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Agreeing on a common value among a set of agents is a fundamental problem in distributed computing, which occurs in several variants: In contrast to exact consensus, approximate variants are studied in systems where exact agreement is not possible or required, e.g., in man-made distributed control systems and in the analysis of natural distributed systems, such as bird flocking and opinion dynamics.

We study the time complexity of two classical agreement problems: non-terminating asymptotic consensus and terminating approximate consensus. Asymptotic consensus, requires agents to repeatedly set their outputs such that the outputs converge to a common value within the convex hull of initial values; approximate consensus requires agents to eventually stop setting their outputs, which must then lie within a predefined distance of each other.

We prove tight lower bounds on the contraction ratios of asymptotic consensus algorithms subject to oblivious message adversaries, from which we deduce bounds on the time complexity of approximate consensus algorithms. In particular, the obtained bounds show optimality of asymptotic and approximate consensus algorithms presented by for certain systems, including the strongest oblivious message adversary in which asymptotic and approximate consensus are solvable. As a corollary we also obtain asymptotically tight bounds for asymptotic consensus in the classical asynchronous model with crashes.

Central to the lower-bound proofs is an extended notion of valency, the set of reachable limits of an asymptotic consensus algorithm starting from a given configuration. We further relate topological properties of valencies to the solvability of exact consensus, shedding some light on the relation of these three fundamental problems in dynamic networks.

INTRODUCTION

This work is devoted to the problem of achieving symmetry among a set of agents in a distributed system, which is studied in three variants:

In the asymptotic consensus problem a set of agents, each starting from an initial value in R d , repeatedly update their values such that all agents' values converge to a common limit within the convex hull of initial values. The problem is closely related to the approximate consensus problem, in which agents have to irrevocably decide on values that lie within a predefined distance ε > 0 of each other. Typically, initial values are constrained to be within an initial distance ∆ ⩾ 0 of each other; which we will also assume in this work. The approximate consensus problem is weaker than the exact consensus problem in which agents need to decide on the same value, which must be one of the initial values. If the values are further constrained to be from {0, 1}, one speaks of binary exact consensus.

While exact consensus has traditionally received the most attention, motivated by classical distributed computing problems such as providing consistency among replicated databases, the weaker asymptotic and approximate consensus problems have gained importance in systems where exact consensus is not possible or not required. In particular, asymptotic consensus has been studied in the context of distributed control [START_REF] Angeli | Stability of leaderless discrete-time multi-agent systems[END_REF][START_REF] Bliman | Rate of convergence for consensus with delays[END_REF][START_REF] Cao | Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events[END_REF][START_REF] Chazelle | The total s-energy of a multiagent system[END_REF][START_REF] Rasoul | Convergence time for unbiased quantized consensus[END_REF][START_REF] Moreau | Stability of multiagent systems with time-dependent communication links[END_REF] in different variants. Indeed, exact consensus requires quite strong assumptions on the underlying network [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Santoro | Time is not a healer[END_REF]. Fortunately, exact consensus is an unnecessarily strong requirement for several applications that require agreement: both the asymptotic and the approximate consensus problems have not only a variety of applications in the design of man-made control systems like sensor fusion [START_REF] Benediktsson | Consensus theoretic classification methods[END_REF], clock synchronization [START_REF] Li | Global clock synchronization in sensor networks[END_REF], formation control [START_REF] Egerstedt | Formation constrained multi-agent control[END_REF], rendezvous in space [START_REF] Lin | The multi-agent rendezvous problem[END_REF] and robot gathering [START_REF] Alcántara | The topology of look-computemove robot wait-free algorithms with hard termination[END_REF][START_REF] Castañeda | Convergence and covering on graphs for wait-free robots[END_REF][START_REF] Cohen | Convergence properties of the gravitational algorithm in asynchronous robot systems[END_REF], or load balancing [START_REF] Cybenko | Dynamic load balancing for distributed memory multiprocessors[END_REF], but also for analyzing natural systems like bird flocking [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF], firefly synchronization [START_REF] Mirollo | Synchronization of pulse-coupled biological oscillators[END_REF], or opinion dynamics [START_REF] Hegselmann | Opinion dynamics and bounded confidence models, analysis, and simulation[END_REF]. These problems often have to be solved under harsh environmental restrictions in which exact consensus is not achievable, or too costly to achieve: with limited computational power and local storage, under restricted communication abilities, and in presence of communication uncertainty.

In this work we study the performance of both asymptotic and approximate consensus algorithms under such harsh conditions. Specifically, we study algorithms subject to oblivious message adversaries [START_REF] Braud-Santoni | The next 700 impossibility results in time-varying graphs[END_REF][START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF][START_REF] Kuhn | Dynamic networks: Models and algorithms[END_REF][START_REF] Winkler | An overview of recent results for consensus in directed dynamic networks[END_REF] with round-based computation and a dynamic communication topology whose directed communication graphs are chosen each round from a predefined set of communication graphs.

While this model naturally captures highly unstable communication topologies, we further show that it also allows to assess performance within classical, more stable, distributed fault models. For example, the detour via dynamic network models allows to prove an asymptotically tight lower bound on the contraction ratio and thus the time complexity of approximate agreement in distributed systems where crash-prone agents communicate by asynchronous message passing. The results in this work thus answer the question raised by Dolev et al. [START_REF] Dolev | Reaching approximate agreement in the presence of faults[END_REF]Section 7] whether algorithms that are not of certain standard forms can produce agreement faster: our lower bounds allow algorithms that may arbitrarily use information from previous rounds.

In the following we will briefly discuss previous work on asymptotic and approximate consensus, summarize contributions of this work, and relate it to previous work. We start with a brief discussion on previous work by Charron-Bost et al. [START_REF] Charron-Bost | Amortized averaging algorithms for approximate consensus[END_REF][START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF][START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] on approximate agreement in oblivious message adversaries.

Approximate Consensus: Algorithms and Solvability. In previous work [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF], Charron-Bost et al. showed that approximate consensus is solvable subject to an oblivious message adversary if and only if the adversary is rooted, i.e., all its communication graphs contain rooted spanning trees. These rooted spanning trees need not have any edges in common and can change from one communication round to the next.

Interestingly, solvability subject to any rooted oblivious message adversary is already provided by surprisingly simple algorithms [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF]: so-called averaging or convex-combination algorithms, in which agents repeatedly broadcast their current value and update it to some weighted average of the values they received in this round, until they decide in a precomputed round. Central to the proof is a contraction of output values by a factor c < 1 every k ⩾ 1 rounds; the parameters c and k depend on the convex-combination algorithm and the message adversary. In particular, Charron-Bost et al. [START_REF] Charron-Bost | Amortized averaging algorithms for approximate consensus[END_REF][START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] show that

∆(t) ⩽ c • ∆(t -k) , (1) 
for t ⩾ k, where ∆(t) is the maximum distance among, i.e., the diameter of, agent values at the end of round t ⩾ 1 and ∆(0) = ∆ is the initial diameter.

One instance of a convex-combination algorithm for scalar input and output values, presented by Charron-Bost et al. is the midpoint algorithm, in which agents update their value to the midpoint of the set of received values, i.e., the average of the smallest and the largest of the received values. For input and output values of higher dimension d > 1, the midpoint algorithm is not well-defined. While one can show that applying it coordinate-wise in dimension d = 2 results again in a convexcombination algorithm, this is not anymore the case for dimension d ⩾ 3 since the new output value may lie outside of the convex hull of received values. An example for a convex-combination algorithm for arbitrary dimensions is the MidExtremes algorithm [START_REF] Függer | Fast multidimensional asymptotic and approximate consensus[END_REF]. It generalizes the midpoint algorithm to higher dimensions by having an agent set its output onto the midpoint of the line segment spanned by two received values that have maximum distance.

Asymptotic Consensus: Algorithms and Solvability. The characterization by Charron-Bost et al. [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks[END_REF][START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF] of solvability of approximate consensus can be immediately generalized to asymptotic consensus, showing that the problem is solvable subject to an oblivious message adversary if and only if the adversary is rooted; like approximate consensus: (i) Using the same convex-combination algorithms, except with the decision rule removed, the proved contraction of the output values by a factor of c < 1 every k rounds, implies that these algorithms also solve asymptotic agreement subject to any rooted oblivious message adversary. (ii) The impossibility of solving asymptotic consensus subject to any non-rooted oblivious message adversaries follows by the same partitioning argument as in the proof for approximate consensus [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks[END_REF]Theorem 9].

An interesting special case of rooted oblivious message adversaries are those whose graphs are non-split, that is, any two agents have a common incoming neighbor. Their prominent role is motivated by two properties: (i) They occur as communication graphs in benign classical distributed failure models, for example in synchronous systems with crashes, in asynchronous systems with a minority of crashes, and synchronous systems with send omissions. (ii) Charron-Bost et al. [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF] showed that non-split graphs also play a central role for arbitrary rooted oblivious message adversaries: they showed that any product of n -1 rooted graphs with n nodes is non-split, allowing to transform approximate and asymptotic consensus algorithms for non-split oblivious message adversaries into their amortized variants for rooted oblivious message adversaries.

Approximate and Asymptotic Consensus: Performance. Regarding time complexity, for scalar input and output values, the amortized midpoint algorithm subject to rooted oblivious message adversaries was shown [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] to fulfill [START_REF] Abraham | Optimal resilience asynchronous approximate agreement[END_REF] with c = 12 and k = n -1. On average, the algorithm thus leads to a contraction of the output range by a factor of n-1 1 2 per round. Stating it like this allows one to compare algorithms with different values of k. As a consequence of the above contraction of the output range, values that are initially at most ∆ apart, have distance at most ε > 0 after (n -1)⌈log 2 ∆ ε ⌉ rounds [START_REF] Charron-Bost | Amortized averaging algorithms for approximate consensus[END_REF][START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF]Theorem 9]. 1 While termination times are inherently unsuited to assess the performance of asymptotic consensus algorithms, the measure in (1) may be applied. However, measuring the contraction of the range of outputs is problematic for the following reason: Take any algorithm that solves asymptotic consensus and replace it by one that transiently sets an agent output value to 1 in round 1, while executing the original algorithm in successive rounds on the original initial states. The outputs rapidly contract (temporarily) to a single value within the first round, yielding an arbitrarily fast contraction of outputs in the first round. In the second round, however, the outputs will expand again. The result is misleading in this case. Intuitively, we would expect a good measure of convergence to be invariant to such algorithmic modifications.

Replacing the agent outputs of the configuration at the end of round t by the valency of the configuration at the end of round t, i.e., the limits that are reachable from this configuration, solves this problem. Indeed, from the perspective of valency, both of the above algorithms behave identically since the modification to the algorithm did not prune the set of reachable limits.

Instead of (1), we thus study

δ (t) ⩽ c • δ (t -k) , (2) 
where δ (t) is the diameter of the valency of the configuration at the end of round t. To compare algorithms with different values of k, and since asymptotic consensus algorithms do not have to guarantee a regular contraction according to (2), we also study the contraction ratio of an algorithm subject to a message adversary as the supremum over all its executions of lim sup

t →∞ t δ (t) . (3) 
First note that, by definition, the contraction ratio is between 0 and 1. The limit superior ensures the existence of a contraction ratio in case the limit does not exist and gives a conservative bound. One also immediately observes: (i) If an asymptotic consensus algorithm guarantees a regular contraction as in (2), its contraction ratio is k √ c, the average contraction per round. (ii) If an asymptotic consensus algorithm in fact solves exact consensus, the agent outputs will not change anymore after all agents have decided. Since from this round t on, δ (t) = 0, we have that the contraction ratio is 0 for this case.

From the fact that convex-combination algorithms set their output to within the convex hull of the previously received values, it follows that δ (t) ⩽ ∆(t) for all t ⩾ 0 (Lemma 3.1). Consequently, results on the contraction of outputs by convex-combination algorithms can be directly translated into upper bounds on their contraction ratio. For example, the contraction of the output range by the midpoint algorithm subject to a non-split oblivious message adversary of 1 2 per round [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] implies a contraction ratio of 1 2 or less. Likewise, for higher dimensions, the contraction of the diameter of the set of output values by the MidExtremes algorithm subject to a non-split oblivious message adversary, of 7/8 per round [32, Theorem 1] implies a contraction ratio of 7/8 or less.

A natural question is whether non-convex-combination or non-memoryless algorithms, i.e., algorithms that (i) do not necessarily set their output values to within the convex hull of previously received values or (ii) whose output is a function not only of the previously received values, allow faster contraction. In the context of classical failure models, the question for lower bounds independent of such assumptions, was raised by Dolev et al. [START_REF] Dolev | Reaching approximate agreement in the presence of faults[END_REF]. As an example for (i), consider the algorithm where each agent sends an equal fraction of its current output value to all out-neighbors and sets its output to the sum of values received in the current round. Note that the algorithm is not a convex-combination algorithm as its output may lie outside the convex hull of the values of its in-neighbors. However, it solves asymptotic consensus for a fixed directed communication graph. Other examples of algorithms that violate (i) and (ii) are from control theory, where the usage of overshooting fast second-order controllers is common (see, e.g., [START_REF] Karl | Feedback Systems: An Introduction for Scientists and Engineers[END_REF]).

Contribution. We prove asymptotically tight lower bounds on the contraction ratio of any asymptotic consensus algorithm with scalar input and output values, regardless of the structure of the algorithm: algorithms can be full-information and agents can set their outputs outside the convex hull of received values. This, e.g., includes using higher-order filters, in contrast to the 0-order filters of convex-combination algorithms. In particular, the following lower bounds hold for an oblivious message adversary M with n agents: If exact consensus is solvable subject to M, an optimal contraction ratio of 0 can be achieved. Otherwise:

• In a system with n = 2 agents, the contraction ratio is lower-bounded by 1/3 (Theorem 4.1). This is tight (algorithm presented by Charron-Bost et al. [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] and Lemma 3.1). • For an arbitrary communication graph G, we define the set deaf(G) = {F 1 , . . . , F n }, where F i is derived from G by making agent i deaf in F i , i.e., removing the incoming edges of i in G.

