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High-resolution data from the large-eddy simulation of the atmospheric boundary layer
(ABL) over a vegetation canopy are used to investigate the interaction between the
most energetic large-scale structures from the ABL and the smaller scales from the
near-canopy region. First, evidence of amplitude modulation (AM) involving the three
velocity components is demonstrated. A multi-scale analysis of the transport equation of
both the turbulent kinetic energy (TKE) and Reynolds shear stress (RSS) is then performed
using a multi-level filtering procedure. It is found that, on average, in the investigated
region, large scales are a source of TKE for the small scales (e.g. forward scatter of TKE)
through nonlinear interscale transfer (TL

r ) with a maximum at canopy top while they are

a sink via turbulent transport (TL
t ). Close to the canopy, the small-scale RSS transport

behaves the same while, above the roughness sublayer, TL
r and TL

t switch roles showing the
existence of RSS backscatter. The standard deviation of the transfer terms shows that there
are intense instantaneous forward and backscatter of both TKE and RSS via all the transfer
terms. It is therefore demonstrated that there is a two-way coupling between the ABL and
the near-canopy scales, the well-known top-down mechanism through TKE transfer being
complemented by a bottom-up feedback through RSS transfer. This analysis is extended
to several stability regimes, confirming the above conclusions and showing the increasing
role of the large-scale wall-normal component in AM and TKE or RSS transfers when the
flow becomes buoyancy driven.
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1. Introduction

Over the past decades, coherent structures in wall-bounded turbulent flows ranging from

low Reynolds number flat, smooth-wall boundary layers to the atmospheric boundary layer
(ABL), have been the focus of numerous studies and have been recognized as being major
contributors to the turbulent transfer of momentum, heat and mass (Marusic et al. 2010b;
Smits, McKeon & Marusic 2011). Identified as organized motions that are persistent in
time and space, various types of coherent structures with different origin, lifecycle, scales
and characteristics have been evidenced, depending on the Reynolds number of the flow,
the distance from the wall, the wall roughness, the presence of a pressure gradient or the
stability regime of the flow if the ABL is considered. However, even if they share common
features and that a consensus has emerged for smooth-wall-bounded flows such as pipe
flows, channel flows or flat-plate boundary layers (Smits et al. 2011), their interaction
and the associated mechanisms remain unclear. On the basis of the recent advances
achieved for smooth-wall-bounded flows, the main objective of the present contribution
is to investigate the interaction between the lower-atmosphere and vegetation canopy flow,
a configuration in which the presence of the canopy significantly changes the nature of
the coherent structures in the near-wall region (Finnigan 2000; Dupont & Brunet 2009;
Finnigan, Shaw & Patton 2009). In the following sections of the introduction, we first
present the results from recent studies obtained in the smooth-wall configuration regarding
the interaction between the near-wall turbulence and the larger scales of the flow. The
characteristics of the coherent structures present both in the canopy region and in the ABL
are then presented. The last part of the introduction details the objectives of the present
contribution.

1.1. Scale interaction in boundary-layer flows

Because of their geometrical simplicity and their relevance to many fundamental and
industrial or environmental problems, flat-plate boundary layers (FPBLs) have received
a great deal of attention. A detailed description of their characteristics has been achieved,
which can be found in recent reviews from the literature (Robinson 1991; Panton 2001;
Adrian 2007; Marusic et al. 2010b; Smits et al. 2011). The structure of turbulence in
this type of flow is now understood to be characterized by coherent structures that can
be classified by their size and which are: (i) the inner streaks related to the near-wall

cycle and associated with (ii) packets of hairpin vortices (Adrian 2007) which constitute

the large-scale motions (LSMs) and (iii) the very-large-scale motions (VLSMs). Both
numerical and experimental studies have highlighted the influence of the latter on the
near-wall turbulence and their contribution to the turbulent kinetic energy and Reynolds
shear stress in different type of wall-bounded flows such as pipe flows (Monty et al.

2007), channel flows (del Alamo & Jimenez 2003), laboratory boundary layers (Marusic
& Hutchins 2008) and ABL over a hydrodynamically smooth surface (Guala, Metzger
& McKeon 2011; Hutchins et al. 2012). Common features of the VLSMs found in
wall-bounded flows are that (i) they consist of elongated low- and high-speed regions
(Hutchins & Marusic 2007), the length of which scales with outer-length variable δ

(the boundary layer thickness) and can reach several times δ (Guala et al. 2011), (ii)
they populate the log and outer layer, they are animated by a meandering motion in the
horizontal plane (Hutchins & Marusic 2007) and (iii) interact with near-wall turbulence.
The mechanism by which near-wall turbulence and these large-scale structures interact
has been found to consist of both a linear superimposition of the large scales onto
the near-wall turbulence and a nonlinear interaction which has been identified as being
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similar to an amplitude modulation (AM) of the near-wall fluctuations by the larger
scales of the flow. This latter mechanism has received renewed attention since the work
of Bandyopadhyay & Hussain (1984) and has been clearly characterized and quantified,
mainly for the longitudinal velocity component (Mathis, Hutchins & Marusic 2009;
Chung & McKeon 2010; Hutchins & Marusic 2010; Hutchins et al. 2011; Jacobi &
McKeon 2013). All the proposed methods to analyse the AM effect are based on low-pass
filtering the instantaneous fluctuating velocity signal u into a large-scale component uL

and a small-scale component uS = u − uL and quantifying the AM strength using the
normalized correlation between uL and the low-pass-filtered envelope of uS (known as
the AM correlation coefficient, see § 3.4 and Jacobi & McKeon 2013). When applied to
single-point measurements, the utility of this scale-decomposition method relies on a clear
spectral separation between the near-wall energetic scales and those in the outer region of
the flow. A two-point version of this approach has also been proposed and showed similar
results (Mathis et al. 2009; Bernardini & Pirozzoli 2011). Both Mathis et al. (2011b) and
Schlatter & Örlü (2010) noted the strong resemblance between the skewness of the signal
u and the AM correlation coefficient. Using a phase-scrambled synthetic signal respecting
the statistics of the velocity signal u up to the third-order moment, Schlatter & Örlü
(2010) showed that the similarity between the velocity skewness and the AM correlation
coefficient was a direct consequence of the intrinsic properties of u. Mathis et al. (2011b)
further noted that the AM correlation coefficient was also quantitatively similar to the
contribution to the skewness of the cross-term 〈uL(uS)2〉. Chung & McKeon (2010) and
Jacobi & McKeon (2013) showed that the correlation between the large scales and the
envelope of the small scales can be interpreted as a measure of the phase lag between the
different scale motions. Cui & Jacobi (2021) used a bispectral and corresponding biphase
analysis of channel flow direct numerical simulation to demonstrate that the phase of
the small-scale motions leads the LSMs due to delays that arise from nonlinear triadic
interactions. Jacobi & McKeon (2013) and Talluru et al. (2014) demonstrated that all
small-scale velocity components in the near-wall region of a boundary layer experience
a similar AM influence from the large scales. Harun et al. (2013) showed that the AM of
small scales by the LSMs also exists in boundary layers subjected to the presence of both
adverse or favourable pressure gradients and that its intensity increases with increasing
pressure gradient from favourable to adverse.

Investigation of the AM of the near-wall turbulence by the larger scales of
the boundary layer has been extended to rough-wall configurations. Using hot-wire
measurements conducted in a wind tunnel, Squire et al. (2016) showed its existence in
sand-roughened-wall boundary layers. It was also confirmed by Pathikonda & Christensen
(2017) in the flow over complex roughness with a wide range of topographical scales
arranged in an irregular manner. Existence of the same type of AM mechanism has
also been demonstrated in turbulent boundary layers developing over two-dimensional
obstacles (Talluru et al. 2014; Nadeem et al. 2015; Blackman, Perret & Savory 2017) and
cube arrays (Anderson 2016; Blackman & Perret 2016; Basley, Perret & Mathis 2018). In
all these configurations, the basic nature of the interaction mechanism remains the same
as in smooth-wall configurations. The strength of AM was, however, found to be stronger
than in FPBLs, mainly because of the modification of the near-wall turbulence by the
presence of the large roughness elements. Blackman, Perret & Calmet (2018) extended
these coefficient correlation based investigations by interrogating a scale-decomposed
budget of turbulent kinetic energy in a boundary layer developing over staggered cubes,
demonstrating that AM is linked to an instantaneous exchange of energy between the
large-scale momentum regions and the small scales close to the roughness. Within this
context, Salesky & Anderson (2018) recently investigated the influence of buoyancy effect
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on the large scales – near-wall turbulence interaction using large-eddy simulation (LES) of
the ABL. AM of the small-scale turbulence was found to exist for all atmospheric stability

cases, the wall-normal LSMs playing an increasing role with increasing convective effects.
An important consequence of having observed and quantified the relationship between

the near-wall turbulence and the larger scales of the flow is that Marusic, Mathis &
Hutchins (2010a) and Mathis, Hutchins & Marusic (2011a) were able to formulate a simple
predictive model of the longitudinal velocity fluctuations in the near-wall region using
a so-called universal small-scale signal modulated by a measured large-scale velocity
signature and superimposed onto a large-scale component. Their modelling approach has
recently been tested by Blackman, Perret & Mathis (2019) in the turbulent boundary layer
developing over cube arrays. These authors showed that the near-wall modulated signal is
no longer universal but dependent on the roughness array arrangement. They nevertheless
confirmed that, for a given wall configuration, the model’s parameters were Reynolds
number independent, at least in the Reynolds number range they investigated.

Analysis of AM showed the influence of the large scales onto the near-wall smaller
scales from a global point of view. At the same time, recent studies have investigated
this scale-interaction mechanism through the derivation of the scale-by-scale transport
equation of the turbulent kinetic energy and Reynolds shear stress; an approach that
provides detailed information on the interscale and/or spatial transport of the turbulent

kinetic energy (TKE) and the Reynolds stresses at different scales. Given the numerous
spatial gradients involved in computing the different transport terms, such studies are
mainly based on data from numerical simulations. Mizuno (2016) recently analysed the
energy transport in channel flows based on the evaluation of the spectral energy budget
equation. He showed the existence in the near-wall region of downward energy fluxes
at large scales, responsible for the Reynolds number dependence of both the velocity
fluctuations and the dissipation rate, consistent with the observations of the influence of the
large scales onto the near-wall scales based on AM analysis. Mizuno (2016) also stressed
the importance of the role played by spatial transport, even if its intensity is weak compared
with that of production or dissipation. In particular, because budget analysis only provides
the ability to estimate average energy transport, instantaneous transport from small to large
scales might be counterbalanced by other events and therefore remains hidden. Lee &
Moser’s (2019) detailed spectral analysis of the energy balance in a channel flow confirmed
that the VLSMs, which dominate and drive the energy transfers in the outer region,
actually transfer energy to the wall region which result in modulation of the near-wall
cycle and the Reynolds number dependence of the velocity variances in this region. Lee &
Moser (2019) also revealed energy transport away from the wall. Kawata & Alfredsson
(2018) investigated the possible existence of a feedback mechanism from the small to
the large scales by extending the above scale-by-scale analysis of energy transport to the
Reynolds shear stress in a low Reynolds number plane Couette flow. While they confirmed
the net supply of energy from the large to the small scales, they demonstrated that the
Reynolds shear stress is transferred from small to large scales throughout the channel.
This might support production of TKE at large scales and therefore constitute the feedback

loop of the small scale–large scale interaction mechanism. To the authors’ knowledge,
apart from that by Blackman et al. (2018) who conducted a two-scale decomposed budget,
the analysis of Kamruzzaman et al. (2015) represents a rare investigation of AM in
rough-wall configurations. These authors recently performed a scale-by-scale budget for
the second-order structure function of the streamwise velocity component in a turbulent
boundary layer over a rod-roughened wall and showed the influence of the large-scale
inhomogeneities in the flow on intermediate scales over which the transfer of energy is
important.
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1.2. Coherent structures in vegetation canopy flow

The importance of coherent structures has also been recognized in more complex
wall-bounded flows and numerous studies have been devoted to the structure of
boundary-layer flows developing over rough walls, at laboratory scales (see Jimenez
(2004) for a review) or in neutrally stratified atmospheric flows over urban or vegetation
canopies (Dupont & Brunet 2009; Finnigan et al. 2009; Inagaki & Kanda 2010; Takimoto
et al. 2011), which demonstrate some of the similarities and differences between flows over
smooth and rough walls. The most complete description of the average turbulence structure
in the near-canopy region has been obtained for vegetation canopies because of: (i) their
relatively simpler geometrical configuration when compared with urban canopies, (ii) the

homogeneity of the vegetation at scales relevant for the flow and (iii) the development of
the mixing-layer analogy (whose validity for urban flows has yet to be shown) (Raupach,
Finnigan & Brunet 1996; Finnigan 2000). Canopy eddies have been the subject of intensive
research conducted based on outdoor field measurements, wind tunnel and water tunnel

experiments (Gao, Shaw & Paw 1989; Collineau & Brunet 1993; Ghisalberti & Nepf
2002; Poggi et al. 2004; Patton et al. 2011; Perret & Ruiz 2013; Zeeman et al. 2013)
and numerical simulations (Su et al. 1998; Fitzmaurice et al. 2004; Watanabe 2004;
Dupont & Brunet 2009; Finnigan et al. 2009; Watanabe 2009; Bailey & Stoll 2016).
The important role that coherent structures play in turbulence production, being major
contributors to time-averaged turbulence statistics, and also in the transfer of momentum
and scalars is now well admitted. Based on the mixing-layer analogy (Raupach et al.

1996), a conceptual model for their generation and evolution has been proposed, in which
canopy eddies originate from the Kelvin–Helmholtz instabilities induced by the existence
of an inflection point in the mean velocity profile at canopy top, that roll into spanwise
vortices; these spanwise rolls further evolve into complex three-dimensional structures
(Finnigan & Brunet 1995). The major contributors to the momentum transport were found
to be strong sweeps and weaker ejections embedded in elongated region of low or high
momentum, of elliptical shape (Shaw et al. 1995). Raupach et al. (1996) hypothesized
that large-scale structures bringing high-momentum fluid down to canopy top likely
enhance canopy-top shear locally which serves to trigger the Kelvin–Helmholtz instability
at canopy top. Finnigan & Shaw (2000) completed this description with the presence
of a single head-down hairpin, found by applying empirical orthogonal decomposition
to wind tunnel data. Performing a conditional analysis using local maxima of static
pressure at canopy top as a trigger from LES data, Finnigan et al. (2009) were able to
improve this model and show the existence a pair of head-down and head-up hairpin
vortices responsible for the induction of sweeps and ejections, respectively (figure 1).
This pressure-based compositing strategy also evidenced the presence of sharp scalar
microfronts that can be expected to exist at the boundary between the sweeps and ejections.
It has been found that these ejections and sweeps, the latter being more numerous than the
former close to the canopy and conversely away from the wall, leave a strong imprint
in the skewness of both the longitudinal and vertical velocity components (Finnigan
2000). From the analogy between canopy flow and a plane mixing layer (Raupach et al.

