
HAL Id: hal-03408379
https://hal.science/hal-03408379v1

Submitted on 29 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Quantified Linear Temporal Logic over Probabilistic
Systems with an Application to Vacuity Checking

Jakob Piribauer, Christel Baier, Nathalie Bertrand, Ocan Sankur

To cite this version:
Jakob Piribauer, Christel Baier, Nathalie Bertrand, Ocan Sankur. Quantified Linear Tempo-
ral Logic over Probabilistic Systems with an Application to Vacuity Checking. CONCUR 2021
- 32nd International Conference on Concurrency Theory, Aug 2021, Paris, France. pp.1-18,
�10.4230/LIPIcs.CONCUR.2021.7�. �hal-03408379�

https://hal.science/hal-03408379v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Quantified Linear Temporal Logic over Probabilistic
Systems with an Application to Vacuity Checking
Jakob Piribauer #

Technische Universität Dresden, Germany

Christel Baier #

Technische Universität Dresden, Germany

Nathalie Bertrand #

Université Rennes, Inria, CNRS, IRISA, France

Ocan Sankur #

Université Rennes, Inria, CNRS, IRISA, France

Abstract
Quantified linear temporal logic (QLTL) is an ω-regular extension of LTL allowing quantification
over propositional variables. We study the model checking problem of QLTL-formulas over Markov
chains and Markov decision processes (MDPs) with respect to the number of quantifier alternations
of formulas in prenex normal form. For formulas with k−1 quantifier alternations, we prove that
all qualitative and quantitative model checking problems are k-EXPSPACE-complete over Markov
chains and k+1-EXPTIME-complete over MDPs.

As an application of these results, we generalize vacuity checking for LTL specifications from the
non-probabilistic to the probabilistic setting. We show how to check whether an LTL-formula is
affected by a subformula, and also study inherent vacuity for probabilistic systems.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Quantified linear temporal logic, Markov chain, Markov decision process,
vacuity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.7

Related Version Extended Version: https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CONCUR21/ [19]

Funding This work was funded by DFG grant 389792660 as part of TRR 248 – CPEC (see
https://perspicuous-computing.science), the Cluster of Excellence EXC 2050/1 (CeTI, project
ID 390696704, as part of Germany’s Excellence Strategy), DFG-projects BA-1679/11-1 and BA-
1679/12-1, and the Research Training Group QuantLA (GRK 1763).

1 Introduction

In the formal verification of probabilistic systems, a central problem is the model-checking
problem: Given a system model M and a specification φ, decide whether the probability
PrM(φ) that φ holds on an execution of M is 1 or whether it is positive, respectively, (quali-
tative model checking) or compute the probability PrM(φ) (quantitative model checking).
In case the system exhibits non-deterministic behavior, the model-checking problems address
the worst- or best-case resolution of the non-determinism, i.e., the minimal or maximal satis-
faction probability among all possible resolutions of the non-deterministic choices. Common
probabilistic system models are finite-sate Markov chains that are purely probabilistic and
Markov decision processes (MDPs) that also model non-deterministic behavior. Specifications
can be formulated in temporal logics, such as linear temporal logic (LTL) as an important
example, or be given by automata, such as non-deterministic Büchi automata (NBA). The
choice of the specification formalism is a balancing act between expressive power, succinctness,

© Jakob Piribauer, Christel Baier, Nathalie Bertrand, and Ocan Sankur;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jakob.piribauer@tu-dresden.de
https://orcid.org/0000-0003-4829-0476
mailto:Christel.Baier@tu-dresden.de
https://orcid.org/0000-0002-5321-9343
mailto:nathalie.bertrand@inria.fr
https://orcid.org/0000-0002-9957-5394
mailto:ocan.sankur@irisa.fr
https://orcid.org/0000-0001-8146-4429
https://doi.org/10.4230/LIPIcs.CONCUR.2021.7
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CONCUR21/
https://perspicuous- computing.science
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Quantified Linear Temporal Logic over Probabilistic Systems

and the complexity of the respective model-checking problems. Additionally, the formalism
should allow one to describe desired system behaviors in a way comprehensible to a human
user as writing down the specification is itself an error-prone process in practice.

Quantified linear temporal logic (QLTL), introduced by Sistla [21], is an extension of LTL
with quantification over propositional variables lifting the expressive power from star-free
to all ω-regular languages. A formula of the form ∃x.φ holds on a word w if one can
choose a set of positions at which x holds such that the word w extended with this choice
satisfies φ. The quantification hence ranges over all sets of positions, i. e., sets of natural
numbers. In QLTL, LTL-formulas can be extended with the quantification over propositions
that, for example, capture hidden variables or encode annotations of a trace. This can
be useful if we want to define properties not expressible in LTL in a context in which one
often works with LTL. Examples include definitions of refinement relations in which internal
variables are quantified to express equivalence of two specifications with respect to the
observable variables [14], a necessary and sufficient condition expressed as a QLTL-formula
on the serializability of histories in concurrent database scheduling produced by a scheduler
whose behavior is expressed by an LTL-formula [13], or the QLTL-expressible existence of
finite counterexamples witnessing the unrealizability of an LTL-specification for distributed
fault-tolerant systems [8]. Furthermore, the vacuous satisfaction of a specification in a
transitions system indicating that parts of the specification are irrelevant for the satisfaction
has been defined using QLTL [1]. We transfer this definition of vacuous satisfaction to the
probabilistic setting in this paper and explain the notion of vacuity in more detail below. In
all of these successful applications of QLTL to questions in formal verification, the necessary
QLTL-formulas require only few quantifier alternations; often even a single block of quantifiers
without alternation is sufficient.

The full logic, however, is not suitable for practical applications: the non-probabilistic
model-checking problem of QLTL on transition systems has non-elementary complexity [22].
The lower bounds can be pinpointed to the different levels of quantifier alternation of formulas
in prenex normal form. Model-checking of QLTL-formulas with k− 1 quantifier alternations
in transition systems is k-EXPSPACE-complete. Distinguishing whether the first block
of quantifiers is existential (ΣQLTLk) or universal (ΠQLTLk) refines the result as for ΠQLTLk -
formulas the complexity of model-checking drops to k−1-EXPSPACE-completeness [22].
The increase of the complexity by one exponential per quantifier alternation is theoretically
intriguing on the one hand, and on the other hand leads to reasonable complexity results for
properties that can be expressed succinctly with the use of few quantifier alternations. A
similar complexity hierarchy is observed in other settings. The complexity of model checking
quantified computation tree logic (CTL) with k quantifier alternations is k-EXPTIME-
complete, and it is k + 1-EXPTIME-complete for quantified CTL∗ in the tree semantics;
while in the structure semantics, these problems span the polynomial hierarchy [17]. The
hardness of the fragments of QLTL [22] was used to show that model checking strategy logic
is k-EXPSPACE-hard when restricted to k quantifier alternations.

In this paper, we study the model-checking problem of QLTL in probabilistic systems.
Our main result is that the complexity of the model-checking problems on Markov chains
and MDPs match the upper bounds obtained via straight-forward automata constructions:
For Markov chains and ΣQLTLk - and ΠQLTLk -formulas, all model-checking problems are k-
EXPSPACE-complete, while for MDPs the problems are k+ 1-EXPTIME-complete. These
complexity results are summarized in Table 1. As the upper bounds are easily obtained, the
main contribution lies in proving the lower bounds. The hardness proofs for Markov chains,
encode a tiling problem of a k-exponentially wide rectangle with arbitrary height. For the

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:3

hardness proofs for MDPs, we encode the computation of an alternating k-exponentially
space-bounded Turing machine. The alternation can be mimicked in an MDP by letting one
player in the acceptance game of the alternating Turing machine be played randomly, while
the scheduler takes the role of the other player. We obtain the result that the complexities of
the model-checking problems for ΣQLTLk and ΠQLTLk coincide in the probabilistic setting in
contrast to the asymmetry known for the non-probabilistic setting. It is remarkable that the
complexities of ΣQLTL1 - and ΠQLTL1 -model checking in MDPs are the same as the complexity
of LTL-model checking. For each further quantifier alternation, the complexity increases by
one exponential. In contrast, we see an exponential increase in complexity already for the
first block of quantifiers in ΣQLTL1 and ΠQLTL1 compared to LTL-model checking in Markov
chains.