In a system with n ⩾ 3 agents, if M contains the communication graphs in deaf(G), then the contraction ratio is lower-bounded by 1/2 (Theorem 5.1). This is tight for oblivious non-split message adversaries because of the midpoint algorithm [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] and Lemma 3.1. • We then show that if M contains certain rooted graphs Ψ, then the contraction ratio is lower bounded by n-2 1/2 (Theorem 6.1). This is asymptotically tight for oblivious rooted message adversaries because of the amortized midpoint algorithm [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] and Lemma 3.1. Calling an oblivious message adversary stronger than another one if its set of communication graphs is a superset of the other one's set of communication graphs, this specifically proves optimality of the amortized midpoint algorithm subject to the strongest oblivious message adversary in which asymptotic and approximate consensus is solvable: the oblivious message adversary whose set of communication graphs is the set of all directed rooted communication graphs. The maximality of this set follows from the fact that if it contains a non-rooted communication graph, asymptotic consensus becomes unsolvable [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF].

• For arbitrary oblivious message adversaries we show that in a system with n ⩾ 3 agents, any asymptotic consensus algorithm must have a contraction ratio of at least 1/(D + 1), where D, the so-called α G -diameter of M, i.e., the smallest value which allows a connection of any pair of communication graphs that occur in M via an indistinguishability chain of length at most D (Theorem 7.12). • We demonstrate how to apply the above mentioned bound to obtain new lower bounds on contraction ratios for classical failure models as an immediate corollary. Specifically, we consider asynchronous message-passing system of size n with up to f < n/2 crashes. For such systems, algorithms operating in asynchronous rounds are widely used [START_REF] Charron-Bost | The Heard-Of model: computing in distributed systems with benign faults[END_REF][START_REF] Dolev | Reaching approximate agreement in the presence of faults[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF]: each agent broadcasts its round message, waits for nf messages of the current round, updates its state based on the received messages and its previous state, and advances to the next round. • With the above results, we show that it immediately follows that no algorithm operating in asynchronous rounds can achieve a contraction ratio better than 1 ⌈n/f ⌉+1 (Theorem 8.2). This shows that the asynchronous algorithms for systems of size n > 5f with up to f Byzantine failures by Dolev et al. [START_REF] Dolev | Reaching approximate agreement in the presence of faults[END_REF] and for systems of size n > 2f with up to f crashes by Fekete [START_REF] Fekete | Asynchronous approximate agreement[END_REF] have asymptotically optimal contraction ratios for round-based algorithms.

• We then present an algorithm for n > f that does not operate in asynchronous rounds and achieves a contraction ratio of 0, demonstrating a large gap between round-based and non round-based algorithms for asymptotic consensus.

Table 1 summarizes lower and upper bounds. Our lower bounds also hold for asymptotic consensus with input and output values of arbitrary dimension. For example, for the oblivious message adversary M that contains deaf(G) for a communication graph G with n ⩾ 3 nodes, we obtain: From the fact that the MidExtremes algorithm has a contraction ratio of 7/8 for oblivious non-split message adversaries (MidExtremes algorithm [START_REF] Függer | Fast multidimensional asymptotic and approximate consensus[END_REF] and Lemma 3.1) and from the lower bound shown in this work (Theorem 5.1), the optimal contraction ratio for higher dimensions is between 1/2 and 7/8 for the oblivious message adversary M. Finally, we extend the above results on contraction ratios to derive new lower bounds on the decision times of any approximate consensus algorithm: Let ∆ > 0 be the largest distance between initial values. For n = 2 we obtain a lower bound of log 3 ∆ ε (Theorem 9.2). For n ⩾ 3 and message adversaries that include deaf(G) for a communication graph G, we show a lower bound of log 2 ∆ ε (Theorem 9.3), and for n ⩾ 4 and message adversaries that include certain Ψ graphs, we obtain a lower bound of (n -2) log 2 ∆ ε (Theorem 9.4). For arbitrary oblivious message adversaries in which exact consensus is not solvable, we show a lower bound of log D+1 ∆ εn (Theorem 9.5). Again, the algorithms by Charron-Bost et al. [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] have matching time complexities; showing optimality of these algorithms also for solving approximate consensus with scalar input and output values.

G -diameter D rooted 0 < f < n 2 0 < f < n n = 2 1 3 * 0 or 1 3 * 1 3 * N/A n ⩾ 3 1 2 * 0 or 1 D+1 * , 1 2 n-2
A preliminary version of this paper was presented at the conference PODC 2018 [START_REF] Függer | Tight bounds for asymptotic and approximate consensus[END_REF].

Related Work. The problem of asymptotic consensus in dynamic networks has been extensively studied in distributed computing and control theory (see, e.g., [START_REF] Angeli | Stability of leaderless discrete-time multi-agent systems[END_REF][START_REF] Bliman | Rate of convergence for consensus with delays[END_REF][START_REF] Cao | Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events[END_REF][START_REF] Chazelle | The total s-energy of a multiagent system[END_REF][START_REF] Rasoul | Convergence time for unbiased quantized consensus[END_REF][START_REF] Moreau | Stability of multiagent systems with time-dependent communication links[END_REF]). The question of guaranteed convergence speeds and decision times of the corresponding approximate consensus problems, naturally arise in this context. Algorithms with convergence times exponential in the number of agents have been proposed. In particular, Cao et al. [START_REF] Cao | Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events[END_REF]Equation (26)] proved that the Equal Neighbor algorithm, which updates its value to the unweighted average of received values, has a contraction ratio of at most n-1 1 -1/n n-1 subject to rooted message adversaries, which leads to an exponential upper bound on the convergence time.

Olshevsky and Tsitsiklis [START_REF] Olshevsky | Convergence speed in distributed consensus and averaging[END_REF], proposed an algorithm with polynomial convergence time in bidirectional networks with certain stability assumptions on the occurring communication graphs. The bounds on convergence times were later on refined by Nedic et al. [START_REF] Nedic | On distributed averaging algorithms and quantization effects[END_REF]. Chazelle [START_REF] Chazelle | The total s-energy of a multiagent system[END_REF] proposed a convex-combination algorithm with polynomial convergence time, which works for any bidirectional connected message adversary.

To speed up convergence times, algorithms where agents set their output based on values that have been received in rounds prior to the previous round have also been considered in literature: Olshevsky [START_REF] Olshevsky | Linear time average consensus on fixed graphs[END_REF] proposed a linear convergence time algorithm that uses messages from two rounds, restricted to a fixed bidirectional communication graph, however. Yuan et al. [START_REF] Yuan | Decentralized minimum-time consensus[END_REF] proposed a linear convergence-time algorithm for a possibly non-bidirectional fixed topology. It requires storing all received values. Charron-Bost et al. [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] presented the midpoint algorithm, which has constant convergence time for non-split message adversaries and the amortized midpoint algorithm with linear convergence time subject to rooted message adversaries.

To the best of our knowledge, the only study of lower bounds in dynamic networks has been done by Cao et al. [START_REF] Cao | A lower bound on convergence of a distributed network consensus algorithm[END_REF]: the authors identified 1 -1/n as the worst-case scrambling constant of the Equal Neighbor algorithm in non-split communication graphs, and 1 -1/n n-1 for that of the product of n -1 rooted communication graphs. While scrambling constants can be used to prove upper bounds on the contraction ratio of asymptotic consensus algorithms, a lower bound on the scrambling constant does not in general imply a similar lower bound on the contraction ratio.

In the context of classical distributed computing failure scenarios, Dolev et al. [START_REF] Dolev | Reaching approximate agreement in the presence of faults[END_REF] studied the approximate consensus problem: they considered fully-connected synchronous distributed systems with up to f Byzantine agents, and its asynchronous variant. The two presented algorithms require n ⩾ 3f + 1 for the synchronous and n ⩾ 5f + 1 for the asynchronous distributed system, the first of which is optimal in terms of resilience [START_REF] Michael | Easy impossibility proofs for distributed consensus problems[END_REF]. The latter result was improved to n ⩾ 3f + 1 by Abraham et al. [START_REF] Abraham | Optimal resilience asynchronous approximate agreement[END_REF]. Both papers also address the question of optimal contraction ratio in such systems. Since, however, in synchronous systems with n ⩾ 3f + 1 exact consensus is solvable, leading to a contraction ratio of 0, the authors consider bounds for round-by-round contraction ratios. Dolev et al. [START_REF] Dolev | Reaching approximate agreement in the presence of faults[END_REF] showed that the achieved round-by-round contraction ratio of 1 2 is actually tight for a certain class of algorithms that repeatedly set their output to the image of a so-called cautious function applied to the multiset of received values. A lower bound for arbitrary algorithms, however, remained an open problem. In higher dimensions, i.e, for any d ⩾ 1, Mendes et al. [START_REF] Mendes | Multidimensional agreement in Byzantine systems[END_REF] proposed algorithms with decision time of d • ⌈log 2

√ d ∆
ε ⌉ under the optimal resiliency condition n ⩾ f • (d + 2) + 1. By using the MidExtremes algorithm, Függer and Nowak [START_REF] Függer | Fast multidimensional asymptotic and approximate consensus[END_REF] showed that the problem is solvable within time O(log ∆ ε ). Central to this result is the property that the MidExtremes algorithm subject to non-split oblivious message adversaries guarantees a contraction of output values by a factor c = 7/8 every k = 1 rounds for arbitrary dimensions [START_REF] Függer | Fast multidimensional asymptotic and approximate consensus[END_REF]Theorem 1].

Fekete [START_REF] Fekete | Asymptotically optimal algorithms for approximate agreement[END_REF] also studied round-by-round contraction ratios for several failure scenarios in which exact consensus is solvable. He proved asymptotically tight lower bounds for synchronous distributed systems in presence of crashes, omission, and Byzantine agents. The bounds hold for approximate consensus algorithms that potentially take into account information from all previous rounds. Fekete [START_REF] Fekete | Asynchronous approximate agreement[END_REF] later presented an algorithm for asynchronous message-passing systems with a minority of crashes, also proving a tight lower bound on the contraction ratio of any algorithm operating in asynchronous rounds for such systems. In the nonuniform iterated immediate snapshot (NIIS) model, Hoest and Shavit [39, Theorem 5.2] proved tight upper and lower bounds on the round complexity for the approximate consensus problem.

Herlihy et al. [START_REF] Herlihy | From wait-free to arbitrary concurrent solo executions in colorless distributed computing[END_REF] studied generalizations of the approximate consensus problem in terms of combinatorial topology with round-based communication objects.

Determining the solvability of distributed problems, in particular decision problems, has a long tradition. One of the early general characterizations of solvability is by Biran et al. [START_REF] Ofer Biran | A combinatorial characterization of the distributed 1-solvable tasks[END_REF] who determined the class of decision problems solvable with one crash-faulty process. A much more general approach has been taken by the combinatorial-topology approach, which has characterized decision-problem solvability in a variety of models [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF]. Sharp solvability characterizations are available, in particular in immediate-snapshot models [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF]Theorem 5.2.7]. Coulouma et al. [START_REF] Coulouma | A characterization of oblivious message adversaries for which consensus is solvable[END_REF] characterized the oblivious message adversaries that allow solvability of exact consensus. A general characterization of message adversaries that allow exact consensus to be solved was recently established by Nowak et al. [START_REF] Nowak | Topological characterization of consensus under general message adversaries[END_REF]. Other recent research efforts in this direction include the investigation of communication complexity [START_REF] Delporte-Gallet | Communication complexity of wait-free computability in dynamic networks[END_REF] and of distributed network algorithms [START_REF] Castañeda | A topological perspective on distributed network algorithms[END_REF].

Paper Organization. The rest of the paper is organized as follows. Section 2 describes the system model. In Section 3, we formally define the notions of valency and contraction ratio and deduce some useful lemmas. We prove a tight lower bound on the contraction ratio for n = 2 agents in Section 4. In Section 5, we give a tight lower bound for the non-split case with n ⩾ 3 agents, which we extend to an almost-tight lower bound in the rooted case in Section 6. We relate the problems of asymptotic and exact consensus in Section 7. In Section 8, we deduce an almost-tight lower bound for round-based algorithms in asynchronous message passing with crash faults. Section 9 translates our lower bounds for asymptotic consensus to tight and almost-tight time-complexity lower bounds for approximate consensus. We give concluding remarks in Section 10. Appendices A and B contain auxiliary lemmas and proofs.

SYSTEM MODEL

We consider a set [n] = {1, . . . , n} of n agents. We assume a distributed, round-based computational model in the spirit of the Heard-Of model [START_REF] Charron-Bost | The Heard-Of model: computing in distributed systems with benign faults[END_REF] and similar approaches [START_REF] Gafni | Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony[END_REF][START_REF] Keidar | Timeliness, failure detectors, and consensus performance[END_REF][START_REF] Santoro | Time is not a healer[END_REF][START_REF] Schmid | How to model link failures: A perception-based fault model[END_REF]. Computation proceeds in rounds: In every round, each agent sends a message to its outgoing neighbors, receives messages from its incoming neighbors, and finally updates its state according to a deterministic local algorithm, i.e., a transition function that maps the collection of incoming messages to a new state. Rounds are communication closed in the sense that no agent receives messages in round t that are sent in a round different from t. Communication starts at round t = 1; round t = 0 only holds the agents' initial states.