1996), the relevant length scale of coherent motion in and above vegetation canopies
is thought to be the shear length scale Ls = 〈u〉/(∂〈u〉/∂z), evaluated at the height of
the inflection point in the mean longitudinal velocity profile. Typical length scales of
coherent motions within vegetation canopies have also been quantified using integral
time or length scales derived from temporal or two-point spatial correlations, respectively.
Combining the integral time scale with a convection velocity corresponding to the velocity
of the canopy-scale structures in the canopy-top region (estimated here as the local mean
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Figure 1. Schematic diagram of the dual-hairpin eddy formation from Patton & Finnigan (2013) (adapted
from Finnigan et al. 2009).

velocity) in order to use Taylor’s hypothesis, Brunet, Finnigan & Raupach (1994) found
that the corresponding longitudinal integral length scales Lu and Lw of the streamwise and
vertical velocity components, respectively, were much larger than the size of the individual
canopy elements and increased with height within and just above the canopy. At the top of
the canopy, Lu/h � 1 and Lw/h � 3, where h is the height of the canopy. Using two-point
correlation coefficients, Shaw et al. (1995) directly computed integral length scales and
showed that they varied much more slowly and were larger (Lu/h � 2.75 and Lu/h � 0.5
at the top of the canopy) than when computed using temporal information combined with
Taylor’s hypothesis. This discrepancy was explained by Raupach et al. (1996) as being a
direct consequence of the poor estimate of the convection velocity uc of canopy eddies
by the local longitudinal velocity. Using two-point data, a new estimate of the convection
velocity was computed and found to be close to uc = 1.8〈u(h)〉, showing that local mean
velocity is not a good estimation for the convection velocity of the canopy-scale structures
and that the latter are connected to the outer larger-scale flow (Shaw et al. 1995; Raupach
et al. 1996). The mean longitudinal spacing of canopy eddies Λx has been characterized
by using the location fmax of the maximum in the pre-multiplied temporal energy spectrum
of the vertical component w with the improved estimation of the convection velocity
proposed by Raupach et al. (1996). It is therefore defined as Λx/h = fmaxuc/h (Raupach
et al. 1996). Observation of this parameter in various vegetation canopy flows revealed
that in near-neutral stability regime a linear relationship between Λx and Ls exists, namely
Λx/Ls = 8.1 (Raupach et al. 1996). Departure from the near-neutral stability regime has
been found to influence the typical length scales of the canopy eddies, the shear length
scales Ls decreasing when the stability condition changes from a free-convection to a stable
regime, the streamwise spacing Λx/Ls or Λx/h showing a non-monotonic evolution with
the stability regime while being maximum in near-neutral conditions (Brunet & Irvine
2000; Dupont & Patton 2012; Patton et al. 2016).
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1.3. Large-scale coherent structures in the ABL

As noted by Raupach et al. (1996) and Watanabe (2004), the above-described canopy
flow is always under the influence of the coherent eddies of the ABL, the scales of which
are typically of the order of the boundary-layer depth. The detailed presentation of the
characteristics of the coherent structures encountered in the ABL is beyond the scope of
the present description. Only a brief overview of the coherent structures and their main
features is therefore presented here in order to show that, whatever the stability regime of
the ABL, vegetation canopy flows and near-surface turbulence in general are immersed in
larger-scale motions and are likely to be influenced by it through similar mechanism as

in FPBLs. In the case of neutrally stratified stability regime, for which wind shear is the
primary mechanism producing turbulence, coherent structures in the ABL were found
to share many similarities with those found in smooth-wall laboratory boundary-layer
flows. Streaky structures consisting of elongated regions of low- or high-speed streamwise
velocity were found in flows studied via numerical simulations (Deardorff 1972; Moeng
& Sullivan 1994; Lin et al. 1996a,b; Khanna & Brasseur 1998; Shah & Bou-Zeid
2014; Fang & Porté-Agel 2015) and field campaigns (Drobinski et al. 2004; Horiguchi
et al. 2010, 2012; Hutchins et al. 2012). The typical streamwise dimension of these
structures is of the order of several hundreds of metres (Drobinski et al. 2004). Lin et al.

(1996b) showed that the transverse spacing (normal to the surface-wind direction) of
the streaks evolves linearly as a function of height above ground, in agreement with the
measurements of Drobinski et al. (2004). The low- and high-speed streaks were shown
to be strongly correlated with the occurrence of positive (vertical updraft) or negative
momentum (vertical downdraft) fluxes, respectively (Moeng & Sullivan 1994; Lin et al.

1996a; Horiguchi et al. 2010). In addition, Lin et al. (1996a,b) demonstrated the presence
of vortical structures, the size of which increases in the same manner as the transverse
spacing of the low- and high-momentum regions, similarly to the horseshoe and hairpin
vortices detected in laboratory flows. This general overview of the characteristics of the
coherent structures populating the neutrally stratified ABL shows good agreement with the
now well-established turbulence organization in smooth-wall flat-plate boundary layers at
moderate Reynolds numbers (Adrian 2007; Marusic et al. 2010b; Smits et al. 2011; Shah
& Bou-Zeid 2014; Fang & Porté-Agel 2015).

A common feature in the ABL is the presence of large-scale structures elongated in the
streamwise direction that contribute significantly to the vertical fluxes of momentum, heat
and humidity, and whose size and aspect ratio are highly dependent on the stability regime
(Deardorff 1972; Weckwerth, Horst & Wilson 1999; Young et al. 2002; Shah & Bou-Zeid
2014; Salesky, Chamecki & Bou-Zeid 2017). When buoyancy effects become important
and the flow regime changes from a neutrally stratified to a convective or unstable regime,
the turbulence structure of the ABL changes significantly. In buoyancy-dominated flow,
the near-surface eddies consist in polygonal spoke patterns with long, narrow regions of
updrafts encircling broader downdraft regions (Schmidt & Schumann 1989; Moeng &
Sullivan 1994). These structures evolve into cell-like thermal plumes with concentrated
regions of intense positive vertical velocity (updrafts) accompanied with broader and
weaker regions of negative vertical velocity (Deardorff 1972; Schmidt & Schumann 1989;
Moeng & Sullivan 1994; Khanna & Brasseur 1998; Salesky et al. 2017). When both shear
and buoyancy mechanisms are important, the dominant flow structures in the intermediate
ABL are horizontal convective rolls whose size scales with zi with transverse spacing
ranging from 2 to 20, the most frequent values being approximately 3 to 4 zi (e.g.
Lemone 1973; Atkinson & Wu Zhang 1996). Their extent in the longitudinal direction
has been reported by Lemone (1973) of being at least 10 times their transverse spacing.
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The smaller-scale turbulence in a roll was found to be concentrated in regions of positive
roll vertical velocity (Lemone 1976). Near the surface, streak patterns similar to those
found in neutral flow configuration are observed and found to contain coherent structures
corresponding to negative shear stress, consistent with the presence of sweep and ejection
motions (Moeng & Sullivan 1994; Khanna & Brasseur 1998). These streaky regions of
low or high momentum gradually merge into the above mentioned rolls as height above
ground increases.

1.4. Objectives

As pointed out by Hutchins et al. (2012) in their experimental investigation of the near-wall
turbulence structure over flat and hydrodynamically smooth terrain, the elongated
large-scale streaks observed in the ABL under various conditions may not necessarily
correspond to the VLSMs found in the FPBL described in § 1.1 and their formation
mechanism and lifecycle may therefore differ completely. However, given the nonlinear
nature of turbulence, similar interaction mechanisms between near-surface turbulence
and larger scales present away from the wall may exist, notwithstanding the origin or
the characteristics of the coherent eddies involved in such processes. This hypothesis is
supported by studies who report the existence of scale interactions in various type of
turbulent flows. For instance, Bandyopadhyay & Hussain (1984) identified the existence
of an AM mechanism (or phase relationships) between scales in various shear flows such
as boundary layers, plane and axisymmetric mixing layers, plane wakes or jets. Lemone
(1976) showed that small-scale turbulence embedded in kilometre-scale convective rolls
present in the ABL experience a modulation of their intensity by the roll vortices. In
the case of vegetation canopies, it has been demonstrated that the flow results from the
superposition of different scales such as those generated in the wake of individual or
clumped canopy elements, the canopy scales generated by the mixing-layer-type instability
and the coherent eddies associated with the larger-scale overlying boundary layer (Poggi
et al. 2004). In the presence of buoyancy effects, the flow above the vegetation results from
the superposition of Kelvin–Helmholtz-type structures and thermal plumes with distinct
temporal scales (Thomas et al. 2006). However, the interaction mechanism between these
coherent structures of various scales and their origins remain poorly understood. In their
study of coherent eddies in vegetation canopies, Raupach et al. (1996) suggested that
the effect of eddies of a larger scale than the canopy provides a mechanism to create
canopy-scale eddies by intermittently triggering the above-mentioned hydrodynamic
instability at canopy top. Kelvin–Helmholtz-type structures that they identified as playing
a major role in the vertical transfer throughout the canopy were therefore referred to as
‘active’ eddies in the region close to canopy top whereas the larger scales were identified
as being ‘inactive’ in performing vertical transfer of momentum, energy and material.
However, based on the analysis of sonic anemometer measurements of vertical velocity
component and temperature, Chian et al. (2008) showed that increased intermittency of
turbulence in the flow in and above the Amazon forest canopy correlates with phase
coherence due to nonlinear wave–wave interactions, an underlying process of the AM.
Based on these recent observations and results, the objective of the present effort is to
quantitatively investigate the interaction between the most energetic scales of the canopy
flow and those of the overlying boundary layer. The present investigation interrogates data
from a high-resolution LES of the atmospheric flow in a convective regime developing
above and within a dense vegetation canopy (Patton et al. 2016). A multi-level (or
multi-scale) decomposition approach is employed to derive the budget equations of both
the TKE and Reynolds shear stress of the (small) canopy scales. Interscale transfer terms
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of both quantities are analysed in order to demonstrate the existence of a two-way coupling
between the ABL and the canopy scales, both in an average and in an instantaneous sense.

The outline of the paper is as follows: § 2 describes the LES approach and the vegetation
model used, the numerical simulation set-up, the multi-level decomposition formalism
and an overview of the transport equation derivation (a detailed derivation can be found
in the appendices). Results are presented in § 3, including an analysis of the statistical
characteristics of the investigated boundary layer flow in § 3.1, flow visualizations in
§ 3.2 and an analysis of pre-multiplied velocity component spectra and cospectra in § 3.3.
Section 3.4 provides evidence of an AM mechanism, followed by an analysis of the
relevant interscale transfer terms from the scale-by-scale transport equations of both the
TKE and Reynolds shear stress of the (small) canopy scales in § 3.5. Stability influences
on the scale interaction is investigated in § 3.6. Section 4 presents the conclusions of the
present study.

2. Methods

2.1. Notation

The present study utilizes data from a LES of the flow (Patton et al. 2016), in which

any flow variable f is decomposed as f = f̄ + f ′′, where f̄ is the component of f resolved
by the grid and f ′′ is the subfilter-scale (SFS) component. In order to account for the
specificity of LES data, namely the fact that the subfilter scales are not accessible, the
multi-level filtering formalism proposed by Sagaut, Deck & Terracol (2013) is employed
here to derive evolution equations of the TKE and the Reynolds stresses of a given range
of scales interacting with the remaining scales. The effort described in this manuscript
focuses on understanding the relationships between ABL-scale motions and scales of
motion associated with canopy-scale processes; separation between these scales occurs
at scales notably larger than the LES-filter scale. In addition, the maximum contribution
from the SFS to the total horizontally and time-averaged momentum flux and TKE is less

than approximately 10 % occurring at a height within the canopy but near canopy top; so
the flow fields being studied contain the influence of the unresolved SFS of motion, but
overall the SFS component is a small contributor. Therefore for the sake of simplicity,
the analysis presented here focuses on resolved-scale interactions. In the present study,
a four-level decomposition is performed such that, for instance the complete velocity
field u is decomposed into a (mean) horizontally averaged component uM , a large-scale
component uL, a small-scale component uS and a SFS component u′′ such that

u = uM + uL + uS + u′′. (2.1)

The deviation from the instantaneous horizontal mean uM is defined as u′ = uL + uS. As
detailed in the following, the cutoff wavelength is chosen such that uL corresponds to

the most energetic scales in the outer region of the flow while uS corresponds to the most
energetic structures existing in the near-wall region, containing the canopy-induced scales.
Filtering is performed in the horizontal plane via sharp cutoff filters in Fourier space along
both horizontal directions.

In the following, t represents time, xi(i = 1, 2, 3) refers to the streamwise, lateral and
vertical coordinates, respectively (with x1 = x, x2 = y and x3 = z), ui are the instantaneous
streamwise, lateral and vertical velocity components, respectively (with u1 = u, u2 = v

and u3 = w). Despite the presence of Coriolis forces in the simulations, the present study
does not perform any coordinate rotation to align the horizontal velocity components with
the mean wind direction at each height prior to any data analysis; a choice that differs from
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the analysis presented in Salesky & Anderson (2018) for instance. While this choice can
lead to slight differences when comparing the present results regarding the AM analysis
to those from prior studies of neutrally stratified flows, this does not affect analysis of the
terms in the filtered transport equations.

For any flow variable f , 〈f 〉 denotes the average value of f obtained first by averaging
in the horizontal (x–y) plane and then over Nv = 4 different time instances. Horizontally
averaged moments were first constructed from the local perturbation f ′ = f L + f S around
the instantaneous horizontally averaged mean, and subsequently ensemble averaged over
the set of Nv realizations to form the final statistics. The canopy height is denoted h and
zi refers to the average ABL depth determined by finding the height of the largest local
virtual potential temperature gradient averaged across the horizontal plane (e.g. using the
gradient method described in Sullivan et al. 1998). The Obukhov length L is defined as L =
−u3∗〈θv〉/(κgQ∗), where θv is the virtual potential temperature taken here across canopy
top, κ = 0.4 is the von Kármán constant, g is the Earth’s gravitational acceleration, u∗ is
the friction velocity evaluated at canopy top computed as

u∗ = (〈u′w′〉2 + 〈v′w′〉2)1/4, (2.2)

and Q∗ the buoyancy flux calculated at canopy top defined as

Q∗ = 〈w′θ ′
v〉. (2.3)

L and zi are combined to form the stability parameter ζ = −zi/L. The Deardorff convective
velocity w∗ evaluated at canopy top is computed as

w∗ = [βziQ∗]1/3, (2.4)

where β = g/θv0 is the buoyancy parameter with g the Earth’s gravitational acceleration
and θv0 a reference virtual potential temperature. Because the investigated flows are under
the influence of both shear and buoyancy in various proportions, the mixed velocity scale
wm = (w3∗ + 5u3∗)1/3 incorporating both effects is used as a scaling parameter (Moeng &
Sullivan 1994). The mixed temperature is defined as θm = Q∗/wm. Following Patton et al.