Table 1 Complexity results for the model-checking problems of fragments of QLTL. All entries
state completeness results.

transition system Markov chain MDP

LTL PSPACE [23,25] PSPACE [7] 2-EXPTIME [7]

ΠQLTL1 PSPACE [22] EXPSPACE 2-EXPTIME

ΣQLTL1 EXPSPACE [22] EXPSPACE 2-EXPTIME

ΠQLTLk k-1-EXPSPACE [22] k-EXPSPACE k+1-EXPTIME

ΣQLTLk k-EXPSPACE [22] k-EXPSPACE k+1-EXPTIME

On the one hand, knowledge of the precise complexities of the model-checking problems
for ΣQLTLk - and ΠQLTLk -formulas over probabilistic systems might be useful to determine
the complexity of other problems in the formal verification of probabilistic systems – in
particular, by using the new lower bounds provided in this paper for new hardness results.
On the other hand, the upper bounds are obtained via the construction of automata. It
follows easily that all investigated model-checking problems can be solved in time polynomial
in the size of the model, i.e., the Markov chain or the MDP. This means that efficient model
checking for low levels of the quantifier alternation hierarchy of QLTL might be possible in
many application areas despite the high complexities of the model-checking problems because
formulas are typically small compared to the size of the models.

As an application of our main results, we extend the definition of vacuous satisfaction of
a specification from [1] to the probabilistic setting. For an illustration of vacuous satisfaction,
consider the specification: “Whenever a request is sent, it is eventually granted.” If in a
system model no requests are ever sent, the specification is satisfied and a model checker
would report this result. However, something is obviously wrong with either the specification
or – in this case more likely – the system model. We say the specification is vacuously true.
The formal definition of vacuity that we generalize to the probabilistic setting captures the
fact that the truth values of the grants in the specification do not influence the satisfaction
of the specification at all. We could replace “it is eventually granted” with any arbitrary
requirement or even choose an arbitrary set of positions at which that part of the specification
should be true and the specification would still hold in the system model. We say that this
subformula does not affect the satisfaction of the specification. Perturbing the truth values

CONCUR 2021

7:4 Quantified Linear Temporal Logic over Probabilistic Systems

in arbitrary ways is expressed by a universal quantification over a proposition in the formal
definition. A vacuity check during the model checking process can be an invaluable help as it
can detect such severe errors in the design of the model or the specification in an early stage
of the development that would otherwise stay undetected if the model checker returns the
desired result.

We provide a generalization of the definition of affection that is suitable for the probabilistic
setting. We prove that ΠQLTL1 -model checking is inter-reducible with the question whether a
subformula affects a formula in a probabilistic system. Hence, an additional vacuity check
according to this definition does not increase the complexity of model checking in MDPs. For
Markov chains, however, the additional vacuity check would lead to an exponential blow-up
of the procedure as shown by our new lower bound for ΠQLTL1 -model checking over Markov
chains. Consequently, we turn our attention to the notion of inherent vacuity introduced in
[9]. This notion captures that a specification is vacuous, i.e. not affected by some subformula,
in all models. So, while disregarding the interplay between model and specification, inherent
vacuity indicates a severe error in the specification. For all natural variants of this definition
for Markov chains and MDPs that can be obtained using our notion of affection, we obtain
the result that inherent vacuity of a specification can be checked by a (non-probabilistic)
validity check of a ΠQLTL1 -formula. Therefore, inherent vacuity for Markov chains and MDPs
can be checked in polynomial space rendering the addition of a check for inherent vacuity to
the model checking procedure potentially useful and reasonable in practice.

Related Work

Closest to our main complexity hierarchy result is the complexity hierarchy result for QLTL
in the non-probabilistic setting [22]. Over probabilistic systems, the model-checking problems
for Wolper’s ETL [26], another ω-regular extension of LTL, which uses automata operators,
is investigated in [7] and shown to lie in EXPTIME. We are not aware of any explicit
investigations of QLTL or further ω-regular extensions of LTL, such as Gabbay’s USF [10],
an extension with fixed-point operators, over probabilistic systems.

Concerning vacuity checking, various notions have been studied for non-probabilistic
systems. In [3] and [16], a notion of formula vacuity for fragments of CTL∗ is investigated in
which the underlying notion of non-affection means that a subformula can be replaced by any
other formula without affecting the truth of the formula in a model. Trace vacuity for LTL,
which we generalize to the probabilistic setting, was introduced in [1]. The authors argue that
trace vacuity has advantages over formula vacuity as it is more robust with respect to changes
of the model or the specification language. Based on this definition, the notion of inherent
vacuity, which we adapt to the probabilistic setting, was introduced in [9]. Trace vacuity
has been extended to various other logics such as CTL∗ [11] relying on a propositionally
quantified version of the logic, or to the logic RELTL, an extension of LTL with regular
layers, by universally quantifying interval variables [4]. In [12], a variety of degrees to which
a formula can be vacuous is defined and analyzed in the context of CTL-model checking. For
a survey covering different approaches of vacuity checking, we refer the reader to [15].

2 Preliminaries

We suppose familiarity with basic concepts of discrete Markovian models, LTL, and ω-
automata, and only provide a brief summary of the notions and our notation. Details can be
found in textbooks, e.g., [2, 6, 20]. Furthermore, we provide definitions regarding QLTL and
state basic results.

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:5

2.1 Basic definitions
Markov decision processes (MDPs)

An MDP is a tuple M = (S, Act,P, sinit, AP, L) where S is a finite state space, Act a finite
set of actions, P : S × Act × S → [0, 1] ∩ Q the transition probability function satisfying∑
t∈S P(s,α, t) ∈ {0, 1} for all (s,α) ∈ S × Act, sinit ∈ S the initial state, AP a finite set

of atomic propositions, and L : S → 2AP a labeling function. The triples (s,α, t) with
P(s,α, t) > 0 are called transitions of M. The actions enabled in s form Act(s) = {α ∈ Act :∑
t∈S P(s,α, t) = 1}. The size of an MDP is the number of states and actions plus the sum

of the logarithmic lengths of the transition probabilities. Intuitively, when M is at a state
s, then an action α of Act(s) is selected nondeterministically; afterwards the next state is
obtained by probabilistically choosing one of the potential successor states according to the
probability distribution P(s,α, ·). Paths in MDP are alternating sequences of states and
actions: π = s0 α0 s1 α1 . . . where αi ∈ Act(si) and P(si,αi, si+1) > 0 for all i ⩾ 0. We write
π[i...] for the suffix starting from si. The trace of π is the word L(π) = L(s0) L(s1) L(s2) . . .
over 2AP obtained by projecting states to their labels. We do not distinguish between a
path and its trace when the intended meaning is clear from context. A scheduler for M is a
function S that maps a finite path ζ to a probability distribution over Act(last(ζ)) where
last(ζ) is the last state of ζ. The function PrSM,s denotes the probability measure induced
by S, when s is the initial state. It is well-known that all ω-regular path properties φ are
measurable and there exist schedulers maximizing or minimizing the probability for φ (see,
e.g., [2]). This justifies the notations Prmax

M,s(φ) = maxS PrSM,s(φ) and analogously Prmin
M,s(φ)

for ω-regular properties.
A Markov chain is a tuple M = (S,P, sinit, AP, L) which can be seen as an MDP with only

one action. The transition probability function P : S× S→ [0, 1] ∩Q does not include the
action anymore and satisfies

∑
t∈S P(s, t) ∈ {0, 1} for all s ∈ S. There are no non-deterministic

choices and PrM,s denotes the induced probability measure on maximal paths starting in s.

