,G2, . . . starting from C0 such that

δM,A(Ct ) ⩾
1

2
⌈ t
n−2 ⌉

δM,A(C0) (11)

for all t ⩾ 0. It suffices to show (11) forMseq because δM,A(Ct ) ⩾ δMseq,A(Ct ) by Lemma 3.4 and

δMseq,A(C0) = δM,A(C0) by Lemma 6.5 wheneverM ⊇ Mseq. We hence assumeM =Mseq in the

rest of the proof.



The proof is by inductive construction of an execution E = C0,G1,C1,G2, . . . whose configura-
tions Ct satisfy (11). This, applied to an initial configuration with δM,A(C0) > 0, which exists by

Lemma 6.5, then shows the theorem. The base case t = 0 is trivially fulfilled.

For the inductive step t = (n − 2)k 7→ t ⩽ (n − 2)(k + 1) assume that Equation (11) holds for

t = (n − 2)k . First observe that, by definition ofMseq, there are three possible sequences leading

from round t to round t + n − 2, namely σ1, σ2, and σ3. We thus have Y ∗
M,A
(Ct ) = Y ∗

M,A
(C1

t+1) ∪

Y ∗
M,A
(C2

t+1)∪Y
∗
M,A
(C3

t+1) = · · · = Y
∗
M,A
(C1

t+n−2)∪Y
∗
M,A
(C2

t+n−2)∪Y
∗
M,A
(C3

t+n−2), whereC
u
t+n−2 =

Ct .σu for agent u ∈ {1, 2, 3}.
Abbreviate Y = Y ∗

M,A
(Ct ) and Yu = Y

∗
M,A
(Cu

t+n−2). We will show that there exists a û ∈ {1, 2, 3}

with

diam(Yû ) ⩾ diam(Y )/2 . (12)

We then define Ct+n−2 = C
û
t+n−2. By (12) and the induction hypothesis, we then have

δM,A(Ct+n−2) = · · · = δM,A(Ct+1) ⩾
δM,A(Ct )

2

⩾
1

2
⌈ t
n−2 ⌉+1

δM,A(C0) ,

i.e., Equation (11) holds up to round t + n − 2.
Assume by contradiction that for all u ∈ {1, 2, 3} diam(Yu ) < diam(Y )/2. Since n ⩾ 3 and

Ct .σi ∼ℓ Ct .σj by Lemma 6.6, together with Lemma 6.4, we conclude that, for any pair i, j ∈ {1, 2, 3}
we have

Yi ∩ Yj , ∅ .

By Lemma 6.3, there exist u,u ′ ∈ {1, 2, 3} such that diam(Yu ∪ Yu′) = diam(Y ). In particular, we

can choose i = u and j = u ′, which implies that

diam(Y ) = diam(Yu ∪ Yu′) ⩽ diam(Yu ) + diam(Yu′)

< diam(Y )

which is a contradiction and concludes the proof.

7 RELATION TO EXACT CONSENSUS AND GENERALIZED BOUNDS
In the exact consensus problem, the local state of an agent i is augmented with a variable di

initialized to ⊥. Agent i is allowed to set di to some value v , ⊥ only once, in which case we

say that i decides v . An algorithm solves exact consensus subject toM if each execution E with a

communication sequence inM satisfies:

• Termination. Each agent eventually decides.

• Exact agreement. If agents i and j have decided, then the decision values are equal: di = d j

• Validity. If agent i decides v , then v is one of the initial values y1
E
(0), . . . ,yn

E
(0).

Coulouma et al. [22] characterized the oblivious message adversaries in which exact consensus

is solvable. While their characterization was stated for binary consensus in which initial values and

outputs are in {0, 1}, their proofs also hold for the exact consensus as defined above. Charron-Bost et
al. [17] showed that approximate consensus is solvable in a significantly broader class: it is solvable

subject to an oblivious message adversary if and only if it is rooted. As discussed in Section 1, the

same characterization holds for asymptotic consensus. In this section we aim to shed light on the

deeper relation between exact consensus and asymptotic consensus by studying valencies and

contraction ratios. Our main results are a characterization of the topological structure of valencies

with respect to solvability of exact consensus (Theorem 7.9) and nontrivial lower bounds on the

contraction ratios whenever exact consensus is not solvable (Theorem 7.12 and Corollary 7.13). We
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Fig. 5. Graphs H0, H1, and H2 from Example 7.2 with roots colored in red. The figure also shows the set
of nodes InR(H1)(G) = In{1}(G) for all graphs G ∈ G = {H0,H1,H2} in blue. The relation αH1

holds among
graphs with the same set InR(H1), i.e., the same blue area.

also prove that a contraction ratio of 0 can be achieved if and only if exact consensus is solvable

(Theorem 7.14).

We start by recalling some definitions from Coulouma et al. [22]. In the following, we denote

by R(G) the set of roots of a communication graph G, i.e., the set of agents that have a directed
path to all other agents inG . For a set S ⊆ [n], let InS (G) =

⋃
j ∈S Inj (G). The set OutS (G) is defined

analogously.

Definition 7.1 ([22, Definition 4.7]). Let G be a set of communication graphs. Given G,H ,K ∈ G,
we define GαKH if InR(K )(G) = InR(K )(H ). The relation α∗

G
is the transitive closure of the union of

the relations αK where K varies in G.

Example 7.2. Let G = {H0,H1,H2} with the graphs H0, H1, and H2 as previously defined. The

sets of roots of the graphs are given by R(H0) = {1, 2}, R(H1) = {1}, and R(H2) = {2}; see Figure 5.

Since InR(H1)(H0) = In{1}(H0) = In{1}(H2) = {1, 2}, it is H0αH1
H2. However, neither H0αH1

H1, nor

H1αH1
H2. □

Definition 7.3 ([22, Definition 4.8]). Let G be a set of communication graphs. We define βG to be

the coarsest equivalence relation included in α∗
G
such that for all G,H holds:

(Closure Property) IfGβGH , then there exists a nonnegative integer q and communication graphs

H0, . . . ,Hq ∈ G and K1, . . . ,Kq ∈ G such that

• (i) G = H0 and H = Hq
• (ii) ∀r ∈ [q] : Hr βGG and Kr βGG
• (iii) ∀r ∈ [q] : Hr−1αKrHr

We next show properties of subsets of G that are βG-classes.

