Acceleration scaling and stochastic dynamics of a fluid particle in turbulence Rémi Zamansky 1, * 1 Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse France (Dated: August 18, 2022) It is well known that the fluid-particle acceleration is intimately related to the dissipation rate of turbulence, in line with the Kolmogorov assumptions. On the other hand, various experimental and numerical works have reported as well its dependence on the kinetic energy, which is generally attributed to intermittency and non-independence of the small-scale dynamics from large-scale ones. The analyses given in this paper focus on statistics of the fluid-particle acceleration conditioned on both the local dissipation rate and the kinetic energy. It is shown that this quantity presents an exponential dependence on the kinetic energy with a growth rate independent of the Reynolds number, in addition to the expected power law behavior with the dissipation rate. The exponential growth, which clearly departs from the previous propositions, reflects additional kinematic effects of the flow structures on the acceleration. Regarding intermittency, to account for the persistence of the effect of the large-scales on the dissipation rate, it is further proposed scaling laws for the Reynolds number dependence of the conditional and unconditional acceleration variance using Barenblatt's incomplete similarity framework. It is then shown that both these intermittency and kinematic effects can be combined in a multiplicative cascade process for the acceleration depending on the kinetic energy and the dissipation rate. On the basis of these observations, we introduce a vectorial stochastic model for the dynamics of a tracer in turbulent flows. This model incorporates a fractional log-normal process for the dissipation rate recently proposed, as well as an additional hypothesis regarding non-diagonal terms in the diffusion tensor which naturally leads to the decomposition between tangential and centripetal acceleration. This model is shown to be in good agreement with direct numerical simulations and presents the essential characteristics of the Lagrangian turbulence highlighted in recent years, namely (i) non-Gaussian acceleration, (ii) scale separation between the norm of the acceleration and its components, (iii) anomalous scaling law for the Lagrangian velocity spectra, and (iv) negative skewness of the increments of the mechanical power, reflecting the temporal irreversibility of the dynamics.

I. INTRODUCTION

With the advances of experimental techniques and the increase in computing power of the last decades, remarkable features of the dynamics of fluid particles in turbulent flows have been discovered. Among other things, the measurement of the probability distribution of the acceleration of these tracers has been shown to be very clearly non-Gaussian with a high frequency of observing very intense events [START_REF] La Porta | Fluid particle accelerations in fully developed turbulence[END_REF][START_REF] Mordant | Experimental Lagrangian acceleration probability density function measurement[END_REF][START_REF] Mordant | Three-dimensional structure of the Lagrangian acceleration in turbulent flows[END_REF][START_REF] Voth | Measurements of particle accelerations in fully developed turbulence[END_REF]. Even for moderate Reynolds numbers, it is relatively common to observe accelerations more than 100 times greater than its standard deviation. In addition, the components of acceleration and its norm present very different correlation times, the ratio of these characteristic times increasing with the Reynolds number [START_REF] Mordant | Long time correlations in lagrangian dynamics: a key to intermittency in turbulence[END_REF][START_REF] Mordant | Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence[END_REF][START_REF] Pope | Lagrangian microscales in turbulence[END_REF] showing that the dynamics of the tracers is influenced by the full spectrum of turbulence scales. On one hand, the short-time correlation of the acceleration component is connected to the centripetal forces in intense vorticity filaments [START_REF] Biferale | Particle trapping in three-dimensional fully developed turbulence[END_REF][START_REF] Mordant | Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence[END_REF]. On the other hand, the acceleration norm has been shown to be directly correlated with the local dissipation rate of turbulence [START_REF] Biferale | Joint statistics of acceleration and vorticity in fully developed turbulence[END_REF][START_REF] Homann | Conditional Eulerian and Lagrangian velocity increment statistics of fully developed turbulent flow[END_REF][START_REF] Reynolds | On the distribution of lagrangian accelerations in turbulent flows[END_REF][START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF], in accordance with Kolmogorov's hypotheses. Nevertheless, various experimental and numerical works have also reported its dependence on local kinetic energy [START_REF] Aringazin | stochastic models of Lagrangian acceleration of fluid particle in developed turbulence[END_REF][START_REF] Biferale | Multifractal Statistics of Lagrangian Velocity and Acceleration in Turbulence[END_REF][START_REF] Borgas | Conditional fluid-particle accelerations in turbulence[END_REF][START_REF] Crawford | Joint statistics of the Lagrangian acceleration and velocity in fully developed turbulence[END_REF][START_REF] Mordant | Experimental Lagrangian acceleration probability density function measurement[END_REF][START_REF] Reynolds | On the distribution of lagrangian accelerations in turbulent flows[END_REF][START_REF] Sawford | Conditional and unconditional acceleration statistics in turbulence[END_REF], which is generally attributed to non-independence of the small-scale dynamics from large-scale ones. In this view, the Lagrangian acceleration is essentially given by the local gradients of the velocity, but the latter present correlation with the kinetic energy caused by direct energy transfers between large-and small-scales in the energy cascade [START_REF] Tsinober | An Informal Conceptual Introduction to Turbulence[END_REF]. The absence of proper scale separation explains that the Lagrangian correlation functions present power laws with anomalous exponents which can be described by the multifractal formalism [START_REF] Arneodo | Universal Intermittent Properties of Particle Trajectories in Highly Turbulent Flows[END_REF][START_REF] Biferale | Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation[END_REF][START_REF] Chevillard | Lagrangian velocity statistics in turbulent flows: Effects of dissipation[END_REF][START_REF] Lanotte | A new assessment of the second-order moment of Lagrangian velocity increments in turbulence[END_REF][START_REF] Sawford | Turbulent Lagrangian velocity statistics conditioned on extreme values of dissipation[END_REF] as the signature of intermittency and persistence of viscous effects. To end this list, we mention the asymmetry of the fluctuations of the mechanical power received or given up by a fluid particle reflecting the temporal irreversibility of its dynamics [28-30, 75, 96].

Such complex phenomenology must be attributed to the collective and dissipative effects. Indeed according to the Navier-Stokes equation, the acceleration of a fluid particle is essentially given by the pressure field which is determined by the motion of all the other particles [START_REF] Douady | Direct observation of the intermittency of intense vorticity filaments in turbulence[END_REF][START_REF] Tsinober | Random taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence[END_REF]. Moreover, although the Laplacian term in the Navier-Stokes equation is of order Re -1 smaller than the pressure gradient term, the viscosity cannot be neglected. Indeed, as a small force integrated over a long period could be significant, the viscosity insidiously affects the fluid tracer velocity. Which in turn influences the particle acceleration through modification of the pressure gradient and local interactions are intrinsically inseparable from the nonlocal ones. This is manifested by the persistence of the Reynolds number effect on the acceleration statistics, even for very large Reynolds numbers. Such a scenario is supported by [START_REF] Chorin | Vorticity and Turbulence[END_REF][START_REF] Constantin | A stochastic Lagrangian representation of the three-dimensional incompressible navier-stokes equations[END_REF][START_REF] Peskin | A random-walk interpretation of the incompressible Navier-Stokes equations[END_REF] who showed that adding noise to an inviscid Lagrangian flow leads to irreversibility of the dynamics.

Following the Kolmogorov first hypothesis [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[END_REF][START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF] stating that locally homogenous turbulent flows are universal, it should be possible, in principle, to propose a stochastic model that reproduces the dynamics of a single fluid particle by effectively accounting for the interactions with all the other fluid particles. Let us note that the Kolmogorov first hypothesis received some support from recent studies [START_REF] Bos | Power fluctuations in turbulence[END_REF][START_REF] Lawson | Direct assessment of Kolmogorov's first refined similarity hypothesis[END_REF][START_REF] Tang | Scaling of the turbulent energy dissipation correlation function[END_REF]. In order to propose such a stochastic model, our main assumption in this paper is to write the increments of the acceleration vector of a fluid particle as da i = M i dt+D ij dW j . Both M and D depend on the particle acceleration a and velocity u. The latter is simply given by the kinematic relation of a fluid particle u i = a i dt. It is indeed a necessary condition that a depends on u to present a restoring effect that can counteract the diffusion in velocity space and have statistically stationary dynamics of the fluid particle. We will propose closed expressions for M and D from basic consideration using as a starting point the acceleration statistics conditioned on both the local values of the dissipation rate and the kinetic energy observed from direct numerical simulations (DNS) and presented as well in this paper. It will be shown that introducing a "maximal winding hypothesis" associated to a non-diagonal diffusion tensor, this simple stochastic model reproduces all the statistical feature of the Lagrangian dynamics presented above without any adjustable parameter.

