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Abstract 28 

Introduction: 29 

To assess pre-therapeutic MRI-based radiomic analysis to predict the pathological complete response 30 

to neoadjuvant chemotherapy (NAC) in women with early triple negative breast cancer (TN).  31 

Materials and methods: 32 

This monocentric retrospective study included 75 TN female patients with MRI (T1-weighted, T2-33 

weighted, diffusion-weighted and dynamic contrast enhancement images) performed before NAC. For 34 

each patient, the tumor(s) and the parenchyma were independently segmented and analyzed with 35 

radiomic analysis to extract shape, size, and texture features. Several sets of features were realized 36 

based on the 4 different sequence images. Performances of 4 classifiers (random forest, multilayer 37 

perceptron, support vector machine (SVM) with linear or quadratic kernel) were compared based on 38 

pathological complete response (defined on the excised tissues), on 100 draws with 75% as training set 39 

and 25% as test. 40 

Results: 41 

The combination of features extracted from different MR images improved the classifier performance 42 

(more precisely, the features from T1W, T2W and DWI). The SVM with quadratic kernel showed the 43 

best performance with a mean AUC of 0.83, a sensitivity of 0.85 and a specificity of 0.75 in the test 44 

set. 45 

Conclusion: 46 

MRI-based radiomics may be relevant to predict NAC response in TN cancer. Our results promote the 47 

use of multi-contrast MRI sources for radiomics, providing enrich source of information to enhance 48 

model generalization. 49 

 50 
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Abbreviations 54 

• AUC: Area Under the Curve ROC 55 

• DCE: dynamic contrast enhancement 56 



• HER: Human Epidermal Growth Factor  57 

• VOI: volume of interest 58 

• MLP: multilayer perceptron 59 

• MRI: magnetic resonance imaging 60 

• NAC: neo-adjuvant chemotherapy 61 

• pCR: pathological complete response 62 

• ROC: receiver operating characteristic 63 

• SVM: support vector machine 64 

• TN: triple negative 65 

• TNM: tumor, node, metastases 66 

• T1W: T1-weighted imaging 67 

• T2W: T2-weighted imaging 68 

• DWI: diffusion weighted imaging 69 

• GLCM: Gray-level co-occurrence matrix 70 

• GLSZM: Gray-level size zone matrix 71 

• NGTDM: Neighborhood gray tone difference matrix  72 

• SURF: Speed-Up Robust Features  73 

• SUB3: subtraction between the image 3 min post-injection and the image pre-injection  74 



TEXT  75 

INTRODUCTION  76 

Breast cancer is the most frequently diagnosed cancer in women with 2,090,000 new cases and 77 

627,000 deaths worldwide in 2018 [1]. Among the different types of breast cancer, triple negative 78 

(TN) cancer is characterized by estrogen and progesterone receptor level lower than 10%, and an 79 

absence of over-expression of HER-2 (Human Epidermal Growth Factor Receptor-2). TN cancers 80 

account for 10 to 24% of all breast cancers, and 57 to 88% of cancers with BRCA1 mutation in women 81 

[2]. TN tumors are generally larger, diagnosed at the highest grade, and associated with worse 82 

prognosis [3]. At early stage, patients with TN cancer receive systemic treatments generally limited to 83 

cytotoxic chemotherapy, no targeted therapies are currently proposed. Neoadjuvant chemotherapy 84 

(NAC) treatment are used: i) to reduce the initial tumor volume in order to allow a conservative 85 

surgical treatment; ii) to better eradicate the micrometastatic disease; iii) to assess tumor chemo-86 

sensibility to determine the most appropriate adjuvant treatments [4]. The pathological complete 87 

response (pCR) to NAC is an important prognostic factor for the disease-free survival and overall 88 

survival in breast cancer [5, 6]. The efficacy of NAC varies according to the tumor’s genetic profile 89 

and pCR levels from 10 to 50% [7]. Therefore, there is a clinical need to identify patients who will not 90 

respond to NAC to eventually direct them to alternative therapeutic strategies. 91 