Lemma 7.4. Let G be a set of communication graphs and let G′ ⊆ G be a βG-class. Then Gα∗G′H
and GβG′H for all G,H ∈ G′.

Proof. Let G,H ∈ G′. Since GβGH , there is a q and H0, . . . ,Hq ∈ G and K1, . . . ,Kq ∈ G such

that (i)G = H0 and H = Hq (ii) Hr βGG and Kr βGG for all r ∈ [q], and (iii) Hr−1αKrHr for all r ∈ [q].
Condition (ii) implies H0, . . . ,Hq ∈ G

′
and K1, . . . ,Kq ∈ G

′
since they belong to the same

βG-class asG , i.e., G
′
. But this means that the pair (G,H ) is in the transitive closure of the union of

the relations αK1
, . . . , αKq . Further, all Kr are in G

′
. Thus Gα∗

G′
H holds. Hence α∗

G′
= G′ × G′, i.e.,

the first part of the lemma.

To show the second part, define relation
˜β = G′ × G′, which, as we just proved, is included

in α∗
G′
. But it also satisfies the closure property in G′. Since ˜β is the coarsest equivalence relation

on G′, we thus have βG′ = ˜β = G′ × G′, i.e., the second part of the lemma. □



Definition 7.5 ([22, Definition 4.5]). A set G of communication graphs is called source-incompatible
if ⋂

G ∈G

R(G) = ∅ .

While Coulouma et al. [22] focus on binary consensus in their work and provide a characterization

for binary consensus, their proof actually shows a stronger version of their theorem. Indeed the

characterization also holds for exact consensus with inputs and outputs inRd by the same proof [22]:

Theorem 7.6 ([22, Theorem 4.10]). LetM = M(G) be an oblivious message adversary. Exact
consensus is solvable subject toM if and only if each βG-class is not source-incompatible.

We start with showing a generalization of Lemma 3.8 that allows us to induce non-empty

intersection of valencies.

Lemma 7.7. Let C be a configuration of an asymptotic consensus algorithm A forM =M(G). For
all configurationsC in an execution ofA inM, and for allG,H ,K ∈ G, ifGαKH then Y ∗

M,A
(C .G) ∩

Y ∗
M,A
(C .H ) , ∅.

Proof. By the definition of GαKH it is InR(K )(G) = InR(K )(H ). Hence, together with Lemma 3.7,

it follows thatC .G ∼i C .H for all nodes i in R(K). We consider an execution E in whichC occurs at

some t0−1,G is the communication graph at t0 and all following graphs are equal toK . Analogously,
let E ′ be an execution identical to E except that the communication graph at round t0 is H instead

of G. By inductive application of Lemma 3.7, we show that for all t ⩾ t0, we have Ct ∼i C ′t .
In particular, we obtain yi

E
(t) = yi

E′
(t). Thus y∗(E) = y∗(E ′), which shows that Y ∗

M,A
(C .G) and

Y ∗
M,A
(C .H ) intersect. □

We next establish that for oblivious message adversaries subject to which exact consensus is not

solvable, asymptotic consensus algorithms must have initial configurations that can be extended to

executions with different limit outputs.

Lemma 7.8. LetM be an oblivious message adversary for which exact consensus is not solvable.
Then for all asymptotic consensus algorithms A, there exists an initial configuration C0 such that
Y ∗
M,A
(C0) is not a singleton.

More precisely, for every ∆ > 0, there exists an initial configuration C0 such that ∆(C0) ⩽ ∆ and
δM,A(C0) ⩾ ∆/n.

Proof. By embedding the initial values into the first axis, we assume d = 1 in the rest of the

proof. Since the lemma claims an existence result, this is sufficient.

LetM = M(G) and let G′ ⊆ G be any source-incompatible βG-class, which exists by Theo-

rem 7.6. Consider the n + 1 initial configurations C(k )
0

where 0 ⩽ k ⩽ n with initial values

y(k )i (0) =

{
∆ if i ⩽ k

0 if i > k .

For all these initial configurations, we have ∆
(
C(k )
0
)
)
⩽ ∆. Define a(k) = inf Y ∗

M′,A

(
C(k )
0

)
and

b(k) = supY ∗
M′,A

(
C(k )
0

)
. By Validity, Y ∗

M′,A

(
C(0)
0

)
= {0} and Y ∗

M′,A

(
C(n)
0

)
= {∆}, which means

a(0) = b(0) = 0 and a(n) = b(n) = ∆. There exists some k with 1 ⩽ k ⩽ n such that b(k − 1) ⩽
b(k) − ∆/n since otherwise 0 = b(0) > b(n) − ∆ = 0. Because G′ is source-incompatible, for every

agent k , there exists a communication graph G(k ) ∈ G′ such that k < S
(
G(k )

)
. Since C(k−1)

0
∼i C

(k )
0

for all i ∈ S
(
G(k )

)
, choosing two executions with all communication graphs equal to G(k) shows



that Y ∗
M′,A

(
C(k−1)
0

)
∩Y ∗
M′,A

(
C(k )
0

)
, ∅, which implies a(k) ⩽ b(k − 1). Combining both inequalities

gives a(k) ⩽ b(k) − ∆/n and shows that δM′,A
(
C(k )
0

)
= b(k) − a(k) ⩾ ∆/n. We hence choose the

initial configuration C0 = C
(k)
0

.

This shows δM,A(C0) ⩾ δM′,A(C0) ⩾ ∆/n by Lemma 3.4 and concludes the proof. □

This finally allows us to derive one of our main results of this section: a characterization of

oblivious message adversaries for which exact consensus is solvable by the topological structure of

valencies of asymptotic consensus algorithms.

Theorem 7.9. LetM be an obliviousmessage adversary. Exact consensus is solvable inM if and only
if there exists an asymptotic consensus algorithm A forM such that Y ∗

M′,A
(C0) is either a singleton

or disconnected for all oblivious message adversariesM ′ ⊆ M and all initial configurations C0 of A.