ω-automata

A non-deterministic Büchi automaton (NBA) is a tuple A = (Q,Σ, δ,Q0, F) where Q is a
finite set of states, Σ an alphabet, δ ⊆ S× Σ× S the transition relation, Q0 ⊆ Q the set of
initial states and F ⊆ Q the set of final states. A word w = w0w1 . . . in Σω is accepted by
A if there is a run q0w0 q1w1 q2 . . . such that q0 ∈ Q0, (qi,wi,qi+1) ∈ δ for all i, and for
infinitely many i, qi ∈ F. The language L(A) is the set of words accepted by A.

2.2 Quantified linear temporal logic (QLTL)
Let AP be a finite set of atomic propositions. The syntax of linear temporal logic (LTL) is
given by

φ ::= a|φ∧φ|¬φ|⃝φ|φUφ

where a ∈ AP. The semantics is given on words in (2AP)ω: For a word w = w0,w1, . . . , we
have w ⊨ a if a ∈ w0; w ⊨ ⃝φ if w1,w2, · · · ⊨ φ; and w ⊨ φUψ if there is a j ∈ N such
that wj,wj+1, · · · ⊨ ψ and wi,wi+1, · · · ⊨ φ for all i < j. The semantics of the Boolean
connectives is defined as usual. For more details, consult, e.g., [2]. The logic QLTL is an
extension of LTL with quantification over atomic propositions. We extend the syntax of LTL
by allowing existential quantification ∃x.φ over additional, fresh atomic propositions x ̸∈ AP
where φ is an LTL-formula over AP ∪ {x}. We further allow the common abbreviations ⊤ for

CONCUR 2021

7:6 Quantified Linear Temporal Logic over Probabilistic Systems

true, ⊥ for false, ∨, →, ↔, ♢, □, and ∀x. For a word w ∈ (2AP)ω, we define that w ⊨ ∃x.φ
if and only if there is a set X ⊆ N such that the word w′ with w′[i] = w[i] if i ̸∈ X and
w′[i] = w[i] ∪ {x} if i ∈ X satisfies w′ ⊨ φ. Consider the following example to illustrate the
semantics of QLTL:

{a} {b} {a} {c} . . . ⊨ ∃x.□(x↔ ¬a) because
{a} {b, x} {a} {c, x} . . . ⊨ □(x↔ ¬a).

For a QLTL-formula ϑ over AP, we allow arbitrarily many additional atomic propositions
but require that all atomic propositions not in AP are quantified. We distinguish QLTL-
formulas in prenex normal form according to the number of quantifier alternations. For
k ⩾ 1, let ΣQLTLk be the set of QLTL-formulas of the form

∃∗∀∗∃∗ . . .︸ ︷︷ ︸
k blocks of quantifiers

φ ≡ ∃∗¬∃∗¬∃∗ . . .︸ ︷︷ ︸
k blocks of quantifiers

(¬)φ

where φ is quantifier-free, i.e. an LTL-formula. Likewise, let ΠQLTLk be the set of QLTL-
formulas starting with k blocks of quantifiers followed by a quantifier-free formula such that
the first block is ∀∗. The negation of a ΣQLTLk -formula is equivalent to a ΠQLTLk -formula.

QLTL, and in particular ΣQLTL1 , can express exactly all ω-regular properties. In fact,
the existence of an accepting run on a word in an NBA A with states Q can be expressed by
a ΣQLTL1 -formula with |Q|-many existential quantifications followed by an LTL-formula [21].

Conversely, for a ΣQLTLk -formula ϑ = ∃∗¬∃∗ . . . (¬)φ, we can build an NBA of k-
exponential size accepting exactly the words satisfying ϑ: For the LTL-part (¬)φ, we
first construct an NBA of exponential size (see [25]). Existential quantification on the
NBA-level is easy as it corresponds to standard projection onto the non-quantified variables;
a quantified variable x is simply removed from the labels of the transition relation. This
introduces new non-deterministic choices between the options to take a transition requiring
a letter, i.e. a set of atomic propositions, P or a transition requiring P ∪ {x} when reading P.
The quantifier prefix contains k− 1 negations in addition to the existential quantifiers. Each
of these negations requires a complementation of the automaton constructed so far before we
can use projection again to account for the next block of quantifiers. Each complementation
increases the size by one further exponential. Hence, the procedure produces an NBA for ϑ
of k-exponential size in k-exponential time (see [22] for more details).

3 QLTL model checking in probabilistic systems

This section is devoted to proving the complexity hierarchy results in terms of the quantifier
alternation for the model-checking problem of QLTL in probabilistic systems. More precisely,
our goal is to pinpoint the complexities of the following problems, for ΠQLTLk - or ΣQLTLk -
formulas φ:

Qualitative model-checking problems:
For a Markov chain M, decide whether PrM,sinit (φ) = 1, or whether PrM,sinit (φ) > 0,
respectively.
For an MDP M, decide whether Prmax

M,sinit
(φ) = 1, whether Prmax

M,sinit
(φ) > 0, whether

Prmin
M,sinit

(φ) = 1, or whether Prmin
M,sinit

(φ) > 0, respectively.
Quantitative model-checking problems:

For a Markov chain M, compute PrM,sinit (φ). For hardness results, we consider the
decision versions whether PrM,sinit (φ) ▷◁ ϑ for a given ϑ ∈ Q and ▷◁∈ {⩽,<,>,⩾}.

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:7

For an MDP M, compute Propt
M,sinit

(φ) for opt ∈ {max, min}. For hardness results, we
consider the decision versions whether Propt

M,sinit
(φ) ▷◁ ϑ for a given ϑ ∈ Q, ▷◁∈ {⩽,<

,>,⩾}, and opt ∈ {max, min}.

We restrict our attention to QLTL-formulas in prenex normal form. While we have
seen that all QLTL-formulas are equivalent to a ΣQLTL1 -formula, the transformation from
arbitrary QLTL-formulas to ΣQLTL1 -formulas has non-elementary complexity. The lower
bound for this transformation is a direct consequence of the complexity hierarchy result
for the non-probabilistic model-checking problem mentioned above. However, there is a
polynomial-time transformation to prenex normal form for QLTL-formulas: After renaming
all quantified variables such that each quantifier quantifies a unique variable not occurring
outside the scope of this quantifier, we can pull out quantifiers using the following equivalences
for arbitrary QLTL-formula φ and ψ where ψ does not contain the atomic proposition x
and both formulas do not contain t:
1. (∃xφ)Uψ ≡ ∀t∃x((tU(¬t∧φ))∨ (tUψ)).
2. (∀xφ)Uψ ≡ ∀x(φUψ).
3. ψU(∃xφ) ≡ ∃x(ψUφ).
4. ψU(∀xφ) ≡ ∃t∀x((ψ∧ t)U(φ∧ ¬t)).
Note that in the first and last equivalence where t is quantified, only the first position where
¬t holds is important for the subsequent formulas. In this way, the quantification over t
corresponds to the quantification over positions in the semantics of the U-operator. For
Q ∈ {∃,∀}, we further have ⃝Qxφ ≡ Qx⃝ φ and moving quantifiers to the front over
Boolean connectives can be done as usual. So, we can transform a QLTL-formula to prenex
normal form in polynomial time while introducing new quantifiers to account for the implicit
quantification over positions of the U-operator.