According to the latest EUSOBI recommendations [8], pre- and post-chemotherapy MRI examination 92 

should be performed in women with early breast cancer receiving NAC. Since 2012 [9], a new 93 

discipline called “radiomics” has drawn increasing attention in cancer research in disease detection, 94 

diagnosis, and prediction of treatment response, and several studies investigated prediction of pCR to 95 

breast cancer chemotherapy [10–14]. Radiomics is based on the hypothesis that genetics, molecular, 96 

cellular and tissular modifications can be observed on images [15,16]. Technically, radiomics consist 97 

in extracting a high number of quantitative parameters from radiologic images in order to determine 98 

their relationships with the underlying pathophysiology [17,18]. Moreover, through functional and 99 

anatomical information that MRI provided with on whole tissues, MRI-based radiomics allows to 100 

access to quantitative information refining the entire tumor and its micro-environment, and to probe 101 

tumor heterogeneity [19]. Some radiomic studies focused not only on the tumor, but also on the 102 

surrounding mammary parenchyma. The tumor microenvironment is known to partly contribute to the 103 



progression of breast cancer [20]. The radiomic analysis of the pre-tumoral environment was shown to 104 

be as important as the tumor analysis itself [14]. 105 

In this study, we explored the performance of radiomics in tumor and ipsilateral parenchymal 106 

mammary MRI to predict the pCR to NAC in TN breast cancer female patients. 107 

 108 

METHOD  109 

Study design 110 

Patients enrolled in this retrospective study underwent a pre-therapeutic MRI protocol between 111 

January 2008 and Jun 2017 in the French comprehensive cancer center “Centre Léon Bérard”. All 112 

patients had an early triple negative breast cancer (i.e. without metastasis) and were treated with 113 

neoadjuvant chemotherapy (NAC) before a surgical treatment. All women received a sequential NAC 114 

therapy based on anthracyclines-cyclophosphamide, then taxanes. Data were excluded for: i) poor 115 

quality of MRI imaging (moving artifacts, missing of some images); ii) NAC treatment initiated prior 116 

to MRI. This retrospective study was approved by our institutional review board and the requirement 117 

to obtained informed consent was waived.  118 

 119 

Pre-therapeutic MRI protocol 120 

All breast MRI examinations were performed at Leon Berard center with patient in prone position 121 

using a 1.5T Achieva system (Philips Healthcare, Best, Netherlands) and with the use of a dedicated 122 

seven-channel or sixteen-channel breast surface coil (SENSE-Breast-7 or SENSE-Breast16M). The 123 

pre-therapeutic MRI protocol was sequentially composed of a T1-weighted imaging, a T2-weigthed 124 

imaging, a diffusion weighted imaging and a dynamic contrast enhanced imaging (Figure 1). MRI 125 

protocol parameters are summarized in Table 1. Dynamic contrast enhancement (DCE) MR imaging 126 

was acquired after intravenous injection of 0.1 mmol/kg gadolinium-based contrast agent. Images 127 

noted “SUB3” were obtained subtracting images acquired 3 min after the injection and those acquired 128 

before injection using DCE-MRI. 129 

 130 

Segmentation of volume of interest   131 

The 3D volume of interest (VOI) was delineated manually using itk-SNAP software 132 



(www.itksnap.org) on few slices of SUB3 images; the inter-slice interpolation option was used to 133 

complete the mask between slices to have a 3D volume. More precisely, for each patient, tumor and 134 

parenchyma were initially segmented by a radiologist intern PC, after correcting by a senior 135 

radiologist (more than 10 years of experience in breast imaging AC). In the case of multiple lesions, 136 

each of them was considered independently with separate 3D binary mask. The delineation of the 137 

parenchyma included the fibroglandular tissue and the adipose tissue and excluded the skin and the 138 

tumor. The segmentations of tumor and parenchyma resulting from the consensus of the two 139 

radiologists PC and AC were then used for the extraction of size, shape, intensity distribution, and 140 

other texture features. Areas impacted by the presence of a clip were excluded from the VOI for the 141 

computation of intensity distribution and texture features (but not for shape and size features). An 142 

affine transformation was used to reposition VOIs segmented on SUB3 images on the other images 143 

(T1W, T2W and DWI) using matrix dimension and patient position information. A third expert FB 144 

was asked to delineate a subset of twenty-four tumors in order to analyze the variability of 145 

segmentations with the difficulty to have any access to the assessment of the other two radiologists 146 

and without access to the patient file. 147 

 148 

Features extraction 149 

We tested multiple configurations. We first use only SUB3 images with features extracted from lesion 150 

and parenchyma, and progressively include features from T1-weitghted images, T2-weitghted images, 151 

and DW images in the feature set. Extraction of feature set was performed with MATLAB 2019a (The 152 

Mathworks, Natick, MA, USA) using an in-house software. 3D-image intensities were filtered using 153 

Collewet method [21]. The initial feature set of a ROI was composed of 342 features: 96 shape and 154 

size characteristics, 14 intensity distribution characteristics, and 232 textural characteristics. As shown 155 

in the Figure 2, size and shape features were directly extracted from the binary masks and were based 156 

on morphological skeletonization and distance transforms, affine moment invariants [22], Hu moment 157 

