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Akram Beni Hamad, Geoffrey Beck, Sébastien Imperiale , and Patrick Joly*

An efficient numerical method for time
domain electromagnetic wave propagation
in co-axial cables

Abstract: In this work we construct an efficient numerical method to solve 3D Maxwell’s equations in
coaxial cables. Our strategy is based upon an hybrid explicit-implicit time discretization combined with edge
elements on prisms and numerical quadrature. One of the objective is to validate numerically generalized
Telegrapher’s models that are used to simplify the 3D Maxwell equations into a 1D problem. This is the
object of the second part of the article.

Keywords: Coaxial cables, Maxwell’s equation, Hybrid numerical method, Edge elements, Telegrapher’s
models, Numerical simulation.

1 Introduction and motivation
The numerical simulation in the time domain of electromagnetic wave propagation in coaxial cables networks
is an important issue in many industrial applications, whether it concerns communications network or power
supply of devices. Indeed, one of the issue is the non-destructive testing of these cables. Non-destructive
testing of defects [3], [1], [17] often relies on forward modelling and simulations of the electric quantities
propagating in the cables. The underlying models that are mainly used are based on representation of the
coaxial cables has 1D model called telegrapher model which deals on the propagation of the voltage and the
current along infinitesimal RLCG quadripole (see [24] for cylindrical case) although the real propagation of
electromagnetic waves is governed by 3D Maxwell’s equations.

More in detail, a straight cable of length 𝐿 is made of a dielectric material that surrounds a metallic
inner-wire (whose presence is needed for allowing for wave propagation along the cable at frequencies of
interest) and is surrounded by an outer sheath. The inner and outer structures are both made of perfect
conducting materials so that the electromagnetic field is confined in the dielectric part (for questions about
non-perfectly conducting inner and outer wires, readers can refer to [6]). This dielectric part can be defined
as a longitudinal succession of plane transverse 2D plane cross-sections with one hole. More precisely, 𝑥3
denoting the abscissa along the cable, the domain of propagation Ω for the electric field is

Ω =
⋃︁

𝑥3∈ [− 𝐿
2 , 𝐿

2 ]

𝑆(𝑥3) (1)

where the cross section 𝑆(𝑥3) is the difference between two connected open sets of R2

𝑆(𝑥3) = 𝒪𝑒(𝑥3) ∖ 𝒪𝑖(𝑥3), 𝒪𝑒(𝑥3),𝒪𝑖(𝑥3) ⊂ R2 connected, 𝒪𝑖(𝑥3) ⊂ 𝒪𝑖(𝑥3), (2)

Akram Beni Hamad, POEMS (UMR CNRS-INRIA-ENSTA Paris)Institut Polytechnique de Paris, France/ LAMMDA-ESST
Hammam Sousse, Universié de Sousse, Tunisie, e-mail: akram.beni-hamad@ensta-paris.fr
Geoffrey Beck, Departement de mathématiques et applications, ´ Ecole normale supérieure, CNRS, ´ PSL University,Paris,
France, e-mail: geoffrey.beck.poems@gmail.com
Sébastien Imperiale , M3DISIM (Inria, LMS, Ecole Polytechnique, CNRS), Institut Polytechnique de Paris, France, e-mail:
sebastien.imperiale@inria.fr
*Corresponding author: Patrick Joly, POEMS (UMR CNRS-INRIA-ENSTA Paris) Institut Polytechnique de Paris, France,
e-mail: patrick.joly@inria.fr



2 P. Joly et al.,

which means that the boundary of 𝑆(𝑥3) has two connected component:

𝜕𝑆(𝑥3) = Γ𝑒(𝑥3) ∪ Γ𝑖(𝑥3) (3)

where Γ𝑒(𝑥3) := 𝜕𝒪𝑒(𝑥3) (resp. Γ𝑖(𝑥3) := 𝜕𝒪𝑖(𝑥3) ) will be called the exterior boundary (resp. the interior
boundary) of 𝑆(𝑥3).

In industrial applications, cables are thin, mathematically we will consider that its transverse dimension is
proportional to a small parameter 𝛿 ≪ 1. By using an asymptotic analysis of the 3D Maxwell equations
with 𝛿 → 0, several 1D simplified models of such kind were rigorously derived in [4]. If some of this models
have been justified from a mathematical point of view by error estimates when the cable has cylindrical
geometry, to our knowledge, there is no existing quantitative numerical comparison between 1D model
and 3D Maxwell’s theory. Doing so requires performing 3D simulations with 3D Maxwell’s equations. This
is a computational challenge particularly since the cable is thin and the goal of this paper is to precisely
addressed this issue. To better outline the difficulties to handle, it is worth while mentioning that a typical
simulation problem contains naturally three length :

– the diameter of the cable 𝛿,
– the mean wavelength along the cable 𝜆,
– the characteristic length of the propagation 𝐿.

Due to the elongated structure of the propagation domain Ω, it is natural to use elongated meshes with
step size ℎ in the longitudinal direction 𝑥3 and step size ℎ𝑇 in the transverse directions. These parameters
are constrained by the characteristics of the problems as follows

– ℎ𝑇 ≪ 𝛿, for well dealing with the internal structure of the cable and representing the variations of the
electromagnetic field inside each cross section,

– ℎ3 ≪ 𝜆, to represent accurately the variations of the solution in the longitudinal direction.

In practice, as 𝛿 ≪ 𝐿, ℎ𝑇 ≪ ℎ3 which leads to a huge number of degrees of freedom.

When time discretization, with time step Δ𝑡, is involved one has traditionally to face a choice:

(i) Either one uses a fully explicit time discretization in which case, for stability reasons (CFL conditions),
Δ𝑡 is constrained by the small space step ℎ𝑇 , i. e. Δ𝑡 ≤ 𝑐−1 ℎ𝑇 with 𝑐 is a constant with the dimension
of a velocity. This clearly imposes very small time steps.

(ii) Either one uses a fully implicit and unconditionally stable time discretization. In this case, there is
no more constrain on Δ𝑡 for stability reasons but the problem is that a large linear system has to be
solved at each time iteration.

In summary, each of the two above solutions would lead to prohibitive computational costs (if not out of reach
computations): either the number of time steps is much too large, case (i), either the cost of each time iteration
is much too high, case (ii). That is why our objective to find a trade off between solutions (i) and (ii) in which

(a) Δ𝑡 would be constrained by the longitudinal space step ℎ only, as for a 1D propagation problem
discretized with an explicit scheme

(b) The cost of each time iteration would remain reasonable.

This objective will be attained through an hybrid time discretization approach that would be implicit in
the transverse directions, ensuring (a), but explicit in the longitudinal direction, ensuring (b).

The outline of this article is the following:
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∙ Section 2 is dedicated to the full discretization in space and time of the Maxwell’s equation in straight
coaxial cables. In a first section we derive a specific form of the Maxwell’s equation, Section 2.1, where
we make explicit the equations satisfy by the transverse and longitudinal component of the electric
field. Section 2.2 is dedicated to the semi-discretization in space. We first treat the discretization with
respect to the longitudinal variable (Section 2.2.1) then with respect to the transverse variable (Section
2.2.2). it turns out that the proposed discretization can be re-interpreted via prismatic edge’s element
[7, 10] on prisms (Section 2.2.4). Finally, in Section 2.2 we describe the semi-discrete scheme in an
algebraic form. Section 2.3 concerns the time discretization . In Section 2.3.1, we propose an hybrid
implicit-explicit scheme, whose complexity and stability properties are analyzed Section 2.3.2 and 2.3.3.

∙ In the sections 3 and 4 we use our scheme in order to validate numerically the generalized 1D Telegrapher
model of [15], that is recap Section 3.1. We describe in Section 3.2, the method used for the discretization
of this 1D model , which involve non-local in time operators. The last section, Section 4, is dedicated to
the validation tests.

2 A numerical method for cylindrical cables
We consider a cylindrical cable for which the cross section is independent of 𝑥3 (see Figure 1) and we
assume, for simplicity of the exposition, that the length 𝐿 is infinite so that

Ω = 𝑆 × R, ( i.e. 𝑆(𝑥3) = 𝑆 (independent of 𝑥3), 𝜕𝑆 = Γ𝑒 ∪ Γ𝑖. (4)

The dielectric material is characterized by the electrical permittivity 𝜀 and the magnetic permeability 𝜇

Fig. 1: Left : slice of the domain, right :the geometry of the domain Ω.

which are both function of the space variable x ∈ Ω that satisfy the usual assumptions

0 < 𝜇− ≤ 𝜇(x) ≤ 𝜇+, 0 < 𝜀− ≤ 𝜀(x) ≤ 𝜀+ a.e. x = (𝑥1, 𝑥2, 𝑥3) ∈ Ω.

We shall also consider the possibility that the cable can be, at least locally, conducting, wich is modelled
through the conductivity 𝜎,

0 ≤ 𝜎(x) ≤ 𝜎+, a.e. x = (𝑥1, 𝑥2, 𝑥3) ∈ Ω. (5)

Note that the translational invariance in 𝑥3 concerns only the geometry of the domain Ω, not the coefficients
𝜀 , 𝜎 and 𝜇. The propagation of waves in the cable Ω, through the unknowns E(x, t) (the electric field) and
H(x, t) (the magnetic field) is governed by 3D Maxwell’s equations completed with perfectly conducting
boundary conditions on 𝜕Ω, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜀 𝜕𝑡E + 𝜎E − ∇ × H = 0, in Ω × R+.

𝜇 𝜕𝑡H + ∇ × E = 0, in Ω × R+,

E × n = 0, on 𝜕Ω × R+,

(6)
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where 𝑡 is the time, ∇× the 3D curl operator and n stands for the unit outward normal. the model is
completed with initial conditions (for simplicity again we have suppose the absence of source terms, without
any loss of generality)

E(·, 0) = E0, H(·, 0) = H0. (7)

Our method will be developed for the second order electric field formulation of the problem, obtained after
elimination of the magnetic field,

𝜀 𝜕2
𝑡 E + 𝜎 𝜕𝑡E − ∇ × 𝜇−1 ∇ × E = 0, in Ω × R+,

E × n = 0, on 𝜕Ω × R+,

E(·, 0) = E0, 𝜕𝑡E(·, 0) = 𝜀−1 (︀∇ × H0 − 𝜎E0
)︀

in Ω.

(8)

Our approach will be based on a particular rewriting of that well separates the roles of the longitudinal and
transverse space variables (resp, longitudinal and transverse electric fields).

For the simplicity, without any loss generality, we shall present our method in the case 𝜎 = 0. The
conductivity will be reintroduced in Section 3.

2.1 An adequate reformulation of the continuous problem

We introduce the longitudinal and transverse space variables

x = (x𝑇 , 𝑥3), x𝑇 = (𝑥1, 𝑥2)

and decompose the electric field into transverse (E𝑇 ) and longitudinal (𝐸3) components,

E =

⎛⎝ E𝑇

𝐸3

⎞⎠ with ET =

⎛⎝ 𝐸1

𝐸2

⎞⎠ .

To rewrite (8), we shall use the following transverse curl operators (note that the index 𝑇 refers to transverse
derivatives),

rot𝑇 E𝑇 = 𝜕1𝐸2 − 𝜕2𝐸1, rot𝑇 𝐸3 =

⎛⎝ 𝜕2𝐸3

−𝜕1𝐸3

⎞⎠ . (9)

The first one is a scalar rotational operator whereas the second is a vectorial rotational operator which can
be seen as a "rotated" gradient

rot𝑇 𝐸3 = −e3 × ∇𝑇𝐸3, with e3 × 𝐸𝑇 =

⎛⎝ −𝐸2

𝐸1

⎞⎠ and e3 = (0, 0, 1)𝑡.

These rotational operators are related to the 3D curl operator via

∇ × E =

⎛⎝ rot𝑇𝐸3 + e3 × 𝜕3E𝑇

rot𝑇 E𝑇

⎞⎠ .