Proof. (⇒): Assume that exact consensus is solvable subject toM, and let A ′ be an algorithm

that solves exact consensus subject to M. Let A be the algorithm derived from A ′ in which

deciding is replaced by setting its output variable to the decision value of A ′ and not changing it

anymore. Before the decision of algorithm A ′, algorithm A outputs its initial value. Then A is

an asymptotic consensus algorithm subject toM. Further, from Validity of exact consensus, for

any initial configuration C0, the valency Y
∗
M,A
(C0) is a subset of the set of initial values in C0. As

the set of initial values of C0 is finite, so is Y ∗
M,A
(C0) and, by Lemma 3.4, also Y ∗

M′,A
(C0) for all

M ′ ⊆ M. Since any finite set is either a singleton or disconnected, the claim follows.

(⇐): We assume without loss of generality that d = 1. If not, we embed the initial values in any

1-dimensional affine subspace, e.g., choose them to lie on the first axis.

We proceed by means of contradiction. Assume that exact consensus is unsolvable subject to

M = M(G). We will show that for all asymptotic consensus algorithms A forM, there exists

an initial configuration C0 and an oblivious message adversaryM ′ = M(G′) ⊆ M such that

Y ∗
M′,A

(C0) is a nontrivial interval.

By Theorem 7.6, there is a source-incompatible βG-class. Choose G
′
to be equal to such a class.

We choose C0 via Lemma 7.8 such that Y ∗
M′,A

(C0) is not a singleton.

To show that Y ∗
M′,A

(C0) is connected, we assume to the contrary that it is not and derive a

contradiction. The set Y ∗
M′,A

(C0) not being connected means the existence of some z < Y ∗
M′,A

(C0)

such that

∃z1, z2 ∈ Y ∗M′,A(C0) : z1 < z < z2 . (13)

We will inductively construct an execution E = C0,G1,C1,G2, . . . such that

∃z1, z2 ∈ Y ∗M′,A(Ct ) : z1 < z < z2 (14)

for all t ⩾ 0. Setting m(t) = inf Y ∗
M′,A

(Ct ) and M(t) = supY ∗
M′,A

(Ct ), we then have m(t) ⩽

z ⩽ M(t) by (14) and M(t) −m(t) = δM′,A(Ct ) → 0 by Convergence and Agreement. Hence

lim

t→∞
m(t) = lim

t→∞
M(t) = z, which means

lim

t→∞
Y ∗
M′,A(Ct ) =

⋂
t⩾0

Y ∗
M′,A(Ct ) = {z} ,

where the first equality follows from Lemma 3.5. In particular z ∈ Y ∗
M′,A

(C0), which gives the

desired contradiction.

It thus suffices to construct an execution E satisfying (14). Assume that (14) holds for a given

t ⩾ 0 and let z(t )
1
, z(t )

2
∈ Y ∗
M′,A

(Ct ) with z(t )
1
< z < z(t )

2
. By Lemma 3.5, it follows that there are

communication graphs G,H ∈ G′ with z(t )
1
∈ Y ∗
M′,A

(C .G) and z(t )
2
∈ Y ∗
M′,A

(C .H ). By Lemma 7.4,



we have Gα∗
G′
H . Thus there exists a chain G = H0,H1, . . . ,Hq = H ∈ G′ and communication

graphs K1, . . . ,Kq ∈ G
′
such that Hr−1αKrHr for all r ∈ [q]. From Lemma 7.7 we thus know that

Y ∗
M′,A(C .Hr−1) ∩ Y

∗
M′,A(C .Hr ) , ∅ (15)

for all r ∈ [q]. Set f (r ) = inf Y ∗
M′,A

(C .Hr ) and д(r ) = supY ∗
M′,A

(C .Hr ) for r ∈ {0, . . . ,q}, and

r̂ = min

{
r ∈ {0, . . . ,q} | д(r ) > z

}
.

Then f (0) ⩽ z(t )
1
⩽ д(0) and f (q) ⩽ z(t )

2
⩽ д(q). The quantity r̂ is finite since д(q) ⩾ z(t )

2
> z. We

show f (r̂ ) < z by distinguishing two cases:

(1) r̂ = 0: Then f (r̂ ) = f (0) ⩽ z(t )
1
< z.

(2) r̂ ⩾ 1: Then, by (15) and the definition of r̂ , we have f (r̂ ) ⩽ д(r̂ − 1) < z.

In both cases, we showed f (r̂ ) < z < д(r̂ ). Choosing Gt+1 = Hr̂ and Ct+1 = Ct .Gt+1, we hence

proved (14) for t + 1. This concludes the proof. □

We next introduce the αG-diameter of an oblivious message adversaryM =M(G), which we

will then (see Theorem 7.12 and Corollary 7.13) show to be directly linked to a nontrivial lower

bound on the contraction ratio subject toM if exact consensus is not solvable subject toM.

Definition 7.10. Let G be a set of communication graphs. We say that G is αG-connected if α∗
G

has a single equivalence class. Otherwise, we call it αG-disconnected.
The αG-diameter of an αG-connected G is the smallest D ⩾ 1 such that for all G,H ∈ G there

exist communication graphs H0, . . . ,Hq ∈ G and K1, . . . ,Kq ∈ G with q ⩽ D such that G = H0,

H = Hq , and Hr−1αKrHr for all r ∈ [q].

Example 7.11. Observe that for G = {H0,H1,H2} from Theorem 4.1, the αG-diameter of G is

D = 2: From Example 7.2 and Figure 5 one immediately verifies that H2αH1
H0αH2

H1, but no graph

G in G relates all three graphs via αG .
By contrast, the set G = {H1,H2} is not αG-connected since neither H1αH1

H2 nor H1αH2
H2.