[23], Zernike moment [24, 25], and conventional metrics. Intensity distribution features were extracted 158 

from masked MR images from the histogram built with 256 bins (14 features: average, standard 159 

deviation, full width at half maximum, variance, minimum, maximum, range, interquartile range, 160 

kurtosis, skewness, entropy energy, root mean square, mean deviation, median deviation). Before the 161 



extraction of texture features, voxels were isotropically resampled using an affine transformation and a 162 

nearest-neighbor interpolation and then discretized in a smaller number of gray levels. This operation 163 

was done using an equal probability algorithm to define decision thresholds in the volume such as the 164 

number of voxels for a given reconstructed level is the same in the quantized volume for all gray 165 

levels. Images were discretized in 8, 16, 24, 32, 48 and 64 grey levels and for each level four matrix 166 

were built: GLCM (Gray-level co-occurrence matrix) (n=21), GLRLM (Gray-level run length matrix) 167 

(n=13), GLSZM (Gray-level size zone matrix) (n=13) and NGTDM (Neighborhood gray tone 168 

difference matrix) (n=5) from which characteristics were extracted. Frequency domain-based texture 169 

features were extracted from the Gabor filters responses and from features extracted from image 170 

spectrum after 2D discrete Fourier transform. GLCM and GLRLM will be computed for 4 directions 171 

(0°, 45°, 90° and 135°) with an offset of 1 pixel. For GLSZM and NGTDM, a 26-pixel connectivity 172 

will be used. For Gabor filtering, 5 scales, 6 orientations, and a minimal wavelength of 3 were used. 173 

Other texture feature based on images primitive were also extracted using different detectors and 174 

descriptors (such as Speed-Up Robust Features (SURF) detector, Local Oriented Statistics Information 175 

Booster (LOSIB) descriptor, Harris detector); lacunarity computation or quad tree decomposition. 176 

These features were already described in previous studies [10,11,26]. For multiparametric case, only 177 

textural and intensity features (set of 492 features) were computed on the other imaging (T1W, T2W 178 

and DWI) and added to the initial feature set as illustrated in Figure 2.  179 

 180 

Data mining 181 

The test set included 25% of the total number of tumors, randomly selected from the whole data set, 182 

with a balance between pCR and non-pCR. One hundred different configurations of the training and 183 

test sets were used. Z-score normalization was applied on each features of the feature set. Then, a 184 

dimension reduction was applied using ReliefF method [27] to select the twenty most relevant features 185 

on the whole data set. From the reduced feature set, supervised machine learning was used to build the 186 

prediction model. Four classifiers were evaluated: a multilayer perceptron (MLP) trained with a 187 

stochastic gradient algorithm using an adaptive learning rate and a regularization of the synaptic 188 

weigths (  = 0.1, 5 mini-batches, 30 hidden nodes, and 60 epochs); a support vector machine (SVM) 189 

with a linear kernel; a SVM with a quadratic kernel (trained with box-constraint c = 1) and a random 190 



forest (3 splits and 50 learning cycles). The difference between the AUC for the training set and for 191 

the test set was used to evaluate the overfitting of the classification method. We evaluated the 192 

performance of the classification models thanks to the area under the curve (AUC) of the receiver 193 

operating characteristic (ROC). The difference in AUC between the training and the testing sets was 194 

used as an indicator for the predictive model to generalize the estimation. 195 

 196 

Statistical Analysis 197 

A Sørensen–Dice index was computed to compared the delineation given by various radiologists. An 198 

intraclass correlation coefficient (ICC) for each radiomic features was computed using package psych 199 

in R software. As we compared the radiomic features from three segmentations (initial P.C, corrected 200 

by A.C. and independent F.B.), we used the “ICC2” definition (this measure is one of absolute 201 

agreement in the ratings and could be generalize to other observers). 202 

A linear mixed regression model with random intercept was used to evaluate the effect of the multi-203 

contrast feature sets, the effect of the choice of classifier, and the effect of additive information from 204 

the parenchyma in the feature set on the AUC values (details in supplementary information). T-test 205 

was performed for specific pairwise comparison. Analyses were made using R software, v. 3.6.1 206 

(Vienna, Austria). 207 

 208 

Pathological examination and response to treatment 209 

The breast cancer was diagnosed on biopsy. All anatomopathological diagnostics were realized by 210 

expert pathologists specialized in breast cancer from our institution. The expression of estrogen 211 

receptor, progesterone receptors, and HER-2 status was determined on histopathological pre-212 

therapeutic biopsy samples. Hormone receptor negative status was defined if less than 10% of cells 213 

revealed staining for estrogen and progesterone receptors. The expression of HER-2 was considered 214 

negative if lower than 1+ in immunohistochemistry. Tumors with a score at 2+ required additional in 215 

situ hybridization to determine the amplification or non-amplification of HER-2. After a 6-month 216 