(2016), values of u∗ and w∗ estimated using canopy-top fluxes are used to calculate wm.

2.2. LES code

In this section, only a brief overview of the equations solved by the National Center for
Atmospheric Research’s pseudo-spectral LES code is provided, the reader being referred
to the work of Patton et al. (2016) and references therein for a complete description and
validation. The equations for an ABL under the Boussinesq approximation are solved on
a discretized three-dimensional grid and include the influence of the vegetation in the
near-wall region. The code solves the three-dimensional filtered equations for momentum
u, potential temperature θ , water vapour mixing ratio q and SFS TKE e, and a discrete
Poisson equation for pressure π to enforce incompressibility. The solved equations are the
following:

(i) a transport equation for resolved momentum ū

∂ū

∂t
+ ū · ∇ū = −∇ · T − f k̂ × (ū − Ug) − ∇π̄ + k̂β(θ̄v − θv0) + F d, (2.5)

(ii) a transport equation for potential temperature θ̄

∂θ̄

∂t
+ ū · ∇θ̄ = −∇ · B + Sθ , (2.6)
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(iii) a transport equation for water vapour mixing ratio q̄

∂ q̄

∂t
+ ū · ∇q̄ = −∇ · Q + Sq, (2.7)

(iv) an equation for SFS TKE e

∂e

∂t
+ ū · ∇e = P + B + K − E − Fε, (2.8)

where θ̄v ≈ θ̄ (1 + 0.61q̄) is the virtual potential temperature to account for buoyancy
effects in the momentum equation (the value of 0.61 reflects an approximation to [Rv/Rd −
1] where Rv is the gas constant for water vapour, and Rd is the gas constant for dry

air); f is the Coriolis parameter; k̂ is the unit vector in the vertical direction z; Ug is the
geostrophic wind with horizontal (x, y) components (Ug, Vg); T = �uiuj − �ui�uj is the SFS

momentum flux; B = �uiθ − �uiθ̄ is the SFS heat flux; Q = �uiq − �uiq̄ is the SFS moisture

flux; e = 1
2 ( �uiui − �ui�ui) is the SFS energy; P and B represent SFS shear and buoyancy

production, respectively; K represents SFS diffusion; and E represents dissipation. SFS
closure largely follows Deardorff (1980), Moeng (1984) and Moeng & Wyngaard (1988),
by solving an equation for SFS TKE to calculate a local turbulent eddy viscosity νM and
diffusivity νH used to parameterize local SFS fluxes of momentum, heat and moisture
based upon down gradient diffusion; the diffusivity for moisture is assumed equal to that
for heat. Deardorff’s (1980) TKE equation is modified to account for canopy influences
following Shaw & Patton (2003), with the exception that energy produced in the wake of
any unresolved canopy elements is assumed to occur at sufficiently small scales that it
immediately dissipates to heat. The molecular diffusion terms are neglected because the
scale at which the primary grid-scale filter is applied falls at scales decades larger than
the scales at which molecular processes dominate. The terms F d, Sθ , Sq and Fε represent
the canopy-induced contributions that appear as a result of spatially filtering the flow
equations in the multiply connected canopy airspace that surrounds the canopy elements
(Patton et al. 2016). In the general case, F d combines the canopy’s pressure and viscous
drag forces. However, following Thom (1968), viscous drag is assumed to be negligible

compared with pressure drag.

Canopy-drag force is given by F d = −cda �vwū, where a is the one-sided frontal plant
area density (PAD), cd (= 0.15 in the present case) is a dimensionless drag coefficient
describing the efficiency of that PAD at extracting momentum, and �vw = |ū| is the

instantaneous wind speed. The term Fε = −8
3 cda �vwe represents the work performed by

SFS motions against canopy drag under the assumption that SFS turbulence is isotropic.
Parameters describing the vegetation canopy are horizontally homogeneous. Its height is
h = 20 m and is vertically resolved by 10 grid points. The PAD a varies with wall-normal
distance so that it is representative of a deciduous canopy with a relatively dense overstory
and a relatively open trunk space (Patton et al. 2016). Finally, Sθ and Sq describe the
canopy-induced heat or moisture sources from the canopy, which also appear through
spatially filtering the atmospheric scalar conservation equations in the presence of the
solid canopy elements. These sources are not imposed, but rather vary spatially through
a coupling with a one-dimensional canopy-resolving land surface model implemented at
every horizontal grid point; a more complete description of this model and its evaluation
against outdoor field observations can be found in Patton et al. (2016).

Horizontal derivatives are calculated pseudo-spectrally while vertical derivatives are
computed using second-order centred finite differences for momentum and SFS energy
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Case Ug u∗ 〈w′θ ′
v〉 zi L −zi/L δω w∗ wm θ∗

(m s−1) (m s−1) (m K s−1) (m) (m) (m) (m s−1) (m s−1) (K)

NN 20 1.37 0.24 1073 −827 1.3 24.5 2.06 2.78 0.09
WU 10 0.86 0.21 998 −233 4.3 25.6 1.89 2.15 0.10
MU 5 0.56 0.20 1126 −69 16.3 27.6 1.94 2.02 0.10
SU 2 0.34 0.20 1068 −14 76.3 29.2 1.92 1.94 0.10
FC 0 0.07 0.23 1302 −0.11 11 800 34.8 2.12 2.12 0.11

Table 1. Main characteristic parameters of each simulation, including the geostrophic wind Ug (Vg = 0), the
friction velocity u∗, the buoyancy flux 〈w′θ ′

v〉, the ABL depth zi where, these zi values are calculated using the
’maximum vertical gradient method’ (Sullivan et al. 1998) using virtual potential temperature as the scalar, the
Obukhov length L, the vorticity thickness at canopy top δω, the convective velocity scale w∗, the mixed velocity
scale wm and the potential temperature scale θ∗ (adapted from Patton et al. 2016).

and the monotone scheme of Beets & Koren (1996) for θ and q. A third-order Runge–Kutta
scheme advances the solution in time. Periodic boundary conditions are used in the
horizontal. For the upper boundary, Neumann conditions are imposed for horizontal
velocities, SFS energy, potential temperature and specific humidity while Dirichlet
condition are imposed on vertical velocity. Through the use of Monin–Obukhov similarity
theory and the specification of the roughness length value z0, a rough-wall boundary
condition is imposed beneath the vegetation canopy (Patton et al. 2016).

2.3. Cases investigated

The LES equations described in § 2.2 are solved on a (2048, 2048, 1024) three-dimensional
grid representing a physical domain of 5120 × 5120 × 2048 m3 with a spatial resolution
of 2.5 × 2.5 × 2 m3 in the (x, y, z) directions, respectively. The present spatial resolution
ensures that the canopy region is described by a sufficient number of grid points and that
the present simulations are minimally impacted by the influence that the grid resolution
could have on the characteristics of the resolved structures in the ABL flow (Ludwig,
Chow & Street 2009; Sullivan & Patton 2011; Wurps, Steinfeld & Heinz 2020). Although
the canopy in the current simulations is twice the height of that in the Canopy Horizontal
Array Turbulence Study (CHATS) (a choice made to ensure sufficient vertical resolution
of within-canopy processes), the vertical distribution of canopy elements mimics the
relatively dense broad leaf overstory and relatively open trunk space of the CHATS walnut
orchard with a vertically integrated plant area index of 2 (Patton et al. 2016). The soil type
(silty clay loam) and the initial soil temperature and moisture conditions were derived from
a two-year high-resolution land data assimilation system (Chen et al. 2007) simulation
targeting the CHATS experiment. Since incoming radiation at canopy top varies only
slightly over the simulations (from 940 to 1015 W m−2), variations in atmospheric stability
are primarily produced by varying the imposed streamwise component of the geostrophic
wind Ug from 20 to 0 m s−1 (with Vg set to 0 m s−1 for all cases). Atmospheric stability
therefore varies from near-neutral to free-convective conditions (e.g. 0 > −zi/L > +∞)
across the five simulations. The bulk characteristics of the simulations are summarized
in table 1. Statistical error of the main statistics of the WU case are presented in
Appendix E.1. As the present work focuses on the interaction between the most energetic
scales within the ABL and the most energetic scales existing in the canopy region, the
analysis of the interaction and energy transfers is limited to the region 0 < z < 15h.

12



κ

E(κ)

κm

C

B

u′′δu(k–1)δu(n)ū(n+1)
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Figure 2. Multi-level decomposition of the variable u shown in spectral space in the case of sharp cutoff filters,

depicting interactions between δu(n) = ū(n+1) − ū(n) and: (A) the larger scales u(n+1) via the term L
(n+1)
ij , (B) a

spectral band δu(m) at some smaller scale (m < n) via the term
∑n−1

k=m+1(G
(n+1)
k+1 − G

(n)
k+1)L

(k)
ij , (C) all the scales

u′′ smaller than the LES-filter scale Δ̄(m) via the term (G
(n+1)
m+1 − G

(n)
k+1)T

(m)
ij (adapted from Sagaut et al. 2013).

The definition and derivation of the terms L
(n)
ij and T

(m)
ij can be found in Appendix A.2.

2.4. Multi-level filtering and budget equations

2.4.1. Multi-level filtering formalism

A brief overview of the multi-level (or multi-resolution) approach is given in this section,
the reader being referred to the monograph of Sagaut et al. (2013) for extensive details.
The general idea of this approach is that representations of any variable at coarser and
coarser spatial resolution can be obtained by the successive application of scale separation
filters. An illustration of such a decomposition is shown in figure 2 when applied using
sharp cutoff filters in wavenumber space.

Let Gn represent a hierarchy of filtering operators characterized by their respective
cutoff length scales Δ̄(n), such that Δ̄(n+1) > Δ̄(n). Successive application of the primary

filters Gm to Gn with cutoff length scales ranging from Δ̄(m) to Δ̄(n) (m < n), respectively,
results in a filtering operator Gn

m:

Gn
m = Gn 
 Gn−1 
 · · · 
 Gm+1 
 Gm, (2.9)

where 
 denotes the convolution product (f̄ = G 
 f ). The operator Gn
m has the

following properties: Gn
n = Gn and G0

0 = I. With these notations, the classical (one-level)

three-dimensional LES filter corresponds to f̄ = G1 
 f = G1
1 
 f = G1

0 
 f (with f ′′ =
f − f̄ being the SFS component). Note that, in the present case, the LES spatial filter is an
explicitly applied sharp filter in the horizontal and an implicit top-hat filter in the vertical
(Sullivan & Patton 2011). In the general case, the velocity field u can therefore be filtered
n times to obtain its representation at a coarse spatial resolution

ū(n) = Gn
1 
 u = Gn 
 Gn−1 
 · · · 
 G1 
 u. (2.10)

The variable ū(n) filtered at level n represents the flow fields associated with wavenumbers
κ < κn with κn = 2π/Δ̄(n), Δ̄(n) being the effective cutoff length scale of the hierarchical
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filters Gn
1 . With this approach, it is straightforward to define the band-pass filtered velocity:

δū(l) = ū(l) − ū(l+1) which represents the fraction of the velocity field containing flow
structures with a size smaller than Δ̄(l+1) and larger than Δ̄(l), e.g. the scales resolved
at level l and unresolved at level l + 1. The particular case of standard LES, e.g. with

only one filtering level (n = 1) leads to: ū(1) = ū(n) + ∑n−1
l=1 δu(l) with u′′ being the SFS

(unresolved) scales.

2.4.2. Multi-level filtered momentum transport equations

The multi-level filtering approach is applied here on the momentum transport equations as
used in the present case (see (2.5)), which include the Coriolis, buoyancy and canopy-drag
influence). The scale separation operator Gn

1 associated with the representation level n is

applied directly to the set of the Navier–Stokes equations (2.5), which becomes

∂ū(n)

∂t
+ū(n)

· ∇ū(n) = −f k̂ × (ū(n)−Ū (n)
g ) − ∇π̄

(n) + k̂β(θ̄ (n)
v − θv0)− ∇ · T (n) + F̄

(n)
d ,

(2.11)
or, equivalently, with a more condensed presentation

∂ū(n)

∂t
+ ū(n)

· ∇ū(n) = L̄(n) − ∇ · T (n) + F̄
(n)
d , (2.12)

where the term T (n) represents the ‘sub-level’ tensor (similar to the SFS tensor), including
the influence of the unresolved and the resolved scales (up to the nth level) on the filtered

field ū(n)

T (n) = u ⊗ u
(n) − ū(n) ⊗ ū(n), (2.13)

and L̄(n) represents the (linear) influence of pressure, buoyancy and Coriolis forces

L̄(n) = −f k̂ × (ū(n) − Ū (n)
g ) − ∇π̄

(n) + k̂β(θ̄ (n)
v − θv0). (2.14)

Subtracting (2.12) written at level n + 1 from (2.12) written at level n, one can obtain the
evolution equation for the band-pass-filtered velocity δu(n) = ū(n) − ū(n+1)

∂δu(n)

∂t
+ ∇ · (δu(n) ⊗ δu(n) + δu(n) ⊗ ū(n+1) + ū(n+1) ⊗ δu(n))

= δL(n) − ∇ · (T (n) − T (n+1)) + (F̄
(n)
d − F̄

(n+1)
d ), (2.15)

with δL(n) = L̄(n) − L̄(n+1). The calculation of the term (T (n) − T (n+1)) using the
multi-level filtering approach and the interpretation of its different contributions are
detailed in Appendix A.2.

As detailed in Appendix A.3, at level n, the drag force can be decomposed into

F̄
(n)
d = D(n) + d(n), (2.16)

with D(n) = −cda �vw
(n)ū(n) (with cd assumed constant, e.g. not scale dependent) being the

contribution of the velocity filtered at level (n) and d(n) the contribution of the velocity at
filtering levels finer than (n) to the drag at level (n).

