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Abstract

We have developed a Python-based open-source package to analyze the results

stemming from ab initio molecular-dynamics simulations of fluids. The package is best

suited for applications on natural systems, like silicate and oxide melts, water-based

fluids, and various supercritical fluids. The package is a collection of Python scripts that

include two major libraries dealing with file formats and with crystallography. All the

scripts are run at the command line. We propose a simplified format to store the atomic

trajectories and relevant thermodynamic information of the simulations, which is saved

in UMD files, standing for Universal Molecular Dynamics. The UMD package allows

the computation of a series of structural, transport and thermodynamic properties.

Starting with the pair-distribution function it defines bond lengths, builds an interatomic

connectivity matrix, and eventually determines the chemical speciation. Determining

the lifetime of the chemical species allows running a full statistical analysis. Then

dedicated scripts compute the mean-square displacements for the atoms as well as

for the chemical species. The implemented self-correlation analysis of the atomic

velocities yields the diffusion coefficients and the vibrational spectrum. The same

analysis applied on the stresses yields the viscosity. The package is available via the

GitHub website and via its own dedicated page of the ERC IMPACT project as open-

access package.

Introduction

Fluids and melts are active chemical and physical transport

vectors in natural environments. The elevated rates of

atomic diffusion favor chemical exchanges and reactions,

the low viscosity coupled with varying buoyancy favor

large mass transfer, and crystal-melt density relations favor

layering inside planetary bodies. The absence of a periodic

lattice, typical high-temperatures required to reach the

molten state, and the difficulty for quenching make the

experimental determination of a series of obvious properties,

like density, diffusion, and viscosity, extremely challenging.
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These difficulties make alternative computational methods

strong and useful tools for investigating this class of materials.

With the advent of computing power and the availability of

supercomputers, two major numerical atomistic simulations

techniques are currently employed to study the dynamical

state of a non-crystalline atomistic system, Monte Carlo1

and molecular dynamics (MD)1,2 . In Monte Carlo simulations

the configurational space is randomly sampled; Monte Carlo

methods show linear scaling in parallelization if all sampling

observations are independent of each other. The quality of

the results depends on the quality of the random number

generator and the representativeness of the sampling. Monte

Carlo methods show linear scaling in parallelization if the

sampling is independent of each other. In molecular dynamics

(MD) the configurational space is sampled by time-dependent

atomic trajectories. Starting from a given configuration,

the atomic trajectories are computed by integrating the

Newtonian equations of motion. The interatomic forces can

be computed using model interatomic potentials (in classical

MD) or using first-principles methods (in ab initio, or first-

principles, MD). The quality of the results depends on the

length of the trajectory and its capability to not be attracted

to local minima.

Molecular dynamics simulations contain a plethora of

information, all related to the dynamical behavior of the

system. Thermodynamic average properties, like internal

energy, temperature, and pressure, are rather standard to

compute. They can be extracted from the output file(s) of the

simulations and averaged, whereas quantities related directly

to the movement of the atoms as well as to their mutual

relation need to be computed after extraction of the atomic

positions and velocities.

Consequently, a lot of effort has been dedicated to visualizing

the results, and various packages are available today, on

different platforms, open source or not [Ovito3 , VMD4 ,

Vesta5 , Travis6 , etc.]. All these visualization tools deal

efficiently with interatomic distances, and as such, they allow

the efficient computation of pair distribution functions and

diffusion coefficients. Various groups performing large-scale

molecular dynamics simulations have proprietary software

to analyze various other properties resulting from the

simulations, sometimes in shareware or other forms of

limited access to the community, and sometimes limited in

scope and use to some specific packages. Sophisticated

algorithms to extract information about interatomic bonding,

geometrical patterns, and thermodynamics are developed

and implemented in some of these packages3,4 ,5 ,6 ,7 , etc.

Here we propose the UMD package - an open-source

package written in Python to analyze the output of molecular

dynamics simulations. The UMD package allows for the

computation of a wide range of structural, dynamical,

and thermodynamical properties (Figure 1). The package

is available via the GitHub website (https://github.com/

rcaracas/UMD_package) and via a dedicated page (http://

moonimpact.eu/umd-package/) of the ERC IMPACT project

as an open-access package.