Communications that occur in a round are modeled by a directed graph with a node for each agent. An edge (i, j) is present in the communication graph of a round if agent i's message was successfully received by agent j in that round. Since an agent can obviously communicate with itself instantaneously, every communication graph contains a self-loop at each node. In the following, we use the product of two communication graphs G and H , denoted G • H , which is the directed graph with an edge from i to j if there exists k such that (i, k) and (k, j) are edges in G and H , respectively.

We call an infinite sequence of communication graphs a communication sequence. In each communication sequence, the communication graph at round t is denoted by G t , and In i (t) = In i (G t ) and Out i (t) = Out i (G t ) are the sets of incoming and outgoing neighbors (in-neighbors and outneighbors for short) of agent i in G t .

A message adversary is a set of communication sequences. An oblivious message adversary is defined by a set G of communication graphs; its communication sequences are all sequences in which all communication graphs are chosen in G. We use the notation M(G) for the oblivious message adversary defined by the set G of communication graphs and we say that a communication graph G occurs in oblivious message adversary

M(G) if G ∈ G.
Let us fix an algorithm A. A configuration is a collection of n agent states, one per agent. Since agents are deterministic, given some configuration C and some communication graph G, the algorithm A uniquely determines a new configuration, which we simply denote C.G if no confusion can arise. The execution E of A starting from the initial configuration C 0 with the communication sequence G t t ⩾1 is the sequence C 0 , G 1 , . . . , C t -1 , G t , C t , . . . of alternating configurations and communication graphs such that for each round t, we have C t = C t -1 .G t . We denote the set of executions with communication sequences in M, starting from any initial configuration, by E M, A . We equip this set with the distance dist(E, E ′ ) = 1/2 θ , where θ is the first index at which the configurations of E and E ′ differ. This is a compact metric space if the algorithm has a finite number of initial configurations: Compactness of the execution space for models described by safety properties [START_REF] Alpern | Defining liveness[END_REF] was shown for various special cases (e.g., [START_REF] Gafni | A generalized asynchronous computability theorem[END_REF]Lemma 5.1] or [51, remark after Lemma 4.9]). A proof for the case of oblivious message adversaries can be found in Lemma A.4 in the appendix.

Finally, any configuration that occurs in some execution with a communication sequence in M starting at initial configuration C 0 is said to be reachable from C 0 by A subject to M. In the sequel, the algorithm and the message adversary are omitted if no confusion can arise.

Asymptotic Consensus

We assume that the local state of agent i includes a variable y i in Euclidean d-space, and we let y i E (t) ∈ R d denote the value of y i at the end of round t in execution E. The value

y i E (0) is the initial value of agent i in execution E. We set y E (t) = y 1 E (t), . . . , y n E (t) . We write diam(A) = sup x,y ∈A ∥x -y ∥ for the diameter of A ⊆ R d and ∆(y E (t)) = diam{y 1 E (t), . . . , y n E (t)
} for the diameter of the set of values at the end of round t.

We say an algorithm solves the asymptotic consensus problem subject to a message adversary M if the following holds for every execution E with a communication sequence in M:

• Convergence. Each sequence

y i E (t) converges as t → ∞. • Agreement. If y i E (t)
and y j E (t) converge, then their limits are equal. • Validity. If y i E (t) converges, then its limit lies in the convex hull of the set of initial values y 1 E (0), . . . , y n E (0). The Validity condition's requirement is motivated on one hand to rule out trivial solutions: ones that always output the same value, irrespective of the initial values. Also, staying in the range of initial values is required for applications such as sensor fusion or clock synchronization.

The consensus function defined by y * : E M, A → R d , where y * (E) is the common limit of the n sequences y i E (t) t ⩾0 , is a priori not continuous when using the metric "dist", which we defined earlier, on the set E of executions. Indeed, there exist asymptotic consensus algorithms whose consensus functions are not continuous -as shown in the next section.

Solvability of Asymptotic Consensus with Convex-Combination Algorithms

In a previous paper [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF], Charron-Bost et al. proved the following characterization of oblivious message adversaries for which approximate consensus is solvable. With much of the same arguments, this can be extended to asymptotic consensus. Theorem 2.1 (adapted from [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF]). The asymptotic consensus problem is solvable subject to an oblivious message adversary M if and only if each graph that occurs in M has a rooted spanning tree.

For the proof of the sufficient condition, Charron-Bost et al. focused on convex-combination algorithms. In particular, they showed [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF] that, while not all, a large class of convex-combination algorithms solve asymptotic consensus subject to rooted message adversaries. Such algorithms are memoryless, require little computational overhead and, more importantly, have the benefit of working in anonymous networks. Interestingly, their consensus function y * is continuous, as we show in the next theorem.

Continuity of the consensus function of exact consensus is known (e.g., [START_REF] Nowak | Topology in distributed computing[END_REF]Lemma 4.4]). We included a proof for message adversaries in Lemma A.5 in the appendix. The proof heavily relies on the existence of a decision value, i.e., the common decision value remains fixed from a finite time on. Asymptotic consensus, on the other hand, does not have such a finite time. A different argument is thus needed. Theorem 2.2. The consensus function of every convex-combination algorithm that solves asymptotic consensus is continuous. Proof. Let (E s ) s ⩾0 be a sequence of executions that converges to E, i.e., dist(E s , E) → 0 as s → ∞. By definition of the distance on the execution space, this means that

∀t ⩾ 0 ∃s t ∀s ⩾ s t : y s (0) = y(0), y s (1) = y(1), . . . , y s (t) = y(t) (4) 
where y s (t) and y(t As mentioned previously, there exist asymptotic consensus algorithms with non-continuous consensus functions:

)
Example 2.3. Take the oblivious message adversary M = M({T bi ,T uni }) with n = 3 agents where communication graph T bi is the bi-directional triangle and T uni is a uni-directional cyclic triangle as depicted in Figure 1. Algorithm A relays all initial values and sets its output value to the minimal initial value if all of the communication graphs up to the current round were bi-directional, and to the maximal initial value else.

Since all communication graphs in M are strongly connected, all agents know the set of initial values at the end of the second round. In particular, algorithm A solves asymptotic consensus subject to the oblivious message adversary M. Now consider the executions E (t ) for every t ⩾ 2 where agents start with values 0, 1, and 2, and where all communication graphs are equal to T bi except in round t in which the communication graph is T uni . Since every agent can locally tell the difference between T bi and T uni , all agents output value 2 from round t on. In the limit execution E (∞) , however, all communication graphs are equal to T bi without exception and hence all agents output value 0 from round 2 on. We thus have

E (t ) → E (∞) but y * (E (t ) ) ̸ → y * (E (∞) ) as t → ∞. Algorithm A's C 0 δ M, A (C 0 ) = 1 0 1 Y * M, A (C 0 ) C 1 δ M, A (C 1 ) = 0.8 0 1 Y * M, A (C 1 ) C 2 δ M, A (C 2 ) = 0.6 0 1 Y * M, A (C 2 ) . . . G 1 G 2 G 3
contract by 0.8 contract by 0.75 consensus function is hence not continuous. The example easily generalizes to arbitrary n ⩾ 3 by considering bidirectional and unidirectional ring graphs. □

VALENCY AND CONTRACTION RATIO

We now extend the notion of valency, which has been developed for exact consensus [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Moses | A layered analysis of consensus[END_REF], to asymptotic consensus. We fix an algorithm A that solves asymptotic consensus subject to a certain oblivious message adversary M with n ⩾ 2 agents. Let C be a configuration reachable by A subject to M. Then we define the valency of C by

Y * M, A (C) = {y * (E) ∈ R d | C occurs in E ∈ E M, A } .
Observe that if A is a convex-combination algorithm, then the valency of a configuration C is a compact set of R d since the consensus function is continuous and the set of executions in which C occurs is a compact set. Set δ M, A (C) = diam Y * M, A (C) the diameter of the set of reachable limits whose executions include configuration C. We have δ M, A (C t ) → 0 in any execution E = C 0 , G 1 , C 1 , G 2 , . . . by Convergence and Agreement.

Figure 2 depicts the evolution of the valency along an execution E. In the shown example valencies are intervals. However, in general, this is not the case.

To study the speed of convergence of an algorithm A subject a message adversary M, bounding the evolution of δ M, A (C t ) along any execution E = C 0 , G 1 , C 1 , G 2 , . . . is a natural choice. While we prove lower bounds on δ M, A (C t ) for arbitrary t ⩾ 0 in this work, we also introduce the contraction ratio of algorithm A subject to message adversary M as sup

E ∈ E M, A lim sup t →∞ t δ M, A (C t )
where we write E = C 0 , G 1 , C 1 , G 2 , . . . Observe that the contraction ratio, by definition, is between 0 and 1. If exact consensus is solvable subject to M, the optimal contraction ratio 0 can be achieved.

For convex-combination algorithms we obtain the following: Lemma 3.1. Let C be a configuration of convex-combination algorithm A that solves asymptotic consensus subject to message adversary M, and denote by ∆(C) the diameter of the set of outputs in C.

Then δ M, A (C) ⩽ ∆(C).
In particular, for a convex-combination algorithm that guarantees contraction of output values by a factor c < 1 every k ⩾ 1 rounds, i.e., fulfills (1), the contraction ratio is less or equal to k √ c.

Proof. Denote by Y (C) the set of output values in configuration C, and by hull(X ) the convex hull of a set X .

H 0 1 2 H 1 1 2 H 2 1 2
Fig. 3. The rooted communication graphs H 0 , H 1 , and

H 2 for n = 2.
The first statement follows from the fact that convex-combination algorithms by definition set their outputs within the convex hull of previously received values. Any limit that is reachable in an execution that contains configuration C by algorithm A subject to M is thus necessarily within hull(Y (C)). The statement now follows from

∆(C) = diam(Y (C)) = diam(hull(Y (C))) ⩾ diam Y * M, A (C) = δ M, A (C).
The second statement follows from the first statement and the definition of the contraction ratio.

□

This allows us to directly compare different message adversaries and algorithms with each other. The measure is motivated by the observation that a large class of algorithms lead to a round-wise contraction of δ M, A (C t ) by a ratio γ < 1: they guarantee that δ M, A (C t ) ⩽ γ t δ M, A (C 0 ) for all t ⩾ 0. Any such algorithm has a contraction ratio of at most γ . In general, however, a round-wise contraction ratio may be too conservative to assume: algorithms may contract quickly in general, but rarely have bad round-wise contraction or no contraction at all. The contraction ratio accounts for this by accumulating over rounds; see, e.g., Figure 2 where the average contraction factor over two rounds is less than 0.774 while the first round contracts by 0.8. Example 3.2. Consider the oblivious message adversary M = M({T bi ,T uni }) and the algorithm A from Example 2.3. Also let executions E (t ) , for t ⩾ 2, and

E (∞) = C 0 , G 1 , C 1 , G 2 , .
. . be as defined in that example. Then, for all rounds t ⩾ 1:

• 0 ∈ Y * M, A (C t ) since algorithm A results in all agent outputs eventually being 0 in execution

E (∞) , i.e., y * (E (∞) ) = 0 • 2 ∈ Y * M, A (C t ) since algorithm
A results in all agent outputs eventually being 2 in execution E (t +1) , i.e., y * (E (t +1) ) = 2 It follows that, for all rounds t ⩾ 1, the valency Y * M, A (C t ) of configuration C t at round t contains 0 and 2. In fact, Y * M, A (C t ) = {0, 2}. Thus, δ M, A (C t ) = δ M, A (C 0 ) for all t ⩾ 1; the valency does not shrink with increasing number of rounds and the contraction ratio of algorithm A subject to oblivious message adversary M is 1. □ Example 3.2 shows that there exist algorithms for which the valency does not shrink at all and which have a worst-case contraction ratio of 1. The following example demonstrates that there exist algorithms with contraction factor less than 1, though.

Example 3.3. Consider the midpoint algorithm for n = 2 and the oblivious message adversary M = M({H 0 , H 1 , H 2 }) with the communication graphs H 0 , H 1 , and H 2 shown in Figure 3. The midpoint algorithm for two agents takes the equally weighted average of its own and the remote agent, if it receives a message from the remote agent, and does not update its value otherwise. Assume that agent 1 starts with initial value 0 and agent 2 with value 1.

Consider an executions

E = C 0 , G 1 , C 1 , G 2 .
. . First observe that both initial values are in Y * M, A (C 0 ): for the execution with only graphs H 1 the agent outputs converge to 0, and for the execution with only graphs H 2 , the outputs converge to 1. Thus δ M, A (C 0 ) = 1.

Distinguishing between the three possible cases for communication graph G t +1 , we obtain:

(1) If G t +1 = H 0 , then both y 1 (t + 1) = y 2 (t + 1) =

y 1 (t )+y 2 (t ) 2
, and thus

Y * M, A (C t +1 ) = y 1 (t )+y 2 (t ) 2 . Consequently δ M, A (C t +1 ) = 0. (2) If G t +1 = H 1 , then y 1 (t + 1) = y 1 (t) and y 2 (t + 1) = y 1 (t )+y 2 (t ) 2
. By similar arguments as for C 0 , we have y 1 (t),

y 1 (t )+y 2 (t ) 2 
⊆ Y * M, A (C 1 ). One also observes that output values less than y 1 (t + 1) and greater than y 2 (t + 1) are not reachable by the midpoint algorithm. Consequently

δ M, A (C t +1 ) = 1 2 • δ M, A (C t ). (3) For G t +1 = H 2 , by symmetry to the previous case, δ M, A (C t +1 ) = 1 2 • δ M, A (C t ).
Consequently, in any execution the valency shrinks by a factor of at least 1 2 per round; the contraction ratio of the midpoint algorithm subject to oblivious message adversary M is thus 1 2 . □ Motivated by the two previous examples, we begin a general analysis of valencies along executions with a lemma on subsets of message adversaries: Lemma 3.4. Let M, M ′ be two message adversaries with M ′ ⊆ M. If A is an algorithm that solves asymptotic consensus subject to M, then (i) it also solves asymptotic consensus subject to M ′ , (ii) for every configuration C reachable by A in M ′ , we have

Y * M ′ , A (C) ⊆ Y * M, A (C), (iii) δ M ′ , A (C) ⩽ δ M, A (C)
, and (iv) the contraction ratio subject to M ′ is less or equal to the contraction ratio subject to M.