The momentum transport equation therefore reads

∂δu(n)

∂t
+ ∇ · (δu(n) ⊗ δu(n) + δu(n) ⊗ ū(n+1) + ū(n+1) ⊗ δu(n))

(2.17)= δL(n) − ∇ · (T (n) − T (n+1)) + (D(n) − D(n+1)) + (d(n) − d(n+1)).
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2.4.3. Transport equation of the TKE and Reynolds stress of δu(n)

With the above drag decomposition, the transport equation of the momentum associated
with the band-pass-filtered velocity δu(n) reads with index notation (from (2.17))

∂δu
(n)
i

∂t
+ ∂

∂xj

(δu
(n)
i δu

(n)
j + δu

(n)
i ū

(n+1)
j + ū

(n+1)
i δu

(n)
j )

= δL
(n)
i − ∂

∂xj

(T
(n)
ij − T

(n+1)
ij ) + (D

(n)
i − D

(n+1)
i ) + (d

(n)
i − d

(n+1)
i ). (2.18)

In order to derive the transport equation of the TKE of δu(n), this equation is written for

the component δu
(n)
α , multiplied by δu

(n)
α , followed by a contraction over the repeated index

α. The transport equation of δKE(n) = 1
2δ

(n)
α δ

(n)
α , the kinetic energy of δu(n), reads

∂

∂t
(
1

2
δu(n)

α δu(n)
α ) = − ∂

∂xj

(
1

2
δu(n)

α δu(n)
α δu

(n)
j + 1

2
δu(n)

α δu(n)
α ū

(n+1)
j

)

− δu(n)
α δu

(n)
j

∂ ū
(n+1)
α

∂xj

+ δL(n)
α δu(n)

α

+ (T
(n)
αβ − T

(n+1)
αβ )

∂δu
(n)
α

∂xβ

− ∂

∂xβ

((T
(n)
αβ − T

(n+1)
αβ )δu(n)

α )

− acd(δvw
(n)δu(n)

α δu(n)
α + δvw

(n)δu(n)
α ū(n+1)

α + �vw
(n+1)δu(n)

α δu(n)
α )

+ (d(n)
α − d(n+1)

α )δu(n)
α . (2.19)

A detailed interpretation of the different terms in (2.19) is given in § B.2.

The transport equation for δRS
(n)
ij the Reynolds stress (δu

(n)
i δu

(n)
j ) is obtained by adding

the transport equation (2.18) of δu
(n)
i multiplied by δu

(n)
j to the transport equation (2.18) of

δu
(n)
j multiplied by δu

(n)
i . The sub-level Reynolds stress transport equation therefore reads

∂

∂t
(δu

(n)
i δu

(n)
j ) = − ∂

∂xα

((δu
(n)
i δu

(n)
j )δu(n)

α + (δu
(n)
i δu

(n)
j )ū(n+1)

α )

−
(

δu
(n)
j δu(n)

α

∂ ū
(n+1)
i

∂xα

+ δu
(n)
i δu(n)

α

∂ ū
(n+1)
j

∂xα

)

+ (δu
(n)
j δL

(n)
i + δu

(n)
i δL

(n)
j )

+ (T
(n)
iα − T

(n+1)
iα )

∂δu
(n)
j

∂xα

+ (T
(n)
jα − T

(n+1)
jα )

∂δu
(n)
i

∂xα

− ∂

∂xα

((T
(n)
iα − T

(n+1)
iα )δu

(n)
j + (T

(n)
jα − T

(n+1)
jα )δu

(n)
i )

− acd(2δu
(n)
i δu

(n)
j [δvw

(n) + �vw
(n+1)]

+ δvw
(n)[ū

(n+1)
i δu

(n)
j + ū

(n+1)
j δu

(n)
i ])

+ (d
(n)
i − d

(n+1)
i )δu

(n)
j + (d

(n)
j − d

(n+1)
j )δu

(n)
i . (2.20)
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Figure 3. Four-level decomposition shown in spectral space depicting the budget terms for (ξS)2 the (small)
canopy-scale TKE, as listed in table 2. The terms representing the spatial transport of (ξS)2 by uS and uL

(labelled TS
t and TL

t , respectively), are shown with dashed line circles, the production of (ξS)2 by the mean

flow PM and the interscale transfer of TKE between uS and uL (labelled TL
r ) are shown with solid line arrows,

the influence of canopy drag Dr is shown with a dotted line arrow and the production of (ξS)2 by buoyancy

(labelled BS) is shown with a zig-zag arrow. Vertical dashed lines sketch the different cutoff filters involved in

the four-level decomposition: the LES filter, the cutoff filter employed to separate the resolved scales uL and uS

and the horizontal averaging operation.

2.4.4. Terms investigated in analysing the uL – uS interaction

Horizontally and time averaging (2.19) and (2.20) along with computing the standard

deviation of each term of their right-hand side not only allows for the estimation

of the mean TKE or Reynolds shear stress (RSS) transport between scales via
different mechanisms (e.g. spatial transport and interscale energy transfer) but also
the quantification of their instantaneous (or local) intensity. In particular, comparing
the standard deviation magnitude to that of the average quantity is a way to identify the
existence of both forward and backscatter of energy among scales (e.g. an instantaneous
two-way coupling between scales). Since the present study focuses on the interaction
between the (large) ABL scales and the (small) canopy scales, only a few terms from (2.19)
or (2.20) are analysed. The detail of their derivation for a four-level decomposition (as in
(2.1)) is given in Appendix D. For the sake of comparison, the term BS corresponding
to the contribution of buoyancy to the small-scale TKE or RSS is included. The terms
of focus are presented and defined in table 2 and are represented schematically in
figure 3. They are selected to guide interpretation of the small-scale TKE budget of

(ξS)2 = 1
2 uS

αuS
α = δKE(1). For the Reynolds shear stress budget, the same notations are

employed for consistency. An analysis of the statistical error of these terms is presented in
Appendix E.2.

3. Results

In the following, the symbol ,̄ denoting the LES filter, is dropped for simplicity. All

presented quantities are based on the resolved velocity field.
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Transport term Definition Interpretation

TS
t = 〈− ∂

∂xj
( 1

2 uS
i uS

i uS
j )〉 Spatial transport of (ξS)2 by uS

TL
t = 〈− ∂

∂xj
( 1

2 uS
i uS

i uL
j )〉 Spatial transport of (ξS)2 by uL

PM = 〈−uS
i uS

j

∂uM
i

∂xj
〉 Production of (ξS)2 by uM the mean flow

TL
r = 〈(G3 − I)LS

ij

∂uS
i

∂xj
〉 Interscale TKE transfer (> 0 if transfer from uL to uS)

Dr = 〈−cda[vS
wuS

i − vL
wuL

i ]uS
i 〉 Drag influence on uS

BS = 〈βδθS
v δuS〉 Production of (ξS)2 due to buoyancy

Table 2. Budget terms for (ξS)2 = 1
2 [(uS)2 + (vS)2 + (wS)2] the small-scale TKE investigated in the present

study. Equivalent terms for the small-scale RSS are calculated as well (see Appendix D.2).

3.1. Statistics

As both an in-depth statistical description of the canopy flow and a validation against the
literature have already been presented by Patton et al. (2016), only a brief overview of the
main characteristics of the ABL flow developing over a vegetation canopy is given here.

The mean vertical structure of the simulated ABLs is characterized in figure 4 using
vertical profiles of key statistical quantities such as the mean horizontal velocity, mean
potential temperature, resolved heat flux, variance of the horizontal and vertical velocity
components and the RSS 〈u′w′〉. Above the canopy, all the statistics of the present
configuration are in very good agreement with those recently reported by Salesky &
Anderson (2018) for similar values of −zi/L. For brevity, only the characteristics of the
weakly unstable (WU, −zi/L = 4.3) are discussed here. Statistical error of these statistics
are presented in Appendix E.1. The horizontal wind speed shows a gradual increase
with height while the mean potential temperature shows a decrease up to z/zi = 0.7, in
agreement with the imposed stability regime. However, inside the canopy, the vertical
profile of the horizontal wind speed shows an inflection point near the top of canopy
(Patton et al. 2016), in agreement with the now well-admitted presence of the shear-layer
flow developing at canopy top. Consistent with the results of Salesky & Anderson (2018),
both the variance of the horizontal wind speed and the resolved heat flux exhibit a
monotonic decrease in the region up to z/zi = 0.7. However, given the finer spatial
resolution of the present simulations and the presence of the canopy, these two statistics
show a local maximum just above canopy top and a subsequent reduction with decreasing
z. These two statistics show a decrease below canopy top with also an inflection point in
their vertical profiles. As noted by Salesky & Anderson (2018), the vertical evolution of
the variance of the wall-normal velocity component is more complex with first a local
maximum close to canopy top at z/zi = 0.04 or z/h = 2, a slight decrease followed

by an increase with an absolute maximum at z/zi = 0.4. Above z/zi = 0.4, 〈w′2〉/w2
m

shows a gradual decrease. The local extremum at the lowest location can be attributed to
influence of the canopy and the associated strong shear and turbulence production while
the gradual increase up to z/zi = 0.4 is an already observed feature of sheared convective
boundary layers caused by TKE redistribution among velocity components (see Salesky

& Anderson (2018) and references therein). The RSS shows negative values throughout
the ABL with an extremum at canopy top and a gradual decrease in magnitude with
increasing wall-normal distance. Combined with the wall-normal profile of the horizontal
velocity which exhibits high shear at the same location, it indicates that the near-canopy
region is a region of strong production of kinetic turbulent energy. Finally, in agreement

17



0.5

1.0

0 5 10 15 20

z/
z i

0

0.5

1.0

0

0.5

1.0

0.5

1.0

z/
z i

0.5

1.0

0

0.5

1.0

5 10 1 302 303 304 –0.5 0 0.5 1.0

NN
WU
MU
SU
FC

0 0.5 1.0 1.5 2.0 0 0.25 0.50 –0.3 –0.2 –0.1 0

(e)

(b)(a) (c)

(d ) ( f )

(〈u′2〉 + 〈v′2〉)/ω2
m

〈ω′2〉/ω2
m

〈uh〉/(m s–1) 〈ω′θ′〉/(ωmθm)〈θ〉 (K)

〈u′ω′〉/ω2
m

Figure 4. Horizontal ensemble-averaged wall-normal profiles of (a) horizontal wind speed 〈uh〉 = (〈u〉2 +
〈v〉2)1/2, (b) temperature 〈θ〉, (c) resolved heat flux 〈w′θ ′〉/(wmθm), (d) horizontal velocity variance (〈u′2〉 +
〈v′2〉)/w2

m, (e) vertical velocity variance 〈w′2〉/w2
m and ( f ) RSS 〈u′w′〉/w2

m for all the cases (the WU case is
shown in blue dashed lines).

with the literature, the skewness of the streamwise and wall-normal velocity components
(not shown here) show negative and positive values, respectively, above the canopy,
corresponding to the presence of strong ejection events. Within the canopy, streamwise
and vertical velocity skewness shift to positive and negative values, respectively, consistent
with the statistical predominance of strong sweeping events in this region (Patton et al.

2016).

3.2. Flow visualization

Instantaneous horizontal slices of the three velocity component fluctuations u′, v′ and
w′ normalized by wm at z/h = 10, 5 and 1 (z/zi = 0.20, 0.10 and 0.02, respectively)
are presented in figure 5(a–i) with close up views of the lowest level in figure 5(j,k,l)
for the WU case. Well above the canopy (figure 5a–f ), the fluctuations of the three
velocity components are marked by the presence of large-scale structures elongated in the
streamwise direction. Regions of narrow intense upward motion (figure 5c,f ) are found
to correspond to narrow streaks of low longitudinal velocity (figure 5a,d) and region
of lateral convergence of the flow (figure 5b,e). Conversely, the regions of downdraft
are broader, their locations match that of the high longitudinal velocity regions and
correspond to region of lateral divergence of the flow. These structures are separated in
the transverse direction by a distance on the order of zi, which corresponds well to the
presence of large convective rolls of streamwise axis (Lemone 1973). In the present study,
the main axis of the convective rolls is oriented along the streamwise direction x whereas
observations reported that their axis is usually at an angle of about 20◦ from the ABL
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Figure 5. Instantaneous fluctuations normalized by wm of (left) u, (centre) v and (right) w in the x–y plane at
(a,b,c) z/h = 10, (d,e,f ) z/h = 5 and (g,h,i) z/h = 1 for the WU case. Panels (j,k,l) are close up views of the
centre of the velocity field at z/h = 1 corresponding to the black squares shown in (g,h,i).
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layer-average wind direction (Lemone 1973). It should be noted that smaller scales are
embedded in these large-scale structures, and are likely to be under the influence of the
larger scales as observed by Lemone (1976) and recently confirmed by Patton et al. (2016)
and Salesky & Anderson (2018). At the top of the canopy (z/h = 1), w′ does not show the
footprint of large structures scaling with zi but rather a finer-scale organization (figure 5i).
Examination of the close up view (figure 5l) reveals the presence of both intense localized
downdraft motions and weaker and broader updraft motions. At this wall-normal distance,
the streamwise velocity u′ exhibits more anisotropic structures than w′, showing streaks of
low- and high-speed elongated in the streamwise direction. Looking at the entire x–y plane
(figure 5g), narrow long low-speed streaks can be seen. Their locations match well that of
the low streamwise velocity regions detected z/h = 5 and 10 (figure 5a,d). Inspection of
v′ reveals a strong imprint of the larger scales detected at higher levels, with embedded
smaller scales resembling oblique streaks of negative and positive lateral velocity.

From these qualitative observations, it can be concluded that the flow near the canopy

top results from the superposition of large scales (of size of the order of zi) onto smaller

scales, with size of the order of h. This is in agreement with the observations of Raupach
et al. (1996) and Patton et al. (2016) that canopy eddies (consisting of compact strong
intermittent sweeps and large weaker ejections) are under the influence of larger scales
of the ABL, whose structure in the present case seems compatible with the presence of
convective rolls. Longitudinal spacing of the structures present in the canopy-top region
is also in qualitative agreement with the estimate Λx/Ls = 8.1 of Raupach et al. (1996)
which corresponds here to 5.2h. It is worth mentioning that near canopy top, the presence
of the larger scales of the ABL is mainly seen in both u′ and v′, the latter being likely to
play a major role in generating canopy-eddies through the triggering of Kelvin–Helmholtz
instabilities, despite leaving no trace in the statistics because of the homogeneous character
of the flow in the lateral direction y.

3.3. Spectrograms

The qualitative conclusions based on the instantaneous slices presented in § 3.2 are
now further investigated for the WU case through the analysis of the premultiplied
one-dimensional spectra of the three velocity components, as a function of height z and
the spatial longitudinal or transverse wavelength, λx or λy, respectively (figure 6). The
wavelength corresponding to local maxima in the streamwise and transverse direction are
denoted λm

x and λm
y , respectively.