Let us first review some previous works on the stochastic modeling for the Lagrangian dynamics (see also [START_REF] Aringazin | stochastic models of Lagrangian acceleration of fluid particle in developed turbulence[END_REF]). Among the pioneering works, Sawford [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] proposed a scalar Gaussian model for the acceleration presenting a feedback term proportional to the velocity. Pope and Chen [START_REF] Pope | The velocity-dissipation probability density function model for turbulent flows[END_REF] devised a Langevin like equation for the velocity coupled with a log-normal model for the dissipation through the introduction of conditional statistics. Similarly [START_REF] Beck | Lagrangian acceleration statistics in turbulent flows[END_REF][START_REF] Reynolds | On the application of nonextensive statistics to Lagrangian turbulence[END_REF][START_REF] Reynolds | Superstatistical mechanics of tracer-particle motions in turbulence[END_REF] proposed an extension of the Sawford model leading to a non-Gaussian scalar model for the acceleration. This work was further refined by [START_REF] Lamorgese | A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence[END_REF] who also advanced a non-Gaussian scalar model for the dynamics by prescribing an ad hoc shape of the conditional acceleration statistics with the dissipation along with a linear dependence on the velocity. The model introduced in [START_REF] Reynolds | Anisotropy of acceleration in turbulent flows[END_REF] describes increments of the derivative of acceleration in a so-called third-order model to better account for the Reynolds number dependence on the acceleration statistics. Recently [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF] proposed generalization to an infinite number of layers leading to smooth 1D trajectory along with a multifractal correction to account for intermittency, as introduced in [START_REF] Bacry | Multifractal random walk[END_REF][START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF][START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF]. An acceleration vector model has been proposed in [START_REF] Reynolds | Superstatistical Lagrangian stochastic modeling[END_REF] by imposing an empirical correlation between velocity and acceleration, with additive noise leading to Gaussian statistics for the acceleration. Likewise, [START_REF] Pope | A stochastic Lagrangian model for acceleration in turbulent flows[END_REF] presented a 3D Gaussian model, with linear dependence on the velocity as well as an extension to non-homogenous flows. In order to account for intermittency effect, in [START_REF] Barge | Acceleration of small heavy particles in homogeneous shear flow: direct numerical simulation and stochastic modelling of under-resolved intermittent turbulence[END_REF][START_REF] Gorokhovski | Stochastic models for the droplet motion and evaporation in under-resolved turbulent flows at a large reynolds number[END_REF][START_REF] Gorokhovski | Modeling the effects of small turbulent scales on the drag force for particles below and above the kolmogorov scale[END_REF][START_REF] Sabelnikov | Stochastic modeling of fluid acceleration on residual scales and dynamics of suspended inertial particles in turbulence[END_REF][START_REF] Sabel'nikov | New sub-grid stochastic acceleration model in LES of high-Reynolds-number flows[END_REF][START_REF] Zhang | Model for the dynamics of micro-bubbles in high Reynolds number flows[END_REF] the 3D acceleration vector is given by the product of two independent stochastic processes, one for the acceleration norm the other for its orientation. In these models the velocity feedback on the dynamics is realized by a coupling with a large eddy simulation framework. To summarize, to our knowledge, a 3D vectorial model for the tracer dynamics that is autonomous and reproducing the essential features of Lagrangian turbulence (irreversibility, non-Gausianty, multifractality) has not yet been proposed.

The essential building block of previously cited models is the conditional acceleration statistics. Previous studies have focused on conditional statistics with either the velocity or the dissipation rate separately. From the extensive analysis of [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF], one can conclude that the acceleration variance conditioned on the dissipation rate ε presents a power law behavior for large values of ε with a Reynolds number dependent exponent reflecting that the small-scale dynamics are not independent of large-scales.

Regarding the links between the fluid particle acceleration and their velocity, Biferale et al. [START_REF] Biferale | Multifractal Statistics of Lagrangian Velocity and Acceleration in Turbulence[END_REF] argue that according to the Heisenberg-Yaglom scaling for the acceleration

a 2 ∼ a 2 η = ε 3/2 ν -1/2 = K 9/4 L -3/2 ν -1/2
, with ν the kinematic viscosity, K = 1/2u i u i the kinetic energy and L the characteristic size of large structures, one should expect that the variance of the velocity-conditioned acceleration behaves like: a 2 |K ∝ K 9/4 . Then on the basis of the multifractal formalism, they proposed a very close scaling law, a 2 |K ∼ K 2.3 . The proposed relation was observed to be in agreement with DNS for large velocity, typically |u| > 3σ u with σ u = 2/3 K . These events remain very rare since the PDF of the fluid velocity is Gaussian so the range of validity of the power law is, at best, very limited. On the other hand, Sawford et al. [START_REF] Sawford | Conditional and unconditional acceleration statistics in turbulence[END_REF] propose that a 2

x |u x ∼ u 6

x based on a mechanism involving vorticity tubes. This scaling law which seems compatible with the first measurements of the acceleration conditioned on velocity in [START_REF] Mordant | Experimental Lagrangian acceleration probability density function measurement[END_REF], is confirmed neither by the DNS of [START_REF] Biferale | Multifractal Statistics of Lagrangian Velocity and Acceleration in Turbulence[END_REF] nor in a second experimental paper by Crawford et al. [START_REF] Crawford | Joint statistics of the Lagrangian acceleration and velocity in fully developed turbulence[END_REF] which gave more credit to the K 9/4 law. As mention above, it is been proposed that the dependence of the acceleration on the velocity arises through the dependence of the dissipation rate on the kinetic energy due to intermittency effect [START_REF] Biferale | Multifractal Statistics of Lagrangian Velocity and Acceleration in Turbulence[END_REF]. Additionally, [START_REF] Tsinober | An Informal Conceptual Introduction to Turbulence[END_REF] propose that the dependence on velocity is a consequence of direct and bi-directional coupling of large-and small-scales caused by kinematic relations related to non-local interactions.

In this paper we study the acceleration statistics conditional on both the kinetic energy and the dissipation rate.

To our knowledge such doubly-conditional statistics of the acceleration have never been presented. It will be shown that the variance can be expressed as a 2 |ε, K ∼ exp(αK/ K + γ ln ε/ ε ). This result is clearly in contrast with the previously proposed power law dependence on velocity. It shows that the influence of the large-scales through the intermittent distribution of the dissipation rate, which manifests through the Reynolds number dependence of the coefficient γ, is supplemented by an explicit dependence on the local kinetic energy. This direct dependence on the large-scale characteristics is of a kinematic nature as it appears independent of the Reynolds number. The behavior of the doubly-conditional acceleration can be interpreted as a consequence of scaling symmetry for the fluid-particle acceleration incorporating both the intermittency and the kinematic effects of the flow structure. We also propose to apply the incomplete similarity framework introduced by Barenblatt to explain the dependence of the statistics of the acceleration conditional to the dissipation rate on the Reynolds number and to account for the intermittency effect. That enables to provide as well new scaling relations for the unconditional variance in good agreement with the DNS. Eventually the doubly-conditional statistic of the acceleration which gives a relation between the force, the energy and the power will serve as a corner stone to build the stochastic model for the dynamics of a fluid particle mentioned above. Although such a model could be of interest for practical applications, its construction is relevant to study the specificities of the Lagrangian description of turbulence by linking the cascade picture to the fluid particles dynamics on the basis of the behavior of the conditional statistics obtained by the DNS of the Navier-Stokes equations.

In section II we present the statistic of the acceleration conditioned on the local values of the dissipation rate and kinetic energy obtained from DNS. Then we show that the Reynolds number dependence on the acceleration conditioned on the dissipation rate can be described using the Barenblatt incomplete similarity. We deduce a new relation for the unconditional acceleration variances. To end this section, we show that these new results can be interpreted as a multiplicative cascade for the acceleration with scale dependent kinematic effects. Then in section III we give the derivation of the stochastic model for the single fluid particle dynamics taking as an initial step the doubly-conditional acceleration variance, and present the outcome of the model for the Reynolds number up to Re λ = 9000 along with comparison with DNS results when available.

II. SCALING LAWS OF THE ACCELERATION

A. Methodology

We present in this section results concerning the statistics of the acceleration of a fluid particle. These results have been obtained from 5 direct numerical simulations (DNS) of isotropic turbulence in a periodic box with Taylor-scale Reynolds numbers of Re λ = 50, 90, 150, 230 and 380. We used pseudo-spectral code as detailed in [START_REF] Roy De Bonneville | Numerical simulations of the agitation generated by coarse-grained bubbles moving at large Reynolds number[END_REF][START_REF] Zamansky | Turbulent thermal convection driven by heated inertial particles[END_REF][START_REF] Zhang | Model for the dynamics of micro-bubbles in high Reynolds number flows[END_REF]. The DNS was carried with resolutions of 128 3 , 256 3 , 512 3 , 1024 3 and 2048 3 with the large scale forcing proposed by [START_REF] Kumar | Lagrangian mixing dynamics at the cloudy-clear air interface[END_REF].

For each simulation we have η/∆x = 1 with η = ε -1/4 ν 3/4 the Kolmogorov length scale and ∆x the grid size. The statistics are computed from 40 3D fields sampled at roughly each large-eddy-turnover time.

We will show statistics of the acceleration conditioned by the dissipation rate and the kinetic energy. Note that in this paper we consider the pseudo-dissipation ε = ν(∂ j u i ) 2 , which is the second invariant of the velocity gradient tensor multiply by the viscosity rather than the dissipation ε = 1 2 ν(∂ j u i +∂ i u j ) 2 . We prefer to show here the statistics of the pseudo-dissipation to be consistent with the next section of the paper, in which we will use the log-normal distribution hypothesis for the dissipation. Indeed, this property is very well verified for the pseudo-dissipation whereas it is only approximate for the dissipation [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF]. Nevertheless, the statistics presented below have also been computed considering the dissipation, ε, and no significant differences were observed. To lighten the paper, in the sequel, we will drop the tilde in the notation of the pseudo-dissipation, as well, in the text, we will write dissipation instead of pseudo-dissipation.

B. Conditional statistics given the dissipation and the kinetic energy

In order to illustrate the relationships between acceleration, energy dissipation and kinetic energy, we show in Fig. 1 visualizations of these quantities at the same instant obtained from our DNS. We notice that ln a 2 / a 2 and ln ε/ ε show a fairly marked correlation although the acceleration appears more diffuse than dissipation. We also notice that to some extent the kinetic energy and the dissipation rate appears correlated. In addition, it seems that some areas of the flow where the kinetic energy is high also correspond to regions of high acceleration magnitude.

Figure 2 presents the variance of the acceleration of a fluid particle conditioned to the local values of the kinetic energy and the dissipation rate: a 2 |ε, K . In Fig. 2 (Top), the levels of the logarithm of the conditional variance are shown as a function of K and of ε. We see that the conditional variance of the acceleration depends on these two quantities and that the dependence on K seems somewhat similar to that of ln ε. In a more quantitative way, we show in Fig. 2 (Left) the variance of the acceleration as a function of ε for different values of K. We can see that the shape of the curves remains globally unchanged when K varies and also presents the same shape as the variance conditioned by ε only as also presented in this figure. Essentially, it is observed that the conditional variance presents power law behavior for ε ε with an exponent close to 3/2 and a prefactor depending on K. As discussed in more details below, we observe a slight deviation of the scaling law compared to the acceleration conditioned only by the dissipation.