Proof. Statements (i), (ii), and (iii) immediately follow from the definition of valency. It remains to show statement (iv). From E M ′ , A ⊆ E M, A and (iii), we deduce sup

E ∈ E M ′ , A lim sup t →∞ t δ M ′ , A (C t ) ⩽ sup E ∈E M, A lim sup t →∞ t δ M, A (C t ) ,
which concludes the proof. □

We next establish two branching properties of valency of configurations in execution trees for oblivious message adversaries. Lemma 3.5. Let C be a configuration reachable by algorithm A subject to oblivious message adversary

M = M(G). Then Y * M, A (C) = G ∈ G Y * M, A (C.G) .
Proof. First let y * ∈ Y * M, A (C). By definition of the valency Y * M, A (C), there exists an execution 

E = C 0 , G 1 , C 1 , G 2 , . . . in E M,
E = C 0 , G 1 , C 1 , G 2 , . . . in E M, A and a t ⩾ 1 such that y * = y * (E) and C.G = C t . Since C is a reachable configuration, there exists an execution E ′ = C ′ 0 , G ′ 1 , C ′ 1 , G ′ 2 , . . . in E M, A and an s ⩾ 0 such that C ′ s = C. Then the sequence E ′′ = C ′ 0 , G ′ 1 , . . . , C ′ s , G, C t , G t +1 , . . .
∼ j C ′ for each of i's in-neighbors j, then C.G ∼ i C.G ′ .
An agent i is said to be deaf in a communication graph G if i has only one in-neighbor in G, namely i itself. We can relate valencies of successor configurations. Lemma 3.8. Let G and G ′ be two communication graphs that occur in the oblivious message adversary M, and let i be an agent that has the same in-neighbors in G and G ′ . Further let C and C ′ be two configurations such that C ∼ j C ′ for all in-neighbors j of i in G and G ′ . Then, if there exists a communication graph that occurs in M in which i is deaf, we have

Y * M, A (C.G) ∩ Y * M, A (C ′ .G ′ ) ∅ . Proof. From Lemma 3.7, we have C.G ∼ i C ′ .G ′ .
Let D i be a communication graph that occurs in M in which the agent i is deaf. Then we consider an execution E in which C occurs at some round t 0 -1, G is the communication graph at round t 0 , and from there on all communication graphs are equal to D i . Analogously, let E ′ be an execution identical to E except that the communication graph at round t 0 is G ′ instead of G. By inductive application of Lemma 3.7, we show that for all t ⩾ t 0 , we have

C t ∼ i C ′ t .
In particular, we obtain

y i E (t) = y i E ′ (t). Thus y * (E) = y * (E ′ ), which shows that Y * M, A (C.G) and Y * M, A (C ′ .G ′ ) intersect. □
From Lemma 3.8 we determine the valency of any initial configuration when certain communication graphs occur in the oblivious message adversary. If every agent is deaf in some communication graph that occurs in the oblivious message adversary M, then the next lemma shows that the diameter of the valency of any initial configuration is equal to the diameter of the set of its initial values. The proof is similar to classical proofs for the existence of bivalent initial configurations for exact consensus [31, Lemma 2] [48, Theorem 5.8]; except that it adds a quantitative perspective on the initial degree of non-univalence. Lemma 3.9. If, for every agent i, there is a communication graph that occurs in the oblivious message adversary M in which i is deaf, then each initial configuration C 0 satisfies δ M, A (C 0 ) = ∆(C 0 ). In particular, there is an initial configuration for which δ M, A (C 0 ) > 0.

Proof. Since Y * M, A (C 0 ) is a subset of the convex hull of the set of points y 1 (0), . . . , y n (0) by the Validity property of asymptotic consensus and since the diameter of the convex hull of the set {y 1 (0), . . . , y n (0)} is equal to ∆(C 0 ), we have the inequality δ M, A (C 0 ) ⩽ ∆(C 0 ).

To show the converse inequality, let i and j be two agents such that ∥y i (0)y j (0)∥ = ∆(C 0 ). Let E be the execution with initial configuration C 0 and a constant communication graph in which agent i is deaf. Now consider C (i) 0 , an initial configuration such that all initial values are set to y i (0), and the execution E (i) from C (i) 0 with the same communication sequence as in E. By a repeated application of Lemma 3.7, we see that at each round t, we have

C t ∼ i C (i) t . Hence, y * (E) = y * (E (i) ).
From the Validity condition, we deduce that an agent that is deaf during the whole execution has to converge to its own initial value, that is, y * (E (i) ) = y i (0). It then follows that

y i (0) ∈ Y * M, A (C 0 ).
By a similar argument, we see

y j (0) ∈ Y * M, A (C 0 ). Hence δ M, A (C 0 ) ⩾ ∥y i (0) -y j (0)∥ = ∆(C 0 ) ,
which concludes the proof of the first part of the lemma.

The second part follows from the first by picking any initial configuration whose initial values are not all equal, that is, ∆(C 0 ) > 0. □

TIGHT BOUND FOR TWO AGENTS

In this section, we prove a lower bound of 1/3 on the contraction ratio of algorithms that solve asymptotic consensus subject to the oblivious message adversary of all rooted (and here also non-split) communication graphs with two agents. Combined with Algorithm 1, which achieves this lower bound [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF], we have indeed identified a tight bound on the contraction ratio for n = 2. Moreover, the algorithm also shows that the lower bound is achieved by a simple convexcombination algorithm. In the NIIS model, an analogous bound for n = 2 was proved by Hoest and Shavit [START_REF] Hoest | Toward a topological characterization of asynchronous complexity[END_REF].

ALGORITHM 1: Algorithm with contraction ratio 1/3 for n = 2

Initially:

y i ∈ R d ; In round t ⩾ 1 do
send y i to other agent; if y j was received from other agent then y i ← y i /3 + 2y j /3; end end

For n = 2, there are three possible rooted communication graphs that may occur, all of which are non-split; see Figure 3: (i) H 0 in which all messages are received, (ii) H 1 in which agent 2 receives agent 1's message but not vice versa, and (iii) H 2 in which agent 1 receives agent 2's message but not vice versa.

A straightforward analysis of Algorithm 1 shows that its contraction ratio is equal to 1/3: Indeed, in all three cases, H 0 , H 1 , and H 2 for the communication graph G t in round t, we have ∆(t) ⩽ ∆(t -1)/3. That is, we can apply Lemma 3.1 with c = 1/3 and k = 1.

Theorem 4.1. The contraction ratio of any asymptotic consensus algorithm for n = 2 agents subject to the oblivious message adversary with the three communication graphs H 0 , H 1 , and H 2 is greater or equal to 1/3. Proof. We show the stronger statement that for every initial configuration C 0 there is an execution

E = C 0 , G 1 , C 1 , G 2 , . . . starting from C 0 such that δ M, A (C t ) ⩾ 1 3 t • δ M, A (C 0 ) (5)
for t ⩾ 0. This, applied to an initial configuration with δ M, A (C 0 ) > 0, which exists by Lemma 3.9, then shows the theorem.

The proof is by inductive construction of an execution E = C 0 , G 1 , C 1 , G 2 , . . . whose configurations C t satisfy [START_REF] Karl | Feedback Systems: An Introduction for Scientists and Engineers[END_REF]. Equation ( 5) is trivial for t = 0. Now assume t ⩾ 0 and that Equation (5) holds for t. There are three possible successor configurations of C t , one for each of the communication graphs H 0 , H 1 , and

H 2 in M. Set C k t +1 = C t .H k . Further let Y = Y * M, A (C t ), and Y k = Y * M, A (C k t +1
). We will show that there is some k ∈ {0, 1, 2} with diam(Y k ) ⩾ diam(Y )/3. We then define

G t +1 = H k and C t +1 = C k t +1
. By the induction hypothesis, we then have

δ M, A (C t +1 ) ⩾ δ M, A (C t )/3 ⩾ δ M, A (C 0 )/3 t +1 ,
i.e., Equation ( 5) holds for t + 1.

Assume by contradiction that diam(Y k ) < diam(Y )/3 for all k ∈ {0, 1, 2}. From Lemma 3.5 we have

Y = Y 0 ∪ Y 1 ∪ Y 2 .
Noting that agent 1 is deaf in H 1 and agent 2 has the same incoming edges as in H 0 , and that agent 2 is deaf in H 2 and agent 1 has the same incoming edges as in H 0 , we obtain from Lemma 3.8 that

Y 0 ∩ Y 1 ∅ and Y 0 ∩ Y 2 ∅ .
The sets Y 0 and

Y 1 intersecting means diam(Y 0 ∪ Y 1 ) ⩽ diam(Y 0 ) + diam(Y 1 ) < 2 3 diam(Y ) .
Further, the sets

Y 0 ∪ Y 1 and Y 2 intersecting means diam(Y ) = diam(Y 0 ∪ Y 1 ∪ Y 2 ) ⩽ diam(Y 0 ∪ Y 1 ) + diam(Y 2 ) < diam(Y ) ,
a contradiction. This concludes the proof. □

TIGHT BOUND FOR NON-SPLIT MESSAGE ADVERSARIES: CONTRACTION IN PRESENCE OF DEAF GRAPHS

In this section, we prove a lower bound of 1/2 on the contraction ratio of asymptotic consensus algorithms for n ⩾ 3 agents subject to an oblivious message adversary in which graphs derived from a communication graph G occur, in which agents are made deaf. As a special case, this includes the oblivious message adversary of all non-split communication graphs. Formally, a communication graph G is non-split if for all nodes i and j, there exists a node k such that k is a common incoming neighbor, i.e., both (k, i) and (k, j) are edges of G. Charron-Bost et al. [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] presented the midpoint algorithm (given in Algorithm 2) for dimension one with contraction ratio 1/2 for non-split communication graphs. Together, this shows tightness of our lower bound in dimension one.

ALGORITHM 2: Midpoint algorithm

Initially:

y i ∈ R; In round t ⩾ 1 do send y i to all agents; m i ← min y j | j ∈ In i (t) ; M i ← max y j | j ∈ In i (t) ; y i ← (m i + M i )/2; end
Let G be an arbitrary communication graph. Consider a system with n ⩾ 3 agents, and the n communication graphs F 1 , . . . , F n where F i is obtained by making i deaf in G, i.e., by removing all the edges towards i except the self-loop (i, i).

With a proof similar to that of Theorem 4.1 but noting that the valencies of all pairs of successor configurations intersect, we get: Theorem 5.1. The contraction ratio of any asymptotic consensus algorithm for n ⩾ 3 agents subject to an oblivious message adversary that includes deaf(G) is greater or equal to 1/2.

Proof. We show the stronger statement that for every initial configuration C 0 there is an execution

E = C 0 , G 1 , C 1 , G 2 , . . . starting at C 0 such that δ M, A (C t ) ⩾ 1 2 t δ M, A (C 0 ) (6)
for all t ⩾ 0.

It suffices to show [START_REF] Benediktsson | Consensus theoretic classification methods[END_REF] for the specific oblivious message adversary

M ′ = M(deaf(G)) because δ M, A (C t ) ⩾ δ M ′ , A (C t ) by Lemma 3.4 and δ M ′ , A (C 0 ) = δ M, A (C 0
) by Lemma 3.9 whenever M ⊇ M ′ . We hence suppose M = M ′ in the rest of the proof.

The proof is by inductive construction of an execution E = C 0 , G 1 , C 1 , G 2 , . . . whose configurations C t satisfy [START_REF] Benediktsson | Consensus theoretic classification methods[END_REF]. This, applied to an initial configuration with δ M, A (C 0 ) > 0, which exists by Lemma 3.9, then shows the theorem. For t = 0 the inequality holds trivially. Now assume t ⩾ 0 and that Equation ( 6) holds for t. There are n possible successor configurations based on the applicable communication graphs F 1 , . . . , F n . We denote

C k t +1 = C t .F k , for any agent k. Further let Y = Y * M, A (C t ), and Y k = Y * M (C k t +1
). We will show that there exists some agent k ∈

[n] such that diam(Y k ) ⩾ diam(Y )/2 . (7) 
We then define G t +1 = F k and C t +1 = C k t +1 . By [START_REF] Ofer Biran | A combinatorial characterization of the distributed 1-solvable tasks[END_REF] and the induction hypothesis, we have

δ M, A (C t +1 ) ⩾ δ M, A (C t )/2 ⩾ δ M, A (C 0 )/2 t +1 , (8) 
i.e., Equation ( 6) holds for t + 1.

