
HAL Id: hal-03408618
https://hal.science/hal-03408618

Submitted on 3 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aligned Contrastive Predictive Coding
Jan Chorowski, Grzegorz Ciesielski, Jaroslaw Dzikowski, Adrian Łańcucki,
Ricard Marxer, Mateusz Opala, Piotr Pusz, Pawel Rychlikowski, Michal

Stypulkowski

To cite this version:
Jan Chorowski, Grzegorz Ciesielski, Jaroslaw Dzikowski, Adrian Łańcucki, Ricard Marxer, et al..
Aligned Contrastive Predictive Coding. Interspeech 2021, Aug 2021, Brno, Czech Republic. pp.976-
980, �10.21437/interspeech.2021-1544�. �hal-03408618�

https://hal.science/hal-03408618
https://hal.archives-ouvertes.fr


Aligned Contrastive Predictive Coding

Jan Chorowski1,2, Grzegorz Ciesielski1, Jarosław Dzikowski1, Adrian Łańcucki3, Ricard Marxer4,
Mateusz Opala1, Piotr Pusz1, Paweł Rychlikowski1 and Michał Stypułkowski1

1University of Wroclaw, Poland
2NavAlgo, France
3NVIDIA, Poland

4Université de Toulon, Aix Marseille Univ, CNRS, LIS, France
jan.chorowski@cs.uni.wroc.pl

Abstract
We investigate the possibility of forcing a self-supervised

model trained using a contrastive predictive loss, to extract
slowly varying latent representations. Rather than producing
individual predictions for each of the future representations, the
model emits a sequence of predictions shorter than the sequence
of upcoming representations to which they will be aligned. In
this way, the prediction network solves a simpler task of pre-
dicting the next symbols, but not their exact timing, while the
encoding network is trained to produce piece-wise constant la-
tent codes. We evaluate the model on a speech coding task and
demonstrate that the proposed Aligned Contrastive Predictive
Coding (ACPC) leads to higher linear phone prediction accu-
racy and lower ABX error rates, while being slightly faster to
train due to the reduced number of prediction heads.
Index Terms: self-supervised learning, contrast predictive cod-
ing, dynamic time warping, zerospeech

1. Introduction
Speech representations learned in an unsupervised way should
not be limited to better acoustic features for supervised ASR,
but also provide a path towards understanding of utterances at a
linguistic level by enabling modeling of audio signals at acous-
tic, phoneme, or word levels. However, these different levels
of speech understanding require reasoning at different sampling
rates: acoustic features are computed at equally spaced time in-
tervals (e.g., every 10ms), while language models change state
on each phoneme occurrence, or every word occurrence. To
capture this behavior, representation learning methods should
provide mechanisms that produce variable-rate data represen-
tations, which change synchronously with the contents of the
utterance, rather than an external clock.

Supervised ASR models allow variable rate data process-
ing: during recognition an HMM [1–3] classifies jointly several
acoustic frames into a single phoneme. Similarly the attention
mechanism [4,5] allows a phoneme or a character-synchronous
decoder network to access acoustic features sampled uniformly
in time. However, training these models requires ground-truth
transcriptions.

In this paper we investigate the possibility of extending
Contrastive Predictive Coding (CPC) [6], an unsupervised rep-
resentation learning method, with a rate-adjusting alignment
step. In the proposed Aligned Contrastive Predictive Coding
(ACPC, Figure 1) the model predicts only a short sequence of
latent codes which are aligned to a longer series of upcoming
ones.

ACPC changes the behavior of the model in two ways.

Figure 1: ACPC architecture. The encoder maps chunks of input
data into a latent space and the autoregressive model predicts
K upcoming latent vectors. They are aligned using DTW to the
M upcoming latent vectors. Training relies on a contrastive
loss: the match between a prediction and its aligned latent vec-
tors has to be stronger than the match of the predictor to any
other latent vector. Using K=M is equivalent to CPC [6].

First, it promotes stability and piece-wise smoothness of
the produced encodings: neighboring representations that are
aligned to the same prediction are implicitly trained to be sim-
ilar, while neighboring representations aligned to different pre-
dictions are trained to be different. Second, the task learned
by the prediction network is altered: rather than predicting pre-
cisely timed future representations, the prediction network can
now focus on what symbols will come next, rather than exactly
when they will come. In consequence, ACPC leads to repre-
sentations that are more related to phonemes, both on the linear
frame-wise phoneme prediction task and on ABX evaluations.
As demonstrated in experiments, ACPC also disincentivises the
encoder from extracting location-based features, such as peri-
odical patterns produced by strided convolutions [7] which are
induced by classical contrastive coding.