NAC treatment, all patients underwent breast surgical intervention (lumpectomy or mastectomy). The 217 

complete pathological response was defined by the absence of invasive residual tumor in the resected 218 

tissues (carcinoma in situ could be found) and the absence of axillary nodal metastasis. The TNM 219 



stage was ypT0 ypNO or ypTis ypNO, according to 2012 seventh editions of the AJCC Cancer 220 

Staging Manual 2012[28].  221 

 222 

RESULTS  223 

Clinical characteristics 224 

Among 79 patients eligible for study enrolment, four patients were excluded: one for MRI-protocol 225 

performed one week after the treatment initiation, and three because the SUB3 images were missing or 226 

not complete after the data transfer from the archive server. Among the 75 patients enrolled, 11 227 

patients presented two lesions, and 3 patients presented three lesions. Two patients presented bilateral 228 

tumors. Lesions were analyzed independently. 14 out of these 92 tumors had a clip. Three lesions were 229 

excluded for inadequate size to perform radiomic processing. Tumor characteristics are summarized in 230 

Table 2. 231 

8 out of the 75 patients underwent MRI protocol using the SENSE-Breast-7 coil, and the remaining 232 

patients the SENSE-Breast16M. No significant difference in signal-to-noise ratio was observed 233 

between images acquisitions with the SENSE-Breast-7 and the SENSE-Breast16M coils (t-test, p-234 

value = 0.33). For some patient, images from the pre-therapeutic MRI images were missing; details are 235 

summarized in Table 3 and reported the proportion of pCR and non-pCR.  236 

 237 

 Comparison of multi-contrast imaging features 238 

Out of the 89 tumors analyzed, 70 used the whole MRI protocol (T1W, T2W, DWI, and DCE). 239 

Multiple combinations of feature set were tested to evaluate the necessity of multiple contrasts 240 

imaging (Figure 3). Moreover, different classifiers were used and their performances were compared.  241 

Based on the AUC in the training set, the SVM with a quadratic kernel showed the best results (mean 242 

AUC of 0.99, Figure 3J). Random Forest and Multilayer perceptron also provided very good results 243 

with a mean AUC of 0.93 and 0.90, respectively, for the training set. The “SVM order 1” classifier 244 

showed the smallest difference in AUC between the training and test sets reflecting the smallest 245 

overfitting (Figure 3 C, F, I, L), or largest bias. 246 

The random forest, “SVM order 2”, and the MLP classifiers suggest advantages in adding information 247 

from different images issued from different MRI sequences. The most interesting configuration of 248 



feature set appeared to be the combination of DWI, T1W, and T2W features: firstly, the AUC in the 249 

validation set was larger than in other configurations even considering the configuration with only 250 

T1W features (+ 0.034, p <0.001, linear mixed model with Dunnett post-hoc test, details in 251 

supplementary information); secondly, the overfitting expressed by the difference in AUCs was in the 252 

same range than that of the “SVM order 1” (+0.008, p =0.564, t-test). 253 

The same parameters were used without any characteristics of parenchyma while keeping selected the 254 

20 most relevant parameters. A significant decreased in AUC for the test set was observed for “SVM 255 

order 2” (- 0.047, p <0.001, linear mixed model with Dunnett post-hoc test, details in supplementary 256 

information). These results showed that the characteristics of both parenchyma and tumors seemed to 257 

allow a better prediction of pCR. Unfortunately, the AUC results depended on the repartition of the 258 

data in the training set and in test set, and the ranges of AUCs in the test set were large. 259 

To go further, it would be interesting to accurately identify the non-pCR patients to avoid exposure to 260 

ineffective systemic treatment. In that case, the specificity of the predictive model was the most 261 

important. We observed that sensitivity was higher than specificity in our series (Figure 4). 262 

 263 

Effect of features selected 264 

The “SVM order 2” combined with DWI, T1, and T2 features seemed to better predict pCR. 265 

Therefore, we analyzed the effect of the number of features selected before applying classification. 266 

The ReliefF method allowed to promptly classify the most independent features (Table 4).  The 267 

textural features appear more relevant than shape and 1er order textural features (26 textural features 268 

against 4 shape feature). The Figure 5 shows: i) an increase in AUC, specificity and sensitivity values 269 

from 1 to 9 parameters; ii) a plateau from 9 to 24 parameters; iii) a slight decrease after 24 parameters. 270 

The nine most relevant features appeared as sufficient. In relevant shape feature, the one from 271 

parenchyma was very interesting because it reflects the proportion of the sane parenchyma against the 272 

tumor (the tumor area was removed from the parenchyma delineation in the binary mask). For the 273 

