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Abstract 
The thermal regime of lakes and reservoirs is a major driver of their functioning.  However, water 
temperature measurements are scarce and time-series are frequently interrupted by missing data in 
many lakes and reservoirs. The aim of this paper is to assess whether satellite imagery combined 
with three-dimensional (3D) modelling can overcome this limitation. We assessed the performance 
of a 3D model (Delft3D-Flow) and compared simulated temperature to satellite data on a reservoir 
in a semi-arid region, Karaoun reservoir, Lebanon.  
Surface temperatures were retrieved from Landsat 8, atmospherically corrected using a single 
channel algorithm and adjusted with in situ measurements as a proxy of bulk temperatures. With 
very limited calibration, the model reproduced water level fluctuations, water temperature, 
stratification and mixing, with low discrepancies from measurements. Satellite temperatures were 
found to be in good agreement with observations and simulations. Satellite temperature 
distributions across the reservoir exhibited low spatial heterogeneity. The 3D model partly 
reproduced this spatial distribution of surface temperature but generally showed good ability to 
simulate the thermal regime of the reservoir with a limited data set for initial conditions and for 
hydrological and meteorological forcing, and with limited calibration. For validating 3D 
hydrodynamic models, satellite temperatures constitute a valuable source of data which are 
complementary to point measurements. Coupling satellite imagery and modelling can improve 
operational surveys of poorly monitored lakes and reservoirs, and enhance knowledge of their 
thermal functioning.  
 
Keywords: hydrodynamic model, water surface temperature, thermal remote sensing, Landsat 8, Karaoun 
Reservoir, Delft3D.  
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Introduction  
The deterioration of water quality in lakes and reservoirs has resulted in eutrophication and health 
risks for drinking water supplies. Water scarcity is also expected to be a major concern by the 
middle of the 21st century (Makarigakis and Jimenez-Cisneros, 2019), increasing current problems 
in semi-arid regions. Adaptation requires the understanding of ecosystem functioning, which is 
influenced by water temperature and thermal stratification, which acts as a barrier controlling the 
distribution of heat, nutrients and dissolved substances in the water column (Yang et al. 2016; Liu 
et al. 2019). The factors influence the chemical (Delpla et al. 2009) and biological properties 
(Sharma et al. 2007) of lakes and reservoirs, notably the spatial distribution of harmful algal 
blooms (Cyr 2017). Water surface temperature is an important indicator of lake thermal regime, 
and of its response to climate change (Adrian et al. 2009). The interest in water surface temperature 
arises from its sensitivity and responsiveness to meteorological forcing (Livingstone et al. 2001). 

During the last decade, satellite imagery has provided complementary data to in situ monitoring 
of lakes and reservoirs. Satellite remote sensing gives access to optically active constituents that 
reflect bio-physical properties, with a far larger spatial coverage than in situ monitoring. It can 
provide maps of the spatial heterogeneity of the surface layer, namely the first few micrometers 
for water temperature (skin temperature), while in situ surface temperatures (bulk temperatures) 
are typically recorded at a few tens of centimeters below the water surface (Prats et al. 2018). 
Cloud cover is one of the main limitations. 

Satellites with coarse spatial resolutions (e.g., 250 m -1 km for MODIS) have long been applied 
to large lakes to retrieve surface temperature (Reinart and Reinhold, 2008; Crosman and Horel, 
2009). High resolution multispectral sensors with decades of remote sensing images (e.g. Landsat, 
100 m) have helped to extend these techniques to medium sized lakes and reservoirs and to sub-
basins of large lakes at finer spatial coverage (Watanabe et al. 2018; Deutsch and Alameddine, 
2018; Sharaf et al. 2019a).  

To understand the thermal regime of lakes and reservoirs, water temperature in deeper layers is 
also required. Three-dimensional modelling provides a means to examine hydrodynamic and 
ecological processes taking place over long periods of time at high resolution throughout the lake 
volume (Soulignac et al. 2019). 

Coupling satellite remote sensing and hydrodynamic modelling constitutes a very promising 
approach for better understanding of lake and reservoir hydrodynamics. It has been applied to lakes 
far less than in coastal and ocean systems. It was applied in Lake Geneva for understanding 
phytoplankton distributions in the epilimnion (Soulignac et al. 2018), and in a large tropical 
hydroelectric reservoir, Intumbiara Reservoir, Brazil, for investigating the impacts of winter cold 
front passages on the heat balance and diurnal mixed layer dynamics (Curtarelli et al. 2014). It has 
also been used for validating simulated surface temperature in a very large and shallow lake, Lake 
Poyang, China (Li et al. 2017) and in a small lake, Lake Rotoehu, New Zealand (Allan et al. 2016). 
Satellite images have been also assimilated in 3D hydrodynamic models of large lakes, for example 
Lake Geneva (Baracchini et al. 2020) and Lake Erie (Ye et al. 2020) as well as  medium-sized 
reservoirs, for example Eagle Creek reservoir (Javaheri et al. 2016).   