To make it universal and easier to handle, our approach is to

first extract all the information related to the thermodynamic

state and the atomic trajectories from the output file of the

actual molecular-dynamics run. This information is stored in a

dedicated file, whose format is independent of the original MD

package where the simulation was run. We name these files

“umd” files, which stands for Universal Molecular Dynamics.

In this way, our UMD package can be easily used by any ab

initio group with any software, all with a minimum effort of

https://www.jove.com
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adaptation. The only requirement to use the present package

is to write the appropriate parser from the output of the

particular MD software into the umd file format, if this is not

yet existent. For the time being, we provide such parsers for

the VASP8  and the QBox9  packages.

 

Figure 1: Flowchart of the UMD library.
 

Physical properties are in blue, and major Python scripts and their options are in red. Please click here to view a larger

version of this figure.

The umd files are ASCII files; typical extension is “umd.dat”

but not mandatory. All the analysis components can read

ASCII files of the umd format, regardless of the actual name

extension. However, some of the automatic scripts designed

to perform fast large-scale statistics over several simulations

specifically look for files with the umd.dat extension. Each

physical property is expressed on one line. Every line starts

with a keyword. In this way the format is highly adaptable and

allows for new properties to be added to the umd file, all the

while preserving its readability throughout versions. The first

30 lines of the umd file of the simulation of pyrolite at 4.6

GPa and 3000 K, used below in the discussion, are shown

in Figure 2.

https://www.jove.com
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Figure 2: The beginning of the umd file describing the simulation of liquid pyrolite at 4.6 GPa and 3000 K.
 

The header is followed by the description of each snapshot. Each property is written on one line, containing the name of

the physical property, the value(s), and the units, all separated by spaces. Please click here to view a larger version of this

figure.

All umd files contain a header describing the content of the

simulation cell: the number of atoms, electrons, and atomic

types, as well as details for each atom, such as its type,

chemical symbol, number of valence electrons, and its mass.

An empty line marks the end of the header and separates it

from the main part of the umd file.

Then each step of the simulation is detailed. First, the

instantaneous thermodynamic parameters are given, each on

a different line, specifying (i) the name of the parameter, like

energy, stresses, equivalent hydrostatic pressure, density,

volume, lattice parameters, etc., (ii) its value(s), and (iii) its

units. A table describing the atoms comes next. A header

line gives the different measures, like Cartesian positions,

velocities, charges, etc., and their units. Then each atom is

detailed on one line. By groups of three, corresponding to

the three x, y, z axes, the entries are: the reduced positions,

the Cartesian positions folded into the simulation cell, the

Cartesian positions (that properly take into account the fact

that atoms can traverse several unit cells during a simulation),

the atomic velocities, and the atomic forces. The last two

entries are scalars: charge and magnetic moment.

Two major libraries ensure the proper functioning of the entire

package. The umd_process.py library deals with the umd

files, like reading and printing. The crystallography.py library

deals with all the information related to the actual atomic

structure. The underlying philosophy of the crystallography.py

library is to treat the lattice as a vectorial space. The unit cell

parameters together with their orientation represent the basis

vectors. The “Space” has a series of scalar attributes (specific

volume, density, temperature, and specific number of atoms),

thermodynamic properties (internal energy, pressure, heat

capacity, etc.), and a series of tensorial properties (stress

and elasticity). Atoms populate this space. The “Lattice”

class defines this ensemble, alongside various few short

https://www.jove.com
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calculations, like specific volume, density, obtaining the

reciprocal lattice from the direct one, etc. The “Atoms” class

defines the atoms. They are characterized by a series of

scalar properties (name, symbol, mass, number of electrons,

etc.) and a series of vectorial properties (the position in

space, either relative to the vectorial basis described in the

Lattice class, or relative to universal Cartesian coordinates,

velocities, forces, etc.). Apart from these two classes, the

crystallography.py library contains a series of functions to

perform a variety of tests and calculations, such as atomic

distances, or cell multiplication. The periodic table of the

elements is also included as a dictionary.

The various components of the umd package write several

output files. As a general rule, they are all ASCII files, all their

entries are separated by tabs, and they are made as self-

explanatory as possible. For example, they always clearly

indicate the physical property and its units. The umd.dat files

fully comply with this rule.