Thus, the Maxwell’s equations (8) rewrite (this is straightforward computations)

𝜀 𝜕2
𝑡 E𝑇 − 𝜕3

(︀
𝜇−1𝜕3E𝑇

)︀
+ rot𝑇

(︀
𝜇−1rot𝑇 E𝑇

)︀
+ 𝜕3

(︀
𝜇−1∇𝑇𝐸3

)︀
= 0,

𝜀 𝜕2
𝑡𝐸3 + rot𝑇

(︀
𝜇−1rot𝑇𝐸3

)︀
+ div𝑇

(︀
𝜇−1𝜕3E𝑇

)︀
= 0.

(10)
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2.2 Space discretization

We shall use a Galerkin approach based of the weak (variational) formulation of (11). In order to give the
weak formulation of this problem, we introduce the following functional spaces

𝐻(rot; Ω) :=
{︀(︀

E𝑇 , 𝐸3
)︀

∈ 𝐿2(Ω)2 × 𝐿2(Ω) / rot𝑇𝐸3 + e3 × 𝜕3E𝑇 ∈ 𝐿2(Ω), rot𝑇 E𝑇 ∈ 𝐿2(Ω)
}︀
,

𝑉 := 𝐻0(rot; Ω) =
{︀

E ∈ 𝐻(rot; Ω) /E × n = 0 on 𝜕Ω
}︀
.

We aim at finding
(︀
E𝑇 , 𝐸3

)︀
∈ 𝑉 such that for any test function

(︀̃︀E𝑇 , ̃︀𝐸3
)︀

∈ 𝑉 , we have

𝑑2

𝑑𝑡2
m
(︀
E𝑇 , ̃︀E𝑇

)︀
+ k3

(︀
E𝑇 , ̃︀E𝑇

)︀
+ k𝑇

(︀
E𝑇 , ̃︀E𝑇

)︀
− 𝑐3𝑇

(︀
𝐸3, ̃︀E𝑇

)︀
= 0,

𝑑2

𝑑𝑡2
𝑚
(︀
𝐸3, ̃︀𝐸3

)︀
+ 𝑘𝑇

(︀
𝐸3, ̃︀𝐸3

)︀
− 𝑐3𝑇

(︀ ̃︀𝐸3,E𝑇

)︀
= 0,

(11)

with the continuous bilinear forms⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
(︀
E𝑇 , ̃︀E𝑇

)︀
:=
∫︁
Ω

𝜀E𝑇 · ̃︀E𝑇 , 𝑚
(︀
𝐸3, ̃︀𝐸3

)︀
:=
∫︁
Ω

𝜀𝐸3 ̃︀𝐸3,

k𝑇

(︀
E𝑇 , ̃︀E𝑇

)︀
:=
∫︁
Ω

𝜇−1 rot𝑇 E𝑇 rot𝑇
̃︀E𝑇 , 𝑘𝑇

(︀
𝐸3, ̃︀𝐸3

)︀
:=
∫︁
Ω

𝜇−1 ∇𝑇𝐸3 ∇𝑇
̃︀𝐸3,

k3
(︀
E𝑇 , ̃︀E𝑇

)︀
:=
∫︁
Ω

𝜇−1 𝜕3E𝑇 · 𝜕3̃︀E𝑇 , 𝑐3𝑇

(︀
𝐸3,E𝑇

)︀
=
∫︁
Ω

𝜇−1 ∇𝑇𝐸3 · 𝜕3E𝑇 .

(12)

The stiffness bilinear forms k𝑇 , 𝑘𝑇 and k3 do not couple transverse and longitudinal fields. We use bold
letters when they apply to transverse fields. The index 𝑇 means that only transverse derivatives are involved
while the index 3 means that only 𝑥3-derivatives are involved. Oppositely the bilinear form 𝑐3𝑇 couple the
transverse and longitudinal fields and mixes the 𝑥3 and transverse derivatives. We shall call it the coupling
bilinear form. Note that, at the exception of 𝑐3𝑇 , these bilinear forms are symmetric and positive. The
coupling term can easily be controlled thanks to Cauchy-Schwarz inequality

|𝑐3𝑇

(︀
𝐸3,E𝑇

)︀
| ≤ 𝑘𝑇

(︀
𝐸3, 𝐸3

)︀ 1
2 k3

(︀
E𝑇 ,E𝑇

)︀ 1
2 . (13)

We now deal with the space discretization. For the presentation, we find useful to treat successively the
discretization in 𝑥3 first (Section 2.2.1) then in the transverse variables x𝑇 (Section 2.2.2), which is by the
way justified by the "cylindrical structure" of Ω. However, we can reinterpret the result of these two step as
the result of direct 3𝐷 discretization (Section 2.2.4).

2.2.1 Semi-discretization in 𝑥3.

For the longitudinal discretization, we decomposed the cable Ω into small cylindrical cells

𝒞𝑗+ 1
2

= {(x𝑇 , 𝑥3) ∈ Ω / 𝑗ℎ ≤ 𝑥3 ≤ (𝑗 + 1)ℎ}, 𝑗 ∈ Z (14)

These cells of size ℎ in the 𝑥3 direction (ℎ is the longitudinal space step) are separated by transverse cross
section 𝑆𝑗 , 𝑗 ∈ Z (see Figure 2 ) where, by definition

∀ 𝜈 ∈ R, 𝒮𝜈 = {(x𝑇 , 𝜈ℎ),x𝑇 ∈ 𝑆}. (15)

We know describe Vℎ the approximation space of the 3D space 𝐻(rot; Ω), it is the product space

Vℎ := Vℎ,𝑇 × 𝑉ℎ,ℓ ⊂ 𝐻(rot; Ω), (16)
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Fig. 2: Schematic of the sections and the cells of the cable.

where the approximation of transverse field E𝑇 lives in Vℎ,𝑇 whereas the approximation of the longitudinal
variable 𝐸3 lives in 𝑉ℎ,ℓ. On the one hand, Vℎ,𝑇 is made of P1 continuous function in three directions with
value in the 2D 𝐻(rot𝑇 , 𝑆) space

Vℎ,𝑇 :=
{︀

E𝑇,ℎ ∈ 𝐶0(︀R;𝐻(rot𝑇 , 𝑆)
)︀
/ ∀ 𝑗, E𝑇 |𝒞

𝑗+ 1
2

∈ P1
(︀
R;𝐻(rot𝑇 , 𝑆)

)︀}︀
. (17)

In other words, for any E𝑇 ∈ Vℎ,𝑇 , denoting E𝑇,𝑗 = E𝑇 |𝑆𝑗
∈ 𝐻(rot𝑇 , 𝑆), we have

E𝑇 (x𝑇 , 𝑥3) =
∑︁
𝑗∈Z

E𝑇,𝑗(x𝑇 )𝑤𝑗(𝑥3), (18)

where 𝑤𝑗 is the usual hat function associated with 𝑥3 = 𝑗ℎ (see Figure 2).

On the other hand, the space 𝑉ℎ,ℓ is made of piecewise constant (P0) functions in 𝑥3 with values in 𝐻1(𝑆)

𝑉ℎ,ℓ := {𝐸3 : Ω → R / ∀ 𝑗, 𝐸3|𝒞
𝑗+ 1

2
∈ P0

(︀
R;𝐻1(𝑆)

)︀}︀
. (19)

In other words, for any 𝐸3 ∈ Vℎ,ℓ, there exists 𝐸3,𝑗+ 1
2

∈ 𝐻1(𝑆), 𝑗 ∈ Z such that

𝐸3(x𝑇 , 𝑥3) =
∑︁
𝑗∈Z

𝐸3,𝑗+ 1
2
(x𝑇 )𝜒𝑗+ 1

2
(𝑥3), 𝐸3,𝑗+ 1

2
= 𝐸3|𝑆

𝑗+ 1
2 (20)

where 𝜒𝑗+ 1
2

is the characteristic function of the interval (𝑗ℎ, (𝑗 + 1)ℎ] (see Figure 3).

Fig. 3: The 1D basis functions 𝑤𝑗 (left) and 𝜒𝑗+ 1
2

(right)

The semi-discrete problem is obtained essentially by rewriting the variational formulation (21) after replacing
the continuous space by the semi-discrete space Vℎ. More precisely, this problem reads:

Find
(︀
E𝑇,ℎ, 𝐸3,ℎ

)︀
∈ Vℎ := Vℎ,𝑇 × 𝑉ℎ,ℓ such that for any

(︀̃︀E𝑇,ℎ, ̃︀𝐸3,ℎ

)︀
∈ Vℎ,

𝑑2

𝑑𝑡2
mℎ

(︀
E𝑇,ℎ, ̃︀E𝑇,ℎ

)︀
+ k3

(︀
E𝑇,ℎ, ̃︀E𝑇,ℎ

)︀
+ k𝑇,ℎ

(︀
E𝑇,ℎ, ̃︀E𝑇,ℎ

)︀
− 𝑐3𝑇

(︀
𝐸3,ℎ, ̃︀E𝑇,ℎ

)︀
= 0,

𝑑2

𝑑𝑡2
𝑚
(︀
𝐸3,ℎ, ̃︀𝐸3,ℎ

)︀
+ 𝑘𝑇

(︀
𝐸3,ℎ, ̃︀𝐸3,ℎ

)︀
− 𝑐3𝑇

(︀ ̃︀𝐸3,ℎ,E𝑇,ℎ

)︀
= 0.

(21)



P. Joly et al., 7

Apart from the functional spaces, there is another difference between (11) and (21) which makes our
approximation non-conforming in the finite element sense. This ingredient is in fact very important for the
efficiency of the method and to end up with numerical schemes which will be explicit in 𝑥3. More precisely,
we approximate the two bilinear forms that involve transverse fields and do not involve 𝑥3-derivatives,
namely

(︀
m and k𝑇

)︀
, by using a quadrature formula in the 𝑥3 direction, transforming them into

(︀
mℎ and

k𝑇,ℎ

)︀
. More precisely, with respect to the definition (12) of the exact bilinear forms

(︀
m,k𝑇

)︀
−→

(︀
mℎ,k𝑇,ℎ

)︀
via

∫︁
Ω

𝜀 𝑓 →
∮︁
Ω

𝜀 𝑓,

∫︁
Ω

𝜇−1 𝑓 →
∮︁
Ω

𝜇−1 𝑓, (22)

where
∮︀

Ω 𝜀 𝑓 (resp.
∮︀

Ω 𝜇
−1 𝑓) refers to a nodal quadrature formula in 𝑥3, well adapted to the measure 𝜀 𝑑x

(resp. 𝜇−1 𝑑x). More precisely, for 𝑓 ∈ 𝐶0(︀R;𝐿1(𝑆)
)︀

∩ 𝐿1(︀Ω)︀, we set∮︁
Ω

𝜀 𝑓 = ℎ
∑︁

𝑗

∫︁
𝑆

𝜀𝑗+ 1
2

(︁𝑓𝑗+1 + 𝑓𝑗

2

)︁
𝑑x𝑇 , 𝑓𝑗 = 𝑓 |𝑆𝑗

(23)

where 𝜀𝑗+ 1
2
(x𝑇 ) holds for the 1D mean value of 𝜀 in 𝐶𝑗+ 1

2
,

a.e. x𝑇 ∈ 𝑆, 𝜀𝑗+ 1
2
(x𝑇 ) = 1

ℎ

(𝑗+1)ℎ∫︁
𝑗ℎ

𝜀(x𝑇 , 𝑥3) 𝑑𝑥3, (24)

Remark 2.1. One has the Fubini-like formula∮︁
Ω

𝜀 𝑓 =
∫︁
𝑆

(︁∮︁
R

𝜀(xT, 𝑥3) 𝑓(xT, 𝑥3) 𝑑𝑥3

)︁
𝑑x𝑇 (25)

with the 1D quadrature formula, for any 𝑔 ∈ 𝐿1(R) ∩ 𝐶0(R),∮︁
R

𝜀(xT, 𝑥3) 𝑔(𝑥3) 𝑑𝑥3 := ℎ
∑︁

𝑗

𝜀𝑗+ 1
2
(xT)

(︀ 𝑔((𝑗+1)ℎ)+𝑔(𝑗ℎ)
2

)︀
. (26)

Note that this formula can also be written∮︁
R

𝜀(xT, 𝑥3) 𝑔(𝑥3) 𝑑𝑥3 :=
∫︁
R

𝜀ℎ(xT, 𝑥3) 𝜋1,ℎ𝑔(𝑥3) 𝑑𝑥3. (27)

where 𝜀ℎ is the piecewise constant approximation of 𝜀 with its mean value inside each interval
(𝑗ℎ, (𝑗 + 1)ℎ] and 𝜋1,ℎ𝑔 is the P1-interpolate of 𝑔.