In this context, the aim of this paper is to assess whether satellite imagery combined with 3D 
modelling can enhance the understanding of the thermal regime of poorly monitored reservoirs. 
For this purpose, the performance of a 3D model was first assessed and the simulated temperature 
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validated by comparison to satellite data, on a reservoir in a semi-arid region, Karaoun reservoir, 
Lebanon.  

Materials and methods 

Study site 
The largest freshwater body in Lebanon, Karaoun Reservoir (Fig. 1, 33°34’N, 35°41’E), is a 
relatively deep, monomictic, eutrophic lake and is one of the few that are regularly monitored in 
the Middle East. It is located in the Bekaa valley in Lebanon. It has a surface area of 12 km2 at full 
capacity (859 m above sea level) with a maximum depth of 60 m and a mean depth of 19 m (Fadel 
et al. 2014). It has large fluctuations in the water level (~ 25 m in a year), mainly due to the 
withdrawal at 11 m elevation above the lake bottom. Karaoun Reservoir is refilled annually, in 
autumn and winter, by the inflow from the only tributary, the Litani River. During the dry season, 
the reservoir stratifies continuously between May and August. The thermal stratification usually 
breaks down in September as a result of vertical mixing due to air cooling and higher inflows.  

Karaoun Reservoir is an important resource for hydropower and irrigation, and may be used in the 
future for drinking water production. During the last decade, regular in situ monitoring revealed 
declining water quality, including persistent toxic cyanobacterial blooms, mainly Microcystis 
aeruginosa and Chrysosporum ovalisporum (Fadel et al. 2015; Fadel and Slim 2018, Fadel et al. 
2019). These blooms currently limit water usage to hydropower production. Monitoring and 
understanding the reservoir thermal regime and the resulting ecological status will help define 
adequate management strategies. 

 

Figure 1: Karaoun Reservoir location (within box, left-hand side) and contour at full capacity, with monitoring sites SD near the 
dam, SM in the middle of the reservoir and SR near the Litani River inlet (right-hand side). 

 

In situ data 
The performance of the 3D model Delft3D-Flow to simulate the thermal regime was first 
investigated with in situ measurements. In parallel, water surface temperatures were retrieved from 
Band 10 of the thermal infrared sensor onboard Landsat 8 and adjusted with in situ measurements. 
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The spatial distribution and time evolution of surface temperature observed by the satellite and 
simulated by the model were compared.    

Subsurface (0.2 m depth) water temperature measurements acquired in 2017 were used to validate 
values obtained from remote sensing. For the modelling, in addition to water temperature 
measurements, input data included water level, inflow rate and withdrawal (Fig. 2) and 
meteorological data (Fig. 3) collected in 2012 and 2017. Daily inflow, withdrawal and water level 
measurements were collected from the Litani River Authority (Fig. 2).  
 

 

Figure 2: Inflow and outflow rates at Karaoun Reservoir in 2012 and 2017. Data were available only until October in 2017. 
Period between red lines indicates the simulation periods. 

 

Figure 3: Meteorological conditions in 2012 and 2017: daily solar radiation, air temperature, wind speed, relative humidity and 
precipitation. Red lines indicate simulation periods. 
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Vertical profiles of water temperature were recorded with a thermistor chain (Starmon sensors in 
2012, lost and replaced by HOBO sensors in 2017, with 0.05 and 0.5 °C accuracy respectively) at 
3 locations in the reservoir, SD near the dam, SM in the middle and SR near the Litani River inlet 
(Fig. 1). Data were acquired hourly at different depths; at 1, 4, 7, 10, 13 and 16 m at SD in 2012, 
at 0.2, 5, 10 and 15 m at SR and SM and at 0.2 m at SD in 2017 (Fig. 1). The deeper sensors were 
progressively removed while the water level decreased, in order to avoid contact with the reservoir 
bottom. Transparency was measured monthly using a Secchi disk, each time coinciding with a 
satellite overpass in 2017.  

Meteorological data (solar radiation, wind speed and direction, relative humidity, air temperature 
and rainfall) at the Tal Amara station located in the Bekaa valley, 40 km north of Karaoun 
Reservoir and at a slightly higher altitude of 905 m, were provided by the Lebanese Agricultural 
Research Institute (Fig. 1). These were used at a daily time step in 2012 and at an hourly time step 
in 2017 (Fig. 3). The cloud cover, which is often negligible during the summer season in Karaoun 
catchment, was set to zero. 