Figure 2 (Right) shows the variance of the acceleration as a function of K for different values of ε. As expected, we find that the variance of the acceleration increases with K. We clearly notice an exponential growth of the variance over the whole range of K with a growth rate α which appears independent of ε:

a 2 |ε, K = c ε a 2 η exp(αK/ K ) (1)
with a 2 η = ε 3/2 ν -1/2 = ε /τ η the so-called Kolmogorov acceleration and the prefactor c ε depending on ε. From our DNS it appears that α ≈ 1/3 for all the Reynolds numbers considered here. We also find the same value of α from the database of [START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF][START_REF] Lanotte | Heavy particles in turbulent flows[END_REF] obtained for Re λ = 400 suggesting that the value of α is independent of the Reynolds number.

This exponential behavior contrasts with the references mentioned in the introduction in which power laws behavior for the variance conditioned on K solely had been proposed. Nevertheless, we can notice that exponential growth does not seem to disagree with the data presented in these references. Interestingly, this relationship only depends on a characteristic velocity, (not a time and a length scale separately). The absence of characteristic time is attributed to the scale separation between large structures and small ones (the large structures of the flows appear as quasi stationary and infinite to the smallest ones such that only their relative velocity matters). The independence of the coefficient α on the Reynolds number tends to confirm that the velocity scale used for the nondimensionalization of the argument of the exponential is appropriate.

In appendix A we propose to estimate the factor c ε as:

c ε ≈ A a 2 |ε /a 2 η ( 2 
)
where

A = 1 - 2 3 α 3/2
, which is equal to A = 7 √ 7/27 ≈ 0.686, for α = 1/3, neglecting a small logarithmic dependence on ε/ ε . Consequently, for large Reynolds numbers, the doubly-conditioned variance of the fluid-particle acceleration is expressed as (Top) Map of ln a 2 |ε, K /a 2 η versus ln ε/ ε and K/ K . (Left) Plot, in logarithmic scales, of a 2 |ε, K /a 2 η against ε/ ε for K/ K = 0.025, 0.1, 0.5, 1, 2, 3, 5, 6.5 ± 30% from orange to black. Comparison with a 2 |ε /a 2 η in gray dashed line and with the power law (ε/ ε ) 3/2 in gray dotted line. (Right) Plot, in semi-logarithmic scales, of a 2 |ε, K /a 2 η against K/ K for ε/ ε = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ± 30% from orange to black. Comparison with a 2 |K /a 2 η in gray dashed line and with exp(αK/ K ) with α = 1/3 in gray dotted line.

a 2 |ε, K = A a 2 |ε exp(αK/ K ) . (3) 
This relation is confirmed in Fig. 3 which presents the conditional variance of the acceleration normalized by Aa 2 η exp(αK/ K ) as a function of ε for different values of K as well as normalized by A a 2 |ε = a 2 |ε, K = 0 as a function of K for different values of ε. It can be seen that a fairly good overlap of the various curves is obtained, confirming the self-preserving character of the acceleration conditioned on both the kinetic energy and the dissipation rate. We see in this relation an explicit effect of the local kinetic energy on the acceleration. Since the argument of the exponential depends on K/ K not on a local Reynolds number, it suggests pure kinematic effects for the acceleration which is likely associated to the divergence free constrain and the non-locality of the pressure gradient. There is also indirect effect through the dependence of the dissipation rate on the large-scale structures. The later is manifested as Reynolds number dependence of the conditional acceleration on the dissipation rate solely. This intermittency effect is analyzed further in the next section. We postpone to section II E further comments on the behavior of the doubly-conditioned variance. η in gray dashed line and with exp(αK/ K ) with α = 1/3 in gray dotted line The ranges for the fixed values of K and ε for both plots are the same as in Fig. 2.

C. Similarity of the conditional statistics given the dissipation

We propose now to focus with more details on the scaling law of the acceleration variance conditioned on the dissipation rate only, a 2 |ε . For that we consider the DNS data from Yeung et al. [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF], along with our DNS data. Figure 4(Left) presents the conditional acceleration variance for Reynolds numbers in the range Re λ = 40 to 680. We first notice that for weak values of the dissipation rate (ε ε ) the value of the conditional acceleration variance tends towards an asymptotic value, which depends on the Reynolds number. The saturation of the conditional acceleration shows that the local acceleration is not only determined by the microstructure of the flow, and that it presents somehow effects of the large structures of the flow which dominates in low dissipative regions. We denote by a 2 0 the asymptotic value of the conditional variance:

a 2 0 = lim ε→0 a 2 |ε . (4) 
Assuming that the acceleration of fluid particles in low dissipative regions is mainly influenced by large scales, we can estimate a 2 0 as a 2 0 ∼ K /τ 2 L with τ L the integral time scale of the flow. This leads to the following estimate:

a 2 0 /a 2 η ∼ τ η /τ L ∼ Re -1 λ . (5) 
We test this scaling law for a 0 in Fig. 4(Right) by presenting a 2 η /a 2 0 as a function of Re λ from the different DNS datasets. We observe a linear growth rate of a 2 0 /a 2 η with 1/Re λ . For large values of ε, we notice in Fig. 4(Left), as already reported in [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF], that the conditional variance presents a power law behavior with ε. The exponent of this scaling law is seen to evolve continuously with the Reynolds number, and seems to tend asymptotically towards ε 3/2 . From dimensional analysis we define f as:

a 2 |ε ε 3/2 ν -1/2 = f (ε/ ε , Re λ ) . (6) 
In the inset of Fig. 4(Left), it is seen that f seems to admit an asymptotic constant value for ε ε only in the limit of very large Reynolds number. For intermediate Reynolds numbers, f presents power-law behavior with ε for ε ε but with a Reynolds number dependent exponent. This implies an absence of similarity of the flow when the Reynolds number is changed and the persistence of the Reynolds number effect, even for large Reynolds numbers, which highlights an absence of proper scale separation suggesting direct coupling between large-and small-scales. This is reminiscent of the incomplete similarity framework proposed by . Following Barenblatt, we assume that f presents an incomplete similarity in ε/ ε and absence of similarity in Re λ . Accordingly we write

f (ε/ ε , Re λ ) = B (ε/ ε ) β (7)
where the anomalous exponent β, and the prefactor B are both functions of Re λ . Arguing for a vanishing viscosity principle, it can be assumed that the critical exponent becomes independent of the Reynolds number in the limit of asymptotically large Reynolds number. Finally arguing that the dependence of B and β on the Reynolds number is small, Barenblatt further proposed that they presents inverse logarithmic dependence on Re λ , which is also in agreement with the log-similarity proposed by [START_REF] Castaing | Log-similarity for turbulent flows?[END_REF][START_REF] Gagne | Une representation universelle sans invariance globale d'échelle des spectres d'énergie en turbulence développée[END_REF]. Expending β and B in power of 1/ ln(Re λ ) yields, keeping only the leading-order term in Re λ :

β = β 0 + β 1 / ln Re λ (8) B = B 0 + B 1 / ln Re λ (9) 
To have a finite limit, consistently with the vanishing viscosity principle, we need β 0 = 0. The remaining constants B 0 , B 1 and β 1 are then determined by comparison with the DNS data. From the inset of Fig. 4(Left) we see that both β and B are increasing functions of Re λ implying that both B 1 and β 1 are negative. In Fig. 5(Left) we assess the relations ( 7)-( 9) by plotting

χ = 1 γ ln(1/B a 2 |ε /a 2 η ) , (10) 
with

γ = 3/2 + β , (11) 
against ln(ε/ ε ) for various Reynolds numbers. It is observed that with B 0 = 17.1, B 1 = -54.7 and β 1 = -1, all the DNS data collapse on the line χ = ln(ε/ ε ) (the bisectrix of the graph) for ε ε , validating the scaling relation. We can go a step further by using the low dissipative limit of the conditional acceleration. For that we introduce

χ 0 = lim ε→0 χ = 1 γ ln(1/B a 2 0 /a 2 η ). With this definition, χ -χ 0 = ln a 2 |ε /a 2 0 1/γ tends to 0 in the low dissipative regions (ε ε ). On the other hand, for ε ε , χ -χ 0 should be equal to χ -χ 0 = ln(ε/ ε ) -χ 0 = ln ε/ ε Ba 2 η /a 2 0 1/γ . This is seen in Fig. 5(Right) that presents the evolution of a 2 |ε /a 2 0 1/γ against ζ = ε/ ε Ba 2 η /a 2 0 1/γ (12) 
for the various Reynolds numbers considered here. 

/γ = exp(χ -χ0) against ζ = ε/ ε Ba 2 η /a 2 0 1/γ for the various Reynolds numbers. Inset: plot of a 2 |ε /a 2 0 1/γ -1 against ζ = ε/ ε Ba 2 η /a 2 0 1/γ .
It is interesting to note that the curves are all overlapping even for intermediate values of ε, suggesting that the conditional acceleration variance can be cast in a self-similar form: 

a 2 |ε = a 2 0 (φ(ζ)) γ (13) 
φ(ζ) = 1 + ζ . ( 14 
)
It is seen in the inset of the Fig. 5(Right) that the proposed expression for φ gives a good approximation of the data over the whole range of ε and Re λ . We can indeed observe more than 5 decades of quasi-linear growth of

a 2 |ε /a 2 0 1/γ -1 = exp(χ -χ 0 ) -1 with ζ.
The non-dimensional function f introduced in (6) can, in consequence, be expressed as:

f (ε/ ε , Re λ ) = B (ε/ ε ) β 1 + 1 ζ 3/2+β , (15) 
where the term within the brackets is interpreted as a correction factor for small dissipative regions. Accordingly, we obtain the following expression for the conditional acceleration variance:

a 2 |ε = Ba 2 η 1 B a 2 0 a 2 η 1/γ + ε ε γ . ( 16 
)
As γ = 3/2 + β and B evolve slowly with Re λ , their expressions remain speculative and would require a much larger range of Reynolds numbers to be validated.