One has the fundamental property (1D mass lumping) about hat functions

∀ ℓ ̸= 𝑗,

∮︁
R

𝜀(xT, 𝑥3) 𝑤𝑗(𝑥3)𝑤ℓ(𝑥3) 𝑑𝑥3 := 0 (28)

For what follows, it will be useful to have an expanded version of the bilinear forms appearing in (21), when
acting on the semi-discrete spaces. Since functions in 𝑉ℎ,ℓ are piecewise constant, the bilinear forms 𝑚 and
𝑘𝑇 are naturally "block diagonal". More precisely, using the decomposition (20),

𝑚
(︀
𝐸3,ℎ, ̃︀𝐸3,ℎ

)︀
=
∑︁
𝑗∈Z

𝑚𝑗+ 1
2

(︀
𝐸3,𝑗+ 1

2
, ̃︀𝐸3,𝑗+ 1

2

)︀
≡ ℎ

∑︁
𝑗∈Z

∫︁
𝑆

𝑗+ 1
2

𝜀𝐸3,𝑗+ 1
2

· ̃︀𝐸3,𝑗+ 1
2
,

𝑘𝑇

(︀
𝐸3,ℎ, ̃︀𝐸3,ℎ

)︀
=
∑︁
𝑗∈Z

𝑘𝑗+ 1
2

(︀
𝐸3,𝑗+ 1

2
, ̃︀𝐸3,𝑗+ 1

2

)︀
≡ ℎ

∑︁
𝑗∈Z

∫︁
𝑆

𝑗+ 1
2

𝜇−1 ∇𝑇𝐸3,𝑗+ 1
2

· ∇𝑇
̃︀𝐸3,𝑗+ 1

2
.

(29)
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In the same way, thanks to the quadrature (23), the bilinear forms mℎ and k𝑇,ℎ are block diagonal too.
More precisely, using the decomposition (18),

mℎ

(︀
E𝑇,ℎ, ̃︀E𝑇,ℎ

)︀
=
∑︁
𝑗∈Z

mℎ,𝑗

(︀
E𝑇,𝑗 , ̃︀E𝑇,𝑗

)︀
≡ ℎ

∑︁
𝑗∈Z

∫︁
𝑆𝑗

𝜀E𝑇,𝑗 · ̃︀E𝑇,𝑗

k𝑇,ℎ

(︀
E𝑇,ℎ, ̃︀E𝑇,ℎ

)︀
=
∑︁
𝑗∈Z

kℎ,𝑗

(︀
E𝑇,𝑗 , ̃︀E𝑇,𝑗

)︀
≡ ℎ

∑︁
𝑗∈Z

∫︁
𝑆𝑗

𝜇−1 rot𝑇 E𝑇,𝑗 · rot𝑇
̃︀E𝑇,𝑗

(30)

Finally, for the last two bilinear forms, one computes that

k3
(︀
E𝑇,ℎ, ̃︀E𝑇,ℎ

)︀
= ℎ

∑︁
𝑗∈Z

𝜇−1
𝑗+ 1

2

∫︁
𝑆

E𝑇,𝑗+1 − E𝑇,𝑗

ℎ
·
̃︀E𝑇,𝑗+1 − ̃︀E𝑇,𝑗

ℎ
,

𝑐3𝑇

(︀
𝐸3,ℎ, ̃︀E𝑇,ℎ

)︀
= ℎ

∑︁
𝑗∈Z

𝜇−1
𝑗+ 1

2

∫︁
𝑆

∇𝑇𝐸3,𝑗+ 1
2

·
̃︀E𝑇,𝑗+1 − ̃︀E𝑇,𝑗

ℎ
,

(31)

where, as in (24), we have defined

a.e. x𝑇 ∈ 𝑆, 𝜇−1
𝑗+ 1

2
(x𝑇 ) = 1

ℎ

(𝑗+1)ℎ∫︁
𝑗ℎ

𝜇−1(x𝑇 , 𝑥3) 𝑑𝑥3, (32)

2.2.2 Full space discretization

For the discretization in the transverse variables, we introduce a conforming triangular mesh 𝒯 (in the
usual finite element sense) of 𝑆 with step-size ℎ𝑇 (see Figure 4), namely the transverse space step. In the
sequel we shall denote 𝑁 the number of nodes of this mesh and 𝑁𝑒 the number of (interior) edges. We shall
use the letter h to denote the set of approximation parameters in space, namely

h := (ℎ, ℎ𝑇 ). (33)

The fully discrete space, indexed with h takes the same form of the semi-discrete space as in (16),

Vh = Vh,𝑇 × 𝑉h,ℓ

The transverse field ET is searched piecewise linear continuous in 𝑥3 with value in the classical 2D Nedelec
space [22],[23] denoted Vℎ𝑇

(𝑆) (with respect to (17), we simply replace 𝐻(rot𝑇 , 𝑆) by Vℎ𝑇
(𝑆)).

Vh,𝑇 :=
{︀

E𝑇,ℎ ∈ 𝐶0(︀R; Vℎ𝑇
(𝑆)
)︀
/ ∀ 𝑗, E𝑇 |𝒞

𝑗+ 1
2

∈ P1
(︀
R; Vℎ𝑇

(𝑆)
)︀}︀
. (34)

with

⎧⎨⎩ Vℎ𝑇
(𝑆) :=

{︀
E𝑇 ∈ 𝐻(rot𝑇 , 𝑆)

)︀
/ ∀ 𝐾,E𝑇 |𝐾 ∈ 𝒩2𝐷

}︀
,

𝒩2𝐷 :=
{︀
𝑎 (𝑥2,−𝑥1)𝑡 + b, (𝑎,b) ∈ R × R2}︀ ⊂ P2

1.
(35)

The longitudinal field 𝐸3 is searched piecewise constant in 𝑥3 with value in the standard P1 finite element
space for 𝐻1(𝑆) (with respect to (19), we simply replace 𝐻1(𝑆) by 𝑉ℎ𝑇

(𝑆)) :⎧⎨⎩
𝑉h,ℓ :=

{︀
𝐸3 : Ω → R / ∀ 𝑗, ∀𝑥3 ∈ [𝑗ℎ, (𝑗 + 1)ℎ] 𝐸3(·, 𝑥3) = 𝐸3,𝑗+ 1

2
∈ 𝑉ℎ𝑇

(𝑆)
}︀
,

𝑉ℎ𝑇
(𝑆) :=

{︀
𝐸3 ∈ 𝐻1(𝑆) / ∀ 𝐾 ∈ 𝒯 , 𝐸3|𝐾 ∈ P1

}︀
.

(36)
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Fig. 4: Triangular mesh of 𝑆 with step-size ℎ𝑇

We have thus two type of degrees of freedom for the discrete electric field. The first ones, associated to the
transverse field, are denoted E𝑇,h ≡

{︀
E𝑇,𝑗

}︀
, E𝑇,𝑗 ∈ R𝑁𝑒 , is the vector of the tangential components of the

discrete transverse electric field along the edges in the cross section 𝑆𝑗 .

The second ones, for the longitudinal field, are denoted E3,h ≡
{︀
E3,𝑗+ 1

2

}︀
, where E3,𝑗+ 1

2
∈ R𝑁 is the vector

of the values of the discrete longitudinal field at the nodes of the mesh.

Transverse field in each section 𝑆𝑗 Longitudinal field in each section 𝑆𝑗+ 1
2

Fig. 5: Two types of degrees of freedom

In the end we have the transverse field unknowns E𝑇,𝑗 and longitudinal fields unknowns E3,𝑗+ 1
2

alternate
from one cross section to the other (see Figure 5 and 6).

Fig. 6: Degrees of freedom in the 3D mesh.
Fig. 7: Prismatic mesh.
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2.2.3 Reinterpretation as prismatic edge elements

It is worthwhile reinterpreting the space as the result of a 3D finite element approximation of 𝐻(rot,Ω)
based on a prismatic mesh 𝒯3𝐷 of the cable Ω,

𝒯3𝐷 :=
{︀

𝒫𝐾,𝑗 / 𝐾 ∈ 𝒯 , 𝑗 ∈ Z
}︀

such that Ω =
⋃︁
𝑘,𝑗

𝒫𝐾,𝑗 , (37)

where the prim 𝒫𝐾,𝑗 is defined as (note that it has only longitudinal or transverse faces, cf. Figure 7)

𝒫𝐾,𝑗 = 𝐾 × [𝑗ℎ, (𝑗 + 1)ℎ]. (38)

The space is nothing but a space of prismatic edge elements, namely,

Vh :=
{︀

Eh ∈ 𝐻(rot,Ω) / ∀ 𝒫𝐾,𝑗 ∈ 𝒯3𝐷, Eh|𝒫𝐾,𝑗
∈ ℛ

}︀
, (39)

where ℛ =
{︀

E = (E𝑇 , 𝐸3) / E𝑇 (·, 𝑥3) ∈ P1(R; 𝒩 2𝐷), 𝐸3(·, 𝑥3) ∈ P0(R;P1(R2))
}︀

⊂ P3
1. Note that the use

of edge elements on prisms has been already studied (see [7, 10]), in regard to these works, the originality
of our approach lies in the time discretization, that will treat differently in-plane (i.e. in the plane of the
sections) and out-of-plane interactions between degrees of freedom.

2.2.4 The semi-discrete scheme and its algebraic form

The fully semi-discrete variational problem reads

Find
(︀
E𝑇,h, 𝐸3,h

)︀
∈ Vh := Vh,𝑇 × 𝑉h,3 such that for any

(︀
E𝑇,h, 𝐸3,h

)︀
∈ Vh,

𝑑2

𝑑𝑡2
mℎ

(︀
E𝑇,h, ̃︀E𝑇,h

)︀
+ k3

(︀
E𝑇,h, ̃︀E𝑇,h

)︀
+ k𝑇,ℎ

(︀
E𝑇,h, ̃︀E𝑇,h

)︀
− 𝑐3𝑇

(︀
𝐸3,h, ̃︀E𝑇,h

)︀
= 0,

𝑑2

𝑑𝑡2
𝑚
(︀
𝐸3,h, ̃︀𝐸3,h

)︀
+ 𝑘𝑇

(︀
𝐸3,h, ̃︀𝐸3,h

)︀
− 𝑐3𝑇

(︀ ̃︀𝐸3,h,E𝑇,h
)︀

= 0.
(40)

To write the problem in more algebraic form, we introduce here the (infinite) vector degrees of freedom
namely (with obvious notation)

Eh =

(︃
E𝑇,h

E3,h

)︃
≡

(︃
E𝑇,𝑗

E3,𝑗+ 1
2

)︃
∈ Vh := Vh,𝑇 × Vh,3 (41)

where Vh,𝑇 and Vh,3 are the Hilbert spaces

Vh,𝑇 = ℓ2
(︀
Z,R𝑁𝑒

)︀
, Vh,3 = ℓ2(Z,R𝑁 ).