Assume by contradiction that diam(Y k ) < diam(Y )/2 for all k ∈ [n]. Recall that agent i is deaf in F i and has the same in-neighbors in all the communication graphs F j with j i. Since n ⩾ 3, for any pair of agents i, j we may select an agent ℓ different from i and j such that ℓ has the same in-neighbors in F i as in F j . Lemma 3.8 with the assumption that F ℓ is in M shows that for any pair of agents i, j, we have

Y i ∩ Y j ∅ . (9) 
By Lemma 3.6, there exist k, k

′ ∈ [n] such that diam(Y k ∪ Y k ′ ) = diam(Y ).
In particular, we can choose i = k and j = k ′ , which implies that

diam(Y ) = diam(Y k ∪ Y k ′ ) ⩽ diam(Y k ) + diam(Y k ′ ) < diam(Y ) (10) 
which is a contradiction and concludes the proof. □

The oblivious message adversary M(deaf(K n )), where K n is the complete digraph on n nodes, is a subset of the oblivious message adversary in which all non-split communication graphs occur. Hence the lower bound holds and, since Algorithm 2 is applicable and achieves a contraction ratio of 1/2, a tight bound for one-dimensional values follows.

In fact, it would even be sufficient to reduce deaf(G) to the graphs F i , F j , F ℓ for three agents i, j, ℓ ∈ [n]. With the same proof as Theorem 5.1 we get: Theorem 5.2. The contraction ratio of any asymptotic consensus algorithm subject to an oblivious message adversary that includes three different communication graphs from deaf(G) is greater or equal to 1/2.

The number of three different communication graphs from deaf(G) is best possible. In fact, the oblivious message adversary with only two communication graphs F i and F j from deaf(K n ) allows to solve exact consensus, which means that a contraction ratio of 0 for asymptotic consensus is achievable.

ALMOST-TIGHT BOUND FOR ROOTED MESSAGE ADVERSARIES: CONTRACTION IN PRESENCE OF Ψ GRAPHS

We next prove a lower bound of n-2 1/2 on the contraction ratio of asymptotic consensus algorithms for n ⩾ 4 agents. For i ∈ {1, 2, 3}, let Ψ i (see Figure 4) be the communication graph where agents 4 ⩽ j ⩽ n -1 form a path with edges from j to j + 1, agents {1, 2, 3} \ i have n as their in-neighbor and 4 as their out-neighbor, and i has 4 as its out-neighbor. For i ∈ {1, 2, 3}, let σ i be the finite communication sequence of n -2 repetitions of graph Ψ i .

First observe that any communication sequence arising from the concatenation of σ i sequences necessarily is a communication sequence of the oblivious message adversary that contains the graphs Ψ 1 , Ψ 2 , and Ψ 3 , which are rooted. However, the analysis of the set of these communication sequences necessitates the use of non-oblivious message adversaries. By such an analysis we obtain: Theorem 6.1. The contraction ratio of any asymptotic consensus algorithm in an oblivious message adversary that includes the graphs Ψ 1 , Ψ 2 , and Ψ 3 is greater or equal to n-2 1/2.

Since the amortized midpoint algorithm guarantees a contraction of n-1 1/2 for rooted message adversaries [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF], Theorem 6.1 shows that this is asymptotically optimal for oblivious rooted message adversaries.

The proof of Theorem 6.1 is similar to that of Theorems 4.1 and 5.1. One difference is that we construct the lower-bound execution by inductively extending it by n -2 communication graphs (that is, some σ i ) at a time instead of a single communication graph. The key indistinguishability argument is that the third agent among 1, 2, and 3 does not see a difference between appending σ i and appending σ j .

Non-Oblivious Message Adversaries

To prove Theorem 6.1, we start by generalizing some of the basic lemmas we proved for the specific case of oblivious message adversaries. Towards that purpose, we denote for two finite sequences u and v, their concatenation by u • v. We say a configuration C is reachable by algorithm A subject to message adversary M via the finite communication sequence

π = G 1 , G 2 , . . . , G t , with t ⩾ 0, if π is the prefix of a communication sequence in M and E = C 0 , G 1 , C 1 , G 2 , . . . , C t -1 , G t , C, • • • ∈ E M, A .
For a finite prefix π of a communication sequence in M, we define Σ(π ) to be the set of communication graphs G such that π • G is also a prefix of a communication sequence in M.

The following lemmas are generalizations of Lemmas 3.5, 3.6, 3.8, and 3.9. Their proofs are in large parts analogous to the proof of the versions for oblivious message adversaries; we state them for completeness in the appendix. Lemma 6.2. Let C be a configuration reachable by algorithm A subject to message adversary M via the finite communication sequence π . Then

Y * M, A (C) = G ∈Σ(π ) Y * M, A (C.G) .
Lemma 6.3. Let C be a configuration reachable by algorithm A subject to message adversary M via the finite communication sequence π . Then there exist G, H ∈ Σ(π ) such that

δ M, A (C) = diam Y * M, A (C.G) ∪ Y * M, A (C.H ) .
Lemma 6.4. Let C and C ′ be two reachable configurations subject to message adversary M via the finite communication sequences π and π ′ , respectively. If C ∼ i C ′ and there exist communication sequence α and α ′ such that π • α ∈ M, π ′ • α ′ ∈ M, and i is deaf in all communication graphs in α and α ′ , then

Y * M, A (C) ∩ Y * M, A (C ′ ) ∅.
Lemma 6.5. Let ∆ ⩾ 0. If there exist agents i j and communication sequences α (i) , α (j) ∈ M such that agent i is deaf in α (i) and agent j is deaf in α (j) , then there is an initial configuration C 0 with δ M, A (C 0 ) = ∆. In particular, there is an initial configuration for which δ M, A (C 0 ) > 0.

Proof of Theorem 6.1

The proof of Theorem 6.1 is by means of induction. The following relation is at the heart of the inductive step: Lemma 6.6. For i, j, ℓ ∈ {1, 2, 3} with ℓ i, j we have C t .σ i ∼ ℓ C t .σ j .

Proof. We inductively show the following stronger statement. Let σ k i be the sequence of repetitions of graph Ψ i of length k ∈ [n-2]. For agents i, j, ℓ ∈ {1, 2, 3} with ℓ i, j, and m ∈ {k +3, . . . , n}, we have

C t .σ k i ∼ ℓ C t .σ k j and C t .σ k i ∼ m C t .σ k j .
Observe that agents ℓ and {4, . . . , n} have the same in-neighbors in Ψ i and Ψ j . The base case k = 1 follows from the observation and Lemma 3.7. For the inductive step k → k + 1, observe that agent ℓ and {k + 4, . . . , n} have only incoming edges from agents ℓ and {k + 3, . . . , n}. From the hypothesis and Lemma 3.7, the inductive step follows. □

We are now in the position to show Theorem 6.1 by induction. Let message adversary M seq contain any communication sequence arising from the concatenation of σ i sequences defined at the start of the section.

We show the stronger statement that for every initial configuration C 0 there is an execution

E = C 0 , G 1 , C 1 , G 2 , . . . starting from C 0 such that δ M, A (C t ) ⩾ 1 2 ⌈ t n-2 ⌉ δ M, A (C 0 ) (11) 
for all t ⩾ 0. It suffices to show [START_REF] Cao | A lower bound on convergence of a distributed network consensus algorithm[END_REF] for M seq because δ M, A (C t ) ⩾ δ M seq , A (C t ) by Lemma 3.4 and δ M seq , A (C 0 ) = δ M, A (C 0 ) by Lemma 6.5 whenever M ⊇ M seq . We hence assume M = M seq in the rest of the proof.

The proof is by inductive construction of an execution E = C 0 , G 1 , C 1 , G 2 , . . . whose configurations C t satisfy [START_REF] Cao | A lower bound on convergence of a distributed network consensus algorithm[END_REF]. This, applied to an initial configuration with δ M, A (C 0 ) > 0, which exists by Lemma 6.5, then shows the theorem. The base case t = 0 is trivially fulfilled.

For the inductive step t = (n -2)k → t ⩽ (n -2)(k + 1) assume that Equation ( 11) holds for t = (n -2)k. First observe that, by definition of M seq , there are three possible sequences leading from round t to round t + n -2, namely σ 1 , σ 2 , and σ 3 . We thus have

Y * M, A (C t ) = Y * M, A (C 1 t +1 ) ∪ Y * M, A (C 2 t +1 )∪Y * M, A (C 3 t +1 ) = • • • = Y * M, A (C 1 t +n-2 )∪Y * M, A (C 2 t +n-2 )∪Y * M, A (C 3 t +n-2 ), where C u t +n-2 = C t .σ u for agent u ∈ {1, 2, 3}. Abbreviate Y = Y * M, A (C t ) and Y u = Y * M, A (C u t +n-2
). We will show that there exists a û ∈ {1,

2, 3} with diam(Y û ) ⩾ diam(Y )/2 . ( 12 
)
We then define C t +n-2 = C û t +n-2 . By [START_REF] Castañeda | A topological perspective on distributed network algorithms[END_REF] and the induction hypothesis, we then have

δ M, A (C t +n-2 ) = • • • = δ M, A (C t +1 ) ⩾ δ M, A (C t ) 2 ⩾ 1 2 ⌈ t n-2 ⌉+1 δ M, A (C 0 ) ,
i.e., Equation ( 11) holds up to round t + n -2.

Assume by contradiction that for all u ∈ {1, 2, 3} diam(Y u ) < diam(Y )/2. Since n ⩾ 3 and C t .σ i ∼ ℓ C t .σ j by Lemma 6.6, together with Lemma 6.4, we conclude that, for any pair i, j ∈ {1, 2, 3} we have

Y i ∩ Y j ∅ . By Lemma 6.3, there exist u, u ′ ∈ {1, 2, 3} such that diam(Y u ∪ Y u ′ ) = diam(Y ).
In particular, we can choose i = u and j = u ′ , which implies that

diam(Y ) = diam(Y u ∪ Y u ′ ) ⩽ diam(Y u ) + diam(Y u ′ ) < diam(Y )
which is a contradiction and concludes the proof.

RELATION TO EXACT CONSENSUS AND GENERALIZED BOUNDS

In the exact consensus problem, the local state of an agent i is augmented with a variable d i initialized to ⊥. Agent i is allowed to set d i to some value v ⊥ only once, in which case we say that i decides v. An algorithm solves exact consensus subject to M if each execution E with a communication sequence in M satisfies:

• Termination. Each agent eventually decides.

• Exact agreement. If agents i and j have decided, then the decision values are equal:

d i = d j • Validity. If agent i decides v, then v is one of the initial values y 1 E (0), .
. . , y n E (0). Coulouma et al. [START_REF] Coulouma | A characterization of oblivious message adversaries for which consensus is solvable[END_REF] characterized the oblivious message adversaries in which exact consensus is solvable. While their characterization was stated for binary consensus in which initial values and outputs are in {0, 1}, their proofs also hold for the exact consensus as defined above. Charron-Bost et al. [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks: the role of averaging algorithms[END_REF] showed that approximate consensus is solvable in a significantly broader class: it is solvable subject to an oblivious message adversary if and only if it is rooted. As discussed in Section 1, the same characterization holds for asymptotic consensus. In this section we aim to shed light on the deeper relation between exact consensus and asymptotic consensus by studying valencies and contraction ratios. Our main results are a characterization of the topological structure of valencies with respect to solvability of exact consensus (Theorem 7.9) and nontrivial lower bounds on the contraction ratios whenever exact consensus is not solvable (Theorem 7.12 and Corollary 7.13). We also prove that a contraction ratio of 0 can be achieved if and only if exact consensus is solvable (Theorem 7.14). We start by recalling some definitions from Coulouma et al. [START_REF] Coulouma | A characterization of oblivious message adversaries for which consensus is solvable[END_REF]. In the following, we denote by R(G) the set of roots of a communication graph G, i.e., the set of agents that have a directed path to all other agents in G. For a set S ⊆ [n], let In S (G) = j ∈S In j (G). The set Out S (G) is defined analogously.

In R(H 1 ) (G) In R(H 1 ) (G) In R(H 1 ) (G) H 0 1 2 H 1 1 2 H 2 1 2
Definition 7.1 ([22, Definition 4.7]). Let G be a set of communication graphs. Given G, H, K ∈ G, we define Gα K H if In R(K ) (G) = In R(K ) (H ). The relation α * G is the transitive closure of the union of the relations α K where K varies in G. Example 7.2. Let G = {H 0 , H 1 , H 2 }
with the graphs H 0 , H 1 , and H 2 as previously defined. The sets of roots of the graphs are given by R(H 0 ) = {1, 2}, R(H 1 ) = {1}, and R(H 2 ) = {2}; see Figure 5. Definition 4.8]). Let G be a set of communication graphs. We define β G to be the coarsest equivalence relation included in α * G such that for all G, H holds: (Closure Property) If Gβ G H , then there exists a nonnegative integer q and communication graphs H 0 , . . . , H q ∈ G and K 1 , . . . , K q ∈ G such that

Since In R(H 1 ) (H 0 ) = In {1} (H 0 ) = In {1} (H 2 ) = {1, 2}, it is H 0 α H 1 H 2 . However, neither H 0 α H 1 H 1 , nor H 1 α H 1 H 2 . □ Definition 7.3 ([22,
• (i) G = H 0 and H = H q • (ii) ∀r ∈ [q] : H r β G G and K r β G G • (iii) ∀r ∈ [q] : H r -1 α K r H r
We next show properties of subsets of G that are β G -classes.

Lemma 7.4. Let G be a set of communication graphs and let

G ′ ⊆ G be a β G -class. Then Gα * G ′ H and Gβ G ′ H for all G, H ∈ G ′ . Proof. Let G, H ∈ G ′ . Since Gβ G H , there is a q and H 0 , . . . , H q ∈ G and K 1 , . . . , K q ∈ G such that (i) G = H 0 and H = H q (ii) H r β G G and K r β G G for all r ∈ [q], and (iii) H r -1 α K r H r for all r ∈ [q].
Condition (ii) implies H 0 , . . . , H q ∈ G ′ and K 1 , . . . , K q ∈ G ′ since they belong to the same β G -class as G, i.e., G ′ . But this means that the pair (G, H ) is in the transitive closure of the union of the relations α K 1 , . . . , α K q . Further, all K r are in G ′ . Thus Gα * G ′ H holds. Hence α * G ′ = G ′ × G ′ , i.e., the first part of the lemma.