In applications of QLTL in formal verification, however, quantified variables are mostly
used to describe possible annotations of a trace or traces of hidden variables. Hence, the
quantified traces are supposed to be constant once chosen and not to be reassigned when
evaluating subformulas on different suffixes. Thus, these formulas often are already in prenex
normal form.

Our main result concerning QLTL-model checking over probabilistic systems is the
following complexity hierarchy result:

▶ Theorem 1 (Main Result). All qualitative and quantitative model-checking problems for
ΣQLTLk and ΠQLTLk in Markov chains are k-EXPSPACE-complete and can be solved in time
polynomial in the size of the Markov chain.

All qualitative and quantitative model-checking problems for ΣQLTLk and ΠQLTLk with k ⩾ 1
in MDPs are k+ 1-EXPTIME-complete and can be solved in time polynomial in the size of
the MDP.

The upper bounds are obtained by the straight-forward construction of NBAs as described
above (Section 2.2). The main contribution hence is the proof of the lower bounds. For
Markov chains, we provide a reduction from a tiling problem that simultaneously shows
hardness for all qualitative model-checking problems (Theorem 2). We afterwards conclude
the same complexity result for all quantitative model-checking problems (Corollary 3). For
MDPs, the result requires two different hardness proofs (Theorem 4): The hardness results for
model-checking problems regarding the maximal satisfaction probability of ΠQLTLk -formulas
(or analogously the minimal satisfaction probability of ΣQLTLk -formulas) are somewhat simpler.
We encode computations of an alternating Turing machine that is k-exponentially space

CONCUR 2021

7:8 Quantified Linear Temporal Logic over Probabilistic Systems

bounded and can directly use sequences of k-exponentially many extended tape symbols
for the encoding. For the hardness proof concerning the minimal satisfaction probability of
ΠQLTLk -formulas, we have to include a binary counter of k− 1-exponential length separating
two successive tape symbols in the encoding. In the hardness proof for Markov chains,
we use a similar counter. So, the final hardness proof combines the ideas behind the first
hardness proof for MDPs and the hardness proof for Markov chains. The same complexity
results for all quantitative model-checking problems in MDPs can be concluded afterwards
(Corollary 5).

3.1 Markov chains
We first address the qualitative model-checking problems in Markov chains. We provide a
proof sketch for the hardness proof. The full proof can be found in [19].

▶ Theorem 2. For any k, all qualitative model-checking problems for ΣQLTLk and ΠQLTLk in
Markov chains are k-EXPSPACE-complete and can be solved in time polynomial in the size
of the Markov chain.

Proof sketch. The upper bounds are obtained by building NBAs of k-exponential size for
ΣQLTLk -formulas as described in Section 2. The negation of a ΠQLTLk -formula is equivalent to
a ΣQLTLk -formula of the same length. As all qualitative model-checking problems for NBAs
in Markov chains are PSPACE-complete and can be solved in time polynomial in the size of
the Markov chain [7], we obtain the upper bounds.

For the hardness results, we use a reduction from k-exponential tiling problems. We define
the following function h : N2 → N: Let h(0,n) = n for all n and h(k+1,n) = 2h(k,n) ·h(k,n)
for all k. So, h(k,n) is k-exponential in n. The following k-exponential tiling problem is
known to be k-EXPSPACE-complete [24]:

Given: a finite set of tiles T , two relations H ⊆ T2 and V ⊆ T2, an initial tile t0 ∈ T and
a final tile tf ∈ T as well as a natural number n in unary.

Question: Is there an m ∈ N such that the 2h(k−1,n) × (m+ 1)-grid {0, . . . , 2h(k−1,n) −

1}× {0, . . . ,m} can be tiled, i. e., is there a function f : {0, . . . , 2h(k−1,n) − 1}× {0, . . . ,m}→ T ,
such that:
1. the tile at position (0, 0) is the initial tile t0 and the tile at position (0,m) is the final

tile tf; in other words, f(0, 0) = t0 and f(0,m) = tf,
2. two tiles placed next to each other horizontally satisfy the relation H; more precisely, for

any 0 ⩽ i < 2h(k−1,n) − 1 and 0 ⩽ j ⩽ m, the pair (f(i, j), f(i+ 1, j)) ∈ H, and
3. two tiles placed next to each other vertically satisfy the relation V; more precisely, for

any 0 ⩽ i ⩽ 2h(k−1,n) − 1 and 0 ⩽ j < m, the pair (f(i, j), f(i, j+ 1)) ∈ V?

Given an instance of the k-exponential tiling problem, we construct a Markov chain M

and a ψ in ΠQLTLk such that PrM(ψ) = 1 iff PrM(ψ) > 0 iff there is a valid tiling. This
establishes k-EXPSPACE-hardness for both qualitative model checking problems for ΠQLTLk .
As the negation of ψ is in ΣQLTLk and k-EXPSPACE is closed under complementation, the
same result holds for ΣQLTLk .

Let T = {t0, . . . , tℓ} be the set of tiles that we also use as atomic propositions and let
{start, end, 0, 1} be further atomic propositions. We construct a simple Markov chain M,
depicted in Figure 1, that almost surely produces a concatenation of infinitely many words
from start(T ∪ {0, 1})+end that contains each of the finite words in start(T ∪ {0, 1})+end.
Some of these finite words will encode potential tilings. Namely, we encode a function
f : {0, . . . , 2h(k−1,n) − 1}× {0, . . . ,m}→ T in the word

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:9

start

t1 . . . tℓ 10

end

Figure 1 The Markov chain M.

start, f(0, 0),
h(k−1,n) steps︷ ︸︸ ︷
0, 0, 0, . . . , 0 , f(1, 0),

h(k−1,n) steps︷ ︸︸ ︷
1, 0, 0, . . . , 0 , . . . , f(2h(k−1,n) − 1, 0),

h(k−1,n) steps︷ ︸︸ ︷
1, 1, 1, . . . , 1 ,

f(0, 1), . . . ,

f(0,m),
h(k−1,n) steps︷ ︸︸ ︷
0, 0, 0, . . . , 0 , f(1,m),

h(k−1,n) steps︷ ︸︸ ︷
1, 0, 0, . . . , 0 , . . . , f(2h(k−1,n) − 1,m),

h(k−1,n) steps︷ ︸︸ ︷
1, 1, 1, . . . , 1 , end.

For a valid encoding, the blocks of h(k− 1,n) bits have to encode a correct binary counter
modulo 2h(k−1,n), where the first bit is the least significant one, starting with 0 . . . 0 after
start and ending in 1 . . . 1 before end. The encoding of the counter makes sure that indeed a
function from a rectangle {0, . . . , 2h(k−1,n) − 1}× {0, . . . ,m} for some m is encoded.

Further, we construct a ΠQLTLk -formula valid_tiling that expresses that at some point
a valid tiling is encoded in a run. Several of the conditions including the initial, final and
horizontal condition can easily be expressed. As tiles that are vertically adjacent in a tiling are
separated by h(k,n) = h(k− 1,n) · 2h(k−1,n) steps, however, we have to employ additional
ideas to express that all conditions on a valid encoding of a valid tiling are satisfied at
some point. An important ingredient for our reduction is the collection of ΣQLTLk−1 -formulas
φk−1,n(p,q) from [22]. For each n and k from N, the formula φk−1,n(p,q) holds on a word
if p and q occur exactly once and, if the position at which p occurs is i, the position at
which q occurs is i+ h(k− 1,n). In addition to the use of these formulas, we use universally
quantified propositions that mark potential violations of the conditions. To illustrate this
idea, we sketch a formula that expresses that a run of M eventually contains a finite word
starting with start and ending in end in which tiles are followed by exactly h(k− 1,n)-many
bits. The atomic proposition tile holds if the current letter encodes a tile.