Model description and configuration 
Delft3D-Flow, version 4.01.01.rc.03 (Deltares 2013), was used to simulate the hydrodynamics of 
Karaoun Reservoir. Delft3D-Flow has been proven to simulate well the thermal regime, the 
hydrodynamics and the response to climate change of large lakes (Wahl and Peeters, 2014), 
shallow lakes (Soulignac et al. 2017) and reservoirs (Chanudet et al. 2012). The model was 
configured to run in hydrostatic mode. The model solves the Reynolds-averaged Navier-Stokes 
equations for an incompressible fluid with the Boussinesq approximation. The unsteady shallow 
water equations include those for continuity, horizontal momentum and heat transport.  

The bathymetry of Karaoun Reservoir was constructed with water contours derived from satellite 
images and the water level measurements provided by the reservoir manager. Water contours were 
extracted from several Landsat images at dates with different water levels (at the maximum level, 
and 13.5 m and 17.44 m below the maximum level) (Supplementary material). 

The horizontal surface of the Karaoun Reservoir was meshed with 3177 Cartesian grid cells of 50 
m x 50 m using the Z-grid model. The layer thickness was 0.2 m, except for the 15 lower layers 
with a coarser resolution of 3 m in order to limit computation time. Active mesh layers changed 
with the water level according to the bathymetry of the reservoir.  

The model was forced with the solar radiation, wind speed and direction, rainfall, air temperature 
and humidity, and with the inflow and outflow rates described previously. The depth-averaged 
water temperature measured at SR was used as inflow temperature.  

The ocean heat flux module was used to calculate a surface heat budget. The latent and sensible 
heat fluxes due to forced and free convection are parameterized with the values of the Stanton and 
Dalton numbers recommended by the model authors (Deltares 2013). The computational time step 
was set to 1 min and the Courant-Friedrichs-Lewy condition was respected, with a maximum value 
of the Courant number (horizontal velocity times time step divided by horizontal grid size) of 6. 
The vertical eddy viscosity and diffusivity were calculated using the k-ε turbulence model where k 
is the turbulent kinetic energy and ε the energy dissipation. In the horizontal and vertical directions, 
the eddy viscosities are defined by: 
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                                                                              �� = �� + ��
����                                                                             (1)  

                                                                              �� = ���� + ���                                                                             (2) 
 

where �� is the horizontal eddy viscosity (m2 s-1), �� the vertical eddy viscosity, ��
���� the 

background horizontal eddy viscosity, ���� the kinematic viscosity and ��� the eddy viscosity 
computed by the k-ε turbulence closure model.  In the horizontal and vertical directions, the eddy 
diffusivities are respectively defined by: 
 
                                                                            �� = �� + ��

����                                                                             (3) 
                                                                           �� = ���� ����⁄ + ���                                                                   (4) 

 
With �� the horizontal eddy diffusivity (m2 s-1), �� the vertical eddy diffusivity, ��

���� the 
background horizontal eddy diffusivity, ���� the Prandtl-Schmidt number (0.7) and ��� the eddy 
diffusivity computed by the turbulence model.  

Background terms ��
���� and ��

���� were first computed by the 2D horizontal large eddy simulation 
module embedded in Delft3D as the averages of the 2D eddy viscosity and diffusivity over the 
whole simulation domain and over the calibration period (0.1 m2 s-1 for both). They were then used 
as uniform background values for 3D simulations. 

The wind drag coefficient was assigned a value of 0.0015. This value is close to the value adopted 
in most modelling studies, e.g. 0.0013 and 0.0019 in the 1D model Simstrat for Lake Zurich and 
Lake Constance (Peeters et al. 2002; Wahl and Peeters, 2014), 0.0018 in a 1D model for Lake 
Bourget (Vinçon-Leite et al., 2014), 0.0015 in Delft3D-Flow for shallow Lake Créteil (Soulignac 
et al. 2017) and is consistent with the values expected in the wind speed range 1-5 m s-1 (Wüest 
and Lorke, 2003). The bottom roughness was computed with the Chézy formulation, with the 
default parameter value of 65 m0.5 s-1; the vertical wall roughness was neglected.   
 
Amongst the model parameters, only the Secchi depth was adjusted, focusing on epilimnion 
temperatures from satellite images. The calibrated values, 2.5 m in 2012 and 1.7 m in 2017 are 
within the range of measured values which ranged between 1.5 and 3 m in 2012 (n = 12) and 
between 1 and 1.7 m in 2017 (n = 14).                       