For the oblivious message adversaryM(deaf(G)), whereG is an arbitrary communication graph

G with n ⩾ 3 nodes, we have D = 1: Recall that deaf(G) = {F1, . . . , Fn} with Fi = G \
{
(j, i) |

j ∈ [n] \ {i}
}
. Let i, j ∈ [n] and chose k ∈ [n] \ {i, j}. Then R(Fk ) is either ∅ or {k}. In both cases,

InR(Fk )(Fi ) = InR(Fk )(Fj ), and thus FiαFk Fj . □

The following theorem and corollary thus generalize Theorems 4.1 and 5.1 to arbitrary oblivious

message adversaries for which exact consensus is not solvable.

Theorem 7.12. LetM =M(G) be an oblivious message adversary for which exact consensus is
not solvable. If G is αG-connected, then the contraction ratio of any asymptotic consensus algorithm
subject toM is greater or equal to 1/(D + 1) where D is the αG-diameter of G.

Proof. We show the stronger statement that for every initial configuration C0 there is an

execution E = C0,G1,C1,G2, . . . starting at C0 such that

δM,A(Ct ) ⩾
1

(D + 1)t
δM,A(C0) (16)

for all t ⩾ 0. This, applied to an initial configuration with δM,A(C0) > 0, which exists by Lemma 7.8,

then shows the theorem.

The proof is by inductive construction of an execution E = C0,G1,C1,G2, . . . whose configura-
tions Ct satisfy (16).

For t = 0 the inequality trivially holds.



Now let t be any nonnegative integer and assume that Equation (16) holds for t . By Lemma 3.6,

there exist G,H ∈ G such that diam

(
Y ∗
M,A
(Ct )

)
= diam

(
Y ∗
M,A
(Ct .G) ∪ Y

∗
M,A
(Ct .H )

)
. Because

the αG-diameter of G is equal to D < ∞, there exist communication graphs H0, . . . ,Hq ∈ G and

K1, . . . ,Kq ∈ G with q ⩽ D such that G = H0, H = Hq , and Hr−1αKrHr for all r ∈ [q].
Define Y = Y ∗

M,A
(Ct ) and Yr = Y ∗

M,A
(Ct .Hr ). We have diam(Y ) = diam(Y0 ∪ Yq) by choice

of G = H0 and H = Hq . We show that there exists some r ∈ {0, . . . ,q} such that diam(Yr ) ⩾
diam(Y )/(q + 1) and then set Gt+1 = Hr and Ct+1 = Ct .Hr . Then, by the induction hypothesis, we

have

δM,A(Ct+1) ⩾
δM,A(Ct )

q + 1
⩾

δM,A(Ct )

D + 1
⩾

1

(D + 1)t+1
δM,A(C0) , (17)

i.e., Equation (16) holds for t + 1.
Assume by contradiction that for all r ∈ {0, . . . ,q} diam(Yr ) < diam(Y )/(q + 1). By Lemma 7.7,

we have Yr−1 ∩ Yr , ∅ for all r ∈ [q]. Inductively, we prove

diam

( r⋃
s=0

Ys
)
<

r + 1

q + 1
· diam(Y ) (18)

for all r ∈ {0, . . . ,q}. In particular for r = q, which leads to diam(Y ) ⩽ diam(Y0 ∪ Yq) < diam(Y ),
which is a contradiction and concludes the proof. □

Direct application of Theorem 7.12 to an oblivious message adversaryM = M(G) in which

exact consensus is not solvable may yield a trivial bound of 0 if G is not αG-connected. We can,

however, use Lemma 3.4 to derive a strictly positive bound for anyM subject to which exact

consensus is not solvable:

Corollary 7.13. LetM =M(G) be an oblivious message adversary for which exact consensus is
not solvable. The contraction ratio of any asymptotic consensus algorithm subject toM is greater or
equal to 1/(D + 1) where D is the infimum of αG′-diameters of any αG′-connected G′ ⊆ G such that
exact consensus is not solvable subject toM(G′).

Proof. Set G′ ⊆ G equal to the set with the smallest αG′-diameter such that exact consensus is

not solvable subject toM(G′). Applying Theorem 7.12 toM ′, and Lemma 3.4 (iv) toM ′ andM

yields the corollary. □

Corollary 7.13 gives a trivial lower bound of 0 on the contraction ratio if exact consensus is

solvable subject toM (and thus all its sub-message adversaries). It turns out that the converse also

holds: If a contraction ratio of 0 can be achieved, then exact consensus is solvable. This is shown

in the next theorem. We thus indeed have a nontrivial lower bound in Corollary 7.13 whenever

possible.

Theorem 7.14. LetM be an oblivious message adversary. Exact consensus is solvable subject toM
if and only if there is an asymptotic consensus algorithm that achieves a contraction ratio of 0 subject
toM.

Proof. (⇒): Starting from an exact consensus algorithm, we can construct an asymptotic con-

sensus algorithm by having each agent output its intial value before the exact consensus algorithm

would have decided, and its decision value after. The valency of a configuration after all agents

would have decided in the exact consensus algorithm is a singleton. The diameter of the valency is

thus eventually 0 in every execution of the asymptotic consensus algorithm. But then the algorithm’s

contraction ratio is 0.

(⇐): Assume by contradiction that there is an asymptotic consensus algorithm that has contrac-

tion ratio 0 subject toM =M(G) and that exact consensus is not solvable subject toM. Then,



by Corollary 7.13, every G′ ⊆ G such that exact consensus is not solvable subject toM(G′) is

αG-disconnected. We show that this is impossible.

By Theorem 7.6 there is a βG-class C that is source-incompatible. By the Closure Property of

the βG-relation, the class C is also a βC-class. Now, by invoking Theorem 7.6 for the oblivious

message adversaryM(C), since C is source-incompatible, exact consensus is not solvable subject to

M(C). But the single βC-class is αC-connected, and thus also αG-connected. The class C is thus αG-
connected and exact consensus is not solvable subject toM(C), a contradiction to Corollary 7.13. □

8 ALMOST-TIGHT BOUNDS FOR ASYNCHRONOUS SYSTEMSWITH CRASHES: THE
PRICE OF ROUNDS

In this section we show that Corollary 7.13 provides a tool to clearly separate time complexities

of algorithms that operate in rounds to general algorithms in the classical static fault model of

asynchronous message-passing systems with crashes. Our result applies to algorithms without any

restriction: we do not make assumptions on the nature of the functions used by the agents, and

agents are not required to be memoryless.