∀d.
([
∀p∀q

(
φk−1,n(p,q)→ □[(d∧ tile ∧ p)→

next occurrence of tile or end not one step after q]
)]
→ ♢(start ∧ (¬(dU end))

)
.

The quantified proposition d can be used to mark any tiles for which the next tile or end
does not follow exactly h(k− 1,n) + 1 steps later. The quantified variables p and q and the
formula φk−1,n(p,q) are used to check that the markers are placed correctly, i.e., that indeed
the next occurrence of tile or end after the marked position is not exactly h(k − 1,n) + 1
steps later. If the markers d are not placed correctly, the formula holds. Otherwise, it holds
if a finite word between start and end is contained in the run in which no tile is marked

CONCUR 2021

7:10 Quantified Linear Temporal Logic over Probabilistic Systems

by d. As d is universally quantified, the formula hence holds on a run of M iff it contains
a finite word starting with start and ending in end in which tiles are followed by exactly
h(k− 1,n)-many bits. Note that φk−1,n(p,q) occurs in the scope of two negations due to
the implications while ∀p∀q occurs in the scope of one negation. So, the formula is in ΠQLTLk .

The correctness of the counter can be expressed using the same idea of marking bits that
violate the correctness of the counter with a universally quantified variable and the fact that
a bit in a binary counter changes during an increment of the counter if and only if all less
significant bits are 1. The vertical condition of the tiling is checked by using universally
quantified markers v1 and v2 that have to be placed on vertically adjacent tiles. The correct
placement of the markers is checked by stating that there exists a proposition b that encodes
a correct binary counter with h(k−1,n)-many bits that starts with 0 . . . 0 after v1 and counts
up to 1 . . . 1 right before v2. The correctness of the counter is checked as for the counter
using the bits 0 and 1. The additional existential quantification over b does not yield an
additional quantifier alternation. The resulting formula valid_tiling is in ΠQLTLk and holds
on a run of M if an encoding of a valid tiling is produced. As a run of M almost surely
contains all words in start(T ∪ {0, 1})+end, the formula valid_tiling holds with probability 1
iff it holds with positive probability iff there is a valid tiling for the given instance of the
k-exponential tiling problem. ◀

As the upper bounds are obtained via the construction of NBAs for the QLTL-formulas,
we can conclude the same results for the quantitative model-checking problems over Markov
chains.

▶ Corollary 3 (Quantitative model checking). Given a ΣQLTLk - or ΠQLTLk -formula φ and a
Markov chain M, the probability PrM(φ) can be computed in k-exponential space and in
time polynomial in the size of M. Given a rational ϑ ∈ [0, 1] and ▷◁∈ {⩽,<,>,⩾}, deciding
whether PrM(φ) ▷◁ ϑ is k-EXPSPACE-complete.

Proof. The lower bounds follow directly from the previous theorem. The upper bound
follows from the fact that, given a Markov chain M and an NBA A, the probability PrM(A)

that a word produced by M is accepted by A can be computed in time polynomial in M

[7] and in space polynomial in the total size of the input. We sketch a proof of the latter
claim: In the algorithm provided by Courcoubetis and Yannakakis in [7] to compute this
probability, an exponentially large Markov chain N is constructed from M and A. The states
of N have a polynomial representation in the size of M and A and one can compute the
transition probabilities between any two states in polynomial time. The probability PrM(A)

now equals the probability to reach a recurrent state in N – as it is called in [7], but which we
do not define here. It is only important to us that one can decide whether a state is recurrent
in polynomial space polynomial in the size of A (and polylogarithmic in the size of M) as
shown in [7]. The probability to reach a recurrent state in N can be computed by solving a
linear equation system. As transition probabilities and whether states are recurrent in N can
be computed in space polynomial in A, each entry of the matrix and vector representing
this linear equation system, which is of size exponential in A and polynomial in M, can be
computed in space polynomial in A. Using the fact that solving linear equation systems
lies in the complexity class NC and can hence be done in polylogarithmic space (see, e.g.,
[18, Section 15]) and standard results on the composition of space-bounded transductions (see,
e.g., [18, Section 8]), we can conclude that the probability PrM(A) can be computed in space
polynomial in the size of A. Applied to the k-exponentially sized NBAs for ΣQLTLk -formulas,
this result leads to the claim of the corollary. ◀

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:11

3.2 Markov decision processes
We now provide the complexity results for QLTL-model checking over MDPs.

▶ Theorem 4. Given an MDP M, a ΠQLTLk -formula φ, and opt ∈ {max, min}, deciding
whether Propt

M (φ) = 1 and deciding whether Propt
M (φ) > 0 are k+ 1-EXPTIME-complete for

any k ⩾ 1. The problems are solvable in time polynomial in the size of M.

As ΠQLTLk is not closed under negation, the model-checking problems in MDPs concerning
the maximal and minimal satisfaction probability, respectively, require different hardness
proofs. We sketch the two proof ideas in the sequel. The full proofs can be found in [19].

Proof sketch. The upper bounds are obtained via the straight-forward construction of
deterministic automata (e.g., deterministic Rabin automata; see, e.g., [2]). This requires the
determinization of the k-exponentially large NBAs for ΣQLTLk -formulas, which are computable
in k-exponential time, and leads to a k+ 1-exponential-time procedure.

For the lower bounds, first consider the problems with opt = max. We prove k + 1-
EXPTIME-hardness by encoding the computation of k-exponentially space-bounded alter-
nating Turing machines (ATM). It is well-known that the class of problems decidable by
such ATMs coincides with k+ 1-EXPTIME [5]. So, given a k-exponentially space-bounded
ATM T and an input word w, we construct an MDP M and a ΠQLTLk -formula φ such that
Prmax

M (φ) > 0 iff Prmax
M (φ) = 1 iff w is accepted by T. Recall that acceptance in an ATM

can be specified in terms of a game between a universal player choosing the next move in
universal states and an existential player choosing the next move in existential state. A word
is accepted if the existential player has a strategy that ensures that an accepting state is
reached from the initial configuration with the input word on the tape.

The idea for the reduction is to construct an MDP M in which the scheduler can produce
a sequence of (k-exponentially long) configurations of T. The sequence of configurations in
turn represents a sequence of infinitely many finite computations. The first configuration
of each computation has to be the initial configuration with w on the tape. After each
configuration, the scheduler has to specify whether the universal or existential player has to
choose the next move, or whether the computation ended and a new computation is about to
start. If it is the existential player’s turn, the scheduler chooses a move and has to construct
the successor configuration accordingly. If it is the universal player’s turn, the successor
move is specified by a random choice and again the scheduler has to construct the correct
successor configuration. The constructed MDP is sketched in Figure 2.