Model simulations 
Simulations started on July 1 2012 and May 12 2017, the dates of the first measuring campaigns, 
and ended on November 21 2012 and September 18 2017, the dates of the last available 
measurements. The model was run with the following initial conditions:  the measured water level 
water, current velocities set to zero and horizontally uniform but vertically stratified water 
temperature. To do so, temperature profiles measured at the first day of each simulation were 
averaged depth by depth over the monitoring sites. Since temperature was not measured in the 
deepest part of the reservoir, the value measured at greatest depth was used to complete this initial 
profile down to the bottom of the reservoir.  
 
The model performance was assessed by comparing measurements and model simulations of water 
level and of water temperature profiles at the three monitoring sites. Temperatures simulated at 
cell centers at fixed elevations were linearly interpolated at the elevations of buoy sensors which 
decreased during the reservoir drawdown. The Root Mean Square Error (RMSE), the Mean 
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Absolute Percent Error (MAPE) and the Mean Absolute Error (MAE) were used as indicators. 
They were calculated for each depth over the simulation periods and can be defined as:  

                                                             ���� = �∑ �����,� ��� ����,��
��

���

�
                                                         (5) 

 

                                                           ���� =
100

�
� �

����,� ��� ����,�

��� ����,�
�

�

���

                                                           (6) 

                                                         ��� =
1

�
������,� ��� ����,��                                                                       (7)

�

���

 

where ���� and ��� ���� are vectors of simulated and measured water temperatures.  

Satellite thermal data and successive corrections 
As described by Sharaf et al. (2019b), Band 10 of the most recent Landsat 8 Thermal Infra-Red 
Sensor (TIRS) was used to retrieve the water surface temperature of Karaoun Reservoir in 2017. 
Nine images were acquired between April 26 and September 1 2017 (at 11:10 h. local time). All 
pixels crossing the reservoir shoreline were discarded. The images were corrected twice: as 
detailed below and the generalized single-channel algorithm (SC) was used for the atmospheric 
correction of temperatures (Jiménez-Muñoz et al. 2014), without any calibration. Following 
Javaheri et al. (2016), these skin temperatures were adjusted by linear regression with bulk 
temperatures so that satellite and model temperatures could be compared for a second validation 
of the model with satellite-retrieved temperatures.  

The inputs of the generalized single-channel algorithm include the atmospheric water vapor 
content and water surface emissivity (�). The algorithm retrieves surface temperature 
(���������� in �) using the following general equation:  

                                                ���������� = �(���(������ + ��) + ��) + �                                                        (8)                                                                                    

where ��, �� and �� are functions of atmospheric transmissivity and upwelling and downwelling 
atmospheric radiances, and are approximated with a polynomial form of the water vapor content;  
���� is the at-sensor radiance; � and � are two parameters dependent on at-sensor temperature. 
Parameter values change for each satellite sensor. To limit errors,  applying the algorithm is 
recommended when the atmospheric water vapor content is lower than 3 g cm-2, which is the case 
at Karaoun Reservoir during the simulation periods. The algorithm was previously validated for 
Karaoun reservoir for 2016 and 2017 bulk temperature measurements, with parameter values 
adapted for Landsat 8 TIRS (Sharaf et al. 2019b) and water vapor content data obtained from the 
reanalysis dataset of the European Centre for Medium-Range Weather Forecasts (Dee et al. 2011).  

We used the linear regression of bulk temperature measurements versus atmospherically-corrected 
satellite skin temperatures to further correct satellite images acquired in 2017. We extracted 21 
water surface temperatures measured at 0.2 m depth at the three monitoring sites (SR, SM and SD) 

during satellite overpasses. The corresponding atmospherically corrected satellite-retrieved 
temperatures were averaged over the four 30 m resampled Landsat 8 pixels around the monitoring 
site. The linear regression was also used to generate water surface temperature maps. Each map 
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was compared with the map of modeled surface temperatures at the time of satellite overpass, 
based on the mean and the standard deviation of the spatial distribution and on anomaly maps.    

Results 
The model is validated in 2 steps. The first step focused on the performance of the model for 
simulating the evolution of both the water level and the vertical temperature profile. The second 
step detailed the results of the correction of satellite temperatures and the comparison of surface 
temperature heterogeneities in model simulations and in satellite maps.  

Validation of the hydrodynamic model with field measurements 
The performance of the Delft3D-Flow model was validated by comparing measurements and 
simulations of the water level and of the water temperature profile at the 3 monitoring sites.   
 