According to the above, it is clear that (40) has an equivalent algebraic form,

Mh
𝑑2Eh
𝑑𝑡2

+ Kh Eh = 0. (42)

where Mh and Kh are the (infinite) mass and stiffness matrices in Vh (their obvious and classical definition
is omitted here). According to the decomposition of Vh between transverse and longitudinal fields , the
mass matrix Mh has the following block diagonal form

Mh =

(︃
M𝑇

h 0

0 𝑀3
h

)︃
(43)
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and, in particular, thanks to numerical quadrature, M𝑇
h (resp. M3

h) is block diagonal by sections with
blocks of dimension 𝑁𝑒 (resp. 𝑁). On the other hand, according to two lines of (40), the stiffness matrix
Kh can be written, according (40) as

Kh =

(︃
K3,h + K𝑇,h C3𝑇,h

C*
3𝑇,h 𝐾𝑇,h

)︃
(44)

where there is also some block decomposition by sections. More precisely, the global problem can be rewritten
"section by section" separating the roles of the transverse and longitudinal fields as follows

M𝑗
𝑑2E𝑇,𝑗

𝑑𝑡2
+ K𝑇,𝑗 E𝑇,𝑗 − 1

ℎ

(︂
M𝑗+ 1

2

E𝑇,𝑗+1 − E𝑇,𝑗

ℎ
− M𝑗− 1

2

E𝑇,𝑗 − E𝑇,𝑗−1
ℎ

)︂

+
C3𝑇,𝑗+ 1

2
E3,𝑗+ 1

2
− C3𝑇,𝑗− 1

2
E3,𝑗− 1

2

ℎ
= 0,

M𝑗+ 1
2

𝑑2E3,𝑗+ 1
2

𝑑𝑡2
+ K𝑇,𝑗+ 1

2
E3,𝑗+ 1

2
− C*

3𝑇,𝑗+ 1
2

E𝑇,𝑗+1 − E𝑇,𝑗

ℎ
= 0,

(45)

which well emphasizes how the various "interface unknowns" are coupled or decoupled. Note that

– The matrices M𝑗 , M𝑗+ 1
2

and K𝑇,𝑗 are of dimension 𝑁𝑒 × 𝑁𝑒: M𝑗 (resp. M𝑗+ 1
2

) is a 2D (vectorial)
mass matrix (which is not diagonal) corresponding to the multiplication by 𝜀 (resp. by 𝜇−1) while K𝑇,𝑗

is a 2D stiffness matrix corresponding to the action of the operator rot𝑇 (𝜇−1rot𝑇 ).
– The matrices M𝑗+ 1

2
and K𝑇,𝑗+ 1

2
are of dimension 𝑁 × 𝑁 : it corresponds to the multiplication by 𝜀

while K𝑇,𝑗+ 1
2

is a 2D stiffness matrix corresponding to the action of the operator div𝑇 (𝜇−1∇𝑇 ).
– The matrices C3𝑇,𝑗+ 1

2
are 𝑁 ×𝑁𝑒 and corresponds to the action of the operator 𝜇−1∇𝑇 .

– Their transpose correspond C*
3𝑇,𝑗+ 1

2
to the action of the operator −div𝑇 (𝜇−1·) .

2.3 Time discretization

Our method will be based on a tricky decomposition of the stiffness matrix Kh (cf. (44))

Kh = K𝑖
h + K𝑒

h where K𝑖
h =

(︃
K𝑇,h 0

0 𝐾𝑇,h

)︃
and K𝑒

h =

(︃
K3,h C3𝑇,h

C*
3𝑇,h 0

)︃
. (46)

The interest of the decomposition lies in the following double observation

– K𝑖
h is adapted to implicit time discretization because the matrix is positive and block diagonal: for this

reason it is "easy" to invert (it corresponds to a series 2D problems, see section 2.3.2).
– Oppositely K𝑒

h is adapted to explicit time discretization because of the presence of the ”3” index which
corresponds to the 𝑥3 derivative: this matrix couples all the interfaces and has no sign.

2.3.1 A hybrid implicit-explicit scheme

According to (46), we rewrite (42) as

Mh
𝑑2Eh
𝑑𝑡2

+ K𝑒
h Eh + K𝑖

h Eh = 0

and propose a numerical scheme in which Eh at time 𝑡𝑛 = 𝑛Δ𝑡 is approximated differently depending on
the fact that it is in factor of K𝑒

h or K𝑖
h. More precisely, and according to what we said in the introduction

of this section, we propose the following hybrid implicit-explicit leap frog scheme, in which 𝜃 ∈ [0, 1] is a
parameter,

Mh
E𝑛+1

h − 2E𝑛
h + E𝑛−1

h
Δ𝑡2 + K𝑖

h {E𝑛
h}𝜃 + K𝑒

h E𝑛
h = 0, (47)
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where {E𝑛
h}𝜃 corresponds to the weighted mean value

{E𝑛
h}𝜃 := 𝜃 E𝑛+1

h + (1 − 2𝜃)E𝑛
h + 𝜃 E𝑛−1

h , 𝜃 ∈ [0, 1]. (48)

Clearly, this scheme is a mix between the explicit leap frog scheme and the implicit 𝜃-scheme (or centered
Newmark scheme). It is obviously second order accurate in Δ𝑡 whatever is 𝜃. How implicit is this scheme is
the subject of the next section.

Remark 2.2. The above ideas already appeared in the literature in various contexts and for different pur-
poses. One class of works concern locally implicit time stepping is which different parts of the computational
domain are treated differently : see for instance [25], [12] or more recently [12] for fourth order schemes. In
[8], [2], the objective was to treat in a particular way the boundary condition arising from the formulation
of elastodynamics by way of potentials introduced for treatinf separately the two types of waves. In [13], the
objective was to treat explicitly the linear part of the model and implicitly the nonlinear one. Here, these are
the direction of space differentiation, longitudinal or transverse, which are treated in a different manner.
In some sense, except the fact that we are dealing with a strongly anisotropic problem, our work has some
similarities with the ADI schemes proposed by Fornberg and Lee (see [19], [20] and [14] for an analysis).

2.3.2 Computational complexity

According to the rewriting "section by section" (45) of the discrete problem, we can rewrite the scheme

M𝑗

E𝑛+1
𝑇,𝑗 − 2E𝑛

𝑇,𝑗 + E𝑛−1
𝑇,𝑗

Δ𝑡2 + K𝑇,𝑗

(︀
𝜃 E𝑛+1

𝑇,𝑗 + (1 − 2𝜃)E𝑛
𝑇,𝑗 + 𝜃 E𝑛−1

𝑇,𝑗

)︀
− 1
ℎ

(︂
M𝑗+ 1

2

E𝑛
𝑇,𝑗+1 − E𝑛

𝑇,𝑗

ℎ
− M𝑗− 1

2

E𝑛
𝑇,𝑗 − E𝑛

𝑇,𝑗−1
ℎ

)︂
+

C3𝑇,𝑗+ 1
2
E𝑛

3,𝑗+ 1
2

− C3𝑇,𝑗− 1
2
E𝑛

3,𝑗− 1
2

ℎ
= 0,

M𝑗+ 1
2

E𝑛+1
3,𝑗+ 1

2
− 2E𝑛

3,𝑗+ 1
2

+ E𝑛−1
3,𝑗+ 1

2

Δ𝑡2 + K𝑇,𝑗+ 1
2

(︁
𝜃 E𝑛+1

3,𝑗+ 1
2

+ (1 − 2𝜃)E𝑛
3,𝑗+ 1

2
+ 𝜃 E𝑛−1

3,𝑗+ 1
2

)︁
− C*

3𝑇,𝑗+ 1
2

E𝑛
𝑇,𝑗+1 − E𝑛

𝑇,𝑗

ℎ
= 0

Looking at where the superscript 𝑛+ 1 appears in the above equations, one sees that at each time step one
has to invert (this can be done in parallel) the matrices

M𝑗 + 𝜃Δ𝑡2K𝑇,𝑗 and M𝑗+ 1
2

+ 𝜃Δ𝑡2K𝑇,𝑗+ 1
2
.

This illustrates the fact that the scheme is implicit only in the transverse direction. This corresponds to
solving numerically, using appropriate finite elements,

∙ a series of coercive 2D vectorial curl-curl problems of the type

𝛾 rot𝑇 (𝜇−1rot𝑇 u) + u = g in S, 𝛾 = 𝜃 Δ𝑡2 𝜀−1 > 0,

∙ a series of coercive 2D scalar div-grad problems of the type

−𝛾 div𝑇 (𝜇−1∇𝑇𝑢) + 𝑢 = 𝑔 in S, 𝛾 = 𝜃 Δ𝑡2 𝜀−1 > 0.

2.3.3 Stability analysis

For our main theorem, we need to introduce the function 𝛼ℎ(x𝑇 ) defined by:
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𝛼ℎ(x𝑇 )2 := sup
𝑢ℎ∈P1,ℎ

∫︀
R 𝜇(·,x𝑇 )−1|𝑢′

ℎ|2∮︀
R 𝜀(·,x𝑇 )|𝑢ℎ|2

, (49)

where
P1,ℎ := {𝑢ℎ ∈ 𝐶0(R) ∩ 𝐿2(R) / ∀ 𝑗 ∈ Z, 𝑢ℎ|[𝑗ℎ,(𝑗+1)ℎ] ∈ P1} (50)

It is also useful to introduce the velocity of electromagnetic waves in Ω

∀ x ∈ Ω, 𝑐(x) = 𝜀(x)− 1
2𝜇(x)− 1

2 , 𝑐+ := sup
Ω

𝑐(x) (51)

Theorem 2.3. The fully discrete scheme (47) is stable if 𝜃 > 1
4 and

Δ𝑡2

4 ‖𝛼ℎ‖2
∞ ≤ 4𝜃 − 1

4𝜃 (52)

with 𝛼ℎ defined in (49). The CFL condition (53) is in particular satisfied as soon as

𝑐+Δ𝑡
ℎ

<

√︂
4𝜃 − 1

4𝜃 . (53)

Proof. Since there is no possible ambiguity, and for the sake of simplicity, we shall use the same notation(︀
·, ·
)︀

for inner products in Vh,𝑇 and Vh,3. Below, we refer to (41) and the dot is systematically used for the
appropriate Euclidean scalar product that may change from one occurrence to the other,(︀

Uh,𝑇 , ̃︀Uh,𝑇

)︀
:=
∑︁
𝑗∈Z

U𝑇,𝑗 · ̃︀U𝑇,𝑗 ,
(︀
Uh,3, ̃︀Uh,3

)︀
:=
∑︁
𝑗∈Z

U3,+ 1
2

· ̃︀U3,𝑗+ 1
2(︀

Uh, ̃︀Uh
)︀

=
(︀
Uh,𝑇 , ̃︀Uh,𝑇

)︀
+
(︀
Uh,3, ̃︀Uh,3

)︀ (54)

The proof is done in three steps using an energy approach.

Step 1 : Discrete energy conservation. We use the two key (but standard) identities :

E𝑛
h = {E𝑛

h} 1
4

− 1
4
(︀
E𝑛+1

h − 2E𝑛
h + E𝑛−1

h
)︀
, {E𝑛

h}𝜃 = {E𝑛
h} 1

4
+
(︀
𝜃 − 1

4
)︀ (︀

E𝑛+1
h − 2E𝑛

h + E𝑛−1
h
)︀
.

This allows us to rewrite our scheme as a perturbation of the 1
4 -scheme.

Mℎ(Δ𝑡)
E𝑛+1

h − 2E𝑛
h + E𝑛−1

h
Δ𝑡2 + Kh {E𝑛

h} 1
4

= 0,

where we have set

Mh(Δ𝑡) = M𝑖
ℎ(Δ𝑡) − Δ𝑡2

4 K𝑒
h and M𝑖

ℎ(Δ𝑡) := Mh +
(︀
𝜃 − 1

4
)︀

Δ𝑡2 K𝑖
h. (55)

Taking the scalar product (in Vh := Vh,𝑇 ×Vh,3) of the above equation with E𝑛+1
h −E𝑛

h
Δ𝑡 we classically deduce,

thanks to the symmetry of all matrices) the conservation of the discrete energy

ℰ𝑛+ 1
2

h :=
(︂

Mh(Δ𝑡)
E𝑛+1

h − E𝑛
h

Δ𝑡 ,
E𝑛+1

h − E𝑛
h

Δ𝑡

)︂
+
(︂

Kh

(︁E𝑛+1
h + E𝑛

h
2

)︁
,
E𝑛+1

h + E𝑛
h

2

)︂
.

Step 2 : Derivation of the sufficient stability condition (52).