The ΠQLTLk -formulaφ we construct, on the one hand, expresses that the sequence produced
by the scheduler obeys all these requirements. Checking that the successor configurations
are constructed correctly is possible with the use of the ΣQLTLk -formulas φk,n(p,q) from [22]
that express that the positions at which p and q are a fixed k-exponentially large number of
steps apart. On the other hand, the formula φ expresses that all (infinitely many) encoded
computations end in an accepting state. If w is accepted by T, the scheduler can construct
correct accepting computations no matter what moves are chosen by the universal player and
so Prmax

M (φ) = 1. If w is not accepted, however, the universal player will play according to a
winning strategy in any of the encoded computations with positive probability. So, almost
surely at some point any scheduler has to violate one of the requirements or construct a
rejecting computation. In this case, Prmax

M (φ) = 0.
In contrast to the case just discussed, the statement Prmin

M (φ) = 1 is a statement about
all schedulers. So, we cannot let a scheduler construct sequences of computations anymore.
Instead, we construct an MDP M′ that randomly generates sequences that potentially encode

CONCUR 2021

7:12 Quantified Linear Temporal Logic over Probabilistic Systems

comp

step1,
zero,E

step2,
one,E

step3,
zero,U

step4,
one,U

⃝ ⃝ ⃝
⃝ ⃝

⃝ Γ ⃝
⃝ ⃝

⃝ ⃝ ⃝

Figure 2 The MDP M. The state depicted as Γ represents the behavior of each state γ ∈ Γ . I.e.
from each state, there is one action to each state in Γ with probability 1. Further, from all states in Γ ,
there are actions leading to states comp, step1 and step2 with probability 1, as well as a randomized
action (bold lines) leading to states step3 and step4 with probability 1/2 each. The labels zero and
one indicate which successor move was chosen according to which the new configuration has to be
constructed. The labels E and U indicate which player has chosen the move and are used to check
whether the successor move was indeed chosen randomly iff it is the universal player’s move.

correct computations. In the acceptance game of the given ATM, we also switch roles and let
the choices of the existential player be made randomly while the scheduler can specify which
successor move should be chosen in universal states. With positive probability, the correct
successor configuration will be generated afterwards. Hence, if the existential player has a
winning strategy, a correct accepting computation will eventually be produced randomly
with probability 1 no matter what successor moves a scheduler chooses. Otherwise, there is
a scheduler that prohibits this.

In order to express that eventually a correct accepting computation is generated in ΠQLTLk ,
however, it turns out that we cannot use the ΣQLTLk -formulas φk,n(p,q) from [22] as before.
This is in part due to the implicit existential quantification in the eventually-modality. For
this reason, we do not encode the computations simply as concatenations of configurations.
Instead, we employ the ideas that were also used in the hardness proof for Markov chains
(Theorem 2): We separate the symbols of the configurations by k − 1-exponentially long
binary counters to check that configurations have the correct length and use universally
quantified variables to mark violations to any of the requirements of a valid encoding of an
accepting computation. The blocks of the potential binary counter values are also randomly
generated as sketched in Figure 3. An existentially quantified proposition encoding a further
binary counter with k− 1-exponentially many bits is then used to compare tape cells at the
same position in two successive configurations, which are k-exponentially many steps apart

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:13

comp

step1,
zero,E

step2,
one,E

step3,
zero,U

step4,
one,U

⃝ ⃝ ⃝
⃝ ⃝

⃝ Γ ⃝
⃝ ⃝

⃝ ⃝ ⃝

0 1aux

Figure 3 The MDP M′. The behavior is probabilistic except for the choice in the state aux.
When entering the cluster of states Γ or the cluster with the two bits 0 and 1, one of the states in
the cluster is chosen randomly. Further all states in Γ have only the outgoing transition randomly
moving to 0 or 1. The state aux is only an auxiliary state for the graphical representation. That
means that in states 0 and 1 two actions are enabled. The first moving randomly to any state except
for step3; the second moving randomly to any state except for step4.

in the encoding. Under any scheduler, the resulting ΠQLTLk -formula φ holds on an execution
of M almost surely if w is accepted by T. Similar to before, each of the randomly generated
potential computations is correct with positive probability and in each of these computations
the randomly chosen moves of the existential player are in accordance with a winning strategy
with positive probability against any scheduler, which chooses the moves of the universal
player. If w is not accepted by T, however, there is a strategy for the universal player and
hence a scheduler that makes sure that no correct accepting computation is generated. In
this case, Prmin

M (φ) = 0. ◀

These results allow us to conclude that all qualitative model-checking problems for ΣQLTLk -
formulas in MDPs are k + 1-EXPTIME-complete for any k ⩾ 1, too, as the negation of a
ΣQLTLk -formula is a ΠQLTLk -formula. Furthermore, as the upper bounds are obtained via the
naive construction of deterministic automata, also the quantitative model checking problems
have the same complexity as the minimal and maximal probabilities that an execution of
an MDP is accepted by a suitable deterministic automaton (such as a deterministic Rabin
automaton) can be computed in polynomial time (for details see, e.g., [2]).

▶ Corollary 5 (Quantitative model checking). Given a ΣQLTLk - or ΠQLTLk -formula φ and an
MDP M, the probabilities Prmin

M (φ) and Prmax
M (φ) can be computed in time k+ 1-exponential

in the size of φ and polynomial in the size of M. Given a rational ϑ ∈ [0, 1], ▷◁∈ {⩽,<,>,⩾}

and opt ∈ {min, max}, deciding whether Propt
M (φ) ▷◁ ϑ is k+ 1-EXPSPACE-complete.

CONCUR 2021

7:14 Quantified Linear Temporal Logic over Probabilistic Systems

4 Trace Vacuity in Probabilistic Systems

Vacuity notions have been studied for non-probabilistic systems in order to express, roughly,
that the truth of a formula is not affected by the truth of one of its subformulae [1, 3, 16].
Among the existing definitions of vacuity in the literature, trace vacuity is the strongest.

▶ Definition 6. Let φ be an LTL-formula and ψ a subformula. Let T be a transition system.
We say that ψ does not affect φ in T if for every execution π in T:

π ⊨ ∀x.φ[ψ← x] ⇐⇒ π ⊨ ∃x.φ[ψ← x].

We say that φ holds vacuously in T if there is a subformula that does not affect φ in T.

The above definition of non-affection generalizes the one from [1] by relaxing the hypothesis
that φ holds on T. For any execution π, π ⊨ ∀x.φ[ψ ← x] ⇒ π ⊨ φ ⇒ π ⊨ ∃x.φ[ψ ← x].
We thus merely require that the three sets of executions that satisfy, ∀x.φ[ψ← x], φ, and
∃x.φ[ψ← x] respectively, coincide. Also, this generalisation allows us to naturally extend
the notions of non-affection and vacuity to probabilistic systems. In the remainder of this
section, we introduce trace vacuity for probabilistic systems, and establish tight complexity
bounds for checking probabilistic vacuity. As in the non-probabilistic case, vacuity checking
reduces to checking a ΠQLTL1 -formula. Conversely, one can reduce the qualitative model
checking of ΠQLTL1 to probabilistic vacuity.

4.1 Probabilistic trace vacuity
▶ Definition 7. Let φ be an LTL-formula and ψ a subformula. Let M be an MDP or a
Markov chain. We say that ψ does not affect φ in M iff

Prmin
M (∀x.(φ[ψ← x]↔ φ)) = 1.

We say that φ is vacuous in M if there is a subformula that does not affect φ in M.

Note that it does make sense for Markov chains and MDPs to consider that a formula is
vacuous if its satisfaction probability (under any scheduler) is not affected when replacing a
subformula, even if the global formula does not hold almost-surely. In MDPs, the definition
of non-affection generalizes the non-probabilistic definition. This is made more precise in the
following proposition. Paths in a transition system correspond to schedulers not making use
of randomization when we view a transition system as an MDP.

▶ Proposition 8. A subformula ψ does not affect a formula φ in an MDP (or a Markov chain)
M if and only if for all schedulers S, PrSM(∀x.φ[ψ← x]) = PrSM(φ) = PrSM(∃x.φ[ψ← x]).