Finally, we note that ACPC brings a small performance in-
crease over CPC. Contrastive scoring of predictions is expen-
sive, because it requires comparisons against hundreds of neg-
ative samples. ACPC makes fewer predictions, bringing in a
noticeable speedup.

We publicly release the implementation at https://
github.com/chorowski-lab/CPC_audio.

2. Background and Motivation
CPC [6] extracts latent representations of sequential data by
learning to predict future states of the model. First, an encod-
ing feed-forward network extracts latent representations from

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-1544976



consecutive and overlapping chunks of the data, producing a
sequence of latent codes. A powerful auto-regressive model is
then applied to the latent representations. It is trained to pre-
dict the extracted latent representations several steps into the
future. The model is supervised using Noise Contrastive Esti-
mation: the prediction pt of the latent code zt at time t must be
closer to zt than to some other randomly sampled latent codes
called the negative samples. When applied to speech signals,
CPC was shown to learn good acoustic representations of the
data which are useful for phoneme prediction and low-resource
speech recognition.

ACPC makes K predictions of the upcoming latent vectors,
which will be then matched to M future latent vectors. It then
force-aligns predictions to the latent codes, and only then uses
a contrastive loss to supervise the model. The alignment can be
performed efficiently using a variant of Dynamic Time Warping
(DTW) [8]. This extra search step recovers the timing informa-
tion, freeing the autoregressive model from having to learn it.
When K=M our system is equivalent to the vanilla CPC vari-
ant: there is only one possible alignment.

3. ACPC Details
Figure 1 demonstrates ACPC. The input sequence x1, . . . , xT is
mapped using a strided convolutional encoder to a sequence of
latent encodings z1, . . . , zT ′ . Typically, the encoder uniformly
reduces the temporal resolution of the data. Then, the autore-
gressive model summarizes all encodings up to time t, denoted
z≤t, into a context vector ct = genc(z≤t). Finally, K predic-
tions p1

t , . . . , p
K
t are made conditioned on ct. We match these

prediction to M upcoming latent vectors zt+1, . . . , zt+M using
contrastive scores as follows. We first sample N negative latent
vectors from the encoder outputs z̄1

t , . . . , z̄
N
t . We then compute

the match between prediction pkt and encoding zt+m using the
contrastive score:

sk,mt =
e〈p

k
t ,zt+m〉

e〈pkt ,zt+m〉 +
∑N

n=1 e
〈pkt ,z̄Nt 〉

, (1)

where 〈·, ·〉 denotes the scalar product of two vectors.
We can organize the scores as a matrix showing the affinity

of predictions made at time t to subsequent latent codes. An
alignment is a path through this matrix which connects the cor-
ner k=1,m=1 with the corner k=K,m=M . An example is
shown in Figure 1. We allow a single prediction to be aligned
with several consecutive latent encodings, but each encoding
may only be aligned with one prediction.

The model is trained to promote the best alignment between
the predictions and actual latent encodings. The alignment can
be found using DTW. However, since it is being computed sev-
eral times for each training minibatch, the computation has to
be efficient. We have chosen to approximate DTW using an op-
timized GPU implementation of CTC [2]. CTC assumes that
scores are normalized, and computes the expected cost of the
best path. Once a model is trained, a single path is typically
dominant, and the expected cost over all paths is close to the
cost of the best DTW path. Two technical issues remain. First,
CTC uses a blank character. We forbid its use by extending the
scoring matrix with a row set to a large negative constant value
as its log-probability. Second, CTC requires the scores to be
normalized. We use the fact, that when one path dominates, we
can add or subtract any number to its scores - and we subtract
the softmax normalizing score. The details may be found in the
source code.