This will be simply obtained from showing the positivity of the discrete energy ℰ𝑛+ 1
2

h , that amounts to the
positivity of the modified mass matrix Mℎ(Δ𝑡). The idea is first to ensure the positivity of M𝑖

h(Δ𝑡) only
choosing adequately 𝜃 (typically 𝜃 > 1

4 then to control Δ𝑡2 K𝑒
h by playing on Δ𝑡. As we are going to see

this can be done by imposing to Δ𝑡 a lower bound that only sees the longitudinal space step ℎ.
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To be more precise, assuming 𝜃 > 1
4 , we first obtain a lower bound of the quadratic form associated with

M𝑖
ℎ(Δ𝑡). Recalling that

Mh =

(︃
M𝑇

h 0

0 𝑀3
h

)︃
and K𝑖

h =

(︃
K𝑇,h 0

0 𝐾𝑇,h

)︃
,

we drop, in the expression of M𝑖
h(Δ𝑡), the positive blocks associated with 𝑀3

h and (𝜃− 1
4 )𝐾𝑇,h, one deduces

that for any Uh ∈ Vh,(︀
M𝑖

h(Δ𝑡)Uh,Uh
)︀

≥
(︀
M𝑇

h U𝑇,h,U𝑇,h
)︀

+
(︀
𝜃 − 1

4
)︀

Δ𝑡2
(︀
K𝑇,hU𝑇,h,U𝑇,h

)︀
, (56)

where we draw again the attention of the reader that, according to (54) and depending on the context, the
notation (·, ·) is the scalar product in Vh, Vh,𝑇 od Vh,3. We now obtain an upper bound for the quadratic
form associated with K𝑒

h. For this, we first remark that the inequality (13) results into(︀
C3𝑇,hU3,h,U𝑇,h

)︀
≡
(︀
U3,h,C*

3𝑇,hU𝑇,h
)︀

≤
(︁
𝐾𝑇,hU3,h,U3,h

)︀ 1
2
(︀
K3,hUh,𝑇 ,Uh,𝑇

)︀ 1
2 (57)

so that, from the block decomposition (46) of K𝑒
h, one deduces the inequality

|
(︀
K𝑒

hUh,Uh
)︀
| ≤
(︀
K3,hUh,𝑇 ,Uh,𝑇

)︀
+ 2

(︀
𝐾𝑇,hU3,h,U3,h

)︀ 1
2
(︀
K3,hUh,𝑇 ,Uh,𝑇

)︀ 1
2 .

Finally, in order to exploit (56), we control the matrix K3,h with the help of the mass matrix M𝑇
h that

appears in the lower bound (56). This is where the longitudinal space step ℎ will appear via the function
𝛼ℎ.More precisely, let Uℎ,𝑇 ∈ Vℎ,𝑇 associated to the vector Uh,𝑇 ∈ Vh,𝑇 , by definition of K3,h(︀

K3,hUh,𝑇 ,Uh,𝑇

)︀
= k3(Uℎ,𝑇 ,Uℎ,𝑇 ) =

∫︁
Ω

𝜇−1|𝜕3Uℎ,𝑇 |2.

Using the Fubini’s theorem and Uℎ,𝑇 = (Uℎ,1,Uℎ,2), we get(︁
K3,hUh,𝑇 ,Uh,𝑇

)︁
=
∫︁
𝑆

(︁∫︁
R

𝜇−1(x𝑇 , 𝑥3)
(︀
|𝜕3Uℎ,1(x𝑇 , 𝑥3)|2 + |𝜕3Uℎ,2(x𝑇 , 𝑥3)|2

)︀
𝑑𝑥3

)︁
𝑑x𝑇 .

Then, by definition (49) of the function 𝛼ℎ, and since, for fixed x𝑇 , each function Uℎ,1(x𝑇 , ·) and Uℎ,1(x𝑇 , ·)
belongs to P1,ℎ by definition (17) of Vℎ,𝑇 , we have(︀

K3,hUh,𝑇 ,Uh,𝑇

)︀
≤
∫︁
𝑆

𝛼ℎ(x𝑇 )
(︁∮︁

R

𝜀(x𝑇 , 𝑥3)
(︀
|Uℎ,1(x𝑇 , 𝑥3)|2 + |Uℎ,2(x𝑇 , 𝑥3)|2

)︀
𝑑𝑥3

)︁
𝑑x𝑇

so that, referring to the Fubini-like formula (25) and the definition of mℎ (see (12, 22)), we get(︀
K3,hUh,𝑇 ,Uh,𝑇

)︀
≤ ‖𝛼ℎ‖∞ m3,ℎ(Uℎ,𝑇 ,Uℎ,𝑇 ) ≡ ‖𝛼ℎ‖∞

(︀
M𝑇

hUh,𝑇 ,Uh,𝑇

)︀
. (58)

Finally, joining (56) and (58) to the definition (55) of Mh(Δ𝑡), we obtain(︀
Mh(Δ𝑡)Uh,Uh

)︀
≥ 𝑞(𝑋,𝑌 ) :=

(︀
1 − ‖𝛼ℎ‖2

∞
Δ𝑡2

4
)︀
𝑋2 − ‖𝛼ℎ‖∞

Δ𝑡2

2 𝑋𝑌 +
(︀
𝜃 − 1

4
)︀

Δ𝑡2 𝑌 2, (59)

where we have set 𝑋 =
(︀
M𝑇

h Uh,𝑇 ,Uh,𝑇

)︀ 1
2 and 𝑌 =

(︀
K𝑇,hUh,𝑇 ,Uh,𝑇

)︀ 1
2 .

The stability condition (52) is finally obtained by writing that the quadratic 𝑞(𝑋,𝑌 ) form is positive.

Step 3 : Derivation of the sufficient stability condition (53).

With respect to (52), (53) is a (slightly) stronger but more explicit (thus more useful) sufficient stability
condition. It is a direct consequence of the upper bound

‖𝛼ℎ‖2
∞ ≤

4 𝑐2
+

ℎ2 .



P. Joly et al., 15

This estimate is a straightforward consequence of the definition of the weighted quadrature formula (26).
Indeed, for any 𝑢ℎ ∈ 𝑃1,ℎ and by definition of 𝑐+∫︁

R

𝜇(·,x𝑇 )−1|𝑢′
ℎ|2 ≤ 𝑐2

+

∫︁
R

𝜀(·,x𝑇 )|𝑢′
ℎ|2.

However, since 𝑢′
ℎ is piecewise constant, we have, with 𝑢𝑗 := 𝑢ℎ(𝑗ℎ) and by definition (24) of 𝜀𝑗+ 1

2
,∫︁

R

𝜇(·,x𝑇 )−1|𝑢′
ℎ|2 ≤ 𝑐2

+
∑︁
𝑗∈𝑍

𝜀𝑗+ 1
2

⃒⃒⃒
𝑢𝑗+1 − 𝑢𝑗

ℎ

⃒⃒⃒2
By |𝑢𝑗+1 − 𝑢𝑗 |2 ≤ 2

(︀
|𝑢𝑗+1|2 + |𝑢𝑗 |2

)︀
, we deduce,∫︁

R

𝜇(·,x𝑇 )−1|𝑢′
ℎ|2 ≤

4 𝑐2
+

ℎ2

∑︁
𝑗∈𝑍

𝜀𝑗+ 1
2

(︁ |𝑢𝑗 |2 + |𝑢𝑗+1|2

2

)︁
ℎ =

4 𝑐2
+

ℎ2

∮︁
R

𝜀(·,x𝑇 ) |𝑢ℎ|2,

by definition of the 1D quadrature formula (26). ■

3 Application to the validation of a simplified 1D model

3.1 Recap about the "1D" limit model

The asymptotic analysis of thin co-axial cables with respect to the small thickness of the cable has been led
in [15, 16] (see also [4–6] for extensions and more elaborated models). What follows is mainly extracted
from [15]. Roughly speaking the 1D model is obtained from a rigorous asymptotic analysis of a family of
domains parametrized by a strictly positive scalar 𝛿 > 0 and that are defined as the result of a transverse
scaling of a reference cable Ω. More precisely we introduce

Ω𝛿 = 𝒢𝛿

(︀
Ω
)︀
,

where 𝒢𝛿 is the transformation 𝒢𝛿 : (𝑥1, 𝑥2, 𝑥3) −→ (𝛿𝑥1, 𝛿𝑥2, 𝑥3). Accordingly, for each 𝛿 > 0, we consider
(𝜀𝛿, 𝜇𝛿, 𝜎𝛿), defined in Ω𝛿, respectively the permittivity, permeability and conductivity of the cable Ω𝛿

obtained from the ones for the reference cable Ω by a simple mapping, namely,

𝜀𝛿 = 𝜀 ∘ 𝒢−1
𝛿 , 𝜇𝛿 = 𝜇 ∘ 𝒢−1

𝛿 , 𝜎𝛿 = 𝜎 ∘ 𝒢−1
𝛿 ,

and we consider the family of problems, with unknown E𝛿(x, 𝑡) : Ω𝛿 × R+ → R3,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜀𝛿 𝜕𝑡E𝛿 + 𝜎𝛿 E𝛿 − ∇ × H𝛿 = 0, in Ω𝛿 × R+.

𝜇𝛿 𝜕𝑡H𝛿 + ∇ × E𝛿 = 0, in Ω𝛿 × R+,

E𝛿 × n = 0, on 𝜕Ω𝛿 × R+,

(60)

completed with the initial conditions

E𝛿(·, 0) = E𝛿
0, H𝛿(·, 0) = H𝛿

0, E𝛿
0 := E0 ∘ 𝒢−1

𝛿 , H𝛿
0 := H0 ∘ 𝒢−1

𝛿 . (61)

In order to state our asymptotic result, we first rescale the fields in the fixed domain Ω setting̃︀E𝛿(x, t) := E𝛿(𝒢𝛿x, t), ̃︀H𝛿(x, t) := H𝛿(𝒢𝛿x, t), ∀ x ∈ Ω, (62)

and it is useful to introduce a cut Σ of the cross 𝑆, namely a line Γ ⊂ Ω that joins the interior boundary Γ𝑖

to the exterior boundary Γ𝑒 in such a way that the open set Ω ∖ Γ is simply connected (see Figure 10). We
then define accordingly,

𝐻1
Σ(𝑆) = 𝐻1(𝑆 ∖ Σ) and ̃︀𝐻1

Σ(Ω) :=
{︀
𝑢 ∈ 𝐻1

Σ(𝑆) /
∫︁
𝑆

𝑢 𝑑x𝑇 = 0
}︀
. (63)
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In what follows,
[︀
𝑢
]︀

Σ denotes the jump of 𝑢 across Σ (properly defined in [15], Section 3.1). Then, one can
show that, if the initial data are well-prepared,

̃︀E𝛿(x, 𝑡) ∼
𝛿→0

̃︀E0(x, 𝑡) := 𝑉 (𝑥3, 𝑡) ∇𝑇𝜙(x𝑇 , 𝑥3) +
𝑡∫︁

0

𝑉 (𝑥3, 𝑡− 𝑠) ∇𝑇𝜙𝑟(x𝑇 , 𝑥3, 𝑠) 𝑑𝑠,

̃︀H𝛿(x, 𝑡) ∼
𝛿→0

̃︀H0(x, 𝑡) := 𝐼(𝑥3, 𝑡) ∇𝑇𝜓(x𝑇 , 𝑥3),

(64)

where, in the formulae (64),

(i) the potentials 𝜙(·, 𝑥3) ∈ 𝐻1
0 (𝑆) and 𝜓(·, 𝑥3) ∈ ̃︀𝐻1

Σ(𝑆) are defined, for each 𝑥3 that plays the role of a
parameter, as the solutions of the following boundary value problems (see the comments below for more
details and subtleties concerning 𝜓),⎧⎪⎪⎪⎨⎪⎪⎪⎩

div𝑇

(︀
𝜀(·, 𝑥3) ∇𝑇𝜙(·, 𝑥3)

)︀
= 0 in Ω,

𝜙(·, 𝑥3) = 1 on Γ𝑖,

𝜙(·, 𝑥3) = 0 on Γ𝑒,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
div𝑇

(︀
𝜇(·, 𝑥3) ∇𝑇𝜓(·, 𝑥3)

)︀
= 0 in Ω ∖ Σ,

𝜕𝑛𝜓(·, 𝑥3) = 0 on 𝜕𝑆,[︀
𝜓(·, 𝑥3)

]︀
Σ=1,

[︀
𝜕𝑛𝜓(·, 𝑥3)

]︀
Σ = 0 across Σ,

(65)

(ii) the functions 𝜙𝑟(·, 𝑥3, ·) : 𝑆 × R+ is defined, for each 𝑥3, by the formulae,

𝜙𝑟(·, 𝑥3, 𝑡) = 𝑒−𝑡 A(𝑥3) 𝜙𝑟,0(·, 𝑥3) ∈ 𝐶∞(︀R+, 𝐻1
0 (𝑆)

)︀
, (66)

where A(𝑥3) ∈ ℒ
(︀
𝐻1

0 (𝑆)
)︀

is the bounded positive definite symmetric operator defined by

𝑢 := A(𝑥3) 𝑣 ⇐⇒ 𝑢 ∈ 𝐻1
0 (𝑆) and div𝑇

(︀
𝜀(·, 𝑥3)∇𝑇𝑢

)︀
= div𝑇

(︀
𝜎(·, 𝑥3)∇𝑇 𝑣) in 𝑆. (67)

and where 𝜙𝑟,0(·, 𝑥3) := −A(𝑥3)𝜙 ∈ 𝐻1
0 (𝑆).