Protocol

1. Analysis of the molecular-dynamics runs

NOTE: The package is available via the GitHub

website (https://github.com/rcaracas/UMD_package) and via

a dedicated page (http://moonimpact.eu/umd-package/) of

the ERC IMPACT project as an open-access package.

1. Extract each specific set of physical properties using

one or more dedicated Python scripts from the package.

Run all the scripts at the command line; they all employ

a series of flags, which are as consistent as possible

from one script to another. The flags, their meaning, and

default values are all summarized in Table 1.

Flag Meaning Script using it Default value

-h Short help all

-f UMD file name all

-i Thermalization steps

to be discarded

all 0

-i Input file containing

the interatomic bonds

speciation bonds.input

-s Sampling of the frequency msd, speciation 1 (every step is considered)

-a List of atoms or anions speciation

-c List of cations speciation

-l Bond length speciation 2

-t Temperature vibrations, rheology

-v Discretization of the width

of the sampling window of

msd 20

https://www.jove.com
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the trajectory for the mean-

square displacement analysis

-z Discretization of the start

of the sampling window of

the trajectory for the mean-

square displacement analysis

msd 20

Table 1: Most common flags used in the UMD package and their most common significance.

2. Start with transforming the output of the MD simulation

performed in a first-principles code, like VASP8  or

QBox9 , into a UMD file.

1. If the MD simulations were done in VASP, then at

the command line type:
 

VaspParser.py -f <OUTCAR_filename> -i

<InitialStep>
 

where –f flag defines the name of the VASP

OUTCAR file, and the –i the thermalization length.
 

NOTE: The initial step, defined by –i allows for

discarding the first steps of the simulations, which

represent the thermalization. In a typical molecular-

dynamics run, the first part to the calculation

represents the thermalization, i.e., the time it takes

the system for all atoms to describe a Gaussian-

like distribution of the temperature, and for the entire

system to exhibit fluctuations of the temperature,

pressure, energy, etc. around equilibrium values.

This thermalization part of the simulation should not

be taken into account when analyzing the statistical

properties of the fluid.

3. Transform the .umd files into .xyz files to facilitate

visualization on various other packages, like VMD4  or

Vesta5 . At the command line type:
 

umd2xyz.py -f <umdfile> -i <InitialStep> -s

<Sampling_Frequency>
 

where –f defines the name of the .umd file, –i defines

the thermalization period to be discarded, and –s the

frequency of the sampling of the trajectory stored in

the .umd file. Default values are –i 0 –s 1, i.e. considering

all the steps of the simulation, without any being

discarded.

4. Reverse the umd file into VASP-type POSCAR files using

the umd2poscar.py script; snapshots of the simulations

can be selected with a predefined frequency. At the

command line type:
 

umd2poscar.py -f <umdfile> -i <InitialStep> -l

<LastStep> -s <Sampling_Frequency>
 

where –l represents the last step to be transformed into

POSCAR file. Default values are -i 0 -l 10000000 -s 1.

This value of –l is big enough to cover a typical entire

trajectory.

2. Perform the structural analysis

1. Run the gofrs_umd.py script to compute the pair

distribution function (PDF) gᴀʙ(r) for all the pairs of atomic

types A and B (Figure 3). The output is written in one

https://www.jove.com
https://www.jove.com/
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ASCII file, tab-separated, with the extension gofrs.dat. At

the command line type:
 

gofrs_umd.py -f <UMD_filename> -s <

Sampling_Frequency > -d <DiscretizationInterval> -i

<InitialStep>
 

NOTE: The defaults are Sampling_Frequency (the

frequency for sampling the trajectory) = 1 step;

DiscretizationInterval (for plotting the g(r)) = 0.01 Å;

InitialStep (number of steps in the beginning of the

trajectory that are discarded) = 0. The radial PDF, gᴀʙ(r)

is the average number of atoms of type B at a distance

d_ᴀʙ within a spherical shell of radius r and thickness dr

centered on the atoms of type A (Figure 3):
  

 

with ρ the atomic density, NA and NB the number of

atoms of type A and B, and δ(r−rᴀʙ) the delta function

which is equal to 1 if the atoms A and B lie at a distance

between r and r+dr. The abscissa of the first maximum of

gᴀʙ(r) gives the highest probability bond length between

the atoms of type A and B, which is the closest to

an average bond distance that we can determine. The

first minimum delimits the extent of the first coordination

sphere. Hence the integral over the PDF up to the first

minimum gives the average coordination number. The

sum of the Fourier transforms of the gᴀʙ(r) for all the

pairs of atomic types A and B yields the diffraction

pattern of the fluid, as obtained experimentally with a

diffractometer. However, in reality, as oftentimes the high

order coordination spheres are missing from the gᴀʙ(r),

the diffraction pattern cannot be obtained in its entirety.

https://www.jove.com
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Figure 3: Determination of pair distribution function.
 