Proof. Let us rewrite ∀x.(φ[ψ ← x] ↔ φ) as (∀x.(φ → φ[ψ ← x])) ∧ (∀x.(φ[ψ ← x] →
φ)). The latter is equivalent to (φ → ∀x.φ[ψ ← x]) ∧ (∀x.¬φ[ψ ← x] ∨ φ). Rewritten
as implications, we obtain (φ → ∀x.φ[ψ ← x]) ∧ (∃x.φ[ψ ← x] → φ). As the two
implications (φ← ∀x.φ[ψ← x]) and (∃x.φ[ψ← x]← φ) are tautologies, the claim follows
easily considering that the minimal probability in Definition 7 can be read as a universal
quantification over schedulers. ◀

▶ Example 9. We provide a short example of non-affection in Markov chains, also to
shed light on the difference with the non-probabilistic setting. Consider the Markov chain
on Fig. 4, where we assume arbitrary non-zero probabilities on edges, and the following

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:15

a b

a,b

Figure 4 A Markov chain to illustrate the notion of affection.

formulas: φ = □♢(a ∧ b) ∨ □(a ∨ b) and ψ = □(a ∨ b). Clearly enough, PrM(φ) =

PrM(∃x.φ[ψ← x]) = PrM(∀x.φ[ψ← x]) = 1 so that ψ does not affect φ, and φ is vacuous
in this Markov chain. However, if one views the graph as a transition system T, then T ⊨ φ
and T ̸⊨ ∀x.φ[ψ← x]. So, ψ affects φ.

Armoni et al. [1] observed that if ψ appears only positively in φ, for every execution π in
the transition system T then: T,π ⊨ ∀x.φ[ψ← x]⇐⇒ T,π ⊨ φ[ψ← ⊥]. As a consequence,
a pure polarity subformulas ψ does not affect φ if and only if Prmin

M (φ[ψ← ⊤]↔ φ[ψ←
⊥]) = 1. Therefore, checking whether a pure polarity subformula affects a formula reduces
to quantitative model checking of LTL formulas and can be done in PSPACE for Markov
chains and in 2-EXPTIME for MDPs.

As also argued in [1], restricting attention to subformulas with pure polarity or to consider
single occurrences of subformulas separately is insufficient for a satisfactory vacuity check.
For example, a formula like □(p → p) ≡ □(p ∨ ¬p), in which p occurs positively and
negatively, should be rendered vacuous in any system. Restricting attention to only one of
the two occurences of p, however, would in general lead to the insight that each of the two
occurrences on its own does affect the formula. Beyond pure polarity formulas, checking
affectation is harder for Markov chains. Indeed, hardness of ΠQLTL1 model checking transfers
to hardness of vacuity checking. As stated in the next theorem, for MDPs affection checking
has the same complexity as quantitative LTL model checking, whereas Markov chains exhibit
an exponential complexity blowup.

▶ Theorem 10. Checking whether a subformula ψ affects an LTL-formula φ in a Markov
chain M is EXPSPACE-complete. In MDPs, the problem is 2-EXPTIME-complete.

Proof. The upper bounds follow directly from the upper bounds of qualitative model-checking
of ΠQLTL1 in Markov chains and MDPs. For the lower bound, we first concentrate on MDPs.
We provide a reduction from the problem whether a ΠQLTL1 -formula ϑ = ∀x.φ satisfies
Prmin

M (ϑ) = 1 in an MDP M. A proof that the restriction to one quantified variable does
not influence the complexity is given in [19]. So, let M be labeled with atomic propositions
from AP. Let ϑ = ∀x.φ where φ is an LTL-formula over AP ∪ {x} with x ̸∈ AP be given.
We construct the MDP M′ by adding a new initial state s′init from which the original
initial state sinit is reached in one step with probability 1. Further, we let β be an LTL-
formula that is valid and does not occur in φ. Finally, we define φ′ to be the LTL-formula
φ′ = β∨⃝φ[x← β]. Of course, Prmin

M′,s′init
(φ′) = 1 as β is valid. We claim that β does not

affect φ′ in M′ if and only if Prmin
M (∀x.φ) = 1. The subformula β does not affect φ′ in M′ iff

Prmin
M′,s′init

(∀x.(x∨⃝φ)) = 1 by definition and the fact that β does not occur anywhere else
in φ. But Prmin

M′,s′init
(∀x.(x∨⃝φ)) = 1 holds if and only if Prmin

M′,s′init
(∀x.⃝ φ) = 1 because

the universal quantifier can choose x not to hold in the first position of any trace produced
by M′. After the first step M′ behaves exactly like M and hence Prmin

M′,s′init
(∀x.⃝φ) = 1 if

and only if Prmin
M,sinit

(∀x.φ) = 1. So, checking affection in MDPs is as hard as the respective
qualitative model-checking problem for ΠQLTL1 and hence 2-EXPTIME-complete.

CONCUR 2021

7:16 Quantified Linear Temporal Logic over Probabilistic Systems

For Markov chains, the argument goes analogously. Note that the constructed MDP
M′ is a Markov chain if M is a Markov chain. So, checking affection in Markov chains is
also as hard as the respective qualitative model-checking problem for ΠQLTL1 and hence
EXPSPACE-complete. ◀

In Markov chains, the exponential blow-up in complexity of non-affection checking
compared to LTL-model checking constitutes a major obstacle for vacuity checking. To
provide a possibility to check that a specification is not obviously faulty without such an
exponential blow-up, we turn our attention to the notion of inherent vacuity.

4.2 Inherent vacuity in probabilistic systems
Inherent vacuity for transition systems expresses whether a formula holds vacuously in every
model in which it holds [9]. Using our generalized definition, we do not restrict ourselves
to the models in which the formula holds anymore and provide an analogous definition
for probabilistic systems. As in [9], we consider two natural variants of the definition and
investigate how to check whether a formula is inherently vacuous.

▶ Definition 11. Let φ be an LTL-formula. Let C be the class of all transition systems, all
Markov chains, or all MDPs, respectively. We say that φ is inherently vacuous over C, if φ
is vacuous in all models M ∈ C. For a subformula ψ of φ we say that ψ inherently does not
affect φ over C, if for every M ∈ C, ψ does not affect φ in M. If there is a subformula that
inherently does not affect φ over C, we say that φ is uniformly inherently vacuous.

In [9], it is shown that inherent vacuity and uniform inherent vacuity coincide for
transition systems. Dropping the restriction to models in which a formula φ holds, the
results of [9] show that the notions are equivalent to the existence of a subformula ψ such
that ∀x.(φ[ψ← x]↔ φ) is valid. We prove that inherent and uniform inherent vacuity for
Markov chains and MDPs are also equivalent to this condition and hence to inherent vacuity
in transition systems. First, we show that uniform inherent vacuity coincides with inherent
vacuity.

▶ Proposition 12. Let φ be an LTL-formula and let C be the class of all Markov chains
or all MDPs. The formula φ is uniformly inherently vacuous over C if and only if it is
inherently vacuous over C.

Proof. One direction is clear. For the other direction, suppose that φ is inherently vacuous
over C, but not uniformly inherently vacuous. Hence, for each subformula ψ of φ, there is a
model Mψ ∈ C such that ψ affects φ over Mψ. Let N be the disjoint union of the models
Mψ for all subformulas ψ with an initial uniform probability distribution over the initial
states of these models. We claim that φ is not vacuous in M. For each subformula ψ, there
is a positive probability that Mψ is chosen. As there is a scheduler S (for Markov chains,
the unique scheduler) with PrSMψ

(∀x.(φ[ψ← x]↔ φ) < 1, the same holds in N. This is a
contradiction to the inherent vacuity of φ. ◀

The following proposition establishes that all variants of inherent vacuity considered
coincide:

▶ Proposition 13. Let φ be an LTL-formula and ψ a subformula. Then, ψ inherently
does not affect φ over Markov chains or MDPs, respectively, if and only if the formula
∀x.(φ↔ φ[ψ← x]) is valid.