D. Reynolds number dependence of the unconditional acceleration variance

Assuming the distribution of the dissipation, we can integrate relation ( 16) to obtain the unconditional variance

a 2 = a 2 |ε P (ε)dε , (17) 
and thus propose an alternative formula to the empirical relations proposed in [START_REF] Hill | Scaling of acceleration in locally isotropic turbulence[END_REF][START_REF] Sawford | Conditional and unconditional acceleration statistics in turbulence[END_REF][START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF]. We consider that ε/ ε presents a log-normal distribution with parameter σ 2 ≈ 3/8 ln Re λ /R c with R c = 10 as shown by [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF] from DNS data, consistently with the proposition of Kolmogorov and Oboukhov [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF][START_REF] Oboukhov | Some specific features of atmospheric tubulence[END_REF]. Notice nevertheless that other expressions for σ 2 have been proposed in the literature reflecting the vanishing viscosity limits [START_REF] Castaing | Velocity probability density functions of high Reynolds number turbulence[END_REF]. Taking for a 2 |ε the expression ( 16), we perform the integration numerically with the expression ( 8) and ( 9) for β and B with the values of B 0 , B 1 and β 1 and the expression of a 2 0 /a 2 η proposed above. The resulting evolution of the acceleration variance with the Reynolds number is presented in Fig. 9. It is seen that the predicted acceleration variance is in very good agreement with the DNS of [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF] and our DNS and is also very close to the relation proposed by [START_REF] Sawford | Conditional and unconditional acceleration statistics in turbulence[END_REF] for Re λ < 1000.

The first term within the brackets in ( 16) is the footprint of the large-scale structures whose effects is vanishing if the local dissipation rate is larger than ε/ ε (B a 2 η /a 2 0 ) -1/γ and therefore can be neglected when the Reynolds number is large since a 2 η /a 2 0 ∼ Re λ . Hence, for large Reynolds numbers, equation ( 16) reduces to:

a 2 |ε /a 2 η = B ε ε γ . ( 18 
)
With this expression, the acceleration variance is simply estimated from the moments of the log-normal distribution as:

a 2 a 2 η = B (Re λ /R c ) 9/64+3β(1+β/2)/8 . ( 19 
)
This expression, also presented in Fig. 9, is shown to converge to the previous estimate as the Reynolds number increases.

In appendix B, we show that the integral ( 17) can be expressed from the generalized binomial series expansion. We further obtain the following estimation for the acceleration variance keeping only the first two terms:

a 2 a 2 η = B Re λ R c 3/16γ(γ-1) 1 + γ 1 B a 2 0 a 2 η 1/γ Re λ R c -3/8(γ-1) . (20) 
In Fig. 9, it is seen that this relation almost overlaps with the direct numerical calculation of the variance though [START_REF] Borgas | Conditional fluid-particle accelerations in turbulence[END_REF]. The term within the brackets enables to measure the contribution from small Reynolds number effects. At Re λ ≈ 100, the two estimates [START_REF] Castaing | The temperature of turbulent flows[END_REF] and [START_REF] Castaing | Velocity probability density functions of high Reynolds number turbulence[END_REF] for the variance differ by about 20%, while there is about 8% in difference at Re λ ≈ 500. That confirms that the term containing a 2 0 is indeed vanishing at large Reynolds numbers. The previous estimations of the acceleration variance tend asymptotically to the following power law:

a 2 /a 2 η = 7.62Re 9/64 λ , (21) 
where we have used [START_REF] Barge | Acceleration of small heavy particles in homogeneous shear flow: direct numerical simulation and stochastic modelling of under-resolved intermittent turbulence[END_REF] to obtain the value of the prefactor, R -9/64 c B 0 exp(3β 1 /8) ≈ 7.62. This expression is presented as well in Fig. 9, confirming that the convergence toward the power law is very slow, and that [START_REF] Castaing | The temperature of turbulent flows[END_REF] should be considered as an intermediate asymptotic expression for the acceleration variance.

E. Multiplicative cascade for the acceleration

Substituting ( 18) into (3), we can eventually estimate the doubly-conditional acceleration variance for large Reynolds numbers as:

a 2 |ε, K /a 2 η = C exp(αK/ K ) ε ε γ , (22) 
where C = A B, with expressions of A and B determined above.

As mentioned above and apparent in the previous formula, the acceleration depends on the local value of the kinetic energy, along with the local dissipation rate. The acceleration, being mainly due to the pressure gradient, it present a non-local behavior. The fact that the acceleration depends on the local kinetic energy but not on a local Reynolds number reflects that its non-locality is a purely kinematic effect. Further, the exponential dependence on the kinetic energy suggests that the acceleration can respond to the structures of all sizes.

To illustrate this point, we discuss a multiplicative cascade model for the acceleration that incorporates effect of the full spectrum of the flow strucutre. Fluctuations of the locally-space-averaged dissipation rate can be modeled by multiplicative cascades [START_REF] Benzi | On the multifractal nature of fully developed turbulence and chaotic systems[END_REF][START_REF] Frisch | A simple dynamical model of intermittent fully developed turbulence[END_REF][START_REF] Kolmogorov | On the log-normal distribution of particles sizes during break-up process[END_REF][START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF][START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF][START_REF] Yaglom | The Influence of Fluctuations in Energy Dissipation on the Shape of Turbulence Characteristics in the Inertial Interval[END_REF]. Such model proposes to express the local dissipation over a volume of size = Lλ n , with λ < 1 and L being the large-scale of the flow, as the product of n random numbers ξ i :

ε = ε n i=1 ξ i . (23) 
Typically, for n large, this yields log-normal distribution of ε assuming the ξ i are independent and identically distributed (and have as well finite variance).

We propose likewise to write the squared acceleration, coarse-grained at scale , as :

a 2 = a 2 0 n i=1 θ i . (24) 
The scale-to-scale factor θ i is given by:

θ i = exp α K 1 2 v 2 i (ξ i ) γ = exp α K 1 2 v 2 i + γ ln ξ i , (25) 
where v i is here the velocity of eddies of size i = Lλ i , which is also a fluctuating quantity. The exponential modulation is then interpreted as an entrainment acceleration due to these structures.

With this expression we obtain:

a 2 = a 2 0 exp α K n i=1 1 2 v 2 i + γ n i=1 ln ξ i . (26) 
Setting n = ln(η/L)/ ln(λ) ∼ ln Re λ , η being the Kolmogorov length scale, we have

K = n i=1 1 2 v 2
i due to the additive nature of the kinetic energy. Thereby using [START_REF] Chevillard | Lagrangian velocity statistics in turbulent flows: Effects of dissipation[END_REF], we obtain back [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] by taking the conditional average of [START_REF] Crawford | Joint statistics of the Lagrangian acceleration and velocity in fully developed turbulence[END_REF]. The order of magnitude of the eddy velocities can be estimated from the Kolmogorov relation, (ε ) 1/3 , showing that the sum is a priori dominated by the large-scales but, on the other hand, because of the intermittent behavior of ε , it may well happen that the the inertial-scale structures can be dynamically important.

Note that in this multiplicative model, we have transposed the statistical relation [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] to an instantaneous version. Such idealization, find support in the invariance of the conditional PDF, which is shown in appendix C. An other important point to mention, is that although we assume that the local acceleration depends both on K and ε it is not assumed that those two variables are independent.

The dissipation presents large fluctuations leading to very important accelerations and, even if the acceleration orientation is changing rapidly, it can cause a local increase of the velocity. When the kinetic energy becomes significantly larger than its averaged value, then the modulation of the acceleration by the exponential term becomes preponderant, thus offering a feedback mechanism allowing the obtention of the normal fluctuations of the velocity. This dynamic scenario appears consistent with the recent DNS analysis of [START_REF] Picardo | Lagrangian irreversibility and Eulerian dissipation in fully developed turbulence[END_REF] showing that the fluid-particles can undergo energy gains in intense dissipative regions and is developed in the next section.

III. STOCHASTIC MODELING OF THE FLUID-PARTICLE DYNAMICS A. Model formulation

The foregoing multiplicative model suggests that the acceleration norm can be determined from the local kinetic energy and dissipation rate. The relation [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] is pointwise and so it applies equally well to both Lagrangian and Eulerian descriptions. However, in the Lagrangian framework, the kinematic relation between velocity and acceleration allows proposing a model for the acceleration depending only on the local dissipation rate. The evolution of the later along the particle path is to be obtained from a stochastic process. For the derivation of this model, we will rely on the relation [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF], in which the contribution from low dissipative events are neglected:

a 2 = f (K, ε) = a 2 η C ε ε γ exp α K K . ( 27 
)
We express the increments of a 2 as a second order Taylor expansion in K and ε,

da 2 = a 2 α dK K + γ dε ε + α 2 2 dK 2 K 2 + γ(γ -1) 2 dε 2 ε 2 + γα dK K dε ε . (28) 
We consider ε as stochastic variable reflecting the very large number of degrees of freedom that control them. In a fairly general way, we consider that the dissipation ε follows a multiplicative stochastic process:

dε = εΠdt + εΣdW , (29) 
where dW are the increments of the Wiener process ( dW = 0 ; dW 2 = dt). We specify the terms Π and Σ below. Substituting ( 29) into (28) one obtains, following the Ito calculus, at first order in dt :

da 2 = a 2 α K P + γΠ + γ(γ -1) 2 Σ 2 dt + γa 2 ΣdW . ( 30 
)
We used the identity dK = u i du i = u i a i dt = P dt, where P is the mechanical power per unit of mass exchanged by the fluid particle. Even if Π and Σ are given, eq. ( 30) is not closed, as it remains to estimate P = a i u i , which requires the knowledge of a i and u i .

As mentioned in the introduction, we introduce a vectorial stochastic model for the dynamics of a fluid particle. We are looking for a stochastic process of the form:

du i = a i dt , ( 31 
)
da i = M i dt + D ij dW j , (32) 
where dW j are the increments of the jth component of a tridimensional Wiener process ( dW j = 0 ; dW i dW j = dtδ ij ). A priori, the vector M and the tensor D depend on the vectors a and u = adt. Indeed, M must depend on u to allow the particle velocity to reach a statistically steady state. Now, we propose expressions for M i and D ij . For this, we want to impose, on the one hand, that the model is isotropic ( a i a j = 0 for i = j) and, on the other hand, that its norm a 2 = a i a i is compatible with the expression [START_REF] Falkovich | On Lagrangian single-particle statistics[END_REF]. We therefore write the stochastic equation for a 2 ij = a i a j derived from [START_REF] Gagne | Une representation universelle sans invariance globale d'échelle des spectres d'énergie en turbulence développée[END_REF], thanks to the Ito formula:

da 2 ij = a j da i + a i da j + da i da j = (M i a j + M j a i + D ik D jk ) dt + (a j D ik + a i D jk ) dW k . ( 33 
)
For the square of the norm a 2 = a i a i , we have:

da 2 = (2a i M i + D ij D ij ) dt + 2a i D ij dW j . (34) 
We then proceed by identification between [START_REF] Girimaji | A diffusion model for velocity gradients in turbulence[END_REF] and [START_REF] Falkovich | On Lagrangian single-particle statistics[END_REF], in a similar way as [START_REF] Girimaji | A diffusion model for velocity gradients in turbulence[END_REF] and [START_REF] Pereira | A multifractal model for the velocity gradient dynamics in turbulent flows[END_REF], by identifying first the square of the diffusion term and then the drift term.