Water level fluctuations 
Time series of measured and simulated water levels in 2012 and 2017 are shown in Fig. 4a and b. 
The study periods, from 1 July 2012 to 21 November 2012 and from 12 May 2017 to 18 September 
2017, are marked by very low inflow rates from the Litani River, especially in 2017, and by 
considerable drawdowns in the water level, 15 m in 2012 and 8 m in 2017 (Fig. 2). The comparison 
between model results and measurements of water level (Fig. 4) shows that the model reproduced 
very well the general drawdown in the water level at the time of the study, with a MAE and a 
RMSE smaller than 0.2 and 0.3 m respectively, corresponding to less than 2% (MAPE) of the 
water depth. 
 

 

Figure 4: Daily averaged model results and measurements of the water level in (a) 2012 and (b) 2017. Date format is day/month. 

 

Water temperature vertical profiles and thermal stratification 
Simulations of water temperature in 2012 and 2017 were undertaken under thermally stratified 
conditions, except in October and November of 2012 when the reservoir was mixed. Fig. 5 
represents simulated and measured water temperature contours for sites SD in 2012, and for SR and 
SM in 2017. The corresponding difference between simulated and measured water temperatures is 
shown in Fig. 6. A comparison in space and time is only possible at point SM in 2017, with 
measurements covering the simulation period and depths down to 15 m. The Delft3D-Flow model 
predicted well the vertical profiles of water temperature, the establishment of thermal stratification, 
and partial and full mixings with small discrepancies. In July 2017, the model overestimated 
temperature in surface layers by up to 4 °C in early July but MAE is 0.5 °C over the whole 
simulation period (Table 1). At site SD in July 2012, the overestimation occurred both at the surface 
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and at the thermocline. For both years, the MAE and the RMSE do not exceed 2oC at all depths at 
the three monitoring sites (Table 1). The relative errors (MAPE) of epilimnion temperature do not 
exceed 5%.  
 

 

Figure 5: Daily averaged simulated (a, c, e) and measured (b, d, f) water temperature at sites SD in 2012 and SR and SM in 2017. 
Measurements at fixed depths were linearly interpolated. The jump in the maximum depth of measurements corresponds to each 
time the deeper sensors were removed when they approached the sediment (b and f). At each site, the lower limit of the vertical 
scale corresponds to the sediment. Date format is day / month. 

 

Figure 6: Differences between simulated and measured temperatures at sites (a) SD in 2012, and (b) SM in 2017. Date format is 
day/month. 

 
  



10 
 

Table 1: Simulation performance indicators for the water temperature at the different depths at the 3 monitoring sites. The indicators 
were calculated with hourly values over the periods shown in row label. 

 2012  

 Period 1 Jul to 21 Nov(n = 3433 ) 1 Jul to 27 Aug(n = 1369) 
SD Depth (m) 1 4 7 10 13 16 

RMSE (°C) 0.9 0.9 0.6 0.5 1.0 1.9 
MAPE (%) 2.5 2.2 1.8 1.8 3.7 7.5 
MAE (°C) 0.6 0.5 0.4 0.4 0.9 1.7 

 2017  
 Period 12 May to 30 Jun(n = 1177)  

SR Depth (m) 0.2 5 10 15   
RMSE (°C) 0.7 0.7 1.2 0.9   
MAPE (%) 2.3 2.2 5.0 5.1   
MAE (°C) 0.6 0.5 1.0 0.7   

 Period 12 May to 18 Sep(n = 3097)  
SM Depth (m) 0.2 5 10 15   

RMSE (°C) 0.8 0.5 0.6 1.2   
MAPE (%) 1.9 1.5 2.5 5.0   
MAE (°C) 0.5 0.3 0.6 1.1   

SD Depth (m) 0.2      
 RMSE (°C) 1.1      
 MAPE (%) 2.8      
 MAE (°C) 0.7      

 
Thermal stratification was established between June and September of 2012 and 2017. It persisted 
till the end of September with a thermocline established between 5 and 15 m. The maximum 
temperature difference between the subsurface and the top of the hypolimnion was of 10 °C in 
2012 and 16 °C in 2017. The model represented well this behavior, including the maximum 
temperature difference of 11.9 °C in 2012 and 14.7 °C in 2017. Based on these results, the model 
is considered to have a satisfactory performance and simulated surface temperatures can be further 
compared to satellite images. 
 

Validation of the hydrodynamic model with satellite images 
Efficiency of the correction of satellite skin temperature with measured sub-surface temperature 
After atmospheric correction, satellite surface temperatures were compared to measured 
temperatures at 0.2 m depth at the three monitoring points and on eight dates. The statistical 
measurements indicate a good performance of the atmospheric correction algorithm with r = 0.97 
and RMSE = 0.6 °C (n = 21). The water vapor content remained in the range where the algorithm 
performs best, below 3 g cm-2. The following linear regression equation was derived between 
satellite and in situ sub-surface temperatures. 