T1W without fat suppression, lobules, ducts and bloods vessels appear in lower values than fatty 274 

tissue. The features Short-Run Low Gray-level is the distribution of the short homogeneous runs with 275 

low grey-levels and appeared to be a relevant textural feature from parenchyma on T1W imaging.  276 

 277 



 278 

Variability of intra-observer delineation and radiomic feature implications 279 

The variability analyses were done on a subset of 24 lesions. The segmentation approved by the 280 

radiologist AC was considered the reference. A mean DICE coefficient of 0.95 ± 0.07 (range of 0.74 - 281 

1.00) reflecting the concordance between the two radiologists (PC and AC). The mean DICE 282 

coefficient was 0.84 ± 0.10 (range of 0.56 - 0.99) comparing the delineation approved by AC and FB. 283 

The worst result (DICE = 0.56) came from a stack of images where the contrast enhancement was very 284 

low and therefore difficult to segment without information on the pathology. The majority of DICE 285 

coefficient was over 0.80. To measure the impact of delineation variation on radiomic features, an ICC 286 

was computed for each feature. On the most relevant features highlighted by the ReliefF method in our 287 

study, we observed that textural features have a good ICC (mean 0.88 range 0.65-0.98) but the shape 288 

features have a worst ICC2 (mean 0.44 range 0.31-0.56). The textural features represented 75% of the 289 

nine most relevant features. 290 

 291 

DISCUSSION  292 

This study shows that multi-contrast MRI-based radiomics allows to predict the neo-adjuvant 293 

chemotherapy response in patients with early triple negative breast cancer with good performances.  294 

This study also showed that the choice of classifier strongly influences model performances. While 295 

SVM with a linear kernel generalized well, probably due to lower variance and higher bias 296 

(highlighted by lower AUC in the training set), other non-linear classifiers such as neural network, 297 

quadratic-kernel SVM, and Random Forest, increase performances by reducing bias effect (high 298 

performances in the training set), and increase variance and therefore overfitting, as indicated by 299 

increased AUC differences between dataset. However, the increase in variety of processable data 300 

combining different sources of radiomics (multi-contrast MRI) reduced variance effect as evidenced 301 

by reduced AUC differences between dataset when radiomics aggregated from different contrasts. Our 302 

results showed that the best model (AUROC at 0.83) was obtained with SVM with a quadratic kernel 303 

trained from aggregated radiomics extracted from T1, T2, and diffusion weighted images. 304 

From a clinical point of view, radiomic signature could help to better predict pathological complete 305 



response, and enhanced stratification of patients with an excellent prognosis, and patients at high risk 306 

of chemoresistance. In the latter population, systemic treatment combined to the standard NAC 307 

(anthracycline/taxane) may be added, such as platinum-based NAC [29], a PARP inhibitor [30], or 308 

even an immune-checkpoint-inhibitor. Indeed, the KEYNOTE-522 trial [31] investigating the addition 309 

of prembrolizumab to neo-adjuvant standard chemotherapy showed an increase of 64.8% of 310 

pathological complete response, compared with 51.2% in the placebo control group. Therefore, it 311 

seems important to appropriately select patients who may benefit the most from appropriate systemic 312 

treatment, highlighting the medical need for these non-invasive stratification methods.  313 

The most informative sequences identified were the association of T1/T2 morphological sequences 314 

and diffusion sequence. However, these results also depend on the DCE-MRI sequence used for the 315 

segmentation of the lesion. Indeed, we observed some pixels in the fat surrounding the tumors in the 316 

mask registered on T1W images; which would not have been integrated if the segmentation had been 317 

directly performed on T1W images. The parenchyma features appeared to be relevant in this study. 318 

The shape feature computed on the parenchyma binary mask (the difference between the parenchyma 319 

and the tumor delineation) appeared to be more relevant than the shape feature computed on tumor 320 

binary mask. More generally, the most relevant features were high order of textural features. These 321 

textural features would reflect the textural complexity from a macroscopic point of view but the tumor 322 

heterogeneity in a microscopy point view. Moreover, the textural features appeared to be more robust 323 

to inter-observer variability (different delineation) with high intraclass correlation coefficient. 324 

Our results are consistent with previous studies showing that AUC ranged from 0.67 to 0.87 [10–325 