Identification of the diffusion term and the maximum winding hypothesis

Quite generally, we can decompose the diffusion tensor into:

D ij = c 1 δ ij + S ij + Ω ij , (35) 
where S ij is a zero-trace symmetric tensor and Ω ij is an antisymmetric tensor. The latter can be written as

Ω ij =
ijk ω k with ijk the Levi-Civita permutation symbol and ω k a pseudo-vector. S ij must be zero in order to guarantee the statistical isotropy of the acceleration. But Ω ij can be different from 0. Indeed, the experimental results of [START_REF] Mordant | Three-dimensional structure of the Lagrangian acceleration in turbulent flows[END_REF] and numerical results of [START_REF] Pope | Lagrangian microscales in turbulence[END_REF] have shown that the acceleration presents a scale separation between the evolution of the components and its norm, and that this separation can be modeled using processes for the acceleration norm and its orientation vector [START_REF] Gorokhovski | Modeling the effects of small turbulent scales on the drag force for particles below and above the kolmogorov scale[END_REF][START_REF] Sabelnikov | Stochastic modeling of fluid acceleration on residual scales and dynamics of suspended inertial particles in turbulence[END_REF][START_REF] Zamansky | Acceleration in turbulent channel flow: universalities in statistics, subgrid stochastic models and an application[END_REF]. A stochastic model for orientation can be formulated as a diffusion process with a rotational part in the diffusion tensor [START_REF] Gorokhovski | Modeling the effects of small turbulent scales on the drag force for particles below and above the kolmogorov scale[END_REF][START_REF] Wilkinson | Spherical ornstein-uhlenbeck processes[END_REF]. Since the model for the dynamics (31) -( 32) involves only two vectors, a and u, we propose to form the pseudo-vector ω from these two vectors in order to get a closed model:

ω k = c 2 klm a l u m .
The model remains statistically isotropic and the chirality of the flow is not broken either since the odd moments of dW j are zero (Gaussian with zero mean). In other words, the sign of c 2 does not matters. We then have:

D ij = c 1 δ ij + c 2 (a i u j -a j u i ) . (36) 
It is to be noted that c 1 and c 2 are not constant. By identifying the square of the diffusion term between ( 30) and ( 34) we find:

γ 2 (a 2 ) 2 Σ 2 = 4a i a j D ik D jk . (37) 
Expanding it by using expression [START_REF] Gorokhovski | Modeling the effects of small turbulent scales on the drag force for particles below and above the kolmogorov scale[END_REF], we find:

γ 2 (a 2 ) 2 Σ 2 = 4a 2 (c 2 1 + c 2 2 (2a 2 K -P 2 )) , (38) 
which gives for c 1 :

c 2 1 = γ 2 4 a 2 Σ 2 -c 2 2 (2a 2 K -P 2 ) = a 2 γ 2 4 Σ 2 -2c 2 2 K 1 - a 2 T a 2 , ( 39 
)
where we have introduced the tangential acceleration a T , as the projection of the acceleration vector in the direction of the velocity vector: 39) imposes a constraint on c 2 in order to guarantee the positivity of c 2 1 :

a T = a i u i / √ u 2 = P/ √ 2K. Equation (
c 2 2 2K ≤ γ 2 4 Σ 2 , ( 40 
) since 0 ≥ 1 - a 2 T a 2 ≥ 1.
So, in order to guarantee the positivity of c 2 1 whatever K, c 2 2 must be proportional to 1/K.

Introducing a parameter c R as c 2 2 = γ 2 4 Σ 2 c 2 R 2K
, with the constraint c 2 R ≤ 1, we obtain:

c 2 1 = γ 2 4 Σ 2 a 2 (1 -c 2 R ) + c 2 R a 2 T . (41) 
Subsequently, we only consider the limit c R = 1 that corresponds to the maximum rotational part of the diffusion tensor. We will discuss this choice in more detail below in section III C, when presenting the results. Finally, from [START_REF] Gorokhovski | Modeling the effects of small turbulent scales on the drag force for particles below and above the kolmogorov scale[END_REF] and the expressions of c 1 and c 2 , we write the components of the diffusion tensor as

D ij = γ 2 4 Σ 2 a 2 T δ ij + a 2 N ijk b k , (42) 
where we introduced the normal component a N of the acceleration a 2 N = a 2 -a 2 T , and the bi-normal unit vector

1 b k = klm u l a m /| hij u i a j |.
Note that b k , a T and a N are not well defined when K = 0. However, c 2 must vanish when u = 0 and we can therefore consider that c R = 0 in that case.

Determination of the drift term

Identifying the drift term between (34) and (30), we get:

2a i M i + D ij D ij = a 2 α K P + γΠ + γ(γ -1) 2 Σ 2 . ( 43 
)
From ( 42) the term

D ij D ij is computed as 2 D ij D ij = γ 2 4 Σ 2 2a 2 + a 2 T . ( 44 
)
1 To obtain this relation we notice that a i u j -a j u i = ijk klm a l um and that the vector b k is the unit vector collinear to klm a l um: b k = klm a l um/| hij a i u j |. By expanding the norm, we have: ( hij a i u j ) 2 = 2a 2 K -P 2 . We therefore write:

klm a l um = b k √ 2a 2 K -P 2 = b k √ 2K a 2 -a 2 T = b k √ 2K a 2 N . 2 D ij D ij = γ 2 4     a 2 T δ ij δ ij 3 +a 2 N ijk b k ijl b l 2δ kl b k b l     , δ kl b k b l = 1
since b is a unit vector and with a 2 = a 2 T + a 2 N , we obtain the result.

We then have

a i M i = a 2 α 2 K P + γ 2 Π - γ 4 Σ 2 -a 2 T γ 2 8 Σ 2 (45) 
To go further we must now specify the terms Π and Σ used for the stochastic process for ε. Various models for the dissipation have been proposed. Pope and Chen [START_REF] Pope | The velocity-dissipation probability density function model for turbulent flows[END_REF] proposed a simple model based on the exponential of an Orstein-Uhlenbeck process (see appendix D 2). Here, we rely on the model proposed in [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF][START_REF] Pereira | A multifractal model for the velocity gradient dynamics in turbulent flows[END_REF]. This non-Markovian log-normal model presents a logarithmic decrease in the correlation of ε which is consistent with the idea of a turbulent cascade and a multiplicative process (see appendix D 1), unlike the Pope and Chen model which gives an exponential decrease, see also the discussion in [START_REF] Letournel | Reexamining the framework for intermittency in Lagrangian stochastic models for turbulent flows: A way to an original and versatile numerical approach[END_REF]. As presented in appendix D 2, the drift and diffusion terms are written respectively as:

Π = 1 τ ε -ln ε ε + σ 2 2Λ 2 τ ε τ c -Λ 2 + σ Λ Γτ ε , (46) 
and

Σ = σ 2 Λ 2 τ c , (47) 
with σ 2 the variance of the logarithm of ε, τ ε the correlation time of ε, τ c the regularization time scale of the process (taken equal to the Kolmogorov dissipative time τ η ), Λ 2 a normalization factor, and Γ the convolution of the Wiener increments with a temporal kernel, ensuring the non-markovian property of the process. In the process for ε proposed by [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF][START_REF] Pereira | A multifractal model for the velocity gradient dynamics in turbulent flows[END_REF], the latter corresponds to a fractional Gaussian noise with 0 Hurst exponent [START_REF] Benoit | Fractional brownian motions, fractional noises and applications[END_REF] regularized at scale τ c . The expression of the convolution kernel proposed by [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF][START_REF] Pereira | A multifractal model for the velocity gradient dynamics in turbulent flows[END_REF], and recalled in the appendix D 2, applies to a scalar noise since the dissipation rate is a scalar, whereas the acceleration model involves a vectorial noise. Therefore, the kernel in Γ includes a projection in order to apply to the vectorial Wiener increments:

Γ = - 1 2 t -∞ 1 (t -s + τ c ) 3/2 P j dW j (s) (48) 
By proceeding in a similar way as [START_REF] Pereira | A multifractal model for the velocity gradient dynamics in turbulent flows[END_REF], the projection operator is obtained by identification between the diffusion terms of ( 30) and (34):

P j = 2a i D ij γa 2 Σ = a 2 T -a T a 2 a j + e j ( 49 
)
where we have used the relation recall in footnote 1 and where e j is the unit vector tangent to the trajectory,

e i = u i / √ 2K.
It is interesting to remark that the rotational part of the diffusion tensor induces an asymmetry of the projector between positive and negative power exchange (recall that P = √ 2Ka T ). Indeed for P ≥ 0, P j = e j while for P < 0 one has P j = (1 -2p 2 )e j -2p 1 -p 2 b j with p = P/ √ 2Ka 2 . In both cases, as it can be readily checked, P is a unit vector.