Within the canopy, the wavelengths corresponding to the maximum of energy of the
longitudinal and transverse spectra of both u and v are fairly constant with height,
particularly in the lower half of the canopy (0 < z/h < 0.5). In this region of the
canopy, the value of the wavelengths corresponding to the most energetic scales of the
longitudinal component u are found to be such that λm

x < λm
y . This might be interpreted

as the footprint of the two-dimensional roller structures of spanwise axis generated by
the Kelvin–Helmholtz instability at canopy top. However, the detailed investigation of
the characteristics of the coherent structures within the canopy in beyond the scope of the
present paper. Table 3 summarizes these wavelengths obtained in the upper half of the
canopy. These length scales derived based upon the local spectral peak are larger than
the integral length scales presented in Patton et al. (2016), however, the length scale
variation with wall-normal distance is consistent across both techniques. In the streamwise
direction, the wavelength corresponding to the peak of the energy spectra of the vertical
velocity component w is constant throughout the canopy (0 < z/h < 1) and equal to

mλx /h = 4, consistent with the integral length scales computed by Patton et al. (2016).
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Figure 6. Pre-multiplied spectra of the three velocity components plotted as a function of the wall-normal
distance z and (left) the streamwise wavelength λx and (right) the transverse wavelength λy (normalized by zi

or h) (WU case). Pre-multiplied spectra normalized by w2
m of u, v and w are shown in (a,b), (c,d) and (e,f ),

respectively. The vertical dashed line shows the cutoff wavelength chosen for scale separation. The red dashed
line indicates the location of the local maximum of the spectra. Oblique dotted blacked lines correspond to
trends λm ∝ z2 in (a,c,d) and λm ∝ z in (b,e,f ) of the most energetic canopy scales in the region 1 < z/h < 5.
Spectra are scaled up by a factor of 104 for clarity. For clarity, 20 contours are distributed logarithmically
between 0.025 and the maximum of each spectrum. The horizontal dark-green long-dashed line corresponds to
canopy top.

Conversely, in the transverse direction, the wavelengths of the most energetic structures
increase with wall distance in the bottom half of the canopy and stays approximately
constant in the upper half, with λm

y /h ≈ 4 in this region. Finding similar values for λm
x
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0 < z/h < 1 1 < z/h < 5 5 < z/h

λm
x /h λm

x /zi λm
y /h λm

y /zi λm
x /zi λm

y /zi λm
x /zi λm

y /zi

u 7.5 0.15 7.5 0.15 ∝ z2 ∝ z 3.5 1.0

v 7.5 0.15 ∝ z2 ∝ z2 3.5 1.0
w 4.0 0.08 4.0 0.08 ∝ z ∝ z 3.5 1.0

Table 3. Streamwise and spanwise wavelengths λm
x and λm

y corresponding to the most energetic scales of
the three velocity components in the different regions of the flow, normalized by the canopy height h or the
boundary-layer depth zi.

and λm
y near canopy top confirms the isotropic character of the structures in w noted in

figure 5. In the streamwise direction, λx/h = 4 corresponds to a streamwise spacing of
canopy eddies Λx/h = 4 (as defined by Raupach et al. 1996) which falls into the range
reported by Raupach et al. (1996) for comparable Ls/h (= 0.64 in the present case).

It must be noted that, for the present WU stability regime, inside the canopy, footprint
of the larger scales from the ABL is only visible in the spectra in the transverse direction
of v. Therefore, even if visible on instantaneous snapshots of the flow field, they are not
energetic enough to stand out in this flow configuration. This contrasts with the spectral
characteristics of the flow found in other stability regimes for which secondary peaks
at ABL scales are present (Patton et al. 2016). However, further analysis is beyond the
scope the present study. In the region 1 < z/h < 5, all the spectra show a local maximum
wavelength of the order of a few h in agreement with the presence of canopy scales.
Nevertheless, the primary spectral peak of the transverse velocity component corresponds
to the larger scales from the ABL, which coexist with the canopy scale in this region. The
wavelengths corresponding to the near-canopy structures increase with the wall distance
either as λm ∝ z2 for u in the streamwise direction and v in both directions or λm ∝ z for u

in the transverse direction and w in both directions (oblique dotted line in 6). In the region
extending up to z/h = 5, the transverse wavelength corresponding to the local extrema of
the pre-multiplied spectra of w in the x and y directions shows a clear linear evolution with
the wall-normal coordinate. This behaviour is also visible for the longitudinal component
u, but only for the transverse direction. This linear increase with wall-normal distance of
the most energetic scales is in agreement with the linear increase of the transverse spacing
of low- and high-speed streaks and size of vortical structures reported in the surface layer
of the ABL by previous studies (Lin et al. 1996a,b; Drobinski et al. 2004).

Well above the canopy, the pre-multiplied spectra in the transverse direction reveal
the presence of the footprint of large scales at λy/zi = 1.0 below 0.15zi for u and v

and above 0.15zi for w. The presence of this peak in the spectra in the outer region of
the boundary layer is consistent with the existence of streamwise rolls of large vertical
and spanwise extent, and at the bottom of which the vertical component is minimum.
Moreover, the lateral spacing corresponding to this wavelength of 1.0zi is in agreement
with the observations from figure 5. According to Sykes & Henn (1989), when u∗/w∗
is between 0.35 and 0.5, the aspect ratio of the rolls (defined as their width divided by
their depth) is approximately 4. Therefore, in the present simulation, the ratio u∗/w∗ being
equal to 0.45, one could use the value of the roll lateral spacing given by the large-scale
lateral wavelength of 1.0zi to estimate the vertical extent of these structures to be 0.26zi.
In the longitudinal direction, there is a strong imprint of the larger scales showing at
the wavelength λx/zi = 3.5 for the three velocity components. Above z/h = 5, most of
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Figure 7. Pre-multiplied cospectra plotted as a function of the wall-normal distance z and the (left) streamwise
wavelength λx and (right) the transverse wavelength λy (normalized by zi or h) (WU case). The negative of the

pre-multiplied cospectra of w and u (e.g. vertical momentum flux) normalized by w2
m are shown in (a,b) and

pre-multiplied cospectra of w and θ (e.g. vertical heat flux) normalized by wmθm are shown in (c,d). The
vertical dashed line shows the cutoff wavelength retained for scale separation. The red dashed line indicates the
location of the local maximum of the spectra. Cospectra are scaled up by a factor of 104 for clarity. For clarity,
20 contours are distributed logarithmically between 0.025 and the absolute maximum of each cospectra. The
horizontal dark-green long-dashed line corresponds to canopy top.

the energy is contained in the wavelength such that λy/zi � 1.0. Thus, in this region,
the energy content in the spectral domain is consistent with the presence of large-scale
structures corresponding to streamwise-oriented rolls whose vertical and spanwise extent
scale with zi. Pre-multiplied cospectra between the vertical velocity component w and
the longitudinal velocity component u or the potential temperature θ as a function of the
wall-normal distance and λx or λy are shown in figure 7. These plots clearly demonstrate
the spectral separation between the near-canopy turbulence and the most energetic large
scales from the ABL. The characteristic wavelengths identified in the pre-multiplied
spectra of the velocity components are confirmed as well as the linear increase of the
energetic scales with the wall-normal distance, entailing the presence of self-similar
eddies. It is worth mentioning here that, when multiplied by the vertical gradient of
the mean streamwise velocity, the RSS cospectrum provides direct information on the
contribution of the turbulent scales to TKE production. It can already be anticipated
that in the near-canopy region, TKE production mostly comes from the canopy scales
themselves.
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3.4. Evidence of AM of small scales

In the previous section, we have shown that the most energetic structures in the canopy
region and in the ABL are well separated in spectral space. Here, we demonstrate in the
WU case the existence of AM of the canopy turbulence by the larger scales of the ABL
using the same method as that proposed by Bandyopadhyay & Hussain (1984). To do
so, we use instantaneous u′ at the centre of the spatial domain (y/h = 0), at z/h = 1. A
two-dimensional low-pass filter with cutoff wavelengths of λx/zi = 0.57 and λy/zi = 0.29

is employed to decompose u′ into its large- and small-scale components uL and uS,
respectively, such that u′ = uL + uS. The large-scale envelope EL(uS) of the small-scale
signal is then computed by low-pass filtering (uS)2 with the same cutoff wavelength
(Basley et al. 2018). Example signals obtained via this scale decomposition are shown
in figure 8. The similarity between uL and EL(uS) is evident and their resemblance is
confirmed by the significant level of correlation between the two signals; which for the
present case, the correlation coefficient between these two signals is 0.7, which clearly
indicates AM of canopy turbulence by large ABL scales, similar to that found by Mathis
et al. (2009) in the near-wall region of a FPBL. In order to quantify the AM of the small
scales by the large scales of the flow, the single point AM coefficient, defined as the
correlation coefficient between the low-pass filtered envelope of a small-scale quantity
XS and the large-scale velocity component uL

i , measured at the same point, is computed as
(Mathis et al. 2009)

AM(uL
i , XS) = 〈uL

i EL(XS)〉
σuL

i
σEL(XS)

. (3.1)

In order to fully characterize the AM mechanism, AM(uL
i , XS) is computed for all the

velocity components but also for the small-scale kinetic energy defined as (ξS)2 =
[(uS)2 + (vS)2 + (wS)2]/2 = δKE(1). Consistent with previous studies of various types
of wall-bounded flows (e.g. Talluru et al. 2014; Blackman & Perret 2016; Basley et al.

2018; Salesky & Anderson 2018), all small-scale velocity components (and consequently
the small-scale kinetic energy) are amplitude modulated by the large-scale velocity
components (figure 9). The wall-normal distribution of the AM coefficients depends
on the large-scale component considered, while for one given large-scale component,
all the small-scale quantities are influenced in the same manner, as demonstrated by
AM correlation coefficients with similar wall-normal variation and magnitude. When
considering AM(uL, XS) (figure 9a), we find positive values with a peak at canopy top,
meaning that canopy-scale turbulence is amplified by high-intensity large-scale structures
of the streamwise velocity component uL. AM(uL, XS) changes sign at z/h = 2 (or z/zi =
0.04), a behaviour similar to that found by Salesky & Anderson (2018). Non-zero values
of AM(vL, XS) (figure 9b) result from having not performed any local rotation has been
performed to align the horizontal velocity components with the mean wind direction
at each height (as was done in Salesky & Anderson (2018), for instance). Despite that
difference, in the region above the canopy and when taking into account the vertical
displacement induced by the canopy, the present levels of AM(uL, XS) compares well to
Salesky & Anderson (2018) (not shown here). A similar trend is found for the large-scale
wall-normal velocity component AM(wL, XS) as for AM(uL, XS), but with opposite sign
(figure 9c). Contrary to what Salesky & Anderson (2018) observed in their ABL flow
without canopy, significant negative values of AM(wL, XS) are found in the canopy region
for all three small-scale velocity components and kinetic energy. Canopy-scale turbulence
is therefore suppressed when upward (positive wL) LSM exists within the canopy, while
enhancing turbulence in the region above the canopy.
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3.5. Small-scale TKE and RSS budget

The transport equations for TKE and RSS obtained using the multi-level formalism
presented in § 2.4 with a four-level decomposition are used to further analyse the
interaction between large and small scales. Only the WU case is analysed here, the
influence of atmospheric stability being addressed in § 3.6. We focus on terms representing
interscale spatial transport and transfer of TKE and RSS between components of the

velocity field (table 2), namely TS
t the (spatial) turbulent transport of small-scale kinetic

energy by the small scales themselves, TL
t the (spatial) turbulent transport of small-scale

kinetic energy by the large scales uL, PM the production of small-scale kinetic energy by
the mean flow uM, TL

r the interscale transfer of energy between the large scales uL and the
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table 2) for (a,b) the small-scale TKE (ξS)2 and (c,d) RSS −uSwS (WU case). Positive values indicate a gain
for the small scales.

small scales uS (with TL
r > 0 if uS receives energy from uL), and Dr the contribution of

drag to small-scale kinetic energy, which involves interaction between uS, uL and uM . The
small-scale TKE production term due to buoyancy BS is also shown for completeness.
In addition to the analysis of the transport term of the small-scale kinetic energy, a
similar analysis is conducted for the small-scale RSS −〈uSwS〉. Since the RSS is typically
negative, we include a minus sign in our definition so that a term in the balance equation
with a positive value corresponds to an increase in the small-scale shear stress magnitude.
For each of these terms, vertical profiles of both their mean value and standard deviation
have been computed and are shown in figure 10 to analyse their relative importance
on average but also from an instantaneous point of view. In particular, comparing the
standard deviation to the mean value of a given term highlights the possible occurrence of
instantaneous forward and backscatter of kinetic energy or RSS.

The primary findings regarding the transport of small-scale turbulent kinetic energy
in the WU configuration can be summarized as follows (figure 10a). As expected,
the production term PM is always positive, confirming that the mean flow is a source
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term of TKE. The spatial transport term TS
t acts as a source term within the canopy (with

a peak at the same height as the production term PM), and a sink term just above the
canopy. The small-scale component (uS) transports its energy from above into the canopy.
As uS represents in this region the most energetic scales (figure 6), which is consistent with
previous studies of TKE budgets within and above canopies which did not decompose each
term by scale (Brunet et al. 1994; Dwyer, Patton & Shaw 1997). The turbulent transport
term TL

t of (ξS)2 by uL is one order of magnitude smaller than the other terms, which
agrees with the findings of Kawata & Alfredsson (2018) in the case of a plane Couette flow.
TL

t is positive within the canopy, meaning that the large scales uL transport small-scale
energy into the canopy layers of the flow, and is negative above the canopy demonstrating
that large-scale turbulence transports small-scale kinetic energy away from the roughness
sublayer. TL

t becomes positive for z/h > 8 with very low magnitude. The interscale energy

transfer term TL
r , which indicates nonlinear scale interaction (e.g. triadic interaction), is

positive for all z and peaks at canopy top. Intense mean wind speed shear in this region
promotes small-scale TKE generation via the work of the small-scale Reynolds stresses

against the spatial gradients of the large-scale velocity components. In the mean, TKE
is transferred from large to small scales (classic forward scatter of energy), consistent
with the concept of the energy cascade process. It can be noted that the sum of TL

r and

TL
t , which represents the global interaction between large and small scales, peaks (with a

positive value) at canopy top and is dominated by the contribution of TL
r in this region.

Within the canopy, the drag term Dr acts as a sink of turbulent kinetic energy throughout
the entire canopy (and is zero above) as expected. Finally, it is worth mentioning that
the AM coefficient AM(uL, ξS) involves the same quantity uS

i uS
i uL

j as the spatial transport

term TL
t , which suggests that AM(uL, ξS) preferentially points to the influence of spatial

transport rather than pure nonlinear interscale energy transfer. However, this last point only

holds when the AM coefficient is based on the term uS
i uS

i uL
j (as in Basley et al. (2018) or

Blackman & Perret (2016)) and not when defined using the low-pass-filtered envelope of
the small scales calculated as the Hilbert transform of the small-scale signals, as in Mathis
et al. (2009) or Salesky & Anderson (2018).