(iii) The voltage 𝑉 (𝑥3, 𝑡) and the current 𝐼(𝑥3, 𝑡) are solution of the generalized telegrapher’s equation (this
is the 1D limit model⎧⎪⎪⎨⎪⎪⎩

𝐶(𝑥3) 𝜕𝑡𝑉 (𝑥3, 𝑡) +𝐺(𝑥3)𝑉 (𝑥3, 𝑡) + 𝜕3𝐼(𝑥3, 𝑡) +
𝑡∫︁

0

𝑘(𝑥3, 𝑡− 𝑠)𝑉 (𝑥3, 𝑠) 𝑑𝑠 = 0,

𝐿(𝑥3) 𝜕𝑡𝐼(𝑥3, 𝑡) + 𝜕3𝑉 (𝑥3, 𝑡) = 0,

(68)

where the effective coefficients 𝐶(𝑥3) > 0, 𝐺(𝑥3) ≥ 0 and 𝐿(𝑥3) > 0 are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶(𝑥3) =
∫︁
𝑆

𝜀(x𝑇 , 𝑥3) |∇𝑇𝜙(x𝑇 , 𝑥3)|2 𝑑x𝑇 ,

𝐺(𝑥3) =
∫︁
𝑆

𝜎(x𝑇 , 𝑥3) |∇𝑇𝜙(x𝑇 , 𝑥3)|2 𝑑x𝑇 ,

𝐿(𝑥3) =
∫︁
𝑆

𝜇(x𝑇 , 𝑥3) |∇𝑇𝜓(x𝑇 , 𝑥3)|2 𝑑x𝑇 ,

(69)

and the kernel 𝑘(𝑥, 𝑡) is given by

𝑘(𝑥3, 𝑡) =
∫︁

𝑆𝑥3

𝜎(x𝑇 , 𝑥3) ∇𝑇𝜙𝑟(x𝑇 , 𝑥3, 𝑡) · ∇𝑇𝜙(x𝑇 , 𝑥3). (70)

By well-prepared data we meant that, we assume that,

E𝑇,0 = 𝑉0∇𝑇𝜙 and H𝑇,0 = 𝐼0∇𝑇𝜓,

and complete the generalized telegrapher’s equation (68) with the initial conditions

𝑉 (𝑥3, 0) = 𝑉0(𝑥3) and 𝐼(𝑥3, 0) = 𝐼0(𝑥3). (71)
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The above asymptotic results and formulas deserve the following comments:

(a) In all above formulas, 𝜓(·, 𝑥3) being discontinuous across Σ, ∇𝑇𝜓(·, 𝑥3) ∈ 𝐿2(𝑆)2 has to be understood
in the sense of 𝒟′(𝑆Σ). Let us emphasize that, if 𝜓(·, 𝑥3) depends of course on the choice of the Σ,
∇𝑇𝜓(·, 𝑥3) does not ! (see for instance [15], formula (33)).

(b) In the limit 𝛿 → 0, (64) shows that the longitudinal fields 𝐸𝛿
3 and 𝐻𝛿

3 vanish. In other words the limit
fields are transversely polarized. Moreover, the formulae point out the existence of a kind of asymptotic
separation of variables between longitudinal and transverse variable. In particular, the time dependence
of the limit fields is entirely contained in the 1D (in space) functions 𝑉 (𝑥3, 𝑡) and 𝐼(𝑥3, 𝑡).

(c) It is remarkable that the presence of the conductivity 𝜎 induces the apparition of non local effects in
time through the presence of the time convolution term appearing in the first equation of (68). On the
other hand, when 𝜎 = 0, (68) is nothing but a 1D wave equation with variable coefficients.

(d) The well posedness and stability of the evolution are ensured by the following positivity property (see
Lemma 5.2 in [15]), valid for any 𝑇 ≥ 0 and any 𝜉 ∈ 𝐿2

𝑙𝑜𝑐(R+)

𝐺(𝑥3)
𝑇∫︁

0

| 𝜉(𝑡) |2 𝑑𝑡 +
𝑇∫︁

0

𝑡∫︁
0

𝑘(𝑥3, 𝑡− 𝑠) 𝜉(𝑠) 𝜉(𝑡) 𝑑𝑠 𝑑𝑡 ≥ 0. (72)

(e) We notice that from the definition (64) of the limit field ̃︀E0(x, 𝑡) ≡ ̃︀E0
𝑇 (x, 𝑡), one has

𝑉 (𝑥3, 𝑡) = 𝐶(𝑥3)−1
∫︁
𝑆

𝜀(·, 𝑥3) ̃︀E0
𝑇 (·, 𝑥3, 𝑡) · ∇𝑇𝜙(·, 𝑥3) 𝑑x𝑇

because it follows from the definition (65) of 𝜙 and form the fact the 𝜙𝑟(·, 𝑡) ∈ 𝐻1
0 (𝑆) that

∀ 𝑡 > 0,
∫︁
𝑆

𝜀(·, 𝑥3) ∇𝑇𝜙𝑟(·, 𝑥3, 𝑡) · ∇𝑇𝜙(·, 𝑥3) 𝑑x𝑇 = 0.

This suggests to define a 1D voltage 𝑉 𝛿(𝑥3, 𝑡) for the 3D problem as

𝑉 𝛿(𝑥3, 𝑡) = 𝐶(𝑥3)−1
∫︁
𝑆

𝜀(·, 𝑥3) ̃︀E𝛿
𝑇 (·, 𝑥3, 𝑡) · ∇𝑇𝜙(·, 𝑥3) 𝑑x𝑇 . (73)

3.2 Numerical resolution of the telegrapher’s equations

Even though this question is not the main purpose of the present paper, the main lines of the approach
deserve to be explained. These consist in three phases:

(I) Precomputation of the coefficients of the model

It is a preliminary step that only consists in solving 2D problems in the cross section 𝑆:

∙ Numerical computation of the potentials (𝜙,𝜓) and the coefficients 𝐶(𝑥3), 𝐺(𝑥3) and 𝐿(𝑥3).

The potentials (𝜙(·, 𝑥3), 𝜓(·, 𝑥3)) are first approximated thanks to a P1 finite-elements approximation
of the boundary value problems (65) with a triangular mesh of the cross section 𝑆 with step-size ℎ𝑇

(this mesh "respects" the cut Σ), producing

(𝜙ℎ𝑇
(·, 𝑥3), 𝜓ℎ𝑇

(·, 𝑥3)) ∈ 𝑉0,ℎ𝑇
× ̃︀𝑉Σ,ℎ𝑇

,
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where 𝑉0,ℎ𝑇
and ̃︀𝑉Σ,ℎ𝑇

are the respective Galerkin approximation subspaces for 𝐻1
0 (𝑆) ×𝐻1

Σ(𝑆) Then
𝐶(𝑥3), 𝐿(𝑥3) and 𝐿(𝑥3) are approximated, according to (69), by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶ℎ𝑇
(𝑥3) =

∫︁
𝑆

𝜀(x𝑇 , 𝑥3) |∇𝑇𝜙ℎ𝑇
(x𝑇 , 𝑥3)|2 𝑑xT

𝐺ℎ𝑇
(𝑥3) =

∫︁
𝑆

𝜎(x𝑇 , 𝑥3) |∇𝑇𝜙ℎ𝑇
(x𝑇 , 𝑥3)|2 𝑑xT

𝐿ℎ𝑇
(𝑥3) =

∫︁
𝑆

𝜇(x𝑇 , 𝑥3) |∇𝑇𝜓ℎ𝑇
(x𝑇 , 𝑥3)|2 𝑑xT

(74)

Note that, from well known properties of conforming Galerkin methods one has

𝐶ℎ𝑇
(𝑥3) ≥ 𝐶(𝑥3), 𝐺ℎ𝑇

(𝑥3) ≥ 𝐺(𝑥3), 𝐿ℎ𝑇
(𝑥3) ≥ 𝐿(𝑥3) (75)

∙ Numerical approximation of the function 𝜙𝑟 and kernel 𝑘(𝑥3, 𝑡).

One first realizes a finite dimensional approximation of the operator A(𝑥3) via a P1 finite-elements
approximation (using the same mesh as above) of (67). This produces

Aℎ𝑇
(𝑥3) ∈ ℒ

(︀
𝑉0,ℎ𝑇

)︀
that is easily proven to be uniformly bounded with respect to ℎ𝑇 . Then for each 𝑥3, 𝜙𝑟(·, 𝑥3) ≡
𝜙𝑟(x𝑇 , 𝑥3, 𝑡) is approximated by the solution 𝜙𝑟(·, 𝑡, 𝑥3) of the ordinary differential equation

d𝜙𝑟,ℎ𝑇
(·, 𝑥3)
𝑑𝑡

+ Aℎ𝑇
(𝑥3) 𝜙𝑟,ℎ𝑇

(·, 𝑥3) = 0, 𝜙𝑟,ℎ𝑇
(·, 𝑥3, 0) = −Aℎ𝑇

(𝑥3)𝜙ℎ𝑇
(·, 𝑥3).

that is consistent with the expression (66). The above differential system is not stiff and can thus be
efficiently solved numerically with any ODE solver (Euler, Crank-Nicolson, Runge-Kutta, ...). Finally,
the convolution kernel 𝑘(𝑥3) is approximated, consistently with (70), by

𝑘ℎ𝑇
(𝑥3, 𝑡) :=

∫︁
𝑆

𝜎(x𝑇 , 𝑥3) ∇𝑇𝜙𝑟,ℎ𝑇
(x𝑇 , 𝑥3, 𝑡) · ∇𝑇𝜙ℎ𝑇

(x𝑇 , 𝑥3) 𝑑x𝑇 . (76)

(II) Resolution of the 1D evolution problem

The semi-discretization in space of does not pose any particular problem : it can be done, for instance,
using 1D mixed finite elements (for instance continuous P1 for 𝑉 (cf. (50)) and discontinuous P0 for 𝐼) and
mass lumping with a uniform mesh of step-size ℎ. The resulting algebraic problem takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

Me,h
dVh
d𝑡 + Mc,h Vℎ + Dh Iℎ +

𝑡∫︁
0

Kh(𝑡− 𝑠)Vℎ(𝑠) 𝑑𝑠 = 0,

Mm,h
d Ih
d𝑡 − D*

h Vℎ = 0,

(77)

where Vh(𝑡) =
(︀
𝑉𝑗(𝑡)

)︀
is the vector of degrees of freedom at time 𝑡 for the semi-discrete voltage

𝑉h(𝑡) ∈ 𝐻1(R) (the nodal values at the points 𝑗ℎ), Ih(𝑡) =
(︀
𝐼𝑗+ 1

2
(𝑡)
)︀

the vector of degrees of freedom at
time 𝑡 for the current 𝐼h(𝑡) ∈ 𝐻1(R) (namely the mean values in the intervals [𝑗ℎ, (𝑗 + 1)ℎ]) and

∙ Me,h = diag
(︀
𝑚e,𝑗

)︀
> 0, Mc,h = diag

(︀
𝑚c,𝑗

)︀
≥ 0 and Mm,h = diag

(︀
𝑚m,𝑗+ 1

2

)︀
> 0 are diagonal mass

(like) matrices (divided by ℎ for homogeneity) with

𝑚e,𝑗 = 𝐶ℎ𝑇
(𝑗ℎ), 𝑚c,𝑗 = 𝐶ℎ𝑇

(𝑗ℎ), 𝑚m,𝑗+ 1
2

= 𝐶ℎ𝑇
((𝑗 + 1

2 )ℎ)

∙ Kh(𝑡) = diag
(︀
𝑘𝑗(𝑡)

)︀
is for each 𝑡 a diagonal matrix with (see (76))

𝑘𝑗(𝑡) :=
∫︁
𝑆

𝜎(x𝑇 , 𝑗ℎ) ∇𝑇𝜙𝑟,ℎ𝑇
(x𝑇 , 𝑗ℎ, 𝑡) · ∇𝑇𝜙ℎ𝑇

(x𝑇 , 𝑗ℎ) 𝑑x𝑇 .
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∙ Dh is a rectangular matrix that represents a discrete differentiation operator in 𝑥3 for the current (as
well as −D*

h for the voltage).