Substituting the expression ( 46) and ( 47) for Π and Σ in (45) we have

a i M i = a 2 α 2 K P - γ 2τ ε ln ε ε + 1 2 σ 2 - σ Λ Γτ ε -a 2 T γ 2 8 σ 2 Λ 2 τ c . ( 50 
)
According to [START_REF] Douady | Direct observation of the intermittency of intense vorticity filaments in turbulence[END_REF], we can write:

ln ε ε = 1 γ ln a 2 a 2 η -ln C -α K K , (51) 
which gives, once substituted into [START_REF] Lanotte | Heavy particles in turbulent flows[END_REF],

a i M i = a 2      α 2 K P + K τ ε - 1 2τ ε      ln a 2 a 2 η -ln C + γ 2 σ 2 -γ σ Λ Γτ ε -Γ *           - a 2 T τ c γ 2 8 σ 2 Λ 2 σ 2 * . (52) 
In order to simplify the notations, we have introduced

Γ * = γ σ Λ Γτ ε + ln C - γ 2 σ 2 and σ 2 * = γ 2 8 σ 2 Λ 2 .
It is interesting to notice that in (52) the terms P + K τ ε = dK dt + K τ ε acts as a penalization leading the correlation of the kinetic energy to decay exponentially. We then propose for M i an expression compatible with [START_REF] Lawson | Direct assessment of Kolmogorov's first refined similarity hypothesis[END_REF]. Proceeding by identification, we have the following relation:

M i = α 2 K λa i P + (1 -λ)a 2 u i + a i K τ ε -a i ln a 2 a 2 η -Γ * 1 2τ ε - σ 2 * τ c a 2 T a 2 a i + B i , (53) 
where we have introduced the vector B i , such that B i a i = 0 as well as the factor λ that both account for the indeterminacy inherent to the inverse projection. By assuming again that there are only two vectors at our disposal, we can take B i = α 2 K λ P a i -a 2 u i by introducing the factor λ . Note that from the point of view of the projection, the factors λ and λ are arbitrary in the sense that the scalar product of a i and ( 53) gives ( 52) whatever their values. We can nevertheless notice that the terms involving λ and λ can be combined, and, by noting c u = λ + λ , we get:

M i = α 2 K a i c u P + K τ ε -(c u -1)a 2 u i -a i ln a 2 a 2 η -Γ * 1 2τ ε - σ 2 * τ c a 2 T a 2 a i . (54) 
We can notice that the terms of the first line correspond to the coupling with the velocity, those of the second take into account the log-normal character of the dissipation and the last term is due to the rotational part of the diffusion tensor. The diffusion term (42) becomes, by using expression [START_REF] Kumar | Lagrangian mixing dynamics at the cloudy-clear air interface[END_REF]:

D ij = 2σ 2 * τ c a 2 T δ ij + a 2 N ijk b k . (55) 
We have thus specified our stochastic model for the dynamics of a fluid particle. It is given by ( 31), ( 32), ( 54) and (55).

B. Parameters and numerical approach

From a dimensional point of view, to determine the physical parameters of the stochastic model, one must specify time and velocity scales as well as a Reynolds number. This amounts for example to imposing the average kinetic energy K , the average dissipation rate ε and the viscosity ν. From these physical parameters, we calculate

a 2 η = ε 3/2 ν -1/2 , τ η = ε -1/2 ν 1/2
. We can also get the Reynolds number based on the Taylor scale Re λ = u λ/ν = 2 √ 15/3 K / ε ν with u = 2 K /3 and λ 2 = 15νu 2 / ε . We then deduce the Lagrangian integral times scale τ L as τ L = 0.08Re λ τ η from the DNS results reported by [START_REF] Hackl | Multi-particle and tetrad statistics in numerical simulations of turbulent relative dispersion[END_REF][START_REF] Sawford | Kolmogorov similarity scaling for one-particle Lagrangian statistics[END_REF].

The parameter σ 2 is estimated using the relation given by [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF]: σ 2 ≈ 3/8 ln Re λ /R c with R c ≈ 10 compatible with the prediction of Kolmogorov and Obhoukov [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF][START_REF] Oboukhov | Some specific features of atmospheric tubulence[END_REF]. As mentioned in [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF] and [START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF], the specific value of R c is depending on the large-scales. Since the influence of the large-scales is neglected in our modeling (see section II D), we choose in the following simply σ 2 ≈ 3/8 ln Re λ . We set as well α = 1/3 and γ = 3/2 + β with β = -1/ ln Re λ in accordance with the results of the DNS presented above. The prefactor C is computed as

C = c 0 A B where A = 1 - 2 3 α 3/2
≈ 0.686, B = 17.1-54.7/ ln Re λ as determined by DNS. The term c 0 is introduced so that the predicted acceleration variance follows [START_REF] Castaing | The temperature of turbulent flows[END_REF], as one would expect from the construction of the stochastic model, despite the fact that we take σ 2 = 3/8 ln Re λ instead of σ 2 = 3/8 ln Re λ /R c . Consequently, we have c 0 = (1/Re c ) 9/64+3β/8(1+β/2) .

For simplicity we have used τ c = τ η and τ ε = τ L . From τ ε and τ c we calculate the value of the normalizing constant Λ as explained in D 2. Finally, for the parameter c u , which is the only free parameter of the model, we have determined numerically that with c u = 5.22 the ratio K/ K is 1 on average for all values of the Reynolds number.

The sample paths of this model are obtained by numerical integration of the stochastic differential equation. Numerical integration is made with an explicit Euler scheme by taking a time-step dt = τ η,min /100 with τ η,min = ν/ε max , an estimation of the minimum dissipative time scale likely to happen during the simulation. This is estimated from the log-normal distribution of the dissipation: τ η,min = τ η exp(-xσ/2 + σ 2 /4), with x = 6 by considering that the probability that a random number following the normal distribution reaches a value of 6 standard deviation is sufficiently low (see (D11)).

For the calculation of the convolution term Γ appearing in [START_REF] Lee | Intermittent nature of acceleration in near-wall turbulence[END_REF], we propose in appendix D 3 an efficient algorithm.

A simple Python script presenting the algorithm used to integrate the proposed stochastic model is available in supplemental material [1].

C. Results

We show in Fig. 6 a realization of this process for Re λ = 1100. We see the temporal evolution of the components of acceleration and velocity. There is a very intermittent acceleration with an alternation of periods in which the acceleration of the fluid particle is almost zero with phases of very intense activity. This results in fluid-particle trajectories, obtained by integration of the velocity x i = u i (t)dt, in long quasi-ballistic periods with typical length of the order of the integral scale (L ≈ K 3/2 / ε ) and short term disruptions during which the trajectory rolls up on itself. We have simulated the stochastic model for 15 different Reynolds numbers between Re λ = 70 and 9000. In each case, we have computed 26,000 realizations. The simulations are carried out over a period of 120τ L , over which we exclude an initial transitional regime of 20τ L for the calculation of the statistics. In all cases, the initial value of the components of acceleration and velocity are sampled from the normal distribution having a standard deviation of 10 -9 a η for the acceleration and 10 -9 2 K /3 for the velocity. We can indeed notice from ( 54) and ( 55) that, if the acceleration is exactly zero, the stochastic model predicts that the acceleration would remain so. However, it should be noted that this event has a zero probability, and that for arbitrarily small, but non-zero, accelerations, the model presents an evolution towards a non-trivial stationary state. This is illustrated in Fig. 7, which presents the temporal evolution of the variance of the velocity and of the acceleration for Re λ = 1100, calculated from all the realizations. Figure 8 shows the evolution with the Reynolds number of the mean kinetic energy in the stationary state. In this figure, we see that the average kinetic energy is equal, within the statistical convergence, to the value prescribed to the model. We note that the value of the average kinetic energy is directly related to the value of the parameter c u in (54) as mentioned above. Regarding the variance of the acceleration, we expect, by construction of the stochastic model, that the predicted value follows the log-normal relation [START_REF] Castaing | The temperature of turbulent flows[END_REF]. We observe in Fig. 9, that it is indeed the case, with only slight deviations for the largest Reynolds numbers which are attributed to numerical errors. We recall that the underestimation of the acceleration variance at small Reynolds numbers compared to the DNS or [START_REF] Castaing | Velocity probability density functions of high Reynolds number turbulence[END_REF] stems from the fact that the model is based on the relation [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] in which the effect of low dissipative and large-scale structures are neglected (see the discussion in section II C). This simplification enables to obtain the analytical formulation of the model proposed here.

Figure 10 compares the autocorrelation of the components of the acceleration and of its norm calculated from the stochastic model for Re λ = 400 with the calculations from the DNS of [START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF][START_REF] Lanotte | Heavy particles in turbulent flows[END_REF]. It can be seen that the characteristic times of these two quantities are very different and that it is in good agreement with the DNS. It should be mentioned that the scale separation between the components and the norm results from the rotational part of the diffusion tensor. Indeed, no scale separation is found when c R is set to zero in equation [START_REF] Innocenti | Lagrangian stochastic modelling of acceleration in turbulent wall-bounded flows[END_REF] (corresponding then to a diagonal diffusion tensor). We see in [START_REF] Johnson | A closure for Lagrangian velocity gradient evolution in turbulence using recentdeformation mapping of initially gaussian fields[END_REF] that considering this rotational part, leads to the decomposition of the acceleration ) from [START_REF] Sawford | Conditional and unconditional acceleration statistics in turbulence[END_REF] (gray dash dot line), with the numerical integration of a 2 = a 2 |ε P (ε)dε with a 2 |ε given by ( 16) and P (ε) log-normal (continuous red line), with its approximation of (20) (red dotted lines), with the large-Reynolds number limit relation ( 19) (red dashed line) and with the asymptotic power law (21) (gray dotted lines).

into its normal and tangential component. The former is associated with the intense rotation that rapidly changes the acceleration direction, whereas the second is associated with the variation of the kinetic energy of the particle.

Figure 10 also presents the evolution of the autocorrelation coefficient of the velocity components and of the power. It can be seen here also that the agreement with the DNS is relatively good. In Fig. 10, we also show the evolution of the characteristic correlation times for these four quantities with Reynolds numbers in the range Re λ = 70 -9000 as predicted by the stochastic model. The characteristic correlation time for the velocity, the acceleration norm, the acceleration components and the power are τ u = ρ ui (τ )dτ , τ |a| = ρ |a| (τ )dτ , τ ai = |ρ ai |(τ )dτ and τ P = |ρ P |(τ )dτ . It can be seen in Fig. 10 that the scales for the norm of the acceleration and for the velocity normalized by τ L remains quasi-constant with the Reynolds number and that the ratio between the correlation scale for the velocity and τ L is of order 1. Note that the characteristic time entering the model formulation is τ ε (the correlation time of the dissipation rate following the path of a fluid particle). For the calculation of the model, we simply set τ ε = τ L arguing that the two quantities should be closed. It is therefore interesting to remark that the integral time of the velocity is very close to the prescribe one τ u ≈ τ L . Regarding the correlation scales for a component of acceleration and for the power normalized by τ L , they both present a variation close to 1/Re λ , as expected.