(a) For each atom of one species (for example red), all the atoms of the coordinating species (for example grey and/or red)

are counted as a function of distance. (b) The resulting distance distribution graph for each snapshot, which at this stage is

only a collection of delta functions, is then averaged over all the atoms and all the snapshots and weighted by the ideal gas

https://www.jove.com
https://www.jove.com/


Copyright © 2021  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com September 2021 • 175 •  e61534 • Page 9 of 20

distribution to generate (c) the pair distribution function that is continuous. The first minimum of the g(r) is the radius of the

first coordination sphere, used later on in the speciation analysis. Please click here to view a larger version of this figure.

2. Extract the average interatomic bond distances as the

radii of the first coordination spheres. For this, identify the

position of the first maximum of the gᴀʙ(r) functions: plot

the gofrs.dat file in a spreadsheet application and search

for the maxima and minima for each pair of atoms.

3. Identify the radius of the first coordination sphere, as

the first minimum of the PDF, gᴀʙ(r), using spreadsheet

software. This is the basis for the entire structural

analysis of the fluid; the PDF yields the average bonding

status of the atoms in the fluid.

4. Extract the distances of the first minima, i.e., the

abscissa, and write them in a separate file, called,

for example, bonds.input. Alternatively, run one of the

analyze_gofr scripts of the UMD package to identify the

maxima and the minima of the gᴀʙ(r) functions. At the

command line type:
 

analyze_gofr_semi_automatic.py

5. Click on the position of the maximum and the minimum

of the gᴀʙ(r) function displayed in the graph that is

opened by the program. The script automatically scans

the current folder, identifies all the gofrs.dat files, and

performs the analysis for each one of them. Click again

on the maximum and the minimum in the window every

time the script needs an educated initial guess.

6. Open and look at the automatically generated file called

bonds.input that contains the interatomic bond distances.

3. Perform the speciation analysis

1. Compute the topology of bonding between the atoms,

using the concept of connectivity within graph theory:

the atoms are the nodes and the interatomic bonds

are the paths. The speciation_umd.py script needs the

interatomic bond distances defined in the bonds.input

file.
 

NOTE: The connectivity matrix is constructed at each

time step: two atoms that lie at a distance smaller than the

radius of their corresponding first coordination sphere are

considered to be bonded, i.e., connected. Various atomic

networks are built by treating the atoms as nodes in a

graph whose connections are defined by this geometric

criterion. These networks are the atomic species, and

their ensemble defines the atomic speciation in that

particular fluid (Figure 4).

https://www.jove.com
https://www.jove.com/
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Figure 4: Identification of the atomic clusters.
 

The coordination polyhedra are defined using interatomic distances. All atoms at a distance smaller than a specified radius

are considered to be bonded. Here the threshold corresponds to the first coordination sphere (the light red circles), defined

in Figure 1. Polymerization and thus chemical species are obtained from the networks of the bonded atoms. Note the central

Red1Grey2 cluster, which is isolated from the other atoms, which form an infinite polymer. Please click here to view a larger

version of this figure.

2. Run the speciation script to obtain the connectivity

matrix and obtain the coordination polyhedra or the

polymerization. At the command line type:
 

speciation_umd.py -f <UMD_filename> -

s <Sampling_Frequency> -i <InputFile> -l

<MaxLength> -c <Cations> -a <Anions> -m <MinLife>

-r <Rings>
 

where the -i flag gives the file with the interatomic

bond distances, which was produced for example in the

previous step. Alternatively, run the script with one single

length for all bonds defined by the -l flag.
 