The standard deviations of these interaction terms controlling the transport of
small-scale TKE are of a similar order of magnitude as their respective mean values or

even greater by a factor of four to five for TS
t and TL

t (figure 10b). In decreasing order of
standard deviation, the five different transport terms rank as follows within the canopy:
TS

t > TL
t > PM > Dr > TL

r > BS. From an instantaneous or local point of view, intense
events of both forward- and backscatter of energy exist, and are dominated by spatial

transport, and then by interscale transfer TL
r . The standard deviation of TL

t being larger

than that of TL
r shows that instantaneous spatial transport dominates in the redistribution

of energy.
Turning focus now to the small-scale RSS (figure 10c), the main results are the

following. Similar conclusions as for the small-scale TKE terms can be drawn concerning

TS
t , PM and Dr, which do not involve large-scale – small-scale interactions. The spatial

transport term TL
t is positive just below z/h = 1, negative for 1 < z/h < 6 − 7 and positive

(close to zero) above. Small-scale RSS is therefore transported away from the near-canopy

region by uL. Positive values of the interscale transfer term TL
r for z < 3h (e.g. in the

roughness sublayer) indicate forward interscale transfer (e.g. from uL to uS), while above
z/h � 3, TL

r becomes negative indicating a backscatter mechanism with RSS transfer from

uS to uL, consistent with Kawata & Alfredsson (2018). Above z/h � 4, the sum TL
t + TL

r
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remains negative (not shown here), suggesting a net loss of small-scale Reynolds shear
stress to the large scales. Finally, conclusions drawn on the standard deviation of all
the terms from the analysis of the small-scale TKE remain valid for those of the RSS
(figure 10d).

3.6. Influence of stability

Atmospheric stability’s influence on the wall-normal distribution of the AM coefficients
between the large-scale velocity components uL

i and the small-scale TKE (ξS)2 is shown in

figure 11. The same trends as for the WU case are found for AM(uL, ξS) and AM(wL, ξS),
for all the stability cases, namely positive (negative) values of AM(uL, ξS) (AM(wL, ξS))
within the canopy and negative (positive) above. Atmospheric stability seems to influence
more the wall-normal evolution of AM(vL, ξS) with a sign change in AM(vL, ξS) between
the NN case and all other stability cases below z/h = 2. This difference is attributed to
the influence of the Coriolis forces on the spanwise component v which decreases with
increasing −zi/L and the fact that no coordinate rotation was performed to align the
horizontal velocity component with the local mean wind. As found by Salesky & Anderson
(2018), at any wall-normal location, the magnitude of AM(uL, ξS) (and AM(vL, ξS))
decreases with increasing −zi/L, even dropping to zero for z/h > 8 (or z/zi > 0.16) for
the most unstable case (figure 11a). Regarding the influence of the large-scale wall-normal
velocity component wL (figure 11c), the general trend is a reduction of the magnitude
of AM(wL, ξS) with increasing −zi/L but with non-zero values, indicating a persistent
influence of the large-scale updraft on the canopy-scale turbulence. Nevertheless, our
results demonstrate clear differences from Salesky & Anderson (2018) who found little
influence of stability on AM(wL, ξS) when interrogating turbulent flows interacting with
parameterized roughness, which suggests a key influence of explicitly resolving processes
produced by the inflection-point instability at canopy top. The mean transport terms of

the small-scale TKE budget are analysed as a function of −zi/L (figure 12). As expected
given the decrease of the imposed geostrophic wind with increasing −zi/L, the production
of small-scale TKE PM drops to zero with increasing −zi/L. In the most unstable
cases, the flow is no longer shear driven but buoyancy driven through the influence
of the term BS. This term, whose magnitude is almost independent of the atmospheric
stability (with a peak value around 0.012h/w3

m except for the FC case which peaks at

0.015h/w3
m), becomes the predominant source term of small-scale TKE with increasing

−zi/L. Spatial transport of small-scale energy by the large scales TL
t drops to zero with

increasing −zi/L while spatial transport of small-scale energy by the small scales TS
t also

decreases with −zi/L but stays non-zero in the roughness sublayer. The height of the
(positive) peak of TS

t remains the same for all −zi/L. The region of negative TS
t above

the canopy extends to higher heights with increasing −zi/L. It is therefore consistent with
the existence of a mixing-layer region in which small-scale energy is transported by small
scales from above the canopy into the canopy, with a wall-normal extent of a few times
h. The interscale energy transfer term TL

r remains positive, consistent with the classic
energy cascade process. Through drag, the canopy remains a sink term of kinetic energy
(negative values of Dr) as expected. Decomposing the global drag term Dr by scale (as
in (2.19)) shows that the major contribution comes from the interaction between the small
scales and the mean velocity field, followed by the interaction among small scales (not
shown). Energy exchange via interaction between the large and small scales is two orders
of magnitude smaller than the leading term, indicating that the influence of the large
scales on the small scales through drag is negligible compared with that of mean shear.
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Figure 11. The AM coefficients AM(uL
i , ξS) between the small-scale TKE (ξS)2 and the large-scale

(a) streamwise velocity component uL, (b) spanwise velocity component vL and (c) wall-normal velocity

component wL, for each atmospheric stability cases listed in table 1.

Finally, the conclusions associated with interrogating the standard deviation of the
interaction terms from the WU case (§ 3.5) remain valid with increasing instability
(not shown); a result indicating that no matter the stability regime, large and small
scales interact instantaneously and predominantly through spatial transport. Regarding the
transport of small-scale RSS (figure 13), all transport terms drop progressively to zero with
increasing −zi/L while their standard deviations remain high and almost independent of
the stability regime. In the FC case, the source term BS also becomes zero as the covariance
〈θS

v uS〉 (as well as 〈θS
v vS〉) drops to zero due to the isotropic character in the horizontal

plane of the convection cells. To highlight the importance of the mean interscale transfer
of TKE or RSS, the term TL

r is shown in figure 14 normalized by the production terms

PM + BS. As mentioned above, all flow configurations show forward scatter of TKE from
the large to the small scales with increasing relative magnitude with increasing −zi/L

(figure 14a). It must be noted that as the influence of the mean shear decreases, a peak of
TL

r /(PM + BS) appears at canopy top, reaching almost 60 % for the FC case. This indicates
that as the mean shear production term vanishes, the large scales become a non-negligible
source of TKE for the near-canopy structures. Except for the NN case, which shows an
almost constant with height forward scatter of RSS (close to 2 %), backscatter of RSS
exists for all other atmospheric stability cases above z/h � 2 with an increasing relative
importance with increasing −zi/L (figure 14b).

This section’s discussion clearly demonstrates atmospheric stability’s influence
on the vertical flow structure and subsequently the mechanisms controlling energy
transport. Increasing instability (−zi/L → +∞) results in reduced mechanical turbulence
production by reducing mean wind speed shear magnitudes in the lower regions of the
flow. However, it has been shown (e.g. Patton et al. 2016; Salesky & Anderson 2018)
that increasing −zi/L and changing the stability regime from neutral to free convection
drastically changes the instantaneous structure of the flow. The elongated roll structures
visible in weakly unstable and near-neutral regime (figure 5) indeed transition to cellular
convective structures with increasing −zi/L (not shown). Complementary to our analysis
of the interscale transfer terms (see discussion surrounding figures 12 and 14), we
now study the influence the evolution ABL-scale structure with increasing atmospheric
instability (i.e. the evolution from rolls to cells) has on interscale energy transfer TL

r by
interrogating stability’s influence on contributions from subcomponent terms comprising
TL

r that involve horizontal gradients of the large-scale velocity field. In the following,

T
uiL
r,xy denotes the component (G3 − I)LL

ix(δuL
i /∂x) + (G3 − I)LL

iy(δuL
i /∂y) of TL

r (with no
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Figure 12. Wall-normal profiles of the mean interscale transfer terms (�, red) TS
t , (•, blue) TL

t , (
, pink) PM ,

(�, orange) TL
r , (�, green) Dr and (black solid line) BS for the small-scale TKE (ξS)2, for all the atmospheric

stability cases listed in table 1. Positive values indicate a gain for the small scales. Please note that the x-axis
range changes between panels.

implicit summation over repeated index i here). Here, TL
r,xy represents the contribution

of the horizontal gradients of the three large-scale velocity components to TL
r . The

contribution of the vertical gradient of the LSM is represented by the difference TL
r − TL

r,xy.

Wall-normal profiles of TL
r , T

uiL
r,xy (with i = 1, 2 or 3) and TL

r,xy are presented in figure 15.

First, for any stability regime, the difference TL
r − TL

r,xy indicates that the terms involving

the vertical gradient of the LSM are responsible for the forward scatter peak at canopy

top (difference between the orange line, TL
r and the dark-green diamond (�, green)

TL
r,xy) which is consistent with the classic turbulence kinetic energy production process,

namely the work of small-scale shear stress against vertical gradient of large-scale velocity
components. Above z/h = 2, the horizontal gradients of the large-scale motion are major
contributors to interscale energy transfer, with contribution from the different velocity
components varying with −zi/L. In particular, there is an increasing contribution of the
vertical large-scale velocity component wL to interscale transfer with increasing −zi/L.
The contribution of the horizontal velocity components (uL and vL) peaks at z/h � 2 or
a bit lower for the free-convective case while the influence of wL starts higher if present.
For all stability cases, the global trend is the following: there is a major contribution of
the horizontal gradients of (
, pink) uL, then (�, red) vL and then (•, blue) wL, the latter

being close to zero for weak convective regimes. The influence of wL indeed becomes
significant and predominant only for the two most unstable cases and impacts the region
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z/h > 2, consistent with the analysis of the AM coefficient AM(wL, ξS) as a function of
−zi/L.

4. Conclusion

Based on high-resolution LES data of an ABL developing over a vegetation canopy, the
interaction between the most energetic large-scale structures existing in the ABL and the
small scales originating from the near-canopy region has been investigated. The main
findings are the following:

(i) In spite of the presence of the vegetation canopy in the near-wall region, the AM
mechanism of the small scales by the most energetic structures of the ABL is found
to exist and involve all three velocity components of both large and small scales,
in agreement with prior studies conducted in laboratory flows over smooth (Mathis
et al. 2009; Bernardini & Pirozzoli 2011; Jacobi & McKeon 2013; Talluru et al.

2014) or rough walls (Nadeem et al. 2015; Anderson 2016; Blackman & Perret 2016;
Squire et al. 2016; Pathikonda & Christensen 2017; Basley et al. 2018) and ABL
flows (Lemone 1976; Salesky & Anderson 2018; Liu, Wang & Zheng 2019). This
influence exists also within the canopy, with AM coefficients peaking just below
canopy top.

(ii) Through analysis of the scale-decomposed budget equation of the small-scale TKE,
this link has been confirmed and quantified. In particular, it has been shown that in
the mean, there exists a net transfer of energy from large to small scales while the
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large scales induce an upward spatial transport of energy from the near-canopy top
to the region above. However, within the canopy and broader roughness sublayer, the
magnitude of the net exchange between the large- and small-scale structures is weak
(one order of magnitude smaller) relative to the other transport terms such as energy
production by the mean flow, drag influence within the canopy or spatial transport
of small-scale energy by the small scales themselves.
The interscale energy transfer found above the canopy in the ABL agrees well with
the findings of Lemone (1976) or Kawata & Alfredsson (2018) in flows over smooth
surfaces.
The turbulent transport and interscale transfer terms of the energy budget equations
are strongly tied to the classically investigated AM coefficients (see (3.1)) because
they are based on the same third-order statistics.
However, direct deduction of AM coefficients from the turbulent transport and
interscale transfer terms is not straightforward as the AM coefficients depend on
the wall-normal evolution of the variances of both the large-scale envelope of the
small scales and the large scales (used for normalization) while the constituents of
the budget equation involve spatial gradients of third-order moments.

(iii) Despite the relatively small importance of the scale interaction in the net transfer
of energy, analysis of the standard deviation of the transport terms demonstrates
intense forward- and backscatter of energy. This finding supports the Mizuno (2016)
conclusion that individual instantaneous events sustaining the energy spectra might
be cancelled by others and therefore hidden when analysing bulk statistics.
This finding, along with the conclusion drawn by Patton et al. (2016) when analysing
the same data as in the present study, about the significant improvement of the
skewness profiles when accounting for ABL-scale structures in LES of atmospheric
flows above and within a vegetation canopy must also relate to the conclusions
of Brasseur & Wei (1994) and Yeung, Brasseur & Wang (1995) about interscale
dynamics. These studies indeed demonstrated that triadic interactions between
distant scales (i.e. when the ratio between scales is greater than 15–20, Brasseur
& Wei 1994) induce weak energy transfers and are embedded in energy cascading
interactions among scales of similar magnitude but create phase correlation and
anisotropy at the small scales that shows in third-order moments.

(iv) Analysis of the budget equation of the small-scale RSS shows that, in the

near-canopy region, large scales are a source of small-scale RSS through interscale
transfer while those same large-scales act as a sink through spatial transport. These
two mechanisms switch roles above the roughness sublayer. This combination can
be interpreted as a feedback mechanism from the small to the large scales, as found
by Kawata & Alfredsson (2018) in plane Couette flow. However, similar to kinetic
energy, the magnitude of these terms remains small relative to the production, drag
and other spatial transport terms. As for kinetic energy, the standard deviation of
these scale-interaction terms is high compared with their mean value, indicating the

occurrence of strong instantaneous forward- and backscatter exchange of RSS.

(v) Canopy drag constitutes a net sink term for both energy and RSS. However, the
standard deviation of the drag term in the budget equation being twice its average
value, drag also creates strong instantaneous forward- and backscatter. Compared

with the mean flow–small-scale flow interaction, the contribution of the scale
interaction to the net drag effect is weak.

(vi) Conclusions (i) through (v) remain valid with increasing −zi/L. However,
the analysis of the AM shows that, consistent with Salesky & Anderson (2018),
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the vertical LSM wL plays an increasingly important role in the interscale transfer
when buoyancy effects increase and the flow switches from being shear driven to
being buoyancy driven.

Thus, even if AM coefficients show significant levels (up to 0.75, depending on the
atmospheric stability), the average influence of the large ABL scales on the smaller canopy
scales is weak, with the corresponding transfer terms being an order of magnitude smaller
than production by the mean flow or buoyancy effects. However, even if small, the present
findings support the existence of closed-loop pathway between large and small scales,
with strong instantaneous forward and backward exchange of both kinetic energy and
RSS. The recent findings from Hwang & Cossu (2010) showing that large-scale structures
in the outer region are self-sustaining and mainly a consequence of the structure of the
mean flow profile but also the fact that mean shear (or buoyancy) is the key contributor in
near-wall turbulence generation raises the question of the role of the instantaneous scale
interaction in the dynamics of the flow. The present conclusions combined with those of
Patton et al. (2016) about the importance of including ABL-scale eddies in LES of the
ABL over vegetation canopy to more accurately reproduce the skewness profiles, along
the line of the findings of Brasseur & Wei (1994) draw the attention to the dynamical role
of the scale interaction and call for further investigation.