                                                           ����� = 0.793���������� + 4.95                                                                        (9) 

After the correction of skin satellite temperatures with this linear regression, they were used as a 
proxy of surface bulk temperatures for comparison for the hydrodynamic model. The temporal 
evolution of these corrected satellite temperatures fits well with measured temperatures, as shown 
in Fig. 7a-c. Considerable discrepancies between satellite values and measurements only occurred 
on 16/08/2017, by around 2 °C.  
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Figure 7: Surface temperature derived from Landsat 8, in situ measurements and the Delft3D-Flow model for sites (a) SR, (b) SM  
and (c) SD on dates of Landsat 8 overpasses in 2017 at Karaoun Reservoir. (d) Means (dot) and standard deviations (SD, bar) of 
model simulations and of satellite temperatures, after atmospheric correction and adjustment with measurements. Date format is 
day / month.  

 
  

Analysis of temperature at the reservoir surface in satellite and model maps 
Surface temperature maps were derived from corrected satellite data and from model simulations 
in 2017 on dates of Landsat 8 overpasses (Fig. 8, Fig. 9). The surface mean and the standard 
deviation of temperature for the model and satellite maps for each overpass are also shown in Fig. 
7d. Satellite maps showed the expected seasonal variations in water temperature. Surface 
temperature increased gradually during the summer season with highest values occurring in July 
(Fig. 8 and 7d). The same evolution was also observed in the maps of simulated surface 
temperatures (Fig. 9 and 7d).   

In order to analyze the surface temperature patterns in 2017, anomaly maps were plotted based, 
for each map, on the differences of each pixel temperature from the surface average as temperature 
reference (Fig. 10). For each satellite overpass, the anomaly maps are presented for model 
simulations and for corrected satellite temperature. Satellite maps show small spatial 
heterogeneities, close to the sensor resolution. The standard deviation of temperature is narrower 
in the model than in the satellite images, typically by around one-third (Fig. 7d). Warm waters are 
mostly located in the littoral zones. An east-west gradient appears on 12/05, 13/06 and 31/07, a 
south-north gradient on 28/05, 15/07 and 16/08, and warmer littoral zones around the lake on 29/06 
and 01/09/2017. Model maps exhibit a south-north gradient from 28/05 to 31/07. A slight West-
East gradient may be seen on 13/06, and from 31/07 to 01/09, in a direction opposite to that on 
satellite maps for the 2 former dates.  
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Figure 8: Landsat 8 maps of water surface temperature in 2017, after atmospheric correction and adjustment with bulk 
measurements. Markers correspond to in situ measurements at sites SR, SM and SD. The colors of the markers correspond to the 
temperature values shown in the legend. The mean and standard deviation (SD) of surface temperature at the reservoir are indicated 
for each map. Date format is day/month. 

 

Figure 9: Water surface temperature maps generated from model simulations in 2017 on dates of Landsat 8 overpasses. Markers 
correspond to in situ measurements at sites SR, SM and SD. The colors of the markers correspond to the temperature values shown 
in the legend. Date format is day/month. 
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Figure 10: Temperature anomaly maps showing difference of the average value on each date for simulated (right) and corrected 
satellite surface temperature (atmospheric correction and adjustment with bulk measurements, left) in 2017. The 12/05 model map 
which corresponds to the horizontally uniform initial conditions of the model, does not show any heterogeneity. Date format is 
day/month.  

Discussion 
Hydrodynamic modelling has seldom been applied to reservoirs with considerable water level 
fluctuations corresponding to wet and dry seasons in a semi-arid climate (Ma et al. 2008). In this 
section the performance of the hydrodynamic model, the agreement between satellite and 
measured temperatures and the temperature spatial distribution in model and satellite maps are 
discussed. 