To show the second part, define relation β = G ′ × G ′ , which, as we just proved, is included in α * G ′ . But it also satisfies the closure property in G ′ . Since β is the coarsest equivalence relation on G ′ , we thus have β G ′ = β = G ′ × G ′ , i.e., the second part of the lemma. □ 

G ∈ G R(G) = ∅ .
While Coulouma et al. [START_REF] Coulouma | A characterization of oblivious message adversaries for which consensus is solvable[END_REF] focus on binary consensus in their work and provide a characterization for binary consensus, their proof actually shows a stronger version of their theorem. Indeed the characterization also holds for exact consensus with inputs and outputs in R d by the same proof [START_REF] Coulouma | A characterization of oblivious message adversaries for which consensus is solvable[END_REF]: Theorem 7.6 ([22, Theorem 4.10]). Let M = M(G) be an oblivious message adversary. Exact consensus is solvable subject to M if and only if each β G -class is not source-incompatible.

We start with showing a generalization of Lemma 3.8 that allows us to induce non-empty intersection of valencies. Lemma 7.7. Let C be a configuration of an asymptotic consensus algorithm A for M = M(G). For all configurations C in an execution of A in M, and for all

G, H, K ∈ G, if Gα K H then Y * M, A (C.G) ∩ Y * M, A (C.H ) ∅.

Proof. By the definition of Gα

K H it is In R(K ) (G) = In R(K ) (H ).
Hence, together with Lemma 3.7, it follows that C.G ∼ i C.H for all nodes i in R(K). We consider an execution E in which C occurs at some t 0 -1, G is the communication graph at t 0 and all following graphs are equal to K. Analogously, let E ′ be an execution identical to E except that the communication graph at round t 0 is H instead of G. By inductive application of Lemma 3.7, we show that for all t ⩾ t 0 , we have

C t ∼ i C ′ t . In particular, we obtain y i E (t) = y i E ′ (t). Thus y * (E) = y * (E ′ ), which shows that Y * M, A (C.G) and Y * M, A (C.H ) intersect. □
We next establish that for oblivious message adversaries subject to which exact consensus is not solvable, asymptotic consensus algorithms must have initial configurations that can be extended to executions with different limit outputs. Lemma 7.8. Let M be an oblivious message adversary for which exact consensus is not solvable. Then for all asymptotic consensus algorithms A, there exists an initial configuration C 0 such that Y * M, A (C 0 ) is not a singleton. More precisely, for every ∆ > 0, there exists an initial configuration C 0 such that ∆(C 0 ) ⩽ ∆ and δ M, A (C 0 ) ⩾ ∆/n. Proof. By embedding the initial values into the first axis, we assume d = 1 in the rest of the proof. Since the lemma claims an existence result, this is sufficient.

Let M = M(G) and let G ′ ⊆ G be any source-incompatible β G -class, which exists by Theorem 7.6. Consider the n + 1 initial configurations C (k ) 0 where 0 ⩽ k ⩽ n with initial values

y (k ) i (0) = ∆ if i ⩽ k 0 if i > k .
For all these initial configurations, we have (k ) , choosing two executions with all communication graphs equal to Lemma 3.4 and concludes the proof. □

∆ C (k ) 0 ) ⩽ ∆. Define a(k) = inf Y * M ′ , A C (k ) 0 and b(k) = sup Y * M ′ , A C (k ) 0 . By Validity, Y * M ′ , A C (0) 0 = {0} and Y * M ′ , A C (n) 0 = {∆}, which means a(0) = b(0) = 0 and a(n) = b(n) = ∆. There exists some k with 1 ⩽ k ⩽ n such that b(k -1) ⩽ b(k) -∆/n since otherwise 0 = b(0) > b(n) -∆ = 0. Because G ′ is source-incompatible, for every agent k, there exists a communication graph G (k ) ∈ G ′ such that k S G (k ) . Since C (k -1) 0 ∼ i C (k ) 0 for all i ∈ S G
G (k) shows that Y * M ′ , A C (k -1) 0 ∩ Y * M ′ , A C (k ) 0 ∅, which implies a(k) ⩽ b(k -1). Combining both inequalities gives a(k) ⩽ b(k) -∆/n and shows that δ M ′ , A C (k ) 0 = b(k) -a(k) ⩾ ∆/n. We hence choose the initial configuration C 0 = C (k) 0 . This shows δ M, A (C 0 ) ⩾ δ M ′ , A (C 0 ) ⩾ ∆/n by
This finally allows us to derive one of our main results of this section: a characterization of oblivious message adversaries for which exact consensus is solvable by the topological structure of valencies of asymptotic consensus algorithms. Theorem 7.9. Let M be an oblivious message adversary. Exact consensus is solvable in M if and only if there exists an asymptotic consensus algorithm A for M such that Y * M ′ , A (C 0 ) is either a singleton or disconnected for all oblivious message adversaries M ′ ⊆ M and all initial configurations C 0 of A.

Proof. (⇒): Assume that exact consensus is solvable subject to M, and let A ′ be an algorithm that solves exact consensus subject to M. Let A be the algorithm derived from A ′ in which deciding is replaced by setting its output variable to the decision value of A ′ and not changing it anymore. Before the decision of algorithm A ′ , algorithm A outputs its initial value. Then A is an asymptotic consensus algorithm subject to M. Further, from Validity of exact consensus, for any initial configuration C 0 , the valency Y * M, A (C 0 ) is a subset of the set of initial values in C 0 . As the set of initial values of C 0 is finite, so is Y * M, A (C 0 ) and, by Lemma 3.4, also Y * M ′ , A (C 0 ) for all M ′ ⊆ M. Since any finite set is either a singleton or disconnected, the claim follows.

(⇐): We assume without loss of generality that d = 1. If not, we embed the initial values in any 1-dimensional affine subspace, e.g., choose them to lie on the first axis.

We proceed by means of contradiction. Assume that exact consensus is unsolvable subject to M = M(G). We will show that for all asymptotic consensus algorithms A for M, there exists an initial configuration C 0 and an oblivious message adversary M ′ = M(G ′ ) ⊆ M such that Y * M ′ , A (C 0 ) is a nontrivial interval. By Theorem 7.6, there is a source-incompatible β G -class. Choose G ′ to be equal to such a class. We choose C 0 via Lemma 7.8 such that Y * M ′ , A (C 0 ) is not a singleton. To show that Y * M ′ , A (C 0 ) is connected, we assume to the contrary that it is not and derive a contradiction. The set Y * M ′ , A (C 0 ) not being connected means the existence of some z Y [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF] and M(t)m(t) = δ M ′ , A (C t ) → 0 by Convergence and Agreement. Hence lim

* M ′ , A (C 0 ) such that ∃z 1 , z 2 ∈ Y * M ′ , A (C 0 ) : z 1 < z < z 2 . ( 13 
) We will inductively construct an execution E = C 0 , G 1 , C 1 , G 2 , . . . such that ∃z 1 , z 2 ∈ Y * M ′ , A (C t ) : z 1 < z < z 2 ( 14 
)
for all t ⩾ 0. Setting m(t) = inf Y * M ′ , A (C t ) and M(t) = sup Y * M ′ , A (C t ), we then have m(t) ⩽ z ⩽ M(t) by
t →∞ m(t) = lim t →∞ M(t) = z, which means lim t →∞ Y * M ′ , A (C t ) = t ⩾0 Y * M ′ , A (C t ) = {z} ,
where the first equality follows from Lemma 3.5. In particular z ∈ Y * M ′ , A (C 0 ), which gives the desired contradiction.

It thus suffices to construct an execution E satisfying [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF]. Assume that ( 14) holds for a given t ⩾ 0 and let z we have Gα * G ′ H . Thus there exists a chain G = H 0 , H 1 , . . . , H q = H ∈ G ′ and communication graphs K 1 , . . . , K q ∈ G ′ such that H r -1 α K r H r for all r ∈ [q]. From Lemma 7.7 we thus know that Then f (0) ⩽ z (t ) 1 ⩽ д(0) and f (q) ⩽ z (t ) 2 ⩽ д(q). The quantity r is finite since д(q) ⩾ z (t ) 2 > z. We show f (r ) < z by distinguishing two cases:

(t ) 1 , z (t ) 2 ∈ Y * M ′ , A (C t ) with z (t ) 1 < z < z (t
Y * M ′ , A (C.H r -1 ) ∩ Y * M ′ , A (C.H r ) ∅ (15 
(1) r = 0: Then

f (r ) = f (0) ⩽ z (t )
1 < z.

(2) r ⩾ 1: Then, by [START_REF] Charron-Bost | Approximate consensus in highly dynamic networks[END_REF] and the definition of r , we have f (r ) ⩽ д(r -1) < z.

In both cases, we showed f (r ) < z < д(r ). Choosing G t +1 = H r and C t +1 = C t .G t +1 , we hence proved [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF] for t + 1. This concludes the proof. □

We next introduce the α G -diameter of an oblivious message adversary M = M(G), which we will then (see Theorem 7.12 and Corollary 7.13) show to be directly linked to a nontrivial lower bound on the contraction ratio subject to M if exact consensus is not solvable subject to M. Definition 7.10. Let G be a set of communication graphs. We say that G is α G -connected if α * G has a single equivalence class. Otherwise, we call it α G -disconnected.

The α G -diameter of an α G -connected G is the smallest D ⩾ 1 such that for all G, H ∈ G there exist communication graphs H 0 , . . . , H q ∈ G and K 1 , . . . , K q ∈ G with q ⩽ D such that G = H 0 , H = H q , and H r -1 α K r H r for all r ∈ [q]. By contrast, the set

G = {H 1 , H 2 } is not α G -connected since neither H 1 α H 1 H 2 nor H 1 α H 2 H 2 .
For the oblivious message adversary M(deaf(G)), where G is an arbitrary communication graph G with n ⩾ 3 nodes, we have D = 1: Recall that deaf(G) = {F 1 , . . . , F n } with

F i = G \ (j, i) | j ∈ [n] \ {i} . Let i, j ∈ [n] and chose k ∈ [n] \ {i, j}. Then R(F k ) is either ∅ or {k}. In both cases, In R(F k ) (F i ) = In R(F k ) (F j ), and thus F i α F k F j . □
The following theorem and corollary thus generalize Theorems 4.1 and 5.1 to arbitrary oblivious message adversaries for which exact consensus is not solvable. Theorem 7.12. Let M = M(G) be an oblivious message adversary for which exact consensus is not solvable. If G is α G -connected, then the contraction ratio of any asymptotic consensus algorithm subject to M is greater or equal to 1/(D + 1) where D is the α G -diameter of G.

Proof. We show the stronger statement that for every initial configuration C 0 there is an execution

E = C 0 , G 1 , C 1 , G 2 , . . . starting at C 0 such that δ M, A (C t ) ⩾ 1 (D + 1) t δ M, A (C 0 ) (16) 
for all t ⩾ 0. This, applied to an initial configuration with δ M, A (C 0 ) > 0, which exists by Lemma 7.8, then shows the theorem. The proof is by inductive construction of an execution E = C 0 , G 1 , C 1 , G 2 , . . . whose configurations C t satisfy [START_REF] Charron-Bost | Amortized averaging algorithms for approximate consensus[END_REF].

For t = 0 the inequality trivially holds. Now let t be any nonnegative integer and assume that Equation ( 16) holds for t. By Lemma 3.6, there exist

G, H ∈ G such that diam Y * M, A (C t ) = diam Y * M, A (C t .G) ∪ Y * M, A (C t .H ) .
Because the α G -diameter of G is equal to D < ∞, there exist communication graphs H 0 , . . . , H q ∈ G and K 1 , . . . , K q ∈ G with q ⩽ D such that G = H 0 , H = H q , and H r -

1 α K r H r for all r ∈ [q]. Define Y = Y * M, A (C t ) and Y r = Y * M, A (C t .H r ). We have diam(Y ) = diam(Y 0 ∪ Y q )
by choice of G = H 0 and H = H q . We show that there exists some r ∈ {0, . . . , q} such that diam(Y r ) ⩾ diam(Y )/(q + 1) and then set G t +1 = H r and C t +1 = C t .H r . Then, by the induction hypothesis, we have

δ M, A (C t +1 ) ⩾ δ M, A (C t ) q + 1 ⩾ δ M, A (C t ) D + 1 ⩾ 1 (D + 1) t +1 δ M, A (C 0 ) , (17) 
i.e., Equation ( 16) holds for t + 1.

Assume by contradiction that for all r ∈ {0, . . . , q} diam(Y r ) < diam(Y )/(q + 1). By Lemma 7.7, we have Y r -1 ∩ Y r ∅ for all r ∈ [q]. Inductively, we prove diam r s=0

Y s < r + 1 q + 1 • diam(Y ) (18) 
for all r ∈ {0, . . . , q}. In particular for r = q, which leads to diam(Y

) ⩽ diam(Y 0 ∪ Y q ) < diam(Y ),
which is a contradiction and concludes the proof. □ Direct application of Theorem 7.12 to an oblivious message adversary M = M(G) in which exact consensus is not solvable may yield a trivial bound of 0 if G is not α G -connected. We can, however, use Lemma 3.4 to derive a strictly positive bound for any M subject to which exact consensus is not solvable: Corollary 7.13. Let M = M(G) be an oblivious message adversary for which exact consensus is not solvable. The contraction ratio of any asymptotic consensus algorithm subject to M is greater or equal to 1/(D + 1) where D is the infimum of α G ′ -diameters of any α G ′ -connected G ′ ⊆ G such that exact consensus is not solvable subject to M(G ′ ).