4. Experiments
We conduct our experiments on LibriSpeech train-clean-100,
following the setup of [9] and the small CPC baseline used in
ZeroSpeech 2021 [10]. We keep all design choices, and only
replace the CPC loss with ACPC. All models read single chan-
nel raw waveforms sampled at 16kHz, chunked into sequences
of 20480 samples. The encoder applies five 1D convolutions
with internal dimension 256 and filter widths (10, 8, 4, 4, 4).
All convolutions are followed by channel-wise magnitude nor-
malization and ReLU activations. Convolutions are strided
by (5, 4, 2, 2, 2) respectively, which results in a 160-fold rate
reduction, yielding a 256-dimensional latent vector extracted
every 10ms. The autoregressive context-building model is a
two-layer LSTM network [11] with 256 hidden units. Finally,
each prediction head accesses all past contexts through a sin-
gle Transformer layer [12] with 8 scaled dot-product atten-
tion heads with internal dimension 2048 and dropout [13] with
p = 0.1.

Both CPC and ACPC use 128 negatives. We sample them
from other utterances in the same minibatch, and we use mini-
batches containing 64 utterances of a single speaker. However,
there is a subtle interplay between the negative selection and the
number of GPUs, that affects the results: the negative selection
is restricted to utterances processed on a single GPU. The more
GPUs are used, the smaller the pool used for negative selection.
In order to simulate the setup of [10], we group utterances into
8 groups which we use to simulate 8 GPUs and restrict negative
selection to utterances in a group.

4.1. Qualitative Results

All results in this section are reported for models trained for
200 epochs. The output of the convolutional encoder (zt in Fig-
ure 1) is used as the learned representations over which all the
following experiments are conducted, but similar conclusions
apply to autoregressive contexts ct. For clarity, we only report
ACPC results when K=8 predictions are matched to a win-
dow of M=12 frames. Several other combinations of predic-
tions and window sizes were also tested (K=10 over M=16
and K=12 over M=20) leading to similar conclusions. An
in-depth investigation of the effects on representation of these
settings is left as a scope of future work.

We investigate three aspects of the learned representations
on speech signals: the slow varying temporal evolution, how
clustered the representation space is, and the agreement with
interpretable views of speech such as the phonetic structure.

Temporal Smoothness We first compare the self-similarity
of representations produced by the convolutional encoder (Fig-
ure 2). CPC produces a distinct, moire-like pattern, and we hy-
pothesize that the network learns to abuse strided convolutions
to encode the location of the latent vector modulo 4, similarly to
the checkerboard pattern visible in deconvolutional image gen-
erators [7]. This artifact appears during CPC training because
it helps the predictor to guess the upcoming exactly timed fea-
tures. ACPC does not require exact timing of predictions, and
produces only a faint pattern. It enhances the similarity of en-
codings, as the boundaries of phonemes roughly align with the
sharp blocks on the diagonal. We observe this difference be-
tween CPC and ACPC repeatedly on other samples.

Quantifying Pairwise Similarities We compare pairwise sim-
ilarities of latent representations between CPC and ACPC with
histograms (Figure 3). The distribution between similarities for
both models (top) has a similar overall shape. For ACPC there

977



CPC ACPC (K=8, M=12)

Figure 2: Dot-product similarity of latent representations at the
output of the convolutional encoder. The white vertical bars and
tick labels indicate ground-truth phoneme segmentation. Moire-
like artifacts are visible for CPC, but less pronounced for ACPC
(see main text for details). The pronounced blocks on the diag-
onal align with human-annotated phonemes. Visually, ACPC
yields a representation in which latent vectors that correspond
to a single phone are more self-similar.

0.00

0.01

0.02

Pr
ob

ab
ilit

y

CPC
ACPC

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine similarity

0.000

0.025

0.050

0.075

Pr
ob

ab
ilit

y

Figure 3: Distribution of cosine similarities between represen-
tations of random pairs of frames (top) and consecutive frames
(bottom). The histograms are computed on both the representa-
tions from the baseline CPC and those of the proposed ACPC.

is a second, distinct mode, which is expected for a sharp similar-
ity matrix: a ground truth matrix would be block-diagonal with
O(n) ones on the diagonal and O(n2) zeros elsewhere, moti-
vating two modes unequal in size. We take this idea further and
compare self-similarities of only consecutive latent representa-
tions (placed directly below/above the diagonal in the distance
matrix). There is a significant distribution shift in similarities of
consecutive frames between CPC and ACPC. The alignment of
fewer predictions to the sequence of upcoming representations
forces the ACPC model to share similar representations for con-
secutive frames, and therefore creates more slow-varying repre-
sentation.