12,14], allow to predict the response to breast cancer chemotherapy. Among these studies, Braman and 326 

collaborators showed that the triple negative subgroups had the best results with a 0.93 AUC, and Liu 327 

and colleagues reported AUC at 0.86 with fewer TN patients. Our series showed that 64% of the 328 

patients achieved a pathological complete response; this rate is higher than that reported in previous 329 

studies with 31% of patients complete pathological responses in [32]. 330 

 331 

Our study has some limitations. First, the size of our population was limited to 75 patients and the 332 

multiparametric radiomic analyses were only achieved in 70 lesions. However, to the best of our 333 

knowledge, this TN cohort was the largest cohort dedicated to radiomic studies. The lesion 334 



segmentation was done manually, which may introduce a degree of subjectivity. In addition, this study 335 

was performed in a single institution study; and extrapolating results to population of another center is 336 

limited. Lastly, MRI protocols are not standardized between centers in the field of breast cancer 337 

analyses inducing variability in the radiomic feature sets. Several studies have shown the sensitivity of 338 

radiomic parameters to machine’s change or reconstruction parameters [33–35]. 339 

Those results have to be confirmed in an external validation cohort with multicentric and prospective 340 

data, and more patients.  341 

 342 

To conclude, our results confirm that MRI-based radiomics may be relevant to predict neoadjuvant 343 

chemotherapy response in early triple negative breast cancer. In addition, our results highlight the 344 

interest of using multi-contrast MRI as sources of radiomics to improve model generalization thanks to 345 

increased information variety. 346 
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 479 

Figure 1. Two triple-negative breast cancers imaged with pre-therapeutic MRI protocol. First 480 

line: a mass tumor is shown; second line: a non-mass tumor is illustrated. Segmentation of tumor (in 481 

yellow) and segmentation of parenchyma (in green excluding tumor area) were made on derived DCE-482 

MRI. For non-mass tumor, the option “snake” of ITK-SNAP was used to perform the segmentation. 483 
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 485 

 486 

Figure 2. Pipeline of radiomic feature extraction and combination of feature sets. 487 



 488 

Figure 3. Boxplots of different configurations of radiomic feature set. AUC: area under the curve 489 

ROC for the training set and for the test set. For the case “S” only features from the SUB3 were 490 

included in the feature set; “D” corresponds to the diffusion weighted imaging, “1” corresponds to the 491 

T1-weighted imaging and “2” corresponds to the T2-weighted imaging. The results of all possible 492 

configurations are presented as supplementary information. 493 



 494 

Figure 4: ROC curves for the SVM classifier with quadratic kernel. The most interesting 495 

configuration of feature set appeared to be the combination of DWI, T1W and T2W features with 496 

AUC =0.83, sensitivity =0.85 and specificity =0.75. 497 
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 500 

Figure 5: Variation of model performances in training and test sets according to the number of 501 

feature selected with the ReliefF method. 502 
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Table 1: Summary of sequence parameters of T1W (T1-weigthed imaging), T2W (T2-weighted 504 

imaging), DWI (diffusion weighted imaging) and DCE (dynamic contrast enhancement).  505 

 
T1W T2W DWI DCE 

Pulse-sequence TSE SPAIR (TSE) SE TRIVE (TFE) 

Flip angle 90° 90° 90° 12° 

TE 7 ms 70 ms 75 ms 2.73 ms 

TR 600 ms 2.8 s 3.5 s 5.5 ms 

Slice thickness 3 or 3.5 mm 3 or 3.5 mm 2 mm 2 mm 

Pixel resolution 0.45 × 0.45 mm² 0.55 × 0.55 mm² 1.17 × 1.17 mm² 0.75 × 0.75 mm² 

Fat suppression no yes yes yes 

b (s/mm2) / / 700 / 

Contrast agent no no no yes 
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 508 

Table 2. Patient information and tumor characteristics 509 

Patients                                                                                                          75 

Characteristics  (n=89)  

BRCA1 Mutation  11 

Mean age in years (range)  48 (26 – 75) 

Tumor size in mm (range) 

- T1 (< 2cm) 

- T2 (2-5cm) 

- T3 (> 5cm and < 5cm) 

- T4 (Any size tumor with direct extension to chest wall or skin) 

38 (20 – 92)  

3 

55 

9 

22 

Masses 

- Shape: 

o Oval  

o Round 

o Irregular 

- Margin: 

o Circumscribed 

o Not circumscribed irregular 

o Not circumscribed spiculated 

Internal enhancement characteristics: 

o Homogeneous 

o Heterogeneous 

o Rim enhancement 

- Kinetic curve assessment: 

o Persistent : type 1 

o Plateau : type 2 

o Washout : type 3 

o Not reported 

- T2 signal intensity: 

o Hypointense/isointense                  

o Hyperintense                                           

83 

 

4 

6 

73 

 

7 

58 

18 

 

3 

53 

27 

 

1 

33 

39 

16 

 

25 

64 

Non Mass enhancement 

- Distribution: 

o Focal 

o Linear 

o Segmental 

o Regional 

o Multiple regions 

o Diffuse 

- Internal enhancement patterns : 

o Homogeneous 

o Heterogeneous 

o Clumped 

o Clustered ring 

6 

 