We start with recalling and adapting notation for classical asynchronousmessage-passing systems.

We consider a distributed system where agents perform receive-compute-send steps. An agent may

crash, i.e., stop making steps. Crashes can be unclean: the final broadcast message may be received

by a proper subset of correct, i.e., non-crashed, agents, only. Since an agent that crashes stops to

make steps, we require Convergence, Validity, and Agreement of asymptotic consensus to hold

only for the set of correct agents. Analogously, the consensus function y∗, and thus the valencies,

are restricted to correct agents only. Further, we apply the standard convention of measuring time

in asynchronous systems by normalizing to the longest end-to-end message delay from a broadcast

to the respective reception in an execution.

8.1 Round-based Algorithms
An algorithm is said to operate in rounds if each agent waits for n − f messages corresponding

to the current round, updates its state based on the received messages and its previous state, and

broadcasts the next round’s messages. If up to f agents can crash, and thus are muted, i.e., stop

sending messages, then waiting for more than n − f messages can lead to a deadlock. Algorithms

that operate in rounds are widely used in asynchronous systems (see, e.g., [19, 25, 44]).

We next show that Corollary 7.13 can be applied to obtain new asymptotically tight bounds for

round-based algorithms. Specifically, we prove a lower bound for asynchronous systems of size

n ⩾ 3 with up to f < n/2 crashes whose agents operate in rounds.

Let us construct the following set of communication graphs: denote by Gn the set of communica-

tion graphs with n nodes and let

GA =
{
G ∈ Gn | ∀i ∈ [n] : |Ini (G)| ⩾ n − f

}
for some f < n/2.

Lemma 8.1. The αGA -diameter of GA is at most ⌈n/f ⌉.

Proof. LetG,H ∈ GA andq = ⌈n/f ⌉. We choose the communication graphsHr , where 0 ⩽ r ⩽ q,
such that

Ini (Hr ) =

{
Ini (G) if 1 ⩽ i ⩽ r f

Ini (H ) if r f + 1 ⩽ i ⩽ n .

Further, for r ∈ [q], we choose the communication graphs Kr such that

Ini (Kr ) = [n] \ {j | (r − 1)f + 1 ⩽ j ⩽ r f } .



node i in H0: 1 f. . . f + 1 2f. . . 2f + 1 3f. . . 3f + 1 n. . .

Ini (H0): Ini (H )

node i in H1: 1 f. . . f + 1 2f. . . 2f + 1 3f. . . 3f + 1 n. . .

Ini (H1): Ini (H )Ini (G)

node i in H2: 1 f. . . f + 1 2f. . . 2f + 1 3f. . . 3f + 1 n. . .

Ini (H2): Ini (H )Ini (G)

.
.
.

R(K1)

R(K1)R(K1)

Fig. 6. Visualization of the argument in the proof of Lemma 8.1 stating that Hr−1αKrHr for the first two
r ∈ [q]. The figure shows the nodes of the graphs H0, H1, and H2. Nodes are labeled by whether their
in-neighbors are as in H or as in G. The nodes in R(K1) are shown in blue, the nodes in R(K2) in red. One
immediately observes that H0αK1

H2αK3
H3 by comparing in-neighbors for the nodes in R(K1) in graphs H0

and H1, and in-neighbors for the nodes in R(K2) in graphs H1 and H2.

Note that all such Hr and Kr are uniquely defined via the in-neighbors of each node i ∈ [n].
Since, for r = 0, it is Ini (Hr ) = Ini (H ) for all nodes i ∈ [n], and for r = q, it is Ini (Hr ) = Ini (G)

for all nodes i ∈ [n], we have H0 = H and Hq = G.
Further, for all r ∈ [q], we can write R(Kr ) = Ini (Kr ) = [n] \ {j | (r − 1)f + 1 ⩽ j ⩽ r f }.

Together with the fact that for all r ∈ [q] and all nodes i ∈ R(Kr ), it is Ini (Hr−1) = Ini (Hr ), we

obtain Hr−1αKrHr for all r ∈ [q]; see Figure 6. Noting Hr ∈ GA and Kr ∈ GA for all r ∈ [q], this
concludes the proof. □

From Lemma 8.1 and Corollary 7.13 we immediately obtain the lower bound:

Theorem 8.2. The contraction ratio for any asymptotic consensus algorithm for n ⩾ 3 agents and
at most f < n/2 crashes that operates in rounds is greater or equal to 1

⌈n/f ⌉+1 .

Note that the contraction ratio in Theorem 8.2 is with respect to rounds. However, we can

construct an execution where a single round requires 1 + ε time for arbitrarily small ε > 0: we

assign all messages that are delivered according to the communication graph of the respective

round, delay 1, and all others delay 1 + ε . Theorem 8.2 thus also holds for a contraction ratio with

respect to time.

8.2 General Algorithms
Within this section, consider the classical static fault model of asynchronous message-passing

systems with crashes; see, e.g., [31, 44] for a detailed definition of this model. We show that there



is an algorithm that does not operate in rounds that ensures that all agents’ outputs are equal by

time f + 1. This gives a contraction ratio of 0.

The following algorithm MinRelay is inspired by the exact consensus algorithm for synchronous

systems with crash faults (see, e.g,. [44]), and is based on a non-terminating reliable broadcast

protocol: Initially, at time 0, each agent i sets S i to the set containing only its initial value, and

broadcasts S i . Whenever an agent i receives a set S , S i , it sets S i ← S i ∪ S , yi ← min(S i ), and
broadcasts S i .

Theorem 8.3. The MinRelay algorithm solves asymptotic consensus in asynchronous message-
passing systems with up to f < n crashes. Specifically, all correct agents’ sets S i , and thus yi , are equal
by time f + 1, and the algorithm’s contraction ratio is 0.