Concerning the time discretization it is natural to use a leap-frog (or Stormer-Verley) scheme with a constant
time step and a staggered grid The only non-standard part is the way one discretizes the convolution
involving Kh(𝑡). With obvious notation, the resulting (purely explicit) scheme reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

Me,h
V𝑛+1

h − V𝑛
h

Δ𝑡 + Mc,h
V𝑛+1

h + V𝑛
h

2 + Dh I𝑛+ 1
2

ℎ +
𝑛∑︁

𝑚=0
K𝑛−𝑚

h
V𝑚+1

h + V𝑚
h

2 Δ𝑡 = 0,

Mm,h
I𝑛+ 1

2
h − I𝑛− 1

2
h

Δ𝑡 − D*
h V𝑛

ℎ = 0,

(78)

where the unknowns in the above system are⎧⎨⎩ V𝑛
h is the vector of degrees of freedom of 𝑉 𝑛

h ∈ 𝐻1(R), approximation of 𝑉h(𝑡𝑛),

I𝑛+ 1
2

h is the vector of degrees of freedom of 𝐼𝑛+ 1
2

h ∈ 𝐿2(R), approximation of 𝐼h(𝑡𝑛+ 1
2 ),

and where the matrix K𝑝
h is defined as follows

K𝑝
h = diag

(︀
𝑘𝑝

𝑗

)︀
, 𝑘𝑝

𝑗 = 1
Δ𝑡2

Δ𝑡∫︁
0

Δ𝑡∫︁
0

𝑘𝑒(𝑗ℎ, 𝑟 − 𝑠+ 𝑝Δ𝑡) 𝑑𝑠 𝑑𝑟. (79)

The theoretical interest of choosing K𝑝
h as defined by (79) is clarified by the following lemmas which provides

a discrete counter-part to the positivity property (80).

Lemma 3.1. For any 𝑗 ∈ Z and any real sequence 𝜉𝑛, 𝑛 ∈ N, one has the (discrete) positivity property

𝐺(𝑗ℎ)
𝑁∑︁

𝑛=0
|𝜉𝑛|2 Δ𝑡 +

𝑁∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝑘𝑛−𝑚
𝑗 𝜉𝑛 𝜉𝑚 Δ𝑡2 ≥ 0. (80)

Proof. Let 𝑤𝑗 be the P1 hat function associated to the node 𝑗ℎ, we introduce 𝜉Δ𝑡
𝑗 (𝑡) defined by

𝜉Δ𝑡(𝑡) = 𝜉𝑚+1 + 𝜉𝑚

2 for 𝑡 ∈
[︀
𝑡𝑚, 𝑡𝑚+1 ]︀ and 0 ≤ 𝑚 ≤ 𝑛, 𝜉Δ𝑡(𝑡) = 0 if 𝑡 > 𝑡𝑛.

Then, one can compute directly that⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝐺(𝑗ℎ)
𝑁∑︁

𝑛=0
|𝜉𝑛|2 Δ𝑡 +

𝑁∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝑘𝑛−𝑚
𝑗 𝜉𝑛 𝜉𝑚 Δ𝑡2 =

𝐺(𝑗ℎ)
𝑇∫︁

0

| 𝜉Δ𝑡(𝑡) |2 𝑑𝑡 +
𝑇∫︁

0

𝑡∫︁
0

𝑘(𝑗ℎ, 𝑡− 𝑠) 𝜉Δ𝑡(𝑠) 𝜉Δ𝑡(𝑡) 𝑑𝑠 𝑑𝑡 ≥ 0

and one concludes with (80). ■

Using Lemma 3.1 and standard energy techniques, it is easy to prove the stability result below.

Theorem 3.2. The numerical scheme (78) is 𝐿2-stable under the sufficient CFL condition

𝑐+
ℎ𝑇

Δ𝑡
ℎ

≤ 1, 𝑐+
ℎ𝑇

= sup
𝑥3∈R

𝑐ℎ𝑇
(𝑥3), 𝑐ℎ𝑇

(𝑥3) := 𝐶ℎ𝑇
(𝑥3)− 1

2𝐿ℎ𝑇
(𝑥3)− 1

2 , (81)

where the function 𝑐ℎ𝑇
(𝑥3) satisfies the uniform (in 𝑥3) convergence property (see also (75))

𝑐ℎ𝑇
(𝑥3) ≤ 𝑐1𝐷(𝑥3), lim

ℎ𝑇 →0
𝑐ℎ𝑇

(𝑥3) = 𝑐1𝐷(𝑥3), 𝑐1𝐷(𝑥3) := 𝐶(𝑥3)− 1
2𝐿(𝑥3)− 1

2 .
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Remark 3.3 (Comparison with the 3D stability condition). According to Theorem 3.2, an asymptotically
optimal (when ℎ𝑇 → 0) sufficient CFL condition is

𝑐+
1𝐷

Δ𝑡
ℎ

≤ 1, 𝑐+
1𝐷 := sup

𝑥3∈R
𝑐1𝐷(𝑥3). (82)

In order to compare with the CFL condition (53) for the 3D problem, we need to compare 𝑐+
1𝐷 with 𝑐+.

However, it is shown in [15] that

∀ 𝑥3 ∈ R, 𝑐1𝐷(𝑥3) ≤ sup
x𝑇 ∈𝑆

𝑐(x𝑇 , 𝑥3) which implies 𝑐+
1𝐷 < 𝑐+

This shows that the 3D CFL condition (53) is more restrictive than the 1D condition (82). Indeed, if (53)
holds,

𝑐+
1𝐷

Δ𝑡
ℎ

≤ 𝑐+
Δ𝑡
ℎ

≤
√︂

4𝜃 − 1
4𝜃 < 1.

(III) Reconstruction of the 3D electric field

Once the discrete voltage 𝑉 𝑛
ℎ (𝑥3) is computed, according to (64), one can reconstruct the (rescaled) 3D

electric field at time as the P1-interpolant of the following transverse fields, defined for each 𝑗, using a
discrete convolution formula consistent with the one appearing in (78), namely,

̃︀E𝑛
𝑗 (x𝑇 , 𝑗ℎ) = 𝑉 𝑛

ℎ (𝑗ℎ) ∇𝜙(x𝑇 , 𝑗ℎ) +
𝑛−1∑︁
𝑚=0

𝑉 𝑚+1(𝑗ℎ) + 𝑉 𝑚(𝑗ℎ)
2 ∇𝑇𝜙𝑟(x𝑇 , 𝑗ℎ, 𝑡

𝑛 − 𝑡𝑚) Δ𝑡. (83)

4 Numerical experiments
In this section, we present numerical results aiming at illustrating, and even more quantifying, the asymptotic
analysis presented Section 3.1. This will be done by solving the problem 60 for several values of 𝛿 using the
numerical method presented Section 2 . For this reason, why we shall work the second order formulation
in the electric field for these problems, see (8) or equivalently (11). Even more, to allow for a comparison
between values of 𝛿, we shall compute the rescaled field (cf. (62)) that have the advantage to be define in
the reference geometry, as well as the asymptotic electric field appearing in (64). The only difference with
respect to (11) is the apparition of 𝛿-dependent terms in the equations through the simple substitution

rot𝑇 → 𝛿−1 rot𝑇 , rot𝑇 → 𝛿−1 rot𝑇 , div𝑇 → 𝛿−1 div𝑇 , ∇𝑇 → 𝛿−1 ∇𝑇 ,

which has no incidence on the numerical method of Section 2.

4.1 The data of the problem

We have chosen to treat a cable whose geometry has no circular symmetry. This geometry is represented
Figure 8. The diameter of 𝑆 is 4 and its intersection with the half-plane 𝑥1 > 0 "coincides" with a circular
annulus. More precisely:

𝑆 ∩ {𝑥1 > 0} ≡ {(𝑥1, 𝑥2) / 𝑥1 > 0 and 1 ≤ (𝑥2
1 + 𝑥2

2)
1
2 ≤ 2} (84)

As the cut for the computation of the potential 𝜓 (cf. (65)), we shall take the segment

Σ = [1, 2] × {0}. (85)

The numerical computations are done in the portion of cable 0 ≤ 𝑥3 ≤ 10. For simplicity, periodic boundary
conditions will be applied between 𝑥3 = 0 and 𝑥3 = 10.
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Fig. 8: Left: the domain Ω, Right: the section 𝑆 of the domain. Each color correspond to a different material.

Concerning the coefficients of the model, we shall treat two cases

– The unperturbed case. This corresponds to the case where the coefficients of the model are invariant by
translation in the longitudinal direction,

𝜀(x𝑇 , 𝑥3) = 𝜀0(x𝑇 ), 𝜇(x𝑇 , 𝑥3) = 𝜇0(x𝑇 ), 𝜎(x𝑇 , 𝑥3) = 𝜎0(x𝑇 ). (86)

The cable is however heterogeneous is the cross sections 𝑆. More precisely 𝑆 is made of two layers
𝑆 = 𝑆1 ∪ 𝑆2 and inside 𝑆𝑗 , the material is homogeneous (see Figure 8),(︀

𝜀0(x𝑇 ), 𝜇0(x𝑇 ), 𝜎0(x𝑇 )
)︀

= (𝜀𝑗 , 𝜇𝑗 , 𝜎𝑗) in 𝑆𝑗 . (87)

In our numerical experiments we shall take (𝜀1, 𝜇1) = (2, 2) and (𝜀2, 𝜇2) = (1, 1) so that the velocity of
electromagnetic waves, 𝑐(x) = (𝜀𝜇)(x)− 1

2 is

𝑐(x) = 𝑐1 = 1/2 in Ω1 := 𝑆1 × R, 𝑐(x) = 𝑐2 = 1 in Ω2 := 𝑆2 × R. (88)

Concerning the conductivity, we shall consider two scenarios :

– without any conductivity (conductive case.): 𝜎1 = 𝜎2 = 0,
– with conductivity in Ω2 (non conductive case.) : 𝜎1 = 0, 𝜎2 = 0.5.