J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:17

Proof. Only the left-to-right implication deserves a proof, and we prove the contrapositive.
Assume the formula χ = ∀x.(φ ↔ φ[ψ ← x]) is not valid. Since χ expresses a regular
property, there exists an ultimately periodic word w that violates χ. It suffices to consider
the Markov chain or MDP M that has only one path, and produces w with probability 1,
and observe that ψ does affect φ in M. ◀

As a consequence, checking inherent vacuity for probabilistic systems is as simple as in
the non-probabilistic case, and can be done in polynomial space. In particular for Markov
chains, an inherent vacuity check might be an interesting option for practical applications as
it avoids the exponential blow-up in complexity over LTL-model checking.

5 Conclusion

We determined the precise complexities of the model-checking problems for the different levels
of the quantifier alternation hierarchy of QLTL over probabilistic systems. The knowledge of
the precise complexities, in particular the established lower bounds, has the potential to serve
as the basis for hardness proofs for other questions in the formal verification of probabilistic
systems. Despite the high complexities that we obtained, efficient model checking for formulas
with few quantifier alternations might still be possible because all problems are solvable in
time polynomial in the size of the system and typically formulas are small compared to the
size of the models.

These results have been applied to the notion of trace vacuity known from the non-
probabilistic setting that we adapted to the probabilistic setting. It turned out that checking
whether a formula is affected by a subformula in a system is inter-reducible with ΠQLTL1 -model
checking. For Markov chains, our new lower bounds allowed us to conclude that affection
checking is EXPSPACE-complete and hence exponentially harder than LTL-model checking,
while the complexity of affection checking and LTL-model checking are the same in MDPs.
Furthermore, we showed that the notion of inherent vacuity – expressing that a formula is
vacuous in a class of system models – is invariant under the switch from non-probabilistic
to probabilistic models, and hence, known polynomial-space algorithms are applicable for
Markov chains and MDPs. In addition to the vacuity notions we studied here, an interesting
direction for future research is the investigation of “more probabilistic” notions of vacuity that
express that a perturbation of a subformula does not influence the satisfaction probability of
a formula in a system.

References
1 Roy Armoni, Limor Fix, Alon Flaisher, Orna Grumberg, Nir Piterman, Andreas Tiemeyer,

and Moshe Y. Vardi. Enhanced vacuity detection in linear temporal logic. In Proceedings of
the 15th International Conference on Computer Aided Verification (CAV’03), volume 2725 of
Lecture Notes in Computer Science, pages 368–380. Springer, 2003.

2 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
3 Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detection of vacuity

in temporal model checking. Formal Methods in System Design, 18(2):141–163, 2001.
4 Doron Bustan, Alon Flaisher, Orna Grumberg, Orna Kupferman, and Moshe Y. Vardi. Regular

vacuity. In Proceedings of the 13th IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods (CHARME’05), volume 3725 of Lecture
Notes in Computer Science, pages 191–206. Springer, 2005.

5 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981. doi:10.1145/322234.322243.

CONCUR 2021

https://doi.org/10.1145/322234.322243

7:18 Quantified Linear Temporal Logic over Probabilistic Systems

6 Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 2000.
7 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification.

Journal of the ACM, 42(4):857–907, 1995.
8 Bernd Finkbeiner and Leander Tentrup. Detecting unrealizability of distributed fault-tolerant

systems. Logical Methods in Computer Science, 11(3):1–31, 2015. doi:10.2168/LMCS-11(3:
12)2015.

9 Dana Fisman, Orna Kupferman, Sarai Sheinvald-Faragy, and Moshe Y. Vardi. A framework
for inherent vacuity. In Proceedings of the 4th International Haifa Verification Conference
(HVC’08), volume 5394 of Lecture Notes in Computer Science, pages 7–22. Springer, 2008.
doi:10.1007/978-3-642-01702-5_7.

10 Dov Gabbay. The declarative past and imperative future. In B. Banieqbal, H. Barringer, and
A. Pnueli, editors, Temporal Logic in Specification, pages 409–448, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg.

11 Arie Gurfinkel and Marsha Chechik. Extending extended vacuity. In Proceedings of the 5th
International Conference on Formal Methods in Computer-Aided Design (FMCAD’04), volume
3312 of Lecture Notes in Computer Science, pages 306–321. Springer, 2004.

12 Arie Gurfinkel and Marsha Chechik. How vacuous is vacuous? In Proceedings of the 10th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), pages 451–466, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

13 Walter Hussak. Serializable histories in quantified propositional temporal logic. In-
ternational Journal of Computer Mathematics, 81(10):1203–1211, 2004. doi:10.1080/
00207160412331284051.

14 Yonit Kesten and Amir Pnueli. Complete proof system for QPTL. Journal of Logic and
Computation, 12(5):701–745, 2002.

15 Orna Kupferman. Sanity checks in formal verification. In Proceedings of the 17th International
Conference on Concurrency Theory (CONCUR’06), volume 4137 of Lecture Notes in Computer
Science, pages 37–51. Springer, 2006.

16 Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model checking. Inter-
national Journal on Software Tools for Technology Transfer, 4(2):224–233, 2003.

17 François Laroussinie and Nicolas Markey. Quantified CTL: Expressiveness and Complexity.
Logical Methods in Computer Science, 10(4):1–45, 2014. doi:10.2168/LMCS-10(4:17)2014.

18 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
19 Jakob Piribauer, Christel Baier, Nathalie Bertrand, and Ocan Sankur. Quantified linear

temporal logic over probabilistic systems with an application to vacuity checking (extended
version). Technical report, TU Dresden, Dresden, Germany, 2021. See https://wwwtcs.inf.
tu-dresden.de/ALGI/PUB/CONCUR21/.

20 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, 1994.

21 A. Prasad Sistla. Theoretical Issues in the Design and Verification of Distributed Systems.
PhD thesis, Carnegie-Mellon University, 1983.

22 A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science, 49(2–3):217–237,
1987.

23 Aravinda P. Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985. doi:10.1145/3828.3837.

24 Peter van Emde Boas. The convenience of tilings. Lecture Notes in Pure and Applied
Mathematics, pages 331–363, 1997.

25 Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In Proceedings of the 1st Symposium on Logic in Computer
Science (LICS’86), pages 332–344. IEEE Computer Society Press, 1986.

26 Pierre Wolper. Temporal logic can be more expressive. Information and Control, 56(1):72–99,
1983. doi:10.1016/S0019-9958(83)80051-5.

https://doi.org/10.2168/LMCS-11(3:12)2015
https://doi.org/10.2168/LMCS-11(3:12)2015
https://doi.org/10.1007/978-3-642-01702-5_7
https://doi.org/10.1080/00207160412331284051
https://doi.org/10.1080/00207160412331284051
https://doi.org/10.2168/LMCS-10(4:17)2014
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CONCUR21/
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CONCUR21/
https://doi.org/10.1145/3828.3837
https://doi.org/10.1016/S0019-9958(83)80051-5

	1 Introduction
	2 Preliminaries
	2.1 Basic definitions
	2.2 Quantified linear temporal logic (QLTL)

	3 QLTL model checking in probabilistic systems
	3.1 Markov chains
	3.2 Markov decision processes

	4 Trace Vacuity in Probabilistic Systems
	4.1 Probabilistic trace vacuity
	4.2 Inherent vacuity in probabilistic systems

	5 Conclusion