Proof. Set G ′ ⊆ G equal to the set with the smallest α G ′ -diameter such that exact consensus is not solvable subject to M(G ′ ). Applying Theorem 7.12 to M ′ , and Lemma 3.4 (iv) to M ′ and M yields the corollary. □ Corollary 7.13 gives a trivial lower bound of 0 on the contraction ratio if exact consensus is solvable subject to M (and thus all its sub-message adversaries). It turns out that the converse also holds: If a contraction ratio of 0 can be achieved, then exact consensus is solvable. This is shown in the next theorem. We thus indeed have a nontrivial lower bound in Corollary 7.13 whenever possible.

Theorem 7.14. Let M be an oblivious message adversary. Exact consensus is solvable subject to M if and only if there is an asymptotic consensus algorithm that achieves a contraction ratio of 0 subject to M.

Proof. (⇒): Starting from an exact consensus algorithm, we can construct an asymptotic consensus algorithm by having each agent output its intial value before the exact consensus algorithm would have decided, and its decision value after. The valency of a configuration after all agents would have decided in the exact consensus algorithm is a singleton. The diameter of the valency is thus eventually 0 in every execution of the asymptotic consensus algorithm. But then the algorithm's contraction ratio is 0.

(⇐): Assume by contradiction that there is an asymptotic consensus algorithm that has contraction ratio 0 subject to M = M(G) and that exact consensus is not solvable subject to M. Then, by Corollary 7.13, every G ′ ⊆ G such that exact consensus is not solvable subject to M(G ′ ) is α G -disconnected. We show that this is impossible. By Theorem 7.6 there is a β G -class C that is source-incompatible. By the Closure Property of the β G -relation, the class C is also a β C -class. Now, by invoking Theorem 7.6 for the oblivious message adversary M(C), since C is source-incompatible, exact consensus is not solvable subject to M(C). But the single β C -class is α C -connected, and thus also α G -connected. The class C is thus α Gconnected and exact consensus is not solvable subject to M(C), a contradiction to Corollary 7.13. □

ALMOST-TIGHT BOUNDS FOR ASYNCHRONOUS SYSTEMS WITH CRASHES: THE PRICE OF ROUNDS

In this section we show that Corollary 7.13 provides a tool to clearly separate time complexities of algorithms that operate in rounds to general algorithms in the classical static fault model of asynchronous message-passing systems with crashes. Our result applies to algorithms without any restriction: we do not make assumptions on the nature of the functions used by the agents, and agents are not required to be memoryless. We start with recalling and adapting notation for classical asynchronous message-passing systems. We consider a distributed system where agents perform receive-compute-send steps. An agent may crash, i.e., stop making steps. Crashes can be unclean: the final broadcast message may be received by a proper subset of correct, i.e., non-crashed, agents, only. Since an agent that crashes stops to make steps, we require Convergence, Validity, and Agreement of asymptotic consensus to hold only for the set of correct agents. Analogously, the consensus function y * , and thus the valencies, are restricted to correct agents only. Further, we apply the standard convention of measuring time in asynchronous systems by normalizing to the longest end-to-end message delay from a broadcast to the respective reception in an execution.

Round-based Algorithms

An algorithm is said to operate in rounds if each agent waits for nf messages corresponding to the current round, updates its state based on the received messages and its previous state, and broadcasts the next round's messages. If up to f agents can crash, and thus are muted, i.e., stop sending messages, then waiting for more than nf messages can lead to a deadlock. Algorithms that operate in rounds are widely used in asynchronous systems (see, e.g., [START_REF] Charron-Bost | The Heard-Of model: computing in distributed systems with benign faults[END_REF][START_REF] Dolev | Reaching approximate agreement in the presence of faults[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF]).

We next show that Corollary 7.13 can be applied to obtain new asymptotically tight bounds for round-based algorithms. Specifically, we prove a lower bound for asynchronous systems of size n ⩾ 3 with up to f < n/2 crashes whose agents operate in rounds.

Let us construct the following set of communication graphs: denote by G n the set of communication graphs with n nodes and let

G A = G ∈ G n | ∀i ∈ [n] : |In i (G)| ⩾ n -f for some f < n/2. Lemma 8.1. The α G A -diameter of G A is at most ⌈n/f ⌉.
Proof. Let G, H ∈ G A and q = ⌈n/f ⌉. We choose the communication graphs H r , where 0 ⩽ r ⩽ q, such that

In i (H r ) = In i (G) if 1 ⩽ i ⩽ r f In i (H ) if r f + 1 ⩽ i ⩽ n .
Further, for r ∈ [q], we choose the communication graphs K r such that

In i (K r ) = [n] \ {j | (r -1)f + 1 ⩽ j ⩽ r f } . node i in H 0 : 1 f . . . f + 1 2f . . . 2f + 1 3f . . . 3f + 1 n . . .
In i (H 0 ):

In i (H ) node i in H 1 : 1 f . . . f + 1 2f . . . 2f + 1 3f . . . 3f + 1 n . . .
In i (H 1 ):

In i (H ) In i (G) node i in H 2 : 1 f . . . f + 1 2f . . . 2f + 1 3f . . . 3f + 1 n . . . In i (H 2 ): In i (H ) In i (G) . . . R(K 1 ) R(K 1 ) R(K 1 )
Fig. 6. Visualization of the argument in the proof of Lemma 8.1 stating that H r -1 α K r H r for the first two r ∈ [q]. The figure shows the nodes of the graphs H 0 , H 1 , and H 2 . Nodes are labeled by whether their in-neighbors are as in H or as in G. The nodes in R(K 1 ) are shown in blue, the nodes in R(K 2 ) in red. One immediately observes that H 0 α K 1 H 2 α K 3 H 3 by comparing in-neighbors for the nodes in R(K 1 ) in graphs H 0 and H 1 , and in-neighbors for the nodes in R(K 2 ) in graphs H 1 and H 2 .

Note that all such H r and K r are uniquely defined via the in-neighbors of each node i ∈ [n].

Since, for r = 0, it is In i (H r ) = In i (H ) for all nodes i ∈ [n], and for r = q, it is In i (H r ) = In i (G) for all nodes i ∈ [n], we have H 0 = H and H q = G.

Further, for all r ∈ [q], we can write R(

K r ) = In i (K r ) = [n] \ {j | (r -1)f + 1 ⩽ j ⩽ r f }.
Together with the fact that for all r ∈ [q] and all nodes i ∈ R(K r ), it is In i (H r -1 ) = In i (H r ), we obtain H r -1 α K r H r for all r ∈ [q]; see Figure 6. Noting H r ∈ G A and K r ∈ G A for all r ∈ [q], this concludes the proof. □ From Lemma 8.1 and Corollary 7.13 we immediately obtain the lower bound:

Theorem 8.2. The contraction ratio for any asymptotic consensus algorithm for n ⩾ 3 agents and at most f < n/2 crashes that operates in rounds is greater or equal to 1 ⌈n/f ⌉+1 .

Note that the contraction ratio in Theorem 8.2 is with respect to rounds. However, we can construct an execution where a single round requires 1 + ε time for arbitrarily small ε > 0: we assign all messages that are delivered according to the communication graph of the respective round, delay 1, and all others delay 1 + ε. Theorem 8.2 thus also holds for a contraction ratio with respect to time.

General Algorithms

Within this section, consider the classical static fault model of asynchronous message-passing systems with crashes; see, e.g., [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF] for a detailed definition of this model. We show that there is an algorithm that does not operate in rounds that ensures that all agents' outputs are equal by time f + 1. This gives a contraction ratio of 0.

The following algorithm MinRelay is inspired by the exact consensus algorithm for synchronous systems with crash faults (see, e.g,. [START_REF] Lynch | Distributed Algorithms[END_REF]), and is based on a non-terminating reliable broadcast protocol: Initially, at time 0, each agent i sets S i to the set containing only its initial value, and broadcasts S i . Whenever an agent i receives a set S S i , it sets S i ← S i ∪ S, y i ← min(S i ), and broadcasts S i . Theorem 8.3. The MinRelay algorithm solves asymptotic consensus in asynchronous messagepassing systems with up to f < n crashes. Specifically, all correct agents' sets S i , and thus y i , are equal by time f + 1, and the algorithm's contraction ratio is 0.

Proof. We first show equality of sets S i by time f + 1. Assume by means of contradiction that there exist two correct agents i, j with S i S j after time f + 1. Then there exists an x in S i that is not in S j . We distinguish between two cases: Case i: x was added to S i at latest by time f . By the algorithm and the maximum message delay of 1, x is added to S j by time f + 1; a contradiction.

Case ii: Otherwise, x was added to S i after time f . Consider the causal chain of messages that lead to adding x at agent i. By the algorithm, its origin must be a message broadcast at time 0. Together with the maximum message delay of 1, the chain must contain at least f + 1 broadcasts during the time interval [0, f ]. At most f of these broadcasts may be ones where an agent crashed and stopped making steps. Thus there is at least one broadcast among them that happened at an agent that did not crash during the broadcast. By the maximum message delay 1, node j received this message by time f + 1, adding x to S j ; a contradiction to the assumption. The claim follows.

Convergence, Agreement, and Validity follow from equality of all correct agents' S i after time f + 1, the fact all elements in S i are initial values, and the properties of the function min. □

APPROXIMATE CONSENSUS

Alternatively to asymptotic consensus, one may also consider the approximate consensus problem, in which convergence is replaced by a decision in a finite number of rounds and where agreement should be achieved with an arbitrarily small error tolerance (see, e.g., [START_REF] Lynch | Distributed Algorithms[END_REF]). Like for exact consensus, formally, the local state of i is augmented with variable d i initialized to ⊥. Again, agent i is allowed to set d i to some value v ⊥ only once, in which case we say that i decides v. In addition to the initial values y i (0), agents initially receive the error tolerance ε and an upper bound ∆ on the maximum distance of initial values. An algorithm solves approximate consensus subject to M if for all ε > 0 and all ∆, each execution E with a communication sequence in M with initial diameter at most ∆ satisfies:

• Termination. Each agent eventually decides.

• ε-Agreement. If agents i and j decide v and v ′ , then we have ∥vv ′ ∥⩽ ε.

• Validity. If agent i decides v, then v is in the convex hull of initial values y 1 E (0), . . . , y n E (0). Asymptotic consensus and approximate consensus are clearly closely related. However, the ε-Agreement condition does not preclude that the decisions of a given agent in a sequence of executions with same initial values and communication sequences, but with different error tolerance parameters ε → 0, diverges. It may thus lead to unstable decisions with respect to this parameter, as shown by the following example.

Example 9.1. Consider the oblivious message adversary M = M({H 0 }), with H 0 from Figure 3, and the following Algorithm A that is easily seen to solve approximate consensus subject to M: If the initially provided ε > 0 fulfills ⌈1/ε⌉ ≡ 0 mod 2, then both agents output y 1 (0) at the end of round ⌈1/ε⌉; otherwise, both agents output y 2 (0) at the end of round ⌈1/ε⌉.

We can observe that, if the sequence ε s = 1/s is provided as initial parameter to A and given that the initial values y 1 (0) and y 2 (0) differ, the (identical) decision values of both agents oscillate between y 1 (0) and y 2 (0) and thus do not converge as ε → 0. □

We next extend our lower bounds on the contraction ratio of asymptotic consensus to lower bounds on the decision time of approximate consensus. In particular, we show optimality of the decision times of the algorithms presented by Charron-Bost et al. [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF]: For n = 2, running Algorithm 1 and deciding y i after ⌈log 3 ∆ ε ⌉ rounds is optimal (Theorem 9.2). For n ⩾ 3 and the oblivious message adversary of all non-split graphs, running the midpoint algorithm and deciding after ⌈log 2 ∆ ε ⌉ rounds is optimal (Theorem 9.3). For n ⩾ 4 and the strongest oblivious message adversary of all rooted graphs, running the amortized midpoint algorithm and deciding after (n -1)⌈log 2 ∆ ε ⌉ rounds is optimal within a multiplicative term of at most n-1 n-2 (Theorem 9.4). We start with the case of two agents in Theorem 9.2. The proof is by reducing asymptotic consensus to approximate consensus, arriving at a contradiction with Theorem 4.1 for too fast approximate consensus algorithms. Proof. Assume to the contrary that algorithm A solves approximate consensus subject to the oblivious message adversary M = M({H 0 , H 1 , H 2 }) that decides in T < log 3 ∆ ε rounds for all initial configurations C 0 with ∆(C 0 ) ⩽ ∆ and some ε > 0.

Choose any C 0 with ∆(C 0 ) = ∆. Define algorithm à by running algorithm A, updating y to the agents' decision values in round T , and then running Algorithm 1 with the initial values y i (T ) = d i from round T + 1 on. Because Algorithm 1 is an asymptotic consensus algorithm and the decision values y(T ) of A satisfy the Validity condition of approximate consensus, algorithm à is an asymptotic consensus algorithm.

Let C 0 be an initial configuration of à with initial values y(0). By the proof of Theorem 4.1, namely [START_REF] Karl | Feedback Systems: An Introduction for Scientists and Engineers[END_REF], there is an execution E = C 0 , G 1 , C 1 , G 2 , . . . starting from C 0 such that δ M, à (C T ) ⩾ Analogously, for oblivious message adversaries with rooted Ψ graphs, using [START_REF] Cao | A lower bound on convergence of a distributed network consensus algorithm[END_REF], we obtain: Theorem 9.4. Let ∆ > 0 and ε > 0. Subject to an oblivious message adversary of n ⩾ 4 agents that includes the Ψ communication graphs, all approximate consensus algorithms have an execution with initial diameter ∆(C 0 ) ⩽ ∆ and decision time greater or equal to (n -2) log 2 ∆ ε .