We also show in figure 10 autocorrelation coefficient of a i , (a 2 ) 1/2 , P = a i u i and u i for Reynolds numbers in the range Re λ = 70 -9000 obtained from the model. It is seen that, when the time shift is normalized by the corresponding integral time scale, the correlation coefficients of the power and of the acceleration component remains nearly unchanged with the Reynolds number. We observe as well that the shape of the autocorrelation obtained from DNS is well reproduced, although the decay predicted by the model is too fast at very short time lag. This is attributed to the fact that the dissipative region is only taken into account in the model via the cutoff τ c = τ η of the kernel Γ. We observe that the correlation for the acceleration norm presents a logarithmic decrease, reflecting the absence of characteristic time for its evolution. As expected, the correlation norm exhibits a lower slope as the Reynolds number increases. This is directly attributed to the use of the non-Markovian process of [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] for the dissipation rate, which proposes a logarithmic evolution of the autocorrelation in agreement with the underlying model of the turbulent energy cascade as discussed in appendix D.

The shape of the velocity correlation from the model is overall close to the DNS. At small τ , it presents some dependence on the Reynolds number, while at large time shift (i.e. τ of the order of τ L ) the correlation decreases exponentially, as it can be seen in the inset of figure 10f, in agreement with DNS and experiments. The exponential relaxation results from the terms P + K/τ ε = dK/dt + K/τ ε appearing in the drift part of the stochastic model [START_REF] Roy De Bonneville | Numerical simulations of the agitation generated by coarse-grained bubbles moving at large Reynolds number[END_REF]. It is interesting to remark that the presence of this term in the model is a direct consequence of the exponential dependence of the conditional acceleration variance on the kinetic energy [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF]. This term leads to the Reynolds number dependence on the velocity correlation observed at small τ , which is connected to the logarithmic decorrelation of the acceleration norm, to vanish at large τ at which it relaxes exponentially. This suggests therefore anomalous scaling We show in Fig. 11 the velocity spectrum for Re λ between 400 and 9000, which we compare with the DNS of [START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF] for Re λ = 400. We see a good agreement between the DNS and the stochastic model. For higher Reynolds numbers, we clearly see that a power law behavior develops at intermediate scales. We see that the slope of the power law deviates from the Hinze spectra [START_REF] Tennekes | A First Course in Turbulence[END_REF] predicted by dimensional arguments similar to those presented by Kolmogorov, with spectra less stiff than ω -2 . This shows that the proposed stochastic model leads to an anomalous scaling that reflects the persistent influence of the Reynolds number in the inertial-scales. We further notice that the slope that develops at intermediate scales are close to -2 + 0.14, where 0.14 is the exponent of the asymptotic power law of the acceleration variance with the Reynolds number determined in [START_REF] Castaing | Log-similarity for turbulent flows?[END_REF] (see also Fig. 9). We see here a confirmation of the relation between the acceleration scaling and the anomalous scaling of the velocity spectra proposed by [START_REF] Falkovich | On Lagrangian single-particle statistics[END_REF].

We present in Fig. 12 the PDFs of the velocity and of the acceleration for Re λ = 400 ∼ 9000, as well as the comparison with the DNS of [START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF]. First, we find that the velocity distribution is very close to a Gaussian distribution for all Reynolds numbers, while the acceleration presents a much more stretched distribution. For Re λ = 400 the acceleration PDF is in very good agreement with the DNS, and, the model predicts an increase of the stretching of the tails with increasing the Reynolds number. We also show in this figure the PDF of the velocity increments for different time shifts δ τ u i = u i (t + τ ) -u i (t) at Re λ = 400. We observe that the distribution gradually returns to a Gaussian distribution as the time shift increases, and that at each time shift the agreement with the DNS of [START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF] is very good. This is confirmed by the presentation of the flatness of the velocity increments for Re λ = 400 ∼ 9000, which reflects the strongly non-Gaussian behavior on small-scales which decreases to 3 for the larger-scales. Here also we notice a good agreement with the DNS of [START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF] for Re λ = 400. We also show in the inset, a quasi-linear increase of the flatness of the acceleration with the Reynolds number.

Finally, in Fig. 13 we show the second and third moments of the power P = a i u i . It is observed that the increases of both moments with the Reynolds number are in close agreement with the power law supported by the DNS results of [START_REF] Xu | Flight-crash events in turbulence[END_REF],

P 2 / ε 2 ∼ Re 4/3 λ and -P 3 / ε 3 ∼ Re 2 λ .
Clearly, the third order moment is negative, meaning that the time irreversibility of the dynamics of a fluid particle in a turbulent flow is correctly reproduced by the proposed stochastic model. The skewness of the power, S = P 3 / P 2 3/2 , seems to converge to -0.5 as the Reynolds number increases, as reported in [START_REF] Xu | Flight-crash events in turbulence[END_REF].

IV. DISCUSSION AND FINAL REMARKS

In this paper, we have analyzed the behavior of the acceleration statistics conditioned on both local dissipation rate and local kinetic energy, which to our knowledge have not been considered before. We have reported that the doubly-conditional variance is proportional to the acceleration variance conditional on the dissipation rate solely, with the proportionality factor depending exponentially on the kinetic energy: a 2 |ε, K = A exp(αK/ K ) a 2 |ε . For 100 0 100 large enough Reynolds number we show that A = (1 -2α/3) 3/2 and we proposed that the α coefficient is independent of the Reynolds number and its value α = 1/3 was obtained from the DNS.

a i / < a 2 i > 1/2 10 -10 10 -8 10 -6 10 -4 10 -2 pdf(a i ) < a 2 i > 1/2 5 0 5 u i / < u 2 i > 1/2
This expression shows a direct effect of the kinetic energy, a large-scale quantity, on the Lagrangian acceleration. Furthermore since the argument of the exponential depends on K/ K , not on a local Reynolds number, it suggests a kinematic effect for the acceleration which may be due to the non-locality of the pressure. More specifically, these effects can be due to the interaction of vorticity and strain [START_REF] Douady | Direct observation of the intermittency of intense vorticity filaments in turbulence[END_REF]. In case of persistent large-scale strain, intense vorticity tube would be generated and align with the principal direction of the strain [START_REF] Moffat | Interaction of turbulence with strong wind shear[END_REF]. It was shown that such vortical structure can produce significant acceleration in the direction of the vorticity [START_REF] Barge | Acceleration of small heavy particles in homogeneous shear flow: direct numerical simulation and stochastic modelling of under-resolved intermittent turbulence[END_REF][START_REF] Lee | Intermittent nature of acceleration in near-wall turbulence[END_REF]. Anyway, although the proper physical mechanism leading to the exponential dependence of the acceleration on the kinetic energy deserve further studies it is an additional effect to the influence of the large-scales on the acceleration through the intermittency of the dissipation rate. To study this later effect, we subsequently have proposed to account for the Reynolds number dependence of the acceleration variance conditional on the dissipation rate within the intermediate asymptotic framework [START_REF] Barenblatt | A mathematical model for the scaling of turbulence[END_REF] leading to: a 2 |ε = a 2 η B(ε/ ε ) 3/2+β for ε ε with B and β depending logarithmically on the Reynolds number as the signature of the intermittency and the persistence of viscous effects. Further, we advance an expression for the conditional acceleration variance valid for the whole range of fluctuations of ε by accounting for the dominant effect of the large-scale structures in low dissipative regions (see equation ( 16)). From this finding we determine the evolution of the unconditional acceleration variance with the Reynolds number (equation ( 20)) and show that it is in good agreement with DNS, which gives another empirical validation of the incomplete similarities assumption used to obtain these results. Eventually, for large Reynolds numbers, we propose to express the doubly-conditional variance as a 2 |ε, K = Ca 2 η exp(αK/ K + γ ln ε ε ), γ = 3/2 + β, which can be viewed as the results of a multiplicative process for the acceleration. Such process can be interpreted as a momentum fluctuation cascade that includes kinematic effects by eddies all along the turbulence spectrum.

Based on these results we propose a 3D stochastic model for the dynamics of a fluid particle that reproduce the essential features of the Lagrangian dynamics observed from DNS and experiments. To obtain such model, (i) we have assumed, inline with the Kolmogorov universality hypothesis, that the dynamics can be described as a set of stochastic differential equation da i = M i dt + D ij dW j ; du i = a i dt, with M i and D ij depending on the velocity and acceleration along with Reynolds number dependent parameters. (ii) We used the doubly-conditional acceleration variance obtained in this paper, to model the instantaneous relation of the dynamics between acceleration (or force), kinetic energy, and energy dissipation. This amounts to consider that the remaining degree of freedom can be discarded in procedure similar to an adiabatic elimination [START_REF] Gardiner | Handbook of Stochastic Methods for Physics[END_REF] as discussed by [START_REF] Castaing | Velocity probability density functions of high Reynolds number turbulence[END_REF]. (iii) We introduce a non-diagonal diffusion tensor along with a maximum winding hypothesis to ensure its physical realizability. (iv) We consider that the dissipation rate along the trajectory is given by the non-Markovian log-normal process proposed recently by [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF], giving logarithmic correlation consistently with the turbulent cascade picture. The model is closed by using the relation DK/Dt = P = a i u i . For the model, it implies dependence of K on ε through the dependence of a 2 on ε. This can be interpreted as feedback of the small scales on the large scales. On the other hand, the influence of the large-scales on the small-scales is accounted for in the model through the intermittent cascade model for the dissipation rate. With these 4 hypothesis, we obtain the model given by equations ( 31), ( 32), ( 54) and (55) which reads:

da i = α 2 K a i c u P + K τ ε -(c u -1)a 2 u i -a i ln a 2 a 2 η + Γ * 1 2τ ε - σ 2 * τ c a 2 T a 2 a i dt + σ 2 * τ c a 2 T δ ij + a 2 N ijk b k dW j (56) 
We show that the proposed model predicts Lagrangian dynamics presenting non-gausssianity, long-range correlations, anomalous scaling and time irreversibility. Moreover statistics obtained from the stochastic model are in good agreement with the DNS. In [START_REF] Mandelbrot | Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence[END_REF] the term proportional to α, which follows directly from the exponential dependence of the conditional acceleration on the kinetic energy, involves the coupling between velocity and acceleration and leads to the exponential relaxation of the velocity correlation for large time lag along with one-time Gaussian distribution for the velocity. Introducing a rotational part in the diffusion tensor naturally leads to decomposition of the acceleration vector into its tangential part and its normal components. Since the normal part is associated with the curvature of the trajectory, the rotational part of the diffusion leads to the emergence of a time-scale separation between the correlation of the norm and the components of the acceleration. The term associated with the non-Markovianity of the dissipation along with the rotational part produce irreversible dynamics, as seen by the skewness of the exchanged power and ensures a scale separation between velocity and acceleration. These three points can be easily checked, by taking α = 0 or c R = 0 in [START_REF] Innocenti | Lagrangian stochastic modelling of acceleration in turbulent wall-bounded flows[END_REF] or by using for Π the Markovian log-normal dissipation model proposed by [START_REF] Pope | The velocity-dissipation probability density function model for turbulent flows[END_REF] rather than the non-Markovian one of [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF].