Model simulations and in situ measurements 

Reproduction of the water level fluctuations with a satellite reconstructed bathymetry  
At Karaoun Reservoir, the Delft3D-Flow model simulated the water level drawdown from July 01 
to November 21 2012 and from May 12 to September 18 2017. The RMSEs were of 0.2 m for a 
15 m decrease in 2012 (n = 33) and 0.1 m for an 8 m decrease in 2017 (n = 130), i.e. below 2% 
absolute error. The discrepancy during fall 2012 can be attributed to the more imprecise 
bathymetry in the lower part of the reservoir (Appendix). Applying the one-dimensional vertical 
(1DV) model DYRESM to Karaoun Reservoir, a RMSE around 0.5 m for a level variation of 25 
m (2% error) was obtained for the entire years 2010, 2011 and 2012 (Fadel et al. 2017).  Applying 
another 1DV model, the General Lake Model (GLM) to Serra Azul Reservoir in Brazil from 2011 
to 2016, a RMSE of 0.74 m (n = 1997) for a level variation of 22 m (3% error) was obtained 
(Soares et al. 2019). This demonstrates that the Delft3D-Flow model represents very well the large 
water level drawdown in reservoirs, here in a Mediterranean climate context. This is all the more 
important since large fluctuations in the water level strongly influence the thermal regime of 
reservoirs. These include changes in mixing and stratification (Soares et al. 2019), and 
consequently in the water quality in reservoirs (Wang et al. 2012). Deep withdrawals at Sejnan 
Reservoir (Tunisia) weakened the thermal stratification, increased the thickness of the 
metalimnion and intensified the hypoxia (Zouabi-Aloui et al. 2015). A decrease in the water level 
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by 11 m between July and October at Arancio reservoir (Italy, maximum depth of 30 m) caused 
the elimination of the thermocline in mid-summer (Naselli-Flores and Barone, 2003). Therefore, 
obtaining a good model representation of the water level is crucial to accurately capture the thermal 
behavior of reservoirs.  

Reproduction of water thermal stratification with limited calibration  
The 3D hydrodynamic model successfully reproduced the thermal regime exhibited by high 
frequency measurements (30 min) at Karaoun Reservoir. The model was able to capture the strong 
thermal stratification in summer, a period of great interest since it features intense blooms of 
cyanobacteria. During this period in 2012 and 2017, wind speeds were low and did not exceed 
5 m s-1 (Fig. 3) thus allowing the persistence of the thermal stratification. As withdrawals occur 11 
m above the reservoir bottom, they did not erode the thermal stratification. Temperatures were 
overestimated in the epilimnion for 2012 and 2017 (Fig. 4), as was already observed for 2012 with 
the one-dimensional model DYRESM (Fadel et al. 2017). Overall, the model simulated well water 
temperature at different depths during these stratified conditions.  
 
In the horizontal dimension, simulated temperatures are more homogeneous than measurements 
(Fig. 4c-f). The model temperature overestimation in July, in surface layers (Fig. 6a-c), may be 
due to temporary meteorological differences between the reservoir and the 40-km distant weather 
station. The measured variability of subsurface temperature is higher at point SD than at points SM 
and SR, whereas it is more spatially homogeneous in the model (Fig.6a-c). Part of measured 
variability can be explained by the low accuracy of the temperature sensors used in 2017 (around 
0.5 °C). But the most probable reason for the discrepancy is likely to be the horizontally uniform 
meteorological forcing in the model.  An alternative would be to use a weather reanalysis like the 
ERA interim dataset of the European Centre for Medium-Range Weather Forecasts, but its 
resolution (80 km with a 12 h time step) is not sufficient compared with, for example, COSMO-1 
reanalysis (1.1 km and hourly) used for Lake Geneva by Baracchini et al. (2020).  
 
Even if the horizontal surface temperature heterogeneity is not fully represented, the errors over 
the vertical profiles, at each measurement site are rather low. RMSEs ranged between 0.5 and 1.1 
°C in the epilimnion (0.2 – 7 m) and between 0.5 and 1.9 °C in the metalimnion (10 – 16 m). These 
values are comparable to the results of other 3D hydrodynamic models, e.g., 0.6 to 3.9 °C for 
surface temperatures and 0.9 to 5.3 °C for bottom temperatures in Alqueva reservoir, Portugal, 
with the RMA10 model (Lindim et al. 2011). The largest temperature deviations occur at the 
surface and at the thermocline (Table 1 and Fig. 5). They may be attributed to the constant 
calibrated value for the Secchi depth, and may not be representative of periods of low transparency 
during phytoplankton blooms. The Secchi depth calibration is a compromise considered to yield 
acceptable results over the whole epilimnion. The temperature discrepancies are comparable to 
other results obtained with the same model, in Lake Constance (Wahl and Peeters, 2014) and in 
Nam Theun Reservoir, Laos (Chanudet et al. 2012). Our results were obtained with limited 
calibration and without local weather data, which shows that three-dimensional hydrodynamic 
models need not be reserved to lakes with abundant model input and calibration data. 