Proof. We first show equality of sets S i by time f + 1. Assume by means of contradiction that

there exist two correct agents i, j with S i , S j after time f + 1. Then there exists an x in S i that is
not in S j . We distinguish between two cases:

Case i: x was added to S i at latest by time f . By the algorithm and the maximum message delay

of 1, x is added to S j by time f + 1; a contradiction.

Case ii: Otherwise, x was added to S i after time f . Consider the causal chain of messages that lead

to adding x at agent i . By the algorithm, its origin must be a message broadcast at time 0. Together

with the maximum message delay of 1, the chain must contain at least f + 1 broadcasts during
the time interval [0, f ]. At most f of these broadcasts may be ones where an agent crashed and

stopped making steps. Thus there is at least one broadcast among them that happened at an agent

that did not crash during the broadcast. By the maximum message delay 1, node j received this

message by time f + 1, adding x to S j ; a contradiction to the assumption. The claim follows.

Convergence, Agreement, and Validity follow from equality of all correct agents’ S i after time

f + 1, the fact all elements in S i are initial values, and the properties of the function min. □

9 APPROXIMATE CONSENSUS
Alternatively to asymptotic consensus, one may also consider the approximate consensus problem,

in which convergence is replaced by a decision in a finite number of rounds and where agreement

should be achieved with an arbitrarily small error tolerance (see, e.g., [44]). Like for exact consensus,

formally, the local state of i is augmented with variable di initialized to ⊥. Again, agent i is allowed
to set di to some value v , ⊥ only once, in which case we say that i decides v . In addition to

the initial values yi (0), agents initially receive the error tolerance ε and an upper bound ∆ on the

maximum distance of initial values. An algorithm solves approximate consensus subject toM if for

all ε > 0 and all ∆, each execution E with a communication sequence inM with initial diameter at

most ∆ satisfies:

• Termination. Each agent eventually decides.

• ε-Agreement. If agents i and j decide v and v ′, then we have ∥v −v ′∥⩽ ε .
• Validity. If agent i decides v , then v is in the convex hull of initial values y1

E
(0), . . . ,yn

E
(0).

Asymptotic consensus and approximate consensus are clearly closely related. However, the

ε-Agreement condition does not preclude that the decisions of a given agent in a sequence of

executions with same initial values and communication sequences, but with different error tolerance

parameters ε → 0, diverges. It may thus lead to unstable decisions with respect to this parameter,

as shown by the following example.

Example 9.1. Consider the oblivious message adversaryM =M({H0}), with H0 from Figure 3,

and the following Algorithm A that is easily seen to solve approximate consensus subject toM: If



the initially provided ε > 0 fulfills ⌈1/ε⌉ ≡ 0 mod 2, then both agents output y1(0) at the end of

round ⌈1/ε⌉; otherwise, both agents output y2(0) at the end of round ⌈1/ε⌉.
We can observe that, if the sequence εs = 1/s is provided as initial parameter to A and given

that the initial values y1(0) and y2(0) differ, the (identical) decision values of both agents oscillate

between y1(0) and y2(0) and thus do not converge as ε → 0. □

We next extend our lower bounds on the contraction ratio of asymptotic consensus to lower

bounds on the decision time of approximate consensus. In particular, we show optimality of

the decision times of the algorithms presented by Charron-Bost et al. [18]: For n = 2, running

Algorithm 1 and deciding yi after ⌈log
3

∆
ε ⌉ rounds is optimal (Theorem 9.2). For n ⩾ 3 and the

oblivious message adversary of all non-split graphs, running the midpoint algorithm and deciding

after ⌈log
2

∆
ε ⌉ rounds is optimal (Theorem 9.3). For n ⩾ 4 and the strongest oblivious message

adversary of all rooted graphs, running the amortized midpoint algorithm and deciding after

(n − 1)⌈log
2

∆
ε ⌉ rounds is optimal within a multiplicative term of at most

n−1
n−2 (Theorem 9.4).

We start with the case of two agents in Theorem 9.2. The proof is by reducing asymptotic

consensus to approximate consensus, arriving at a contradiction with Theorem 4.1 for too fast

approximate consensus algorithms.

Theorem 9.2. Let ∆ > 0 and ε > 0. Subject to an oblivious message adversary of n = 2 agents
whose communication graphs are H0, H1, and H2 from Figure 3, all approximate consensus algorithms
have an execution with initial diameter ∆(C0) ⩽ ∆ and decision time greater or equal to log

3

∆
ε .

Proof. Assume to the contrary that algorithm A solves approximate consensus subject to the

oblivious message adversaryM =M({H0,H1,H2}) that decides inT < log
3

∆
ε rounds for all initial

configurations C0 with ∆(C0) ⩽ ∆ and some ε > 0.

Choose any C0 with ∆(C0) = ∆. Define algorithm Ã by running algorithm A, updating y to

the agents’ decision values in round T , and then running Algorithm 1 with the initial values

yi (T ) = di from roundT + 1 on. Because Algorithm 1 is an asymptotic consensus algorithm and the

decision values y(T ) of A satisfy the Validity condition of approximate consensus, algorithm Ã is

an asymptotic consensus algorithm.

Let C0 be an initial configuration of Ã with initial values y(0). By the proof of Theorem 4.1,

namely (5), there is an execution E = C0,G1,C1,G2, . . . starting from C0 such that

δM, Ã(CT ) ⩾
1

3
T · δM, Ã(C0) .

We have δM, Ã(C0) = ∆(C0) = ∆ by Lemma 3.9 and δM, Ã(CT ) ⩽ ∆(y(T )) ⩽ ε by Validity of

Algorithm 1 and ε-Agreement of algorithm A. But this means T ⩾ log
3

∆
ε , a contradiction. □

With a similar proof, we also get the lower bound for approximate consensus with n ⩾ 3 agents:

Theorem 9.3. Let ∆ > 0 and ε > 0. Subject to an oblivious message adversary of n ⩾ 3 agents that
includes the communication graphs deaf(G), all approximate consensus algorithms have an execution
with initial diameter ∆(C0) ⩽ ∆ and decision time greater or equal to log

2

∆
ε .