NOTE: The -c flag specifies the central atoms, and the -

a flag the ligands. Both central atoms and ligands can be

of different types; in this case, they must be separated by

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61534/61534fig04large.jpg
https://www.jove.com/files/ftp_upload/61534/61534fig04large.jpg


Copyright © 2021  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com September 2021 • 175 •  e61534 • Page 11 of 20

commas. The -m flag gives the minimum time a species

must live to be considered in the analysis. By default this

minimum time is zero, all occurrences being counted in

the final analysis.

1. Run the speciation_umd.py script with the flag –

r 0, which samples the connectivity graph at the

first level to identify the coordination polyhedra. For

example, a central atom, denoted as a cation may be

surrounded by one or more anions (Figure 4). The

speciation script identifies every single one of the

coordination polyhedra. The weighted average of all

the coordination polyhedra gives the coordination

number, identical to the one obtained from the

integration of the PDF. At the command line type:
 

speciation_umd.py -f <UMD_filename> -i

<InputFile> -c <Cations> -a <Anions> -r 0
 

NOTE: Average coordination numbers in fluids are

fractional numbers. This fractionality comes from

the average characteristic of the coordination. The

definition based on speciation yields a more intuitive

and informative representation of the structure of the

fluid, where the relative proportions of the different

species, i.e., coordinations, are quantified.

2. Run the speciation_umd.py script with the flag –r 1,

which samples the connectivity graph at all depth

levels to obtain the polymerization. The network

through the atomic graph has a certain depth, as

atoms are bonded further away to other bonds (e.g.,

in sequences of alternating cations and anions)

(Figure 4).

3. Open the two files .popul.dat and .stat.dat consecutively;

these constitute the output of the speciation script. Each

cluster is written on one line, specifying its chemical

formula, the time at which it formed, the time at which it

died, its lifetime, a matrix with the list of the atoms forming

this cluster. Plot the lifetime of each atomic cluster of all

the chemical species found in the simulation as found in

the .popul.dat file (Figure 5).

4. Plot the population analysis with the abundance of each

species, as found in the .stat.dat file. This analysis,

both absolute and relative, corresponds to the actual

statistics of the coordination polyhedra for the case -r

0; for the case of polymerization, with -r 1 this needs

to be treated carefully as some normalization over the

relative number of atoms might need to be applied. The

abundance corresponds to the integral over the lifetimes.

The .stat.dat file also lists the size of each cluster, i.e.,

how many atoms form it.

4. Compute diffusion coefficients

1. Extract the mean square displacements (MSD) of the

atoms as a function of time to obtain the self-diffusivity.

The standard formula of the MSD is:
 

 

where the prefactors are renormalizations. With the MSD

tool, there are different ways to analyze the dynamical

aspects of the fluids.
 

NOTE: T is the total time of the simulation and Nα is the

number of atoms of type α. The initial time t0 is arbitrary

and spans the first half of the simulation. Ninit is the

number of initial times. τ is the width of the time interval

over which the MSD are computed; its maximum value

is half the time length of the simulation. In typical MSD

implementations, every window starts at the end of the

previous one. But a sparser sampling can speed up the

computation of the MSD, without altering the slope of the

https://www.jove.com
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MSD. For this, the i-th window starts at time t0(i), but the

(i+1)-th window starts at time t0(i) + τ + v, where the value

of v is user-defined. Similarly, the width of the window is

increased in discrete steps defined by the user, as such:

τ(i) = τ(i-1) + z. The values of z (“horizontal step”) and v

(“vertical step”) are positive or zero; the default for both

is 20.

2. Compute the MSD using the series of msd_umd scripts.

Their output is printed in a .msd.dat file, where the MSD

of each atomic type, atom, or cluster is printed on one

column as a function of time.