In case the oblivious message adversary does not include any of the above graphs, we obtain the following general bound on the termination time: Theorem 9.5. Let ∆ > 0 and ε > 0. For an oblivious message adversary M = M(G) subject to which exact consensus is not solvable, all approximate consensus algorithms have an execution with initial diameter ∆(C 0 ) ⩽ ∆ and decision time greater or equal to log D+1 ∆ εn , where D is the α G -diameter of G.

Proof. Assume to the contrary that algorithm A solves approximate consensus subject to some oblivious message adversary M subject to which exact consensus is not solvable and that decides in T < log D+1 ∆ εn rounds for all initial configurations C 0 with ∆(C 0 ) ⩽ ∆ and some ε > 0. Define algorithm à by repeatedly running algorithm A, updating y to the agents' decision values in round kT , and then restarting A in round kT + 1 with the decision values from the previous phase. Then à is an asymptotic consensus algorithm.

Let C 0 be an initial configuration of à with ∆ C 0 ) ⩽ ∆ and δ M, à (C 0 ) ⩾ ∆/n By the proof of Theorem 7.12, namely [START_REF] Charron-Bost | Amortized averaging algorithms for approximate consensus[END_REF], there is an execution E = C 0 , G 1 , C 1 , G 2 , . . . starting from C 0 such that

δ M, Ã (C T ) ⩾ 1 (D + 1) T • δ M, Ã (C 0 ) . ( 19 
)
It is δ M, Ã (C 0 ) ⩽ ∆(C 0 )) ⩽ ∆/n and δ M, Ã (C T ) ⩽ ∆(y(T )) ⩽ ε by ε-Agreement of algorithm A. But this means T ⩾ log D+1 ∆ εn , a contradiction. □ From Theorem 9.5 and the fact that M ′ ⊆ M implies E M ′ , A ⊆ E M, A , we get: Corollary 9.6. Let ∆ > 0 and ε > 0. For an oblivious message adversary M = M(G) subject to which exact consensus is not solvable, all approximate consensus algorithms have an execution with initial diameter ∆(C 0 ) ⩽ ∆ and decision time greater or equal to log D+1 ∆ εn , where D is the smallest α G -diameter of α G -connected G ′ ⊆ G such that exact consensus is not solvable subject to M(G ′ ).

CONCLUSIONS

We introduced the notion of valency for asymptotic consensus algorithms, generalizing the concept of valency from exact consensus algorithms. Based on the study of valency diameters along executions we proved lower bounds on the contraction ratios of asymptotic consensus algorithm in arbitrary oblivious message adversaries: In particular, together with previously published convexcombination algorithms [START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF], we showed tight bounds for the oblivious message adversary containing all non-split graphs, and the strongest oblivious message adversary for which asymptotic consensus is solvable, the oblivious message adversary of all rooted graphs. Furthermore we obtained a general lower bound of 1/(D + 1) for any oblivious message adversary for which exact consensus is not solvable; here D denotes the newly introduced α G -diameter of the set G of communication graphs. Interestingly, this result also immediately provides new tight lower bounds on classical static failure models, as exemplified in the case of asynchronous message-passing systems with crashes and shows a fundamental discrepancy in performance between round-based and general algorithms. We finally demonstrated how to obtain corresponding results for approximate consensus algorithms.

Fig. 1 .

 1 Fig. 1. The communication graphs T bi and T uni for n = 3
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 2 Fig. 2. The contraction of the valency along an execution E = C 0 , G 1 , C 1 , G 2 , . . . with an average contraction of √ 0.8 • 0.75 = √ 0.6 ≈ 0.774 per round for the first two rounds.

  A and a t ⩾ 0 such that y * = y * (E) and C = C t . Set G = G t +1 . Hence we have C t +1 = C.G. But this shows that y * ∈ Y * M, A (C.G) since C.G occurs in execution E whose limit is y * . This shows inclusion of the left-hand side in the right-hand side. Now let G ∈ G and y * ∈ Y * M, A (C.G). Then there is an execution

  is an execution in E M, A with y * (E ′′ ) = y * (E) = y * . Hence y * ∈ Y * M, A (C) because C occurs in E ′′ . This shows inclusion of the right-hand side in the left-hand side and concludes the proof. □ Lemma 3.6. Let C be a configuration reachable by algorithm A subject to oblivious message adversary M = M(G). Then there exist G, H ∈ G such thatδ M, A (C) = diam Y * M, A (C.G) ∪ Y * M, A (C.H ) . Proof. By Lemma 3.5 it is Y * M, A (C) = G ∈ G Y * M, A (C.G).The claimed equality now follows from Lemma A.1. □ Two configurations C and C ′ are called indistinguishable for agent i, denoted C ∼ i C ′ , if i is in the same state in C and in C ′ . As an immediate consequence of this definition, since every agent is an in-neighbor of itself, we obtain: Lemma 3.7. Let C and C ′ be two reachable configurations and let G and G ′ be communication graphs that occur in an oblivious message adversary M. If some agent i has the same in-neighbors in G and G ′ and if C

Fig. 4 .

 4 Fig. 4. Rooted communication graph Ψ i for n = 6. Self-loops are omitted.

Fig. 5 .

 5 Fig. 5. Graphs H 0 , H 1 , and H 2 from Example 7.2 with roots colored in red. The figure also shows the set of nodes In R(H 1 ) (G) = In {1} (G) for all graphs G ∈ G = {H 0 , H 1 , H 2 } in blue. The relation α H 1 holds among graphs with the same set In R(H 1 ) , i.e., the same blue area.

Definition 7 . 5 ([ 22 ,

 7522 Definition 4.5]). A set G of communication graphs is called source-incompatible if

  ) for all r ∈ [q]. Set f (r ) = inf Y * M ′ , A (C.H r ) and д(r ) = sup Y * M ′ , A (C.H r ) for r ∈ {0, . . . , q}, and r = min r ∈ {0, . . . , q} | д(r ) > z .
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 711 Observe that for G = {H 0 , H 1 , H 2 } from Theorem 4.1, the α G -diameter of G is D = 2: From Example 7.2 and Figure5one immediately verifies that H 2 α H 1 H 0 α H 2 H 1 , but no graph G in G relates all three graphs via α G .
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 92 Let ∆ > 0 and ε > 0. Subject to an oblivious message adversary of n = 2 agents whose communication graphs are H 0 , H 1 , and H 2 from Figure 3, all approximate consensus algorithms have an execution with initial diameter ∆(C 0 ) ⩽ ∆ and decision time greater or equal to log 3 ∆ ε .
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 393 • δ M, Ã (C 0 ) . We have δ M, Ã (C 0 ) = ∆(C 0 ) = ∆ by Lemma 3.9 and δ M, Ã (C T ) ⩽ ∆(y(T )) ⩽ ε by Validity of Algorithm 1 and ε-Agreement of algorithm A. But this means T ⩾ log 3 ∆ ε , a contradiction. □With a similar proof, we also get the lower bound for approximate consensus with n ⩾ 3 agents: Let ∆ > 0 and ε > 0. Subject to an oblivious message adversary of n ⩾ 3 agents that includes the communication graphs deaf(G), all approximate consensus algorithms have an execution with initial diameter ∆(C 0 ) ⩽ ∆ and decision time greater or equal to log 2 ∆ ε .

1 2 Table 1 .

 21 Summary of lower and upper bounds on contraction ratios for asymptotic consensus with scalar input and output values. New bounds proved in this work are marked with an * . The three leftmost columns are worst-case contraction ratios for the case the oblivious message adversary is (i) a general non-split, (ii) a non-split message adversary with α G -diameter D, and (iii) a general rooted message adversary. Contraction ratios are 0 if and only if exact consensus is solvable. The two rightmost columns summarize the bounds for the classical model of an asynchronous system with crashes.

The result in[START_REF] Charron-Bost | Amortized averaging algorithms for approximate consensus[END_REF][START_REF] Charron-Bost | Fast, robust, quantizable approximate consensus[END_REF] is stated for the normalized case with ∆ = 1.
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A AUXILIARY RESULTS

Lemma A.1. Let m ⩾ 1 and A 1 , . . . , A m ⊆ R d . Then diam

Proof. Let D = diam m ℓ=1 A ℓ and D i, j = diam A i ∪ A j for 1 ⩽ i, j ⩽ m. The set inclusion A i ∪ A j ⊆ m ℓ=1 A ℓ implies the inequality D i, j ⩽ D and thus max i, j D i, j ⩽ D. To prove the converse direction, take a sequence of pairs (x k , y k ) of points in m ℓ=1 A ℓ whose distance converges to the set's diameter D. That is, D = lim k →∞ ∥x ky k ∥.

Since the set m ℓ=1 A ℓ is a union, for every k, there exists some index i k such that x k ∈ A i k . Because there are only finitely many possible values for the indices i k , there is an infinite subsequence of the sequence of indices i k that is constant, say, equal to i. The corresponding points x k of this subsequence all lie in the set A i .

Similarly, starting from this subsequence, because there are only finitely many possible values for the indices j k , there is an infinite subsequence for which j k is also constant, say equal to j. Again, the corresponding points y k of this subsequence all lie in the set A j .

The limit of distances ∥x ky k ∥ in this second subsequence is also equal to D, as the original sequence. But, also, it is upper-bounded by D i, j since all x k and y k are in A i ∪ A j . Hence D ⩽ D i, j ⩽ max i, j D i, j , which shows the converse inequality and concludes the proof. □

Similarly to the metric on executions, we define a metric on the set of communication sequences by dist(σ , σ ′ ) = 1/2 θ where θ is the first index at which σ and σ ′ differ. Lemma A.2. Let G be the set of communication graphs of an oblivious message adversary. Then the set G ω of communication sequences is compact.

Proof. It is straightforward to show that the metric dist induces the product topology on G ω . The set G is compact since it is finite. Hence, by Tychonoff's theorem, the product space G ω is compact as well. □ Lemma A.3. Let A be an algorithm and let M be a message adversary. For every initial configuration C 0 , the scheduler function

) which maps communication sequences to executions is continuous.

Proof. By definition of the metric, dist(σ , σ ′ ) < 1/2 θ means that the first θ communication graphs of σ and σ ′ coincide. But then, since the algorithm is deterministic, the first θ configurations of the executions S C 0 (σ ) and S C 0 (σ ′ ) also coincide. Hence dist

This shows that dist S C 0 (σ ), S C 0 (σ ′ ) ⩽ dist(σ , σ ′ ). In particular, S C 0 is continuous. □ Lemma A.4. Let A be an algorithm with a finite number of initial configurations. The set of executions of algorithm A subject to an oblivious message adversary is compact.

Proof. Let G be the set of communication graphs of the oblivious message adversary M = M(G). For every initial configuration, the scheduler function S C 0 : M → E M, A is continuous (Lemma A.3). Since the set M = G ω is compact (Lemma A.2), and the image of a compact set under a continuous function is compact, the subset of E M, A whose executions share the same initial configuration C 0 is compact. Now, since there are only finitely many initial configurations, and any finite union of compact sets is compact, the set E M, A of all executions is also compact. □ Lemma A.5. Let M be a message adversary and let A be an algorithm that solves exact consensus subject to M. Then its consensus function y : E M, A → V that maps executions to their common decision value is continuous.

Proof. The function y is even locally constant: Let E ∈ E M, A be an execution. Denote by T a round number in which all agents have already decided in execution E, and set ε = 2 -T . Then, in every execution E ′ ∈ E M, A with dist(E, E ′ ) < ε, all agents have decided at round T , and on the same value as in E. In other words, y(E) = y(E ′ ). This shows that the consensus function y is locally constant, hence continuous. □ 

B ADDITIONAL PROOFS

The claimed equality now follows from Lemma A.1. □ Lemma 6.4. Let C and C ′ be two reachable configurations subject to message adversary M via the finite communication sequences π and π ′ , respectively. If C ∼ i C ′ and there exist communication sequence α and α ′ such that π • α ∈ M, π ′ • α ′ ∈ M, and i is deaf in all communication graphs in α and α ′ , then

. . be an execution in E M, A with communication sequence π • α that includes configuration C, and let

. . be an execution in E M, A with communication sequence π ′ • α ′ and that includes configuration C ′ . Then there exists some time t such that C t = C and some time s such that C ′ s = C ′ . We show by induction that C t +k ∼ i C ′ s+k for all k ⩾ 0. The base case k = 0 is true since C ∼ i C ′ by assumption. For the induction step, assume that C t +k ∼ i C ′ s+k . Since agent i does not receive any messages in communication graphs G t +k+1 and G s+k +1 , we also have C t +k +1 ∼ i C ′ s+k +1 . But then we necessarily have y * (E) = y * (E ′ ) and thus y

If there exist agents i j and communication sequences α (i) , α (j) ∈ M such that agent i is deaf in α (i) and agent j is deaf in α (j) , then there is an initial configuration C 0 with δ M, A (C 0 ) = ∆. In particular, there is an initial configuration for which δ M, A (C 0 ) > 0.

Proof. Let x and y be any two points at distance ∥x -y∥ = ∆. Let C 0 be an initial configuration in which all agents except i have initial value x and agent j has initial value y. Also, denote by C (x ) 0 an initial configuration in which all agents have initial value x, and by C (y) 0 one in which all agents have initial value y.

Since agent i cannot distinguish the two executions with communication sequence α (i) and respective initial configurations