Analogously, for oblivious message adversaries with rooted Ψ graphs, using (11), we obtain:

Theorem 9.4. Let ∆ > 0 and ε > 0. Subject to an oblivious message adversary of n ⩾ 4 agents that
includes the Ψ communication graphs, all approximate consensus algorithms have an execution with
initial diameter ∆(C0) ⩽ ∆ and decision time greater or equal to (n − 2) log

2

∆
ε .

In case the oblivious message adversary does not include any of the above graphs, we obtain the

following general bound on the termination time:



Theorem 9.5. Let ∆ > 0 and ε > 0. For an oblivious message adversaryM = M(G) subject to
which exact consensus is not solvable, all approximate consensus algorithms have an execution with
initial diameter ∆(C0) ⩽ ∆ and decision time greater or equal to logD+1

∆
εn , whereD is the αG-diameter

of G.

Proof. Assume to the contrary that algorithmA solves approximate consensus subject to some

oblivious message adversaryM subject to which exact consensus is not solvable and that decides

in T < logD+1
∆
εn rounds for all initial configurations C0 with ∆(C0) ⩽ ∆ and some ε > 0.

Define algorithm Ã by repeatedly running algorithm A, updating y to the agents’ decision

values in round kT , and then restarting A in round kT + 1 with the decision values from the

previous phase. Then Ã is an asymptotic consensus algorithm.

Let C0 be an initial configuration of Ã with ∆
(
C0)

)
⩽ ∆ and δM, Ã(C0) ⩾ ∆/n By the proof of

Theorem 7.12, namely (16), there is an execution E = C0,G1,C1,G2, . . . starting from C0 such that

δM, Ã(CT ) ⩾
1

(D + 1)T
· δM, Ã(C0) . (19)

It is δM, Ã(C0) ⩽ ∆(C0)) ⩽ ∆/n and δM, Ã(CT ) ⩽ ∆(y(T )) ⩽ ε by ε-Agreement of algorithm A. But

this means T ⩾ logD+1
∆
εn , a contradiction. □

From Theorem 9.5 and the fact thatM ′ ⊆ M implies EM′,A ⊆ EM,A , we get:

Corollary 9.6. Let ∆ > 0 and ε > 0. For an oblivious message adversaryM =M(G) subject to
which exact consensus is not solvable, all approximate consensus algorithms have an execution with
initial diameter ∆(C0) ⩽ ∆ and decision time greater or equal to logD+1

∆
εn , where D is the smallest

αG-diameter of αG-connected G′ ⊆ G such that exact consensus is not solvable subject toM(G′).

10 CONCLUSIONS
We introduced the notion of valency for asymptotic consensus algorithms, generalizing the con-

cept of valency from exact consensus algorithms. Based on the study of valency diameters along

executions we proved lower bounds on the contraction ratios of asymptotic consensus algorithm in

arbitrary oblivious message adversaries: In particular, together with previously published convex-

combination algorithms [18], we showed tight bounds for the oblivious message adversary con-

taining all non-split graphs, and the strongest oblivious message adversary for which asymptotic

consensus is solvable, the oblivious message adversary of all rooted graphs. Furthermore we ob-

tained a general lower bound of 1/(D + 1) for any oblivious message adversary for which exact

consensus is not solvable; here D denotes the newly introduced αG-diameter of the set G of com-

munication graphs. Interestingly, this result also immediately provides new tight lower bounds on

classical static failure models, as exemplified in the case of asynchronous message-passing systems

with crashes and shows a fundamental discrepancy in performance between round-based and

general algorithms. We finally demonstrated how to obtain corresponding results for approximate

consensus algorithms.
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A AUXILIARY RESULTS

Lemma A.1. Letm ⩾ 1 and A1, . . . ,Am ⊆ R
d . Then diam

(
m⋃
ℓ=1

Aℓ

)
= max

1⩽i, j⩽m
diam

(
Ai ∪Aj

)
.

Proof. Let D = diam

(⋃m
ℓ=1Aℓ

)
and Di, j = diam

(
Ai ∪Aj

)
for 1 ⩽ i, j ⩽ m. The set inclusion

Ai ∪Aj ⊆
⋃m

ℓ=1Aℓ implies the inequality Di, j ⩽ D and thus maxi, j Di, j ⩽ D.
To prove the converse direction, take a sequence of pairs (xk ,yk ) of points in

⋃m
ℓ=1Aℓ whose

distance converges to the set’s diameter D. That is, D = limk→∞∥xk − yk ∥.
Since the set

⋃m
ℓ=1Aℓ is a union, for everyk , there exists some index ik such that xk ∈ Aik . Because

there are only finitely many possible values for the indices ik , there is an infinite subsequence

of the sequence of indices ik that is constant, say, equal to i . The corresponding points xk of this

subsequence all lie in the set Ai .

Similarly, starting from this subsequence, because there are only finitely many possible values

for the indices jk , there is an infinite subsequence for which jk is also constant, say equal to j.
Again, the corresponding points yk of this subsequence all lie in the set Aj .

The limit of distances ∥xk − yk ∥ in this second subsequence is also equal to D, as the original
sequence. But, also, it is upper-bounded by Di, j since all xk and yk are inAi ∪Aj . Hence D ⩽ Di, j ⩽
maxi, j Di, j , which shows the converse inequality and concludes the proof. □

Similarly to the metric on executions, we define a metric on the set of communication sequences

by dist(σ ,σ ′) = 1/2θ where θ is the first index at which σ and σ ′ differ.

Lemma A.2. Let G be the set of communication graphs of an oblivious message adversary. Then the
set Gω of communication sequences is compact.

Proof. It is straightforward to show that the metric dist induces the product topology on Gω .

The set G is compact since it is finite. Hence, by Tychonoff’s theorem, the product space Gω is

compact as well. □

Lemma A.3. Let A be an algorithm and letM be a message adversary. For every initial configura-
tion C0, the scheduler function SC0

: M → EM,A ,

SC0

(
G1,G2, . . .

)
= C0,G1,C1,G2, . . . (20)

which maps communication sequences to executions is continuous.