Finally, the modulation of small-scale turbulence by larger scales discussed in this paper
clearly demonstrates the importance of large-scale (ABL-scale) turbulence on velocity
skewness and the instantaneous dynamics of smaller-scale turbulence within and above
vegetation canopies. Therefore, while previous studies of atmospheric canopy turbulence
utilizing limited-height domains have provided substantial insight into the mechanics
of canopy-scale turbulence (e.g. Shaw & Schumann (1992), among many others), those
simulations are likely producing accurate first- and second-order statistics for reasons that
are distinct from those controlling canopy turbulence observed in field measurements.
This analysis also demonstrates that the modulation of the small-scale structures by the
large scales leads to the local enhancement/reduction of small-scale activity in a canopy’s
vicinity which introduces spatially heterogeneous flow characteristics at the scale of the
ABL-scale structures. This effect averages out in flows over horizontally homogeneous

terrain if averaging strategies incorporate ABL scales, however, land surface heterogeneity
(e.g. orography, land use) could promote and positionally lock ABL-scale motions to a
particular spatial location thereby ensuring the influence would persist.
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Appendix A. Scale-decomposed momentum transport equations using the

multi-level filtering approach

A.1. Momentum transport equations in index form

Using index notation, the momentum transport equation (2.15) reads

∂ ū
(n)
i

∂t
+ ū

(n)
j

∂ ū
(n)
i

∂xj

= −f εijlk̂j(ū
(n)
l − Ū

(n)
gl ) − ∂π̄

(n)

∂xi

+ β(θ̄ (n)
v δ3

i − θ̄ (n)
v0

)

−
∂T

(n)
ij

∂xj

+ F̄
(n)
di

, (A1)

or, equivalently,

∂ ū
(n)
i

∂t
+ ū

(n)
j

∂ ū
(n)
i

∂xj

= L̄
(n)
i −

∂T
(n)
ij

∂xj

+ F̄
(n)
di

, (A2)

with

T
(n)
ij = �uiuj

(n) − ū
(n)
i ū

(n)
j . (A3)

Here, L̄
(n)
i is given by (2.14) while the detail of F̄

(n)
di

can be found in Appendix A.3.

A.2. Calculation of (T(n) − T(n+1))

Using the multi-level Germano identity (Sagaut et al. 2013, § 4.2.1.2), SFS tensors T (n)

and T (n) with m < n between two different filtering levels n and m, respectively, can be
related by

T
(n)
ij = L

(n)
ij +

∑
k=m+1,n−1

Gn
k+1L

(k)
ij + Gn

m+1T
(m)
ij , (A4)

with

T
(n)
ij = uiuj

(n) − �ui
(n)�uj

(n), (A5)

T
(n+1)
ij = Gn+1 
 T

(n)
ij + L

(n+1)
ij , (A6)

and

L
(n+1)
ij = Gn+1 
 (ū

(n)
i ū

(n)
j ) − ū

(n+1)
i ū

(n+1)
j . (A7)

As depicted in figure 2, the different terms in the above equations can be interpreted

as follows: L
(n)
ij represents the influence of ‘sub-level scales’ δu(n−1) at the nth level

contributing to ū(n) (e.g. interaction between ū(n) and δu(n−1)); G
(n)
k+1L

(k)
ij bears the

influence of the ‘sub-level scales’ δu(k−1) at the kth level contributing to ū(n) (e.g.

interaction between ū(k) and δu(k−1) filtered at level n); G
(n)
m+1T

(m)
ij represents the influence

of the ‘sub-level scales’ δu(m) + u′′ at the mth level contributing to ū(n) (e.g. interaction

between ū(m+1) and both the resolved band-pass-filtered velocity δu(m) and the SFS field
u′′ filtered at level n).
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With the above, the term (T (n) − T (n+1)) therefore reads
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k+1L

(k)
ij + G

n+1
n+1L

(n)
ij + G

n+1
m+1T

(m)
ij

= L
(n+1)
ij +

∑
k=m+1,n−1

G
n+1
k+1L

(k)
ij + Gn+1L

(n)
ij + G

n+1
m+1T

(m)
ij , (A8)

with

T
(n)
ij = L

(n)
ij +

∑
k=m+1,n−1

Gn
k+1L

(k)
ij + Gn

m+1T
(m)
ij . (A9)

Hence

T
(n+1)
ij − T

(n)
ij = L

(n+1)
ij +

∑
k=m+1,n−1

(Gn+1
k+1 − Gn

k+1)L
(k)
ij

+ (Gn+1 − I)L
(n)
ij + (Gn+1 − I)Gn

m+1T
(m)
ij . (A10)

A.3. Calculation of the drag term (F̄
(n)
d − F̄

(n+1)
d )

In the general case, the drag force created by the presence of the canopy is modelled as
(Shaw & Patton 2003)

F d = −(cd + csf )avwu, (A11)

where cd is the form drag coefficient, csf is the viscous drag coefficient (Reynolds number
dependent), a is a one-sided frontal plant area density and vw is the wind speed magnitude
with v2

w = |u|2 = uiui = u2
1 + u2

2 + u2
3. Following Shaw & Patton (2003), the viscous

canopy-drag term is assumed negligible (csf = 0) compared with canopy form drag and
depends only on the LES resolved scales ū (Patton et al. 2016). Wakes shed in the lee of
canopy elements are presumed small enough so that they directly dissipate to heat hence
the term Fε in the LES transport equation for SFS TKE e (which solely represents the
work performed by SFS motions against canopy drag) (Patton et al. 2016). The drag force
is therefore parametrized as (Shaw & Schumann 1992)

F d = −cda �vwū, (A12)

where �vw = |ū| = √�ui�ui is the local velocity magnitude. The scalar �vw depends solely on
the resolved velocity field and can therefore be computed directly.
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Using the multi-level filtering formalism, neglecting the viscous canopy drag (csf = 0)
and using the parametrization from Shaw & Schumann (1992) (see (A12)), (A11) reads

F d = F̄
(1)
d

= −cda �vwu(1)

= −cda �vw
(1)ū(1) + d(1)

= D(1) + d(1), (A13)

where d(1) = 0 represents the contribution of the SFS field to the drag (which is zero in the
present case, at the lowest level of filtering, Shaw & Schumann 1992). This contribution

can be viewed as being similar to a SFS tensor d(1) = −cda( �vwu(1) − �vw
(1)ū(1)). At level

n, the drag force can be decomposed into

F̄
(n)
d = D(n) + d(n), (A14)

with D(n) = −cda �vw
(n)ū(n) and d(n) (for m < n) defined as

d
(n)
i = D

(n)
i +

∑
k=m+1,n−1

Gn
k+1D

(k)
i + Gn

m+1d
(m)
i , (A15)

with d(1) = 0 and (similarly to L
(n)
ij )

D
(n+1)
i = −cda[Gn+1(�vw

(n)ū
(n)
i ) − �vw

(n+1)ū
(n+1)
i ]. (A16)

If m = 1 and n = 2,

d
(2)
i = D

(2)
i + G2d

(1)
i = D

(2)
i

= −cda[G2(�vw
(1)ū

(1)
i ) − �vw

(2)ū
(2)
i ]. (A17)

If m = 1 and n = 3,

d
(3)
i = D

(3)
i + G3D

(2)
i + G3 
 G2d

(1)
i

= D
(3)
i + G3D

(2)
i . (A18)

Thus, as before, in the case of a four-level decomposition, with m = 1 and n = 2,

d
(n+1)
i − d

(n)
i = d

(3)
i − d

(2)
i

= D
(3)
i + (G3 − I)D

(2)
i (A19)

(because d(1) = 0). Therefore, D
(3)
i can be interpreted as the contribution of δu(2) = uL to

the drag at level 3 or uM, (G3 − I)D
(2)
i represents the contribution of the band-pass-filtered

velocity δu(1) = uS to the drag at level of the band-pass filtered velocity δu(2) = uL. In
addition, with the present hypothesis, the contribution of the SFS scales to the drag is
zero.
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Appendix B. Transport equation of δKE(n) the kinetic energy of δu(n)

B.1. Equation derivation

The transport equation of the momentum associated with the band-pass filtered velocity
δu(n) = ū(n) − ū(n+1) is obtained by subtracting the transport equation for ū(n+1) from that
for ū(n). With the above drag decomposition, it reads

∂δu(n)

∂t
+ ∇ · (δu(n) ⊗ δu(n) + δu(n) ⊗ ū(n+1) + ū(n+1) ⊗ δu(n))

= δL(n) − ∇ · (T (n) − T (n+1)) + (D(n) − D(n+1)) + (d(n) − d(n+1)), (B1)

or, with index notation (from (2.10))

∂δu
(n)
i

∂t
+ ∂

∂xj

(δu
(n)
i δu

(n)
j + δu

(n)
i ū

(n+1)
j + ū

(n+1)
i δu

(n)
j )

= δL
(n)
i − ∂

∂xj

(T
(n)
ij − T

(n+1)
ij ) + (D

(n)
i − D

(n+1)
i ) + (d

(n)
i − d

(n+1)
i ). (B2)

In order to derive the transport equation of the kinetic energy of δu(n), the above equation

is written for the component δu
(n)
i , multiplied by δu

(n)
i , followed by a contraction over the

repeated index i

1

2

∂

∂t
(δu

(n)
i δu

(n)
i ) + ∂

∂xj

(
1

2
δu

(n)
i δu

(n)
i δu

(n)
j + 1

2
δu

(n)
i δu

(n)
i ū

(n+1)
j

)

+ δu
(n)
i

∂

∂xj

(ū
(n+1)
i δu

(n)
j )

= δL
(n)
i δu

(n)
i + (T

(n)
ij − T

(n+1)
ij )

∂δu
(n)
i

∂xj

− ∂

∂xj

((T
(n)
ij − T

(n+1)
ij )δu

(n)
i )

+ (D
(n)
i − D

(n+1)
i )δu

(n)
i + (d

(n)
i − d

(n+1)
i )δu

(n)
i . (B3)

Using the fact that ū
(n)
i = ū

(n+1)
i + δu

(n)
i and �vw

(n) = �vw
(n+1) + δvw

(n), the drag term

becomes

D
(n)
i − D

(n+1)
i = −acd[ �vw

(n)ū
(n)
i − �vw

(n+1)ū
(n+1)
i ]

= −acd[ �vw
(n+1)ū

(n+1)
i + δvw

(n)ū
(n+1)
i + �vw

(n+1)δu
(n)
i

+ δvw
(n)δu

(n)
i − �vw

(n+1)ū
(n+1)
i ], (B4)

thus

D
(n)
i − D

(n+1)
i = −acd[δvw

(n)δu
(n)
i + δvw

(n)ū
(n+1)
i + �vw

(n+1)δu
(n)
i ]. (B5)
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The transport equation of the kinetic energy of δu(n) reads

∂

∂t

(
1

2
δu

(n)
i δu

(n)
i

)
= − ∂

∂xj

(
1

2
δu

(n)
i δu

(n)
i δu

(n)
j + 1

2
δu

(n)
i δu

(n)
i ū

(n+1)
j

)

− δu
(n)
i

∂

∂xj

(ū
(n+1)
i δu

(n)
j )

+ δL
(n)
i δu

(n)
i + (T

(n)
ij − T

(n+1)
ij )

∂δu
(n)
i

∂xj

− ∂

∂xj

((T
(n)
ij − T

(n+1)
ij )δu

(n)
i )

− acd(δvw
(n)δu

(n)
i δu

(n)
i + δvw

(n)δu
(n)
i ū

(n+1)
i + �vw

(n+1)δu
(n)
i δu

(n)
i )

+ (d
(n)
i − d

(n+1)
i )δu

(n)
i . (B6)

Note that �vw
(n) > 0, δv

(n)
w = �|u|(n) − �|u|(n)+1

> 0 and acd > 0. Hence, in the last before
drag term (on the right-hand side), the first and last terms are strictly negative, e.g.

dissipative, while the sign second one (δvw
(n)δu

(n)
i ū

(n+1)
i ) depends on that of the product

(δu
(n)
i ū

(n+1)
i ). Each of the terms are then spatially and ensemble averaged to obtain mean

contributions to the TKE evolution. Their standard deviations are also computed.

B.2. Interpretation of the terms of the δKE(n) transport equation

Referring to (B6), the term on left-hand side (left-hand side) of the equation,

(∂/∂t)(1
2δu

(n)
i δu

(n)
i ), represents the temporal variation of the δKE(n) of the band-pass

filtered velocity δu(n). It is balanced by the right-hand side where the first term

−(∂/∂xj)(
1
2δu

(n)
i δu

(n)
i δu

(n)
j ) accounts for the turbulent transport of δKE(n) by δu(n). The

second term −(∂/∂xj)(
1
2δu

(n)
i δu

(n)
i ū

(n+1)
j ) represents the advection of δKE(n) by ū(n+1).