– The perturbed case. In this case, the translational invariance is broken because the coefficients may vary
locally in 𝑥3 near 𝑥3 = 6. This can be reinterpreted as a localized damage of the cable. We take,

𝜀(x𝑇 , 𝑥3) = 𝜀0(x𝑇 )
(︀
1 + 𝑝(𝑥3)

)︀
, and the same for 𝜇(x𝑇 , 𝑥3) and 𝜎(x𝑇 , 𝑥3). (89)

where 𝑝 is a very localized Gaussian, supported in practice in [5.75, 6.25] (see Figure 9),

𝑝(𝑥3) := 𝜋 𝑒−80 𝑙𝑛(2)(𝑥3−6)2
. (90)

We also take initial conditions which are localized near 𝑥3 = 5 and are well prepared with respect to the
expected asymptotic result 64. More precisely H0(x𝑇 , 𝑥3) = 0 and

E0(x𝑇 , 𝑥3) := 𝐴(𝑥3) ∇𝑇𝜙(x𝑇 , 𝑥3), 𝐴(𝑥3) = 𝑒−𝜋2 (𝑥3−5)2
(91)
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Fig. 9: The functions 𝐴(𝑥3) (left) and 𝑝(𝑥3) (right).

In practice, the initial data are supported in [4, 6] and will generate longitudinal with a wavelength
𝜆 ≃ 1. The time interval for the numerical experiments will be [0, 𝑇 ] with 𝑇 = 4 so that, taking into account
(88), implies that the waves will not reach the transverse boundaries 𝑥3 = 0 and 𝑥3 = 10 before the final
time 𝑇 : in other words, the periodic boundary conditions in 𝑥3 will not play any role.

Note that the initial field is transversely polarized. However, due to the heterogeneity of the cable, it will
not remain transversely polarized during the time (even in the unperturbed case, separation of variable
does not work for Maxwell’s equations) as the numerical results will illustrate it. Note also that, because of
(65), div(𝜀E0) = 0.

4.2 Discretization parameters

Data for the transverse discretization. The mesh of the cross section will be a triangular mesh
represented Figure 8. In particular, there are 20 mesh points along the cut Σ and the typical diameter of
each triangle in the mesh is

ℎ𝑇 ≃ 0.05.

This mesh is used for the 2𝐷 transverse problems (65,66,67) for computing the potentials (𝜙,𝜓, 𝜙𝑟) and
the coefficients (𝐶,𝐺,𝐿) but also for the 3D computations. Because of the specific form of the coefficients
(𝜀, 𝜇, 𝜎) for the perturbed case, see (89), the potentials (𝜙,𝜓, 𝜙𝑟) coincide with the 𝑥3-independent potentials
(𝜙0, 𝜓0, 𝜙0

𝑟) for the unperturbed,

𝜙(·, 𝑥3) = 𝜙0(·), 𝜓(·, 𝑥3) = 𝜓0(·), 𝜙𝑟(·, 𝑥3) = 𝜙0
𝑟(·, 𝑡).

Thus, only (𝜙0, 𝜓0, 𝜙0
𝑟) need to be computed numerically. Accordingly, with obvious notation,

𝐶(𝑥3) =
(︀
1 + 𝑝(𝑥3)

)︀
𝐶0, (the same for 𝐺(𝑥3), 𝐿(𝑥3), 𝑘(𝑥3, 𝑡)).

Data for the longitudinal discretization. The longitudinal step size ℎ will be taken ℎ = 1/17 which is
well adapted to the discretization of the Gaussian 𝐴(𝑥3) (see again Figure 9).

This longitudinal mesh will be used for the discretization of the 1D problem (78) (cf. (68)) but also for the
3D computations.

Data for the time discretization. For facilitating the comparison between the 1D and 3D results, we
shall use the same time step Δ𝑡 for both 1D and 3D computations. According to Remark 3.3, the choice of
Δ𝑡 will be constrained by the 3D condition (53). For the 3D calculations, we shall take 𝜃 = 1/3, in which
case (53) gives: 𝑐+ Δ𝑡

ℎ ≤ 1
2 . In practice we shall choose Δ𝑡 = 0.95 ℎ/(2 𝑐+).
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4.3 Numerical results

4.3.1 The potentials (𝜙0, 𝜓0, 𝜙0
𝑟)

We present in Figure 10 the computed potentials 𝜙 and 𝜓. The right picture shows at the same time the
level lines of 𝜙 (who are "parallel" to the boundaries) and the ones of 𝜓 (which intersect the boundaries).
This illustrates that

(︀
𝜙(𝑥1, 𝑥2), 𝜓(𝑥1, 𝑥2)

)︀
generalizes polar coordinates inside 𝑆.

Fig. 10: Potentials 𝜙 (left) and 𝜓 (center), associated isolines (right).

Figure 11 represents, via color levels, the evolution of 𝜙𝑟(𝑡). We observe that 𝜙𝑟(𝑡) tends to 0 when 𝑡 → +∞,
as expected from its definition (66) and the strict positivity of the operator A(𝑥3) ≡ A.

Fig. 11: Propagation of the 𝜙𝑟(𝑡) field at 𝑡1 = 0, 𝑡2 = 2.43, 𝑡3 = 3.47 and 𝑡4 = 4.

Finally, we show Figure 12 the convolution kernel 𝑘(𝑡) that is negative (as proven in [15], Lemma 5.2) and
tends also to 0 for large 𝑡.

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.9
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-0.3
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Fig. 12: The convolution kernel 𝑘(𝑡).
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4.3.2 3D / 1D comparisons in the unperturbed case.

The non conductive case.

(a) Comparisons of voltages (in 1D). In figure 13, we compare the evolution of the 1D (limit) voltage
𝑉 (𝑥3, 𝑡) issued from the numerical resolution of the 1D limit model (68), to the 1D voltage 𝑉 𝛿(𝑥3, 𝑡) for
the 3D problem, defined by (73) and obtained by post-processing the 3D solution ̃︀E𝛿

𝑇 .
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Fig. 13: The voltages 𝑉 𝛿 and 𝑉 at 𝑡 = 4.

More precisely, we compare the above functions in space at the final time 𝑇 = 4 for 𝛿 decreasing from 1 to
10−3. The limit solution 𝑉 (𝑥3, 𝑇 ) is in red while 𝑉 𝛿(𝑥3, 𝑇 ) is in blue. The numerical results confirm the
convergence of 𝑉 𝛿(𝑥3, 𝑡) towards 𝑉 (𝑥3, 𝑡). We observe that 𝑉 and 𝑉 𝛿 already almost coincide for 𝛿 = 0.1.
This corresponds to a cable diameter equal to 0.4, to be compared to the wavelength 𝜆 ≃ 1.

(b) Comparison of the electric fields in 3D. We now compare, still at the final time 𝑇 = 4, the norm of
electric field for 𝛿 > 0 with its limit value. In figure 14, we represent |̃︀E𝛿

𝑇 | on the boundary 𝜕Ω of the
reference cable for 𝛿 = 1 and 𝛿 = 10−3 and 𝛿 = 0. We observe that the norm of 3D field cannot be
distinguished from the one of the limit field 𝛿 = 10−3 while a substantial difference exists for 𝛿 = 1.

Fig. 14: Left |̃︀E𝛿
𝑇 | with 𝛿 = 1, Center |̃︀E𝛿

𝑇 | with 𝛿 = 10−3, Right |̃︀E0
𝑇 | at 𝑡 = 4.
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Figure 15, we make the same comparison in the cross section 𝑥3 = 2.71 with roughly corresponds to the
position of the wave at time 𝑇 = 4 (see Figure 13). We observe that the transverse distribution of the
electromagnetic energy is quite different for 𝛿 = 1 than for 𝛿 = 10−3 and 𝛿 = 0.

Fig. 15: Left |̃︀E𝛿
𝑇 | with 𝛿 = 1, Center |̃︀E𝛿

𝑇 | with 𝛿 = 10−3, Right |̃︀E0
𝑇 | for 𝑥3 = 2.71 and 𝑡 = 4.

Finally, in order to test the asymptotic transverse polarization of the electric field, we represent Figure 16,
again along 𝜕Ω at time 𝑇 = 4 the longitudinal electric field ̃︀𝐸𝛿

3 . Let us draw the attention of the reader
that the color scale is quite different from the ones in the figures 14 and 15. We observe that, as expected
the longitudinal field tends to 0 when 𝛿 tends to 0. On the other hand, for 𝛿 = 1 we see that, as announced
previously, the field is really non transversely polarized even though the initial field is (cf. (91)): this
confirms that separation of variables does not work.

Fig. 16: 𝐸𝛿
3 with 𝛿 = 1, 𝛿 = 0.5, 𝛿 = 0.1, 𝛿 = 0.001 at 𝑡 = 4.

The conductive case.

(a) Comparisons of voltages (in 1D). In figure 17, we compare the evolution of the 1D (limit) voltage
𝑉 (𝑥3, 𝑡) to the 1D voltage 𝑉 𝛿(𝑥3, 𝑡), exactly as in figure 13.

There are two main effects due to the conductivity (clearly visible on the limit blue curves) : the
attenuation of the signal (compare the figures 13 and 17) ) and the shape of the wave. However, the
convergence of 𝑉 𝛿(𝑥3, 𝑡) towards 𝑉 (𝑥3, 𝑡) is very similar to the one for the non conductive case for 𝛿 ≤ 0.1,
but varying 𝛿 above 0.1 affects the waveform much more than in non conductive case.
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Fig. 17: The voltages 𝑉 𝛿 and 𝑉 at 𝑡 = 4.

(b) Comparison of the electric fields in 3D. We now compare in figure 18, still at the final time 𝑇 = 4
on the boundary 𝜕Ω, the norm of electric field for 𝛿 > 0 with the one its limit value, exactly as in figure 14.
The conclusions are the same than for the non conductive case.

Fig. 18: Left |̃︀E𝛿
𝑇 | with 𝛿 = 1, Center |̃︀E𝛿

𝑇 | with 𝛿 = 10−3, Right |̃︀E0
𝑇 | at 𝑡 = 4.

4.3.3 The perturbed case.

The non conductive case.

(a) Comparisons of voltages (in 1D). As represented Figure 19, the main effect of the local perturbation
is the apparition of reflection phenomena. We observe that the convergence to the limit solution is much
slower than in the unperturbed case (compare with Figure 13): for instance, one needs 𝛿 = 0.01 to get a
correct localization of the reflected waves. This is probably due that we we have considered a strong defect
with fast variations and large amplitude.
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Fig. 19: The voltages 𝑉 𝛿 and 𝑉 at 𝑡 = 4.

(b) Comparison of the electric fields in 3D. This is the object of Figure 20, to be compared with figure 14.
In Figure 20, we represent the norm |̃︀E𝛿

𝑇 | on the boundary 𝜕Ω of the reference cable for 𝛿 = 1 and 𝛿 = 10−3

and 𝛿 = 0. We observe that the norm of 3D field cannot be distinguished from the one of the limit field
𝛿 = 10−3 while a substantial difference exists for 𝛿 = 1, and as found in the 1D results we also observe that
the wave is reflected because of the perturbation localized at 𝑥3 = 6.

Fig. 20: Left |̃︀E𝛿
𝑇 | with 𝛿 = 1, Center |̃︀E𝛿

𝑇 | with 𝛿 = 10−3, Right |̃︀E0
𝑇 | at 𝑡 = 4.

The conductive case. We repeat in figures 21 and 22, the same experiments / comparisons than in figures
17 and 18 for the non conductive case, respectively for the 1D voltages and the 3D electric fields. Once
again, one observes a big influence of the presence of the conductivity on the shape of the propagating wave.
However, this does not affect the speed of convergence towards the limit model, which is quite similar to
the one observed in the non conductive case.
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Fig. 21: The voltages 𝑉 𝛿 and 𝑉 at 𝑡 = 4.

Fig. 22: Left |̃︀E𝛿
𝑇 | with 𝛿 = 1, Center |̃︀E𝛿

𝑇 | with 𝛿 = 10−3, Right |̃︀E0
𝑇 | at 𝑡 = 4.

5 Perspectives
We have presented an hybrid explicit-implicit time discretization combined with a space discretization of
the Maxwell’s equation based on edge’s elements on prisms. The algorithm complexity of our method is low.
The resulting scheme enabled to validate generalized 1D Telegrapher’s equations. One important perspective
of our work is to deal with non cylindrical geometry. This turns out to be a non-simple generalization that
we aim to tackle with hybrid edge’s element and the discontinuous Galerkin method. Although the question
of convergence analysis (in space and time) of the proposed method is of interest and turn out not to be a
straightforward application of known abstract results.
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