Clustering Quality While slow-varying features are often ex-
pected in speech signals, another aspect which is regularly
sought is their readiness to be interpreted categorically. Speech
signals are most often segmented into a series of discrete sym-
bols for further processing. Many Automatic Speech Recogni-
tion (ASR) perform an alignment of the acoustic stream with
regions associated to phone or sub-phone units through classifi-
cation. We here test how the representations produced by ACPC
are clustered in comparison to those of the baseline CPC. We

20 40 60 80 100
Number of centroids

0.26

0.28

0.30

0.32

0.34

0.36

M
ea

n 
sq

ua
re

d 
di

st
an

ce
 fr

om
 sa

m
pl

e 
to

 c
en

tro
id

0.23

0.24

0.25

0.26

0.27

No
rm

al
ize

d 
m

ut
ua

l i
nf

or
m

at
io

n 
(N

M
I)CPC

ACPC

Figure 4: Clustering quality (solid lines, left axis) and agree-
ment with the phone alignments (dashed lines, right axis) of the
CPC and ACPC representations for different numbers of cen-
troids. The quality is measured by the average squared distance
to the assigned centroid, the agreement computed by Normal-
ized Mutual Information (NMI) between the cluster assignments
and ground truth phones, forced-aligned with ASR.

run k-means on the set of latent codes. The clusters are eval-
uated in terms of concentration by plotting in Figure 4 (solid
lines and left axis) the average squared distance from the sam-
ples to their assigned centroids. We note that the embeddings of
both systems have similar norm due to Channel Normalization
layers used in the encoder. We observe that ACPC produces
consistently a lower mean distance, thus a more clustered rep-
resentations for every tested number of components.

Furthermore, the clusters created by k-means on the ACPC
latents are more in agreement with supervised ASR generated
phonetic alignments than those computed using the baseline
CPC. We compute and plot the Normalized Mutual Informa-
tion between the set of cluster assignments resulting from the
k-means and the phones assigned to each frame with forced
alignment (Figure 4, dashed lines and right axis). The results
demonstrate that the modes in the latent space of the ACPC map
better to phonetic content than those of the baseline CPC.

4.2. Quantitative Results: ABX and Phone Classification

We evaluate the model on two tasks that highlight the use-
fulness of CPC-derived representations: minimal-pair ABX
task from ZeroSpeech 2021 [10], and supervised linear frame-
wise phoneme prediction. For ABX (Table 1), ACPC model
is trained with the same settings as the CPC baseline of Ze-
roSpeech 2021. We extract the features from the last (second)
hidden layer of the autoregressive model. We report results
for M=12, K=8, but similar results are obtained for K=6.
ACPC improves upon the CPC baseline by relative 8 − 15%,
depending on the task. It also takes significantly less wall-clock
time to train with a similar implementation and hardware.

Next, we provide an ablation on the number of predictions
M and predicted frames K, with phone classification accuracy
task. We train the models for 50 unsupervised epochs, extract
the latent vectors after the convolutional encoder (zt in Figure 1)
and on the hidden states of the autoregressive model (ct), and
then train a supervised linear phone classifier with those rep-
resentations. Table 2 lists the results. It consistently indicates
that optimal parameters for ACPC in this setup are predicting
the next M=12 frames with K=6 or K=8 predictions. We

978



Table 1: ABX error rates on ZeroSpeech 2021 dev set: the pro-
vided baseline CPC checkpoint, our CPC rerun and ACPC with
M=12 and K=8.

CPC (ZeroSpeech [10]) CPC (our baseline) ACPC M=12 K=8

Dev Within Across Within Across Within Across

clean 6.18% 8.02% 6.68% 8.39% 5.37% 7.09%
other 8.46% 13.59% 9.03% 13.87% 7.46% 12.60%

Table 2: Frame-wise linear phoneme recognition accuracy af-
ter 50 epochs of unsupervised training. We report accuracy ob-
tained on latent representations: outputs zt of the convolutional
encoder, and autoregressive contexts ct (see Figure 1). Best re-
sults are achieved for M=12 with K=6 or K=8. We report wall-
clock training step time.