Landsat 8 water surface temperature 
At Karaoun Reservoir, satellite surface temperatures after atmospheric correction with the single-
channel algorithm (Jiménez-Muñoz et al. 2014) match well with measurements (Fig. 8). This 
shows that the algorithm is reliable for deriving surface temperature. The underestimate by around 
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2 °C on August 16 2017 may come from an inaccurate water content that likely affected the 
atmospheric correction. The values of the statistical indicators are comparable with those found in 
other studies. In Karaoun Reservoir, the RMSE of 0.6 °C (n = 21) is considered acceptable 
compared with 1.2 °C (n = 27) for Embalse del Rio Tercero reservoir, Argentina (Lamaro et al. 
2013) and with 1.7 °C (n = 14) for Bimont and Bariousses Reservoirs, France (Simon et al. 2014). 
The single-channel algorithm provides valuable additional data when in situ measurements are not 
available, especially in regions where data are scarce.   

Among the error sources in surface temperature retrieval, the main one is likely to be the difference 
between bulk and skin temperature (Prats et al. 2018). At Karaoun Reservoir, bulk temperature 
was measured at 20 cm below the surface. In the literature,  bulk temperatures are usually measured 
over depths ranging from a few centimeters to several meters, depending upon the depth of the 
surface mixed layer (Schmidt et al. 2018). At least during morning overpasses, bulk water 
temperatures can be considered representative of skin water temperatures (Schneider and Mauser 
1996; Huang et al. 2017). In this work, in order to obtain a proxy of bulk temperatures, skin 
temperatures were adjusted with bulk measurements with a linear regression, for a more 
representative comparison with model results.       

Spatial distribution of surface temperature  
The horizontal distribution of satellite temperatures in Karaoun Reservoir was shown to be partly 
reproduced by the model. Both model and satellite maps displayed relatively low horizontal 
heterogeneities, typically < 0.5 °C. In satellite maps at Karaoun Reservoir, temperatures are often 
slightly higher in the littoral zone.  All satellite images correspond to periods in summer and 
autumn when the relatively low observed wind speeds (<4 m s-1) cannot induce internal waves nor 
upwellings, nor the subsequent surface temperature gradients. The same way, the low measured 
inflows in the dry season cannot modify surface temperature close to the river mouth. Lower 
heterogeneity in simulated temperature maps than in satellite maps has been observed by Allan et 
al. (2016) who compared 3D ELCOM simulations to Landsat 7 images on Lake Rotoehu in New 
Zealand. The authors interpreted the differences as partly due to the quality of the meteorological 
forcing, especially air temperature and wind speed and direction. In Karaoun Reservoir, located in 
a relatively narrow valley, the low simulated heterogeneity probably originates also from the 
horizontally uniform meteorological forcing from the distant weather station.  

Conclusion 
The thermal functioning of lakes and reservoirs has a significant impact on water quality and 
ecological processes. In reservoirs, hydrodynamics presents specific patterns related to advection 
processes. In Mediterranean regions, there may also be large variability of the hydrological regime, 
which results in high water level variation and concomitant effects on hydrodynamics. In this 
paper, we assessed whether satellite imagery combined with three-dimensional modelling can 
provide reliable information about the thermal regime of poorly monitored reservoirs. The model 
showed its ability to simulate the thermal regime of a semi-arid reservoir with a limited data set 
for initial conditions and hydrological and meteorological forcing and for the satellite-
reconstructed bathymetry. Simulated, measured and satellite temperatures were nevertheless in 
good agreement. Our results demonstrate the potential of coupling in situ, satellite and modelling 
results for an operational survey of lakes and reservoirs worldwide, including those that are poorly 
monitored. For validating 3D hydrodynamic models, satellite temperatures constitute a valuable 
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source of data complementary to in situ point measurements, which may be often sparse or 
challenging to acquire.  This validation is mandatory before performing biogeochemical 
simulations and achieving a comprehensive overview of ecosystem biogeochemical processes. 
The combination of limited in situ monitoring, remote sensing and modelling, currently principally 
applied to coastal and ocean dynamics at large space and time scales, could be applied, after the 
validation of the approach, to longer periods to examine interannual variability and long–term 
trends. It also paves the way for prospective simulations of the thermal and hydrodynamic 
processes driving lake and reservoir ecosystems under climate change forcing.  
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Supplementary data: Bathymetry construction 
The water contours used for the construction of the bathymetry of Karaoun Reservoir were 
extracted from three Landsat images at the maximum water level and at 13.5 m and 17.44 m below 
the maximum water level, corresponding respectively to 859, 845.5 and 842 m above sea level 
(Fig. S1). It was necessary to complete this information to describe the lowest part of the reservoir. 
A straight line was added, linking the river inlet on the lowest contour and the deepest point of the 
reservoir (60 m below the maximum level). The contours and this line were interpolated to form 
the full bathymetry. 
 
 

 

Figure S1: Water contours and bathymetry of Karaoun Reservoir. 
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