0 

0 

2 

2 

0 

2 

 

1 

3 

2 

0 

Adenopathy 

- Axillary 

- Internal mammary 

 

53 

20 

Pathologic complete response 

- Yes 

- No 

 

57 

32 

Histologic types 

- Infiltrating ductal carcinoma 

- Infiltrating ductal carcinoma + ductal carcinoma in situ 

Others (metaplastic carcinoma, myoepithelial carcinoma, 

medullary carcinoma) 

 

78 

6 

 

5 



Type of surgery 

- Lumpectomy 

- Mastectomy 

 

33% 

67% 
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Table 3. Number of lesions imaged with DCE-MRI, T1W, T2W, and DWI sequences.  512 

 
SUB3 

(N=89) 

T1W 

(N=86) 

T2W 

(N=76) 

DWI 

(N=72) 

pCR 57 56 47 45 

non-pCR 32 30 29 27 
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Table 4: The thirty most relevant feature classified by the ReliefF method  515 

Order 
(ReliefF) 

Type of 
tissue 

Type of 
imaging 

Type of 
features 

Function Parameter names 

1 Tumor T2W Textural SURF  std_blobs_strength 

2 Parenchyma Binary 
mask 

Shape Affine 
moment 

Affine_moment_invariant_6 

3 Tumor T2W Textural Quadtree sum_blocks 

4 Parenchyma T1W Textural GLRLM Short_Run_Low_Gray_Level_Emphasis 

5 Tumor T2W Textural Quadtree mean_c 

6 Tumor T1W Textural SURF  std_blobs_strength 

7 Tumor Binary 
mask 

Shape Zernike 
moment 

Zernike_moment_Phi8 

8 Tumor Binary 
mask 

Shape Hu 
moment 

Hu_moment_1 

9 Tumor T1W Textural Gabor Gabor_square_energy_s1 

10 Tumor T2W Textural Quadtree mean_r 

11 Tumor T1W Textural Grad G2_y_sum 

12 Tumor DWI Textural SURF  mean_blobs_strength 

13 Tumor T1W Textural Gabor Gabor_square_energy_s2 

14 Tumor T1W Textural Grad G1_y_sum 

15 Tumor T1W Textural Grad L4_sum 

16 Tumor T1W Textural Grad L2_sum 

17 Tumor T1W Textural Grad L1_y_sum 

18 Tumor T1W Textural Grad G1_x_sum 

19 Tumor T1W Textural Grad G2_x_sum 

20 Tumor T1W Textural Grad L3_sum 

21 Parenchyma T1W Textural GLCM Information_measure_of_correlation_2 

22 Tumor T1W Textural Grad L1_x_sum 

23 Tumor T1W Textural Gabor Gabor_square_energy_s5 

24 Tumor Binary 
mask 

Shape Skelet 
features 

std_2 

25 Parenchyma DIFF Textural GLCM Correlation 

26 Tumor DIFF Textural FFT 
features 

rank_F_orient1 

27 Tumor DIFF Textural FFT 
features 

rank_F_orient2 

28 Tumor DIFF Textural FFT 
features 

rank_F_orient3 

29 Tumor T1W Textural Gabor Gabor_square_energy_s3 

30 Tumor T2W Textural Quadtree length_quadtree 
 516 
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Supplementary information 519 

Statistical analyses 520 

The aim of this supplementary information is to provide complete statistical analyses about 521 

the impact of different configuration of feature set on classifier performance. Indeed, in the 522 

paper, only the most relevant results were illustrated.  523 

Multiple effects were analyzed: 524 

1. Multiple configurations of feature sets from multi-contrast imaging (ex: combining 525 

features from the DWI and T1W). 526 

2. Effect of adding information from parenchyma (combining features from the 527 

parenchyma and from the tumor). 528 

3. Effect of the classifier chose.  529 

 530 

For each of the 100 random draws of training/validation set (performing with “cvpartition” 531 

Matlab function), fifteen configurations of feature set were tested. For each feature set, 4 532 

classifiers were applied to provide a predictive model and the AUC was used to evaluate the 533 

performance of each classifier. To compare the fifteen configurations of feature, a linear 534 

mixed-effect model (LMM) was performed on AUC of validation set (or AUC of training set) 535 

for each classifier using “lmer” R function. For the design of the LMM, we considered 536 

repeated measurements on training/test set (100 different cases) with three fixed factors: 537 