Step
time

Encoded zt Contextual ct

Model Train Val Train Val

CPC 2.6ms 51.5% 51.2% 67.8% 67.5%
ACPC M=12 K=10 2.4ms 51.8% 51.3% 68.8% 68.4%
ACPC M=12 K=8 2.1ms 52.0% 51.9% 69.7% 68.6%
ACPC M=12 K=6 1.8ms 52.2% 52.1% 69.2% 68.8%
ACPC M=12 K=4 1.5ms 52.1% 51.9% 69.0% 68.7%
ACPC M=16 K=10 2.4ms 52.1% 51.9% 69.1% 68.8%
ACPC M=20 K=12 2.6ms 52.1% 51.9% 68.0% 67.8%

Figure 5: Frame-wise linear phoneme prediction accuracy dur-
ing training. ACPC steadily improves upon CPC, providing rep-
resentations easier to classify.

note that the baseline CPC model is set up with M=K=12.
All tested variants of ACPC improve upon CPC, indicating that
M and K are easy to adjust.

We measure training step times, collected with the under-
lying CPC implementation provided for ZeroSpeech 2021. We
can see that the training time depends on the amount of predic-
tions, because scoring them is costly - they have to be matched
to 128 negative encodings. Thanks to reduced number of pre-
dictions, the fastest ACPC setting is 1.7x faster than CPC, and
still more accurate on phone classification. Moreover, ACPC
representations are easier to classify from the early training it-
erations (Figure 5).

We conclude that ACPC is able to train more accurate mod-
els. Qualitatively, the learned representations are smoother and
more self-similar with frames belonging to each phone. These
characteristics translate to improved linear classification accu-
racy and lower ABX error rates.

5. Related Work
Slow-feature analysis [14] introduced the general idea that in-
teresting features of a time sequence should be slowly varying
and proposed to train models with a penalty on the rate of repre-

sentation change applied to all subsequent pairs of representa-
tions. We are inspired by this observation, but attempt instead to
learn a representation which is piece-wise constant: ideally, the
representation would change abruptly at phoneme boundaries,
and be fairly stable within a phoneme. In ACPC this is achieved
by aligning the representation to a smaller sequence of predic-
tions. Forcibly, some neighboring encodings will be aligned to
the same prediction, and thus trained to be more similar, while
other neighboring encodings will be aligned to different predic-
tions, and hence trained to be different.

Several solutions were recently proposed to impose slow
changes of the latent representations learned in an unsupervised
way. So far, most efforts were aimed at auto-encoding mod-
els, especially using discrete encodings such as VQ-VAE [15].
In [16] a time-jitter regularization was proposed to smooth the
latent layer of VQ-VAE, which resulted in improved perfor-
mance on ZeroSpeech data. [17] applied a penalty to VQ-VAE
latent codes to enforce a piecewise-constant representation with
a bounded number of code changes. To this end an optimal clus-
ter assignment problem was solved for each training sample.
This approach was refined in [18] for phoneme segmentation
in a VQ-VAE and VQ-CPC [19]. Finally, [20] have proposed
to use slowness penalty and run-length encoding of the latent
representation of a VQ-VAE. ACPC is inspired by these solu-
tions, but differs in a fundamental way. All above approaches
essentially rely on temporal differences between subsequent la-
tent encodings to enforce a segmentation. This can be seen as
a purely bottom-up approach: the segmentation is fully deter-
mined given the states of the encoder. ACPC instead uses a
top-down signal coming from the predictive network: it aligns
the latent encodings to predictions. This makes ACPC some-
what similar to an online variant of pseudo-labeling [21]: the
prediction network produces pseudolabels which after a force-
alignment serve as targets for the encoder. [22] can be seen
as another top-down approach which models Markov-based la-
tent transitions and emissions with neural networks, in contrast
ACPC does not model explicitly the representation dynamics.

Matching two unaligned sequences of latent states using
time warping was explored in the context of ASR by the neu-
ral transducer [3]. ACPC employs a similar approach for each
prediction window.

6. Conclusion
We have proposed a modification to the CPC loss which aligns
a small sequence of predictions of the upcoming latent vectors
to a longer sequence of encoder outputs, then reinforces this
alignment using a contrastive training criterion. ACPC changes
the training signal to the encoder: it enforces similarity between
latent vectors aligned to the same prediction and the task solved
by the prediction network: it avoids requiring exact timings of
predictions. These changes lead to more stable latent encodings
which yield better phoneme prediction accuracies and lower
ABX error rates. We treat ACPC as a step towards enforcing
meaningful segmentation, such as detecting phoneme bound-
aries, in a contrastive coding regime. We hope it will be useful
in building systems that detect without supervision entities such
as phonemes, which are important for a given problem domain.