The third contribution, −δu
(n)
i

∂
∂xj

(δu
(n)
j ū

(n+1)
i ), involving stresses of the band-pass-filtered

velocity δu(n) and the velocity at larger scale ū(n+1), can be rewritten as

−δu
(n)
i

∂

∂xj

(δu
(n)
j ū

(n+1)
i ) = −δu

(n)
i

[
δu

(n)
j

∂

∂xj

(ū
(n+1)
i ) + ū

(n+1)
i

∂

∂xj

(δu
(n)
j )

]

= −δu
(n)
i

[
δu

(n)
j

∂

∂xj

(ū
(n+1)
i ) + 0

]

= −δu
(n)
i δu

(n)
j

∂

∂xj

(ū
(n+1)
i ). (B7)

This corresponds to a production term of δKE(n) by the turbulent stress at level δu(n)

working the against the gradient of ū(n+1) (e.g. production of δKE(n) at intermediate

level by the larger scales). The fourth term of the right-hand side, δL
(n)
i δu

(n)
i includes

diffusion of δKE(n) by pressure, Coriolis and buoyancy effects. The fifth term (T
(n)
ij −

T
(n+1)
ij )(∂δu

(n)
i /∂xj) accounts for the interscale transfer with ‘sub-level’ scales, e.g.

the influence through (nonlinear) energy transfer of scales smaller than the nth level,
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including SFS dissipation due to u′′ of δKE(n). The sixth term −(∂/∂xj)((T
(n)
ij −

T
(n+1)
ij )δu

(n)
i ) is a spatial transport term which can be interpreted as the diffusion of δKE(n)

by ‘sub-level’ scales (e.g. smaller scales than the nth level) including SFS scales u′′.
The contribution of the canopy drag is due to the last two terms. The seventh, (D

(n)
i −

D
(n+1)
i )δu

(n)
i which reads −acd(δv

(n)δu
(n)
i δu

(n)
i + δvw

(n)δu
(n)
i ū

(n+1)
i + �vw

(n+1)δu
(n)
i δu

(n)
i ),

represents the energy transfer by the work of drag generated at level δu(n). The eighth and

last term, (d
(n)
i − d

(n+1)
i )δu

(n)
i , accounts for the work of drag generated at ‘sub-levels’

(smaller than the nth level) inducing energy transfer at level δu(n). In the present
study, it involves only LES-resolved scales (Patton et al. 2016). In addition, the viscous
effects have been neglected, two terms are missing in the above transport equation:

(∂/∂xj)((ν/2)(∂δu
(n)
i δu

(n)
i /∂xj)), which would represent the diffusion by viscous effects,

and −ν(∂δu
(n)
i /∂xi)(∂δu

(n)
i /∂xi) which would account for the viscous dissipation at level

δu(n). It must be noted that in terms (5), (6) and (8) of the right-hand side of (B6), there
are ‘sub-level’ contributions that are directly computable from the LES-resolved field (e.g.

those involving L
(k)
ij and D

(k)
ij terms), providing access to the interaction between large and

small resolved scales.

Appendix C. Transport equation of δRS
(n)

ij the Reynolds stress associated with δu(n)

C.1. Equation derivation

The transport equation for the Reynolds stress δRS
(n)
ij = δu

(n)
i δu

(n)
j is obtained by adding

the transport equation (2.18) of δu
(n)
i multiplied by δu

(n)
j to the transport equation (2.18) of

δu
(n)
j multiplied by δu

(n)
i

∂δu
(n)
i δu

(n)
j

∂t
+ ∂

∂xα

(δu
(n)
i δu

(n)
j δu(n)

α + δu
(n)
i δu

(n)
j ū(n+1)

α )

+ δu
(n)
j

∂

∂xα

(ū
(n+1)
i δu(n)

α ) + δu
(n)
i

∂

∂xα

(ū
(n+1)
j δu(n)

α )

= δu
(n)
j δL

(n)
i + δu

(n)
i δL

(n)
j

+ (D
(n)
i − D

(n+1)
i )δu

(n)
j + (D

(n)
j − D

(n+1)
j )δu

(n)
i

+ (d
(n)
i − d

(n+1)
i )δu

(n)
j + (d

(n)
j − d

(n+1)
j )δu

(n)
i

− δu
(n)
j

∂

∂xα

(T
(n)
iα − T

(n+1)
iα ) − δu

(n)
i

∂

∂xα

(T
(n)
jα − T

(n+1)
jα ), (C1)

with

δu
(n)
j

∂

∂xα

(ū
(n+1)
i δu(n)

α ) + δu
(n)
i

∂

∂xα

(ū
(n+1)
j δu(n)

α )

= δu
(n)
j δu(n)

α

∂ ū
(n+1)
i

∂α
+ δu

(n)
i δu(n)

α

∂ ū
(n+1)
j

∂α
(C2)
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and, with D
(n)
i − D

(n+1)
i = −acd(δvw

(n)δu
(n)
i + δvw

(n)ū
(n+1)
i + �vw

(n+1)δu
(n)
i ),

(D
(n)
i − D

(n+1)
i )δu

(n)
j + (D

(n)
j − D

(n+1)
j )δu

(n)
i

= −2acd(δu
(n)
i δu

(n)
j [δvw

(n) + �vw
(n+1)])

− acdδvw
(n)(ū

(n+1)
i δu

(n)
j + ū

(n+1)
j δu

(n)
i ). (C3)

The Reynolds stress transport equation of the band-pass-filtered velocity δu(n) therefore

reads

∂(δu
(n)
i δu

(n)
j )

∂t
= − ∂

∂xα

((δu
(n)
i δu

(n)
j )δu(n)

α + (δu
(n)
i δu

(n)
j )ū(n+1)

α )

−
(

δu
(n)
j δu(n)

α

∂ ū
(n+1)
i

∂α
+ δu

(n)
i δu(n)

α

∂ ū
(n+1)
j

∂α

)

+ (T
(n)
iα − T

(n+1)
iα )

∂δu
(n)
j

∂xα

+ (T
(n)
jα − T

(n+1)
jα )

∂δu
(n)
i

∂xα

− ∂

∂xα

((T
(n)
iα − T

(n+1)
iα )δu

(n)
j + (T

(n)
jα − T

(n+1)
jα )δu

(n)
i )

− 2acd(δu
(n)
i δu

(n)
j [δvw

(n) + �vw
(n+1)])

− acdδvw
(n)(ū

(n+1)
i δu

(n)
j + ū

(n+1)
j δu

(n)
i )

+ (d
(n)
i − d

(n+1)
i )δu

(n)
j + (d

(n)
j − d

(n+1)
j )δu

(n)
i . (C4)

This equation being similar in its form to the one for δKE(n), the reader is referred to
§ B.2 for a detailed interpretation of each of its terms.

Appendix D. Application with a four-level decomposition

D.1. Transport equation of δKE(n) with a four-level decomposition

Writing the decomposition of the velocity field with m = 1 and n = 2, u = ū(3) + δu(2) +
δu(1) + u′′, which corresponds to u = uM + uL + uS + u′′. It results in the decomposition
of the LES-resolved velocity field into three contributions, uM = δu(3) the spatially

ensemble-averaged component, uL = δu(2) the large-scale (ABL) component and uS =
δu(1) the small-scale (canopy) component, u′′ being the unresolved SFS field.

In the present study, the TKE balance is estimated from the small-scale point of
view. Therefore, in order to focus on scale interactions, the terms of interest on the

right-hand side of (B6) are the following: the first term written for δu(1) = uS which
represents the turbulent transport of (ξS)2 = δKE(1) by uS. The spatial ensemble average

of this term is denoted TS
t . The second term written for δu(1) and decomposed to show

(∂/∂xj)(
1
2δu

(1)
i δu

(1)
i δu

(2)
j ). It represents the turbulent transport of (ξS)2 by uL. Its spatial

ensemble average is denoted TL
t . The third term of the right-hand side, written for δu(1)

and decomposed using ū(2) = ū(3) + δu(2) to show −δu
(1)
i δu

(1)
j (∂ ū

(3)
i /∂xj). Its spatial

ensemble average is denoted PM . It represents the production of (ξS)2 by the mean field uM
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and is used for comparison. The fifth term, when writing the transport equation for δu(2) =
uL and decomposed to show −(G3 − I)L

(2)
ij (∂δu

(2)
i /∂xj) represents the interscale energy

transfer from uL to uS if negative (e.g. forward scatter). Its opposite, therefore represents
a gain of small-scale TKE through interscale energy transfer if positive. The spatial

ensemble average of this term is denoted TL
r . The seventh term, (D

(n)
i − D

(n+1)
i )δu

(n)
i ,

written for n = 1 the contribution of the resolved velocity field through drag to the
evolution of the TKE of the small scales uS. Its spatial ensemble average is denoted Dr. If
needed, it can be further decomposed to isolate the contribution of different higher levels
of filtering to the drag influence

D
(n)
i − D

(n+1)
i = −cda[ �vw

(n)ū
(n)
i − �vw

(n+1)ū
(n+1)
i ]

= −cda[(�vw
(n+2) + δv(n+1)

w + δv(n)
w )(�ui

(n+2) + δu
(n+1)
i + δu

(n)
i )

− (�vw
(n+2) + δv(n+1)

w )(�ui
(n+2) + δu

(n+1)
i )]

= −cda[ �vw
(n+2)δu

(n)
i + ū

(n+2)
i δv(n)

w + δvw
(n+1)δu

(n)
i

+ δu
(n+1)
i δv(n)

w + δvw
(n)δu

(n)
i ]. (D1)

When the evolution of the small-scale level (n = 1) is considered, u(n+2=3) corresponds

to uM , δu
(n+1=2)
i to uL and δu

(n=1)
i to uS. Therefore, once multiplied by δu

(n=1)
i = uS, the

first two terms represent the contribution of the interaction between uS and uM; the third
and fourth term δvw

LδuS + δuLδvS
w represent the contribution of interaction between uS

and uL to the energy evolution of uS through drag and the last term on the right-hand side

of the above equation represents the contribution of level uS to the energy evolution of
uS through drag. For the sake of completeness and comparison with the shear production

term, the contribution of buoyancy to the transport equation of δKE(n) is detailed here.
Being a linear term, it does not involve scale interaction. It corresponds to the term

BS = βδα3δθ
S
v δuS

α (with δαγ being the Kronecker delta which equals 1 when α = γ , zero

otherwise) that appears in the linear term δL
(n)
α δu

(n)
α in (2.19) when n = 1. It reduces to

BS = βδθS
v δwS.

D.2. Transport equation of the Reynolds stress δRS
(n)
ij with a four-level decomposition

Here, the focus is on the scale contribution to transport of the small-scale spatial

ensemble-averaged RSSs 〈uSwS〉 and 〈vSwS〉, that is 〈uS
i uS

j 〉 with i = 1 or 2 and j = 3. With

the above four-level decomposition of the velocity field the emphasis is on the following
terms on right-hand side of (C4): the first term, written for δu(1) = uS which represents

the turbulent transport of (δuS
i δuS

j ) by δuS. Its spatial ensemble average is denoted TS
t ; the

second term, split to show (∂/∂xα)(δu
(1)
i δu

(1)
j δu

(2)
α ), which represents the spatial transport

of (δuS
i δuS

j ) by δuL. Its spatial ensemble average is denoted TL
t ; the third term with

ū
(2)
i decomposed into ū

(2)
i = ū

(3)
i + δu

(2)
i . The term −

(
δu

(1)
j δu

(1)
α

∂ ū
(3)
i

∂xα
+ δu

(1)
i δu

(1)
α

∂ ū
(3)
j

∂xα

)
represents the production of (δuS

i δuS
j ) by the mean flow ū(3). Its spatial ensemble average

is denoted PM; the fifth term (T
(n)
iα − T

(n+1)
iα )(∂δu

(n)
j /∂xα) + (T

(n)
jα − T

(n+1)
jα )(∂δu

(n)
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Figure 16. Confidence interval of the horizontal ensemble-averaged wall-normal profiles of (a) horizontal

wind speed 〈uh〉 = (〈u〉2 + 〈v〉2)1/2, (b) temperature 〈θ〉, (c) resolved heat flux 〈w′θ ′〉/(wmθm), (d) horizontal

velocity variance (〈u′2〉 + 〈v′2〉)/w2
m, (e) vertical velocity variance 〈w′2〉/w2

m and ( f ) Reynolds shear stress

〈u′w′〉/w2
m for the WU case. The black solid lines show the present statistics computed over Nv = 4 LES

three-dimensional volumes. Blue shaded areas represent a 95 % confidence bound of the statistics of the WU
case due to statistical error. The beige shaded area shows the region occupied by the canopy.

written for δu(2) = uL and decomposed to show

− (G3 − I)L
(2)
iα (∂δu

(2)
i /∂xα) − (G3 − I)L

(2)
jα (∂δu

(2)
j /∂xα), (D2)

which is the transfer term from uL to uS if negative. Its opposite, once spatially and
ensemble averaged is denoted TL

r and represent the transfer from the large to the small
scales with a gain from the small scales if positive. Finally, the following drag term written

for n = 1 − 2acd[δu
(1)
i δu

(1)
j (δvw

(1) + �vw
(1+1))] − acdδvw

(1)(ū
(1+1)
i δu

(1)
j + ū

(1+1)
j δu

(1)
i ) is

considered in order to estimate the contribution of the drag to the evolution of the
small-scale RSS. Its spatial ensemble average is denoted Dr.

From (2.20), the buoyancy contribution to the transport equation of the small-scale RSS

〈uSwS〉 is given by the ensemble average of BS = βδθS
v δuS.

It must be noted here that for the sake of conciseness, the notation used for the transfer
terms of TKE is also employed for the Reynolds shear stress. The quantity of interest
(either TKE or RSS) is specified when needed.
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Figure 17. Confidence interval of the mean interscale transfer terms TS
t , TL

t , PM, TL
r , Dr and BS of (a,b,c,d,e,f )

the small-scale TKE (ξS)2 and (g,h,i,j,k,l) the small-scale RSS −uSwS, for the WU case. The black dashed lines
and the shaded areas show the 75 % and 95 % confidence bounds, respectively. The solid lines show the average
values obtained from the Nv = 4 LES volumes, as shown in figure 10(a,c).
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Appendix E. Statistical convergence

E.1. One-point statistics

Statistical errors due to convergence of the one-point statistics shown in figure 4 were
estimated using an assumption of a normal distribution and the number of independent
samples, considering that a spatial separation of two integral length scales between two
samples is needed to ensure their independence (Nobach & Tropea 2007).

For the sake of brevity, only 95 % confidence bound or ±2σ (where σ is the standard
deviation of the statistics) for the WU case are shown figure 16. Statistical error of
first-order one-point statistics appear to be negligible. The most impacted statistics are
the covariances 〈w′θ ′〉 and 〈u′w′〉.

E.2. Budget transfer terms

Deriving the mathematical expression for the statistical error associated with calculating
each of the terms in the budgets of both small-scale TKE (ξS)2 and RSS −uSwS that

involve spatial gradients and nonlinear interactions can prove quite arduous. To circumvent
these limitations, confidence bounds are computed using the mean values obtained for each
of the Nv = 4 independent LES volumes. For each budget term x, the Nv mean values are

used to estimate the variance s2
x of the term x defined as s2

x = (1/(Nv − 1))
∑Nv

i=1(xi −
mx)

2, where xi is the average value obtained from ith LES volume and mx is the mean value

obtained from the Nv volumes, namely mx = (1/Nv)
∑Nv

i=1 xi. Given the limited number
of independent LES volumes, the Student’s t Distribution has been used to define both the
75 % and 95 % confidence intervals as ±t(sx/

√
Nv), where t depends on the number of

degrees of freedom Nv − 1 and the confidence level (Fisher 1925). For the sake of brevity,
only confidence bounds for the WU case are shown figure 17.

Statistical error impacts mostly the terms of smallest amplitude, namely TL
t and TL

r

(figures 17c,d and 17g,f , respectively). Nevertheless, the wall-normal evolution of these
terms, particularly their change of sign, as discussed in § 3, remain valid and significant.
The same applies for the other atmospheric stability configurations (not shown here).
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