1. Compute the average MSD of each atomic type.

The MSD are computed for each atom and then

averaged for each atomic type. The output file

contains one column for each atomic type. At the

command line type:
 

msd_umd.py -f <UMD_filename> -z

<HorizontalJump> -v <VerticalJump> -b

<Ballistic>

2. Compute the MSD of each atom. The MSD are

computed for each atom and then averaged for each

atomic type. The output file contains one column for

each atom in the simulation, and then one column for

each atomic type. This feature allows for identifying

atoms that diffuse in two different environments, like

liquid and gas, or two liquids. At the command line

type:
 

msd_all_umd.py -f <UMD_filename> -z

<HorizontalJump> -v <VerticalJump> -b

<Ballistic>

3. Compute the MSD of the chemical species. Use the

population of clusters identified with the speciation

script, and printed in the .popul.dat file. The MSD

are computed for each individual cluster. The output

file contains one column for each cluster. To avoid

considering large-scale polymers, place a limit on

the size of the cluster; its default is 20 atoms. At the

command line type:
 

msd_cluster_umd.py -f <UMD_filename> -p

<POPUL_filename> -s <Sampling_Frequency> -

b <Ballistic> -c <ClusterMaxSize>
 

NOTE: Defaults values are: –b 100 –s 1 –c 20.

3. Plot the MSD using a spreadsheet-based software

(Figure 6). In a log-log representation of the MSD versus

time, identify the slope change. Separate the first part,

usually short, which represents the ballistic regime, i.e.

the conservation of the velocity of atoms after collisions.

The second longer part represents the diffusive regime,

i.e. scattering of the velocity of atoms after collisions.

4. Compute the diffusion coefficients from the slope of the

MSD as:
 

 

where Z is the number of degrees of freedom (Z = 2 for

diffusion in plane, Z = 3 for diffusion in space), and t is

the time step.

5. Time correlation functions

1. Compute the time correlation functions as a measure of

the inertia of the system using the general formula:
 

 

A can be a variety of time-dependent variables, such

as the atomic positions, atomic velocities, stresses,

polarization, etc., each yielding—via the Green-Kubo

https://www.jove.com
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relations12,13—different physical properties, sometimes

after a further transformation.

2. Analyze the atomic velocities to obtain the vibrational

spectrum of the liquid and alternative expression of the

atomic self-diffusion coefficients.

1. Run the vibr_spectrum_umd.py script to compute

the atomic velocity-velocity auto-correlation (VAC)

function for each atomic type and perform its fast-

Fourier transform. At the command line type:
 

vibr_spectrum_umd.py -f <UMD_filename> -t

<temperature>
 

where –t is the temperature that must be defined by

the user. The script prints two files: the .vels.scf.dat

file with the VAC function for each atomic type,

and the .vibr.dat file with the vibrational spectrum

decomposed on each atomic species and the total

value.

2. Open and read the vels.scf.dat. Plot the VAC

function from the vels.scf.dat file using spreadsheet-

like software.

3. Keep the real part of the Fourier VAC. This is what

yields the vibrational spectrum, as a function of

frequency:
 

 

where m are the atomic masses.

4. Plot the vibrational spectrum from the vibr.dat file

using spreadsheet-like software (Figure 7). Identify

the finite value at ω=0 that corresponds to the

diffusive character of the fluid and the various peaks

of the spectrum at finite frequency. Identify the

participation of each atomic type to the vibrational

spectrum.
 

NOTE: The decomposition on atomic types shows

that different atoms have different ω=0 contributions,

corresponding to their diffusion coefficients. The

general shape of the spectrum is much smoother

with fewer features than for a corresponding solid.

5. At the shell, read the integral over the vibrational

spectrum, which yields the diffusion coefficients for

each atomic species.
 

NOTE: Thermodynamic properties can be obtained

by integration from the vibrational spectrum, but

the results should be used with caution because of

two approximations: the integration is valid within

the quasi-harmonic approximation, which does not

necessarily hold at high temperatures; and the

gas-like part of the spectrum corresponding to the

diffusion needs to be discarded. The integration

should then be done only over the lattice-like

part of the spectrum. But this separation usually

requires several further post-processing steps and

calculations14 , which are not covered by the present

UMD package.

3. Run the viscosity_umd.py script to analyze the self-

correlation of the components stress tensor to estimate

the viscosity of the melt. At the command line type:
 

viscosity_umd.py -f <UMD_filename> -i

<InitialStep> -s <Sampling_Frequency> -o

<frequency_of_origin_shift> -l

<max_correlation_timelength>
 

NOTE: This feature is exploratory and any results must

be taken with caution. Firstly, thoroughly check the

convergence of the viscosity with respect to the length of

the simulation.

https://www.jove.com
https://www.jove.com/


Copyright © 2021  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com September 2021 • 175 •  e61534 • Page 14 of 20

1. Derive the viscosity of the fluid from the self-

correlation of the stress tensor15  as:
 

 

where V and T are the volume and the temperature

respectively, κB is the Boltzmann constant and σij

the ij off-diagonal component of the stress-tensor,

expressed in Cartesian coordinates.