7. Acknowledgments
The authors thank Polish National Science Center for funding
under the OPUS-18 2019/35/B/ST6/04379 grant and the PlGrid
consortium for computational resources.

979



8. References
[1] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, Feb. 1989.

[2] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist Temporal Classification: Labelling Unsegmented Se-
quence Data with Recurrent Neural Networks,” in 23rd ICML
2006, New York, USA, 2006, pp. 369–376.

[3] A. Graves, “Sequence Transduction with Recurrent Neural Net-
works,” in arXiv:1211.3711 [Cs, Stat], Nov. 2012.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Transla-
tion by Jointly Learning to Align and Translate,” arXiv:1409.0473
[cs, stat], Sep. 2014.

[5] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-Based Models for Speech Recognition,” in Ad-
vances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds.
Curran Associates, Inc., 2015, pp. 577–585.

[6] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning
with Contrastive Predictive Coding,” arXiv:1807.03748 [cs, stat],
Jul. 2018.

[7] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and
checkerboard artifacts,” Distill, 2016. [Online]. Available:
http://distill.pub/2016/deconv-checkerboard

[8] T. K. Vintsyuk, “Speech discrimination by dynamic program-
ming,” Cybernetics, vol. 4, no. 1, pp. 52–57, Jan. 1968.

[9] M. Rivière, A. Joulin, P.-E. Mazaré, and E. Dupoux, “Unsuper-
vised Pretraining Transfers Well Across Languages,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), May 2020, pp. 7414–7418.

[10] T. A. Nguyen, M. de Seyssel, P. Rozé, M. Rivière, E. Kharitonov,
A. Baevski, E. Dunbar, and E. Dupoux, “The Zero Resource
Speech Benchmark 2021: Metrics and baselines for unsupervised
spoken language modeling,” arXiv:2011.11588 [cs, eess], Dec.
2020.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,”
in NIPS, 2017, p. 11.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” Journal of Machine Learning Re-
search, vol. 15, pp. 1929–1958, 2014.

[14] L. Wiskott and T. J. Sejnowski, “Slow Feature Analysis: Unsu-
pervised Learning of Invariances,” Neural Computation, vol. 14,
no. 4, pp. 715–770, Apr. 2002.

[15] A. van den Oord, O. Vinyals, and k. kavukcuoglu, “Neural Dis-
crete Representation Learning,” in Advances in Neural Informa-
tion Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 6306–6315.

[16] J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord, “Un-
supervised Speech Representation Learning Using WaveNet Au-
toencoders,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 27, no. 12, pp. 2041–2053, Dec. 2019.

[17] J. Chorowski, N. Chen, R. Marxer, H. J. Dolfing, A. Łancucki,
G. Sanchez, S. Khurana, T. Alumäe, and A. Laurent, “Unsuper-
vised Neural Segmentation and Clustering for Unit Discovery in
Sequential Data,” in Workshop on Perception as Generative Rea-
soning, NeurIPS 2019, Vancouver, Canada, Dec. 2019.

[18] H. Kamper and B. van Niekerk, “Towards unsupervised phone and
word segmentation using self-supervised vector-quantized neural
networks,” arXiv:2012.07551 [cs, eess], Dec. 2020.

[19] B. van Niekerk, L. Nortje, and H. Kamper, “Vector-Quantized
Neural Networks for Acoustic Unit Discovery in the ZeroSpeech
2020 Challenge,” in Interspeech 2020. ISCA, Oct. 2020, pp.
4836–4840.

[20] S. Dieleman, C. Nash, J. Engel, and K. Simonyan, “Variable-rate
discrete representation learning,” arXiv:2103.06089 [cs, eess],
Mar. 2021.

[21] T. Likhomanenko, Q. Xu, J. Kahn, G. Synnaeve, and
R. Collobert, “slimIPL: Language-Model-Free Iterative Pseudo-
Labeling,” arXiv:2010.11524 [cs], Oct. 2020.

[22] S. Khurana, A. Laurent, W.-N. Hsu, J. Chorowski, A. Lan-
cucki, R. Marxer, and J. Glass, “A Convolutional Deep
Markov Model for Unsupervised Speech Representation Learn-
ing,” arXiv:2006.02547 [cs, eess], Jun. 2020.

980