Proof. By definition of the metric, dist(σ ,σ ′) < 1/2θ means that the first θ communication

graphs of σ and σ ′ coincide. But then, since the algorithm is deterministic, the first θ configurations

of the executions SC0
(σ ) and SC0

(σ ′) also coincide. Hence dist

(
SC0
(σ ), SC0

(σ ′)
)
< 1/2θ .

This shows that dist

(
SC0
(σ ), SC0

(σ ′)
)
⩽ dist(σ ,σ ′). In particular, SC0

is continuous. □



Lemma A.4. Let A be an algorithm with a finite number of initial configurations. The set of
executions of algorithm A subject to an oblivious message adversary is compact.

Proof. LetG be the set of communication graphs of the obliviousmessage adversaryM =M(G).

For every initial configuration, the scheduler function SC0
: M → EM,A is continuous (Lemma A.3).

Since the setM = Gω is compact (Lemma A.2), and the image of a compact set under a continuous

function is compact, the subset of EM,A whose executions share the same initial configuration C0

is compact. Now, since there are only finitely many initial configurations, and any finite union of

compact sets is compact, the set EM,A of all executions is also compact. □

Lemma A.5. LetM be a message adversary and let A be an algorithm that solves exact consensus
subject toM. Then its consensus function y : EM,A → V that maps executions to their common
decision value is continuous.

Proof. The function y is even locally constant: Let E ∈ EM,A be an execution. Denote by T a

round number in which all agents have already decided in execution E, and set ε = 2
−T

. Then, in

every execution E ′ ∈ EM,A with dist(E,E ′) < ε , all agents have decided at round T , and on the

same value as in E. In other words, y(E) = y(E ′). This shows that the consensus function y is locally

constant, hence continuous. □

B ADDITIONAL PROOFS
Lemma 6.2. Let C be a configuration reachable by algorithm A subject to message adversaryM

via the finite communication sequence π . Then

Y ∗
M,A(C) =

⋃
G ∈Σ(π )

Y ∗
M,A(C .G) .

Proof. Assume that C is reachable by algorithm A subject to message adversaryM via the

finite communication sequence π = G1,G2, . . . ,Gt .

Let y∗ ∈ Y ∗
M,A
(C). By the assumption on the configuration C and the definition of the valency

Y ∗
M,A
(C), there exists an execution E = C0,G1,C1,G2, . . . in EM,A such thaty∗ = y∗(E) andC = Ct .

Set G = Gt+1 ∈ Σ(π ). Hence we have Ct+1 = C .G. But this shows that y
∗ ∈ Y ∗

M,A
(C .G) since C .G

occurs in execution E whose limit is y∗. This shows inclusion of the left-hand side in the right-hand

side.

Now let G ∈ Σ(π ) and y∗ ∈ Y ∗
M,A
(C .G). Then there exists an execution E = C0,G1,C1,G2, . . .

in EM,A such that Ct = C , Gt+1 = G, and Ct+1 = C .G. But then trivially y∗ ∈ Y ∗
M,A
(C) because C

occurs in E. This shows inclusion of the right-hand side in the left-hand side and concludes the

proof. □

Lemma 6.3. Let C be a configuration reachable by algorithm A subject to message adversaryM
via the finite communication sequence π . Then there exist G,H ∈ Σ(π ) such that

δM,A(C) = diam

(
Y ∗
M,A(C .G) ∪ Y

∗
M,A(C .H )

)
.

Proof. By Lemma 6.2 it is Y ∗
M,A
(C) =

⋃
G ∈Σ(π ) Y

∗
M,A
(C .G). The claimed equality now follows

from Lemma A.1. □

Lemma 6.4. Let C and C ′ be two reachable configurations subject to message adversaryM via
the finite communication sequences π and π ′, respectively. If C ∼i C ′ and there exist communication
sequence α and α ′ such that π · α ∈ M, π ′ · α ′ ∈ M, and i is deaf in all communication graphs in α
and α ′, then Y ∗

M,A
(C) ∩ Y ∗

M,A
(C ′) , ∅.



Proof. Let E = C0,G1,C1,G2, . . . be an execution in EM,A with communication sequence

π · α that includes configuration C , and let E ′ = C ′
0
,G ′

1
,C ′

1
,G ′

2
, . . . be an execution in EM,A with

communication sequence π ′ · α ′ and that includes configuration C ′. Then there exists some time t
such that Ct = C and some time s such that C ′s = C

′
.

We show by induction that Ct+k ∼i C
′
s+k for all k ⩾ 0. The base case k = 0 is true since C ∼i C

′

by assumption. For the induction step, assume that Ct+k ∼i C
′
s+k . Since agent i does not receive

any messages in communication graphs Gt+k+1 and Gs+k+1, we also have Ct+k+1 ∼i C
′
s+k+1.

But then we necessarily have y∗(E) = y∗(E ′) and thus y∗(E) ∈ Y ∗
M,A
(C) ∩ Y ∗

M,A
(C ′) , ∅. □

Lemma 6.5. Let ∆ ⩾ 0. If there exist agents i , j and communication sequences α (i),α (j) ∈ M such
that agent i is deaf in α (i) and agent j is deaf in α (j), then there is an initial configuration C0 with
δM,A(C0) = ∆. In particular, there is an initial configuration for which δM,A(C0) > 0.

Proof. Let x and y be any two points at distance ∥x − y∥ = ∆. Let C0 be an initial configuration

in which all agents except i have initial value x and agent j has initial value y. Also, denote by C(x )
0

an initial configuration in which all agents have initial value x , and by C
(y)
0

one in which all agents

have initial value y.
Since agent i cannot distinguish the two executions with communication sequence α (i) and

respective initial configurations C0 and C
(x )
0

, we necessarily have x ∈ Y ∗
M,A
(C0) by the Validity

condition. Similarly, we have y ∈ Y ∗
M,A
(C0). Also by the Validity condition, the set Y ∗

M,A
(C)

is contained in the convex hull of the points x and y. Hence, δM,A(C0) = diam

(
Y ∗
M,A
(C0)

)
=

∥x − y∥ = ∆. □
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