2. Use a more adequate fit to obtain a more robust

estimate of the viscosity15,16  and avoid the noise of

the stress-tensor auto-correlation function that might

arise from the finite size and the finite duration of the

simulations. For the auto-correlation function of the

stress tensor, use the following functional form15,16

that yields good results:
 

 

where A, B, τ1, τ2, and ω are fit parameters.

After integrating, the expression for the viscosity

becomes:
 

6. Thermodynamic parameters stemming from the
simulations.

1. Run averages.py to extract the average values and

the spread (as standard deviation) for pressure,

temperature, density, and internal energy from the umd

files. At the command line type:
 

averages.py -f <UMD_filename> -s

<Sampling_Frequency>
 

with –s 0 as default.

2. Compute the statistical error of the average, using

blocking methods.
 

NOTE: There are various flavors of this method.

Following the work of Allen and Tildesley2 , it is common

to average over sequences of time blocks, of increasingly

longer length, and estimate the standard deviation with

respect to the arithmetic average17 . Convergence may

be reached in the limit of many- and long-enough block

sizes, when the sampling is uncorrelated. Though the

actual threshold value for the convergence usually needs

to be chosen manually.

1. Use the halving method18 : starting with the initial

data sample, at each step κ, halve the number of the

samples by averaging over every two corresponding

consecutive samples from the previous step κ−1:
 

2. Run the fullaverages.py script to perform the

complete statistical analysis, including the error of

the mean. At the command line type:
 

fullaverages.py -s <Sampling_Frequency> -u

<units>
 

NOTE: The script is automatized to the point of

searching for all the .umd.dat files in the current

directory and performing the analysis for all of them.

Defaults are –s 0 –u 0. For -u 0 the output is

minimal, and for -u 1 output is in full, with several

alternative units printed out. This script requires

graphical support, as it creates a graphical image for

checking the convergence for estimating the error on

the mean.

https://www.jove.com
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Representative Results

Pyrolite is a model multi-component silicate melt (0.5Na2O

2CaO 1.5Al2O3 4FeO 30MgO 24SiO2) that best

approximates the composition of the bulk silicate Earth—

the geochemical average or our entire planet, except for

its iron-based core19 . The early Earth was dominated by a

series of large-scale melting events20 , the last one might

have engulfed the entire planet, after its condensation for the

protolunar disk21 . Pyrolite represents the best approximant

to the composition of such planetary-scale magma oceans.

Consequently, we extensively studied the physical properties

of pyrolite melt in the 3,000‒5,000 K temperature range

and 0‒150 GPa pressure range from ab initio molecular-

dynamics simulations in the VASP implementation. These

thermodynamic conditions entirely characterize the Earth’s

most extreme magma ocean conditions. Our study is an

excellent example of a successful use of the UMD package

for the entire in-depth analysis of the melts22 . We computed

the distribution and the average bond lengths, we traced the

changes in cation-oxygen coordination, and compared our

results to previous experimental and computational studies

on amorphous silicates of various compositions. Our in-depth

analysis helped decompose standard coordination numbers

into their basic constituents, outline the presence of exotic

coordination polyhedra in the melt, and extract lifetimes for

all the coordination polyhedra. It also outlined the importance

of sampling in simulations in terms of both length of the

trajectory and also number of atoms present in the system

that is modeled. As for post-processing, the UMD analysis is

independent of these factors, however, they should be taken

into account when interpreting the results provided by the

UMD package. Here, we show a few examples of how the

UMD package can be used to extract several characteristic

features of the melts, with an application to molten pyrolite.

The Si-O pair distribution function obtained from the

gofrs_umd.py script shows that the radius of the first

coordination sphere, which is the first minimum of the g(r)

function, lies around 2.5 angstroms at T = 3000 K and P

= 4.6 GPa. The maximum of the g(r) lies at 1.635 Å—

this is the best approximation to the bend length. The long

tail is due to the temperature. Using this limit as the Si-O

bond distance, the speciation analysis shows that SiO4 units,

which can last for up to a few picoseconds, dominate the

melt (Figure 5). There is an important part of the melt that

shows partial polymerization, as reflected by the presence

of dimers like Si2O7, and trimers like Si3Ox units. Their

corresponding lifetime is in the order of the picosecond.