Configurations (15 possibilities), Type of initial features set (tumor only or tumor + 538 

parenchyma) and Classifier (4 possibilities: SVM order 1, Random Forest, Multilayer 539 

perceptron and SVM order 2); and a random effect. The normality of each distribution was 540 

validated by a quantile-quantile plot. Figures S1, S2, S3 and S4 shows boxplot of the fifteen 541 

possible configurations with data “tumor only” for A,B and C graphs and with data “tumor + 542 

parenchyma” for D, E and F.  The fixed-effect results of LMM were summarized in table S5. 543 

The LMM demonstrated a significant effect of adding information from the parenchyma with 544 

greater values of AUC_training and AUC_validation (mean difference of respectively 0.020 545 

and 0.047 after the correction of “configurations” effect and “classifier” effect). Most of 546 

configurations using multi-contrast imaging have higher AUC values than using only one 547 

contrast; expect for the configuration “DWI + T2W”. The classifier with the highest AUC 548 

values in both training and validation sets was the SVM with quadratic kernel. 549 

 550 



 551 

Figure S1 (Support vector machine with linear kernel): Boxplot of AUC distribution in 552 

the training/validation set and the difference of the AUC of the two sets. Feature set used 553 

for the classification was designed as follow: “1” designs T1-weighted imaging, “2” for 554 

T2-weighted imaging, “D” for diffusion weighted imaging and “S” for the subtraction of 555 

DCE-MRI. The initial feature set was composed of tumor features for A, B, C. The 556 

initial feature set was composed of tumor and parenchyma features for D, E, and F. 557 

 558 



 559 

Figure S2 (Multilayer perceptron classifier): Boxplot of AUC distribution in the 560 

training/validation set and the difference of the AUC of the two sets. Feature set used for 561 

the classification was designed as follow: “1” designs T1-weighted imaging, “2” for T2-562 

weighted imaging, “D” for diffusion weighted imaging and “S” for the subtraction of 563 

DCE-MRI. The initial feature set was composed of tumor features for A, B, C. The 564 

initial feature set was composed of tumor and parenchyma features for D, E, and F. 565 
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 567 

Figure S3 (Random Forest classifier): Boxplot of AUC distribution in the 568 

training/validation set and the difference of the AUC of the two sets. Feature set used for 569 

the classification was designed as follow: “1” designs T1-weighted imaging, “2” for T2-570 

weighted imaging, “D” for diffusion weighted imaging and “S” for the subtraction of 571 

DCE-MRI. The initial feature set was composed of tumor features for A, B, C. The 572 

initial feature set was composed of tumor and parenchyma features for D, E, and F. 573 

 574 



 575 

Figure S4 (Support vector machine with quadratic kernel): Boxplot of AUC distribution 576 

in the training/validation set and the difference of the AUC of the two sets. Feature set 577 

used for the classification was designed as follow: “1” designs T1-weighted imaging, “2” 578 

for T2-weighted imaging, “D” for diffusion weighted imaging and “S” for the 579 

subtraction of DCE-MRI. The initial feature set was composed of tumor features for A, 580 

B, C. The initial feature set was composed of tumor and parenchyma features for D, E, 581 

and F. 582 
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 584 

Table S5: Mean difference from reference of fixed effect of linear mixed model with 585 

random intercept applied on AUC_training results and AUC_validation results. Dunnett 586 

post-hoc analyses were made to evaluate the significance of difference. *** p<0.001  587 

 

Mean difference from reference 

AUC Training AUC Validation 

Initial feature set   

 Tumor only (reference) -- -- 

 Tumor + parenchyma 0.020 *** 0.047 *** 

Configurations   

 Sub3 (reference) -- -- 

 T1W 0.008 *** 0.049 *** 

 T1W + T2W 0.016 *** 0.073 *** 

 T2W 0.030 *** 0.011 (p = 0.502)  

 DWI 0.016 *** -0.013 (p = 0.252) 

 DWI + T1W 0.028 *** 0.075 *** 

 DWI + T1W + T2W 0.024 *** 0.083 *** 

 DWI + T2W -0.006 (p = 0.088) -0.021 (p = 0.005) 

 Sub3 +T1W 0.018 *** 0.060 *** 

 Sub3 +T1W + T2W 0.001 (p = 1.000) 0.072 *** 

 Sub3 +T1W + T2W + DWI 0.010 *** 0.077 *** 

 Sub3 +T1W + DWI -0.001 (p = 1.000) 0.036 *** 

 Sub3 +T2W  0.010 *** 0.003 (p = 1.000) 

 Sub3 +T2W + DWI 0.028 *** 0.040 *** 

 Sub3 + DWI 0.026 *** 0.022 (p = 0.002) 

Classifier   

 SVM order 1 (reference) -- -- 

 MLP 0.075 *** -0.019 *** 

 Random Forest 0.143 *** 0.031 *** 

 SVM order 2 0.186 *** 0.073 *** 
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