Higher-order polymers all have considerably shorter lifetime.

https://www.jove.com
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Figure 5: Lifetime of the Si-O chemical species.
 

The speciation is identified in a multi-component melt at 4.6 GPa and 3000 K. The labels mark the SiO3, SiO4, and SiO5

monomers and the various SixOy polymers. Please click here to view a larger version of this figure.

The different values of the vertical and horizontal steps,

defined by the –z and –v flags above, yield various samplings

of the MSD (Figure 6). Even large values of z and v are

enough to define the slopes and thus the diffusion coefficients

of the different atoms. The gain in time for the post-processing

is remarkable when going to large values of z and v. The MSD

offers a very strong validation criterion for the quality of the

simulations. If the diffusion part of the MSD is not sufficiently

long, that is a sign that the simulation is too short, and fails

to reach the fluid state in a statistical sense. The minimum

requirement for the diffusive part of the MSD highly depends

on the system. One can require that all the atoms change

their site at least once in the structure of the melt in order for

it to be considered as a fluid10 . An excellent example with

applications in planetary sciences is complex silicate melts at

high pressures close to or even below their liquidus line11 .

The Si atoms, the major network-forming cations, switch sites

after more than two dozen picoseconds. Simulations shorter

than this threshold would be considerably under-sampling the

possible configurational space. However, as the coordinating

anions, namely the O atoms, move faster than the central Si

atoms, they can compensate for part of the slow mobility of

Si. As such, the entire system could indeed cover a better

sampling of the configurational space than assumed only from

the Si displacements.
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Figure 6: Mean-square displacements (MSD).
 

The MSD are illustrated for a few atomic types of a multi-component silicate melt. The sampling with various horizontal and

vertical steps, z and v, yields consistent results. Solid circles: -z 50 –v 50. Open circles: -z 250 –v 500. Please click here to

view a larger version of this figure.

Finally, the atomic VAC functions yield the vibrational

spectrum of the melt. Figure 7 shows the spectrum at the

same pressure and temperature conditions as above. We

represent the contributions of Mg, Si, and O atoms, as well

as the total value. At zero frequency there is a finite value of

the spectrum, which corresponds to the diffusion character of

the melt. Extraction of the thermodynamic properties from the

vibrational spectrum needs to remove this gas-like diffusive

character from zero but also to properly take into account its

decay at higher frequencies.
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Figure 7: The vibrational spectrum of pyrolite melt.
 

The real part of the Fourier transform of the atomic velocity-velocity self-correlation function yields the vibrational spectrum.

Here the spectrum is computed for a multi-component silicate melt. Fluids have a non-zero gas-like diffusive character at

zero frequency. Please click here to view a larger version of this figure.

Discussion

The UMD package has been designed to work better with ab

initio simulations, where the number of snapshots is typically

limited to tens to hundreds of thousands of snapshots, with

a few hundred atoms per unit cell. Larger simulations are

also tractable provided the machine on which the post-

processing runs has enough active memory resources. The

code distinguishes itself by the variety of properties it can

compute and by its open-source license.

The umd.dat files are appropriate to the ensembles that

preserve the number of particles unchanged throughout the

simulation. The UMD package can read files stemming from

calculations where the shape and volume of the simulation

box varies. These cover the most common calculations, like

NVT and NPT, where the number of particles, N, temperature

T, volume, V, and/or pressure, P, are kept constant.

For the time begin the pair distribution function as well as

all the scripts needing to estimate the interatomic distances,

like the speciation scripts, work only for orthogonal unit cells,

meaning for cubic, tetragonal, and orthorhombic cells, where

the angles between the axes are 90°.

The major lines of development for version 2.0 are removal

of the orthogonality restriction for distances and adding

more features for the speciation scripts: to analyze individual

chemical bonds, to analyze the interatomic angles, and to

implement the second coordination sphere. With help from

https://www.jove.com
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external collaboration, we are working on porting the code

onto a GPU for faster analysis in larger systems.
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