It is worth noting that from the conditional acceleration statistics obtained from DNS of the Navier-Stokes equation, it is possible to establish, in a fairly natural way, that is to say without using any other hypothesis than the cascade picture, a link between the refined Kolmogorov assumption and the dynamics of fluid particles. It would be interesting to analyze further the stochastic equation to demonstrate the irreversibility of the dynamics, the emergence of anomalous scaling or to study the geometry of the particle trajectory e.g. its curvature and torsion, as well as to further test the conditional statistics between the acceleration and the velocity. Also interesting could be the improvement of the modeling of the high frequency part of the spectrum. Indeed the dissipative part of the spectrum is not well reproduced by the model of [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] which intends to model the dissipation rate in the inertial range.

In order to simplify the construction of the model, we have not taken into account the non-local effects of the largest structures of the flow, arguing that their effect vanish as the Reynolds number increases (term with a 2 0 in eq. ( 16)). Based on the relation [START_REF] Borgas | The Multifractal Lagrangian Nature of Turbulence[END_REF] it is possible to account for the large-scale in the stochastic modeling. However, since this term is dependent on the Reynolds number, it is likely that it also depends on the flow configuration and boundary conditions. The proposed stochastic model could be further generalized to address shear flows [START_REF] Barge | Acceleration of small heavy particles in homogeneous shear flow: direct numerical simulation and stochastic modelling of under-resolved intermittent turbulence[END_REF] and improve Reynolds-averaged simulations [START_REF] Innocenti | Lagrangian stochastic modelling of acceleration in turbulent wall-bounded flows[END_REF][START_REF] Pope | On the relationship between stochastic Lagrangian models of turbulence and second-moment closures[END_REF]. This model could be used among other things to improve the calculation of the dynamics of a dispersed phase with the large eddy simulation (LES) approach [START_REF] Gorokhovski | Modeling the effects of small turbulent scales on the drag force for particles below and above the kolmogorov scale[END_REF][START_REF] Zhang | Model for the dynamics of micro-bubbles in high Reynolds number flows[END_REF][START_REF] Zhang | Fluid inertia effects on the motion of small spherical bubbles or solid spheres in turbulent flows[END_REF]. Finally, let us mention that an interesting extension could be the coupling of the proposed model with stochastic model for the evolution of the velocity gradients as proposed in [START_REF] Girimaji | A diffusion model for velocity gradients in turbulence[END_REF][START_REF] Johnson | A closure for Lagrangian velocity gradient evolution in turbulence using recentdeformation mapping of initially gaussian fields[END_REF][START_REF] Meneveau | Lagrangian Dynamics and Models of the Velocity Gradient Tensor in Turbulent Flows[END_REF][START_REF] Pereira | A multifractal model for the velocity gradient dynamics in turbulent flows[END_REF]. Thus by combining the previous relations, one can write:

a 2 |ε /a 2 η = c ε dK * exp(α * K * )P G (K * ) (A4)
where we have introduced K * = K/ K|ε and α * (ε) = α K|ε / K . In addition, we see in Fig. 14 that the selfsimilar form of the distribution of K * knowing ε is well approximated by the following distribution obtained from the Maxwell distribution (i.e. assuming that the three components of the velocity are Gaussian and independent):

P G (x) = 3 √ π 3 2 x exp - 3 2 x (A5)
Note that the average of this distribution is indeed unity: xP G (x)dx = 1. With this expression for P G the integral of equation (A4) can be computed as:

A -1 ε = dK * exp(α * K * )P G (K * ) = 1 - 2 3 α * -3/2 . (A6)
Thus, according to (A2), we have for c ε :

c ε = A ε a 2 |ε /a 2 η (A7)
The dependence of A ε with ε explains the deviation of the power law behavior between a 2 |ε, K and a 2 |ε observed in Fig. 2b for ε ε . It is to note that the integral A ε converges only if α * < 3/2. This observation suggests that the dependence of K|ε / K on ε should decrease as the Reynolds number increases to allow α * to remains lower than 3/2 even for the most intense fluctuations of ε/ ε , and thus ensuring the convergence of the integral. Therefore, the larger the Reynolds number, the weaker the dependence of K|ε / K on ε. This is consistent, with the statistical independence between the local values of the kinetic energy and of the dissipation at large Reynolds numbers, in line with scale separation of the turbulent cascade. Accordingly, we simply propose to write:

c ε ≈ A a 2 |ε /a 2 η (A8) where A = 1 - 2 3 α 3/2
, which is equal to A = 7 √ 7/27 ≈ 0.686, for α = 1/3, neglecting the small logarithmic dependence in ε/ ε .

Appendix B: Analytical estimation of the acceleration variance Using expression [START_REF] Borgas | The Multifractal Lagrangian Nature of Turbulence[END_REF] for the conditional acceleration variance, we write the acceleration variance as

a 2 a 2 η = B ∞ 0 (Z + ε * ) γ P (ε * )dε * , (B1) 
where we introduced

γ = 3/2 + β, Z = 1 B a 2 0 a 2 η 1/γ
and ε * = ε/ ε for simplicity. We can expand the term within the integral using the generalized binomial series:

(Z + ε * ) γ =              ∞ k=0 C γ,k Z γ-k ε k * for ε * < Z ∞ k=0 C γ,k Z k ε γ-k * for ε * > Z (B2) with C γ,k = γ k = 1 k! k-1 i=0
(γ -i) the generalized binomial coefficient. In particular, we have C γ,0 = 1 and C γ,1 = γ.

Splitting the integral in (B1) enables to write:

a 2 a 2 η = B ∞ k=0 C γ,k Z γ-k Z 0 ε k * P (ε * )dε * + Z k ∞ Z ε γ-k * P (ε * )dε * . (B3)
The two integrals are partial moments of the normalized dissipation rate. Considering that ε * follows the lognormal distribution with parameters µ and σ 2 , with the change of variable x = (ln ε * -µ)/ √ σ 2 , we can express the partial moments of order n as

∞ Z ε n * P (ε * )dε * = exp(nµ + n 2 σ 2 /2) ∞ (ln Z-µ)/ √ σ 2 exp(-(x -n √ σ 2 ) 2 /2)dx = ε n * Φ(Z, n) (B4) with Φ(Z, n) = 1 2 - 1 2 erf ln Z -µ √ 2σ 2 - n √ σ 2 √ 2
. Note that since ε * = 1, we have µ = -σ 2 /2 which gives for the regular moments ε n * = exp(σ 2 n(n -1)/2) and Φ(Z

, n) = 1 2 - 1 2 erf ln Z + σ 2 (n -1/2) √ 2σ 2 
. As well, we have for the other partial moments

Z 0 ε n * P (ε * )dε * = ε n * (1 -Φ(Z, n)) . (B5) 
For the acceleration variance, we obtain eventually the following analytical series expansion

a 2 a 2 η = B ∞ k=0 C γ,k Z γ-k ε k * (1 -Φ(Z, k)) + Z k ε γ-k * Φ(Z, γ -k) . ( B6 
)
This expression is observed to converge very rapidly to the numerical evaluation of the integral (B1), as there is just minute differences when considering only the first three elements of the sum. For Z and k small, we have Φ(Z, k) = O(1), which allow us to simplify the relation for the acceleration variance:

a 2 a 2 η = B ∞ k=0 C γ,k Z k ε γ-k * . (B7)
The successive terms of the series correspond to corrections of low-Reynolds number effects of increasingly high order, since Z ∼ Re -1/γ λ . At leading order we have

a 2 a 2 η = B ε γ * , (B8) 
while the first order correction gives:

a 2 a 2 η = B ε γ * + γZ ε γ-1 * . (B9)
With σ 2 = 3/8 ln Re λ /R c as proposed by [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF], the leading order expression (B8) gives [START_REF] Castaing | The temperature of turbulent flows[END_REF], and the first order expression reads:

a 2 a 2 η = B Re λ R c 3/16γ(γ-1) 1 + γ 1 B a 2 0 a 2 η 1/γ Re λ R c -3/8(γ-1) . (B10)
This later expression is seen in fig. 9 to give a very good approximation of [START_REF] Borgas | The Multifractal Lagrangian Nature of Turbulence[END_REF].

Appendix C: Conditional PDF of the acceleration

We complete the statistical description of the conditional acceleration by showing, in Fig. 15, its probability density function (PDF). In this figure, we compare the PDF of the acceleration conditional on the dissipation and the kinetic energy, with the PDF conditioned only by the dissipation and with the unconditional PDF obtained from our DNS at Re λ = 380. All the PDFs are normalized by their respective standard deviation. It is observed that the conditional PDFs present much less developed tails than the unconditional PDF. Moreover the doubly-conditional PDFs overlap with the simply-conditional PDF, showing that conditioning by the velocity does not alter the shape of the PDF. As well the shape is observed to be invariant for all values of ε, supporting the idea of a canonical distribution presented in [START_REF] Castaing | The temperature of turbulent flows[END_REF]. The image of the energy cascade is naturally associated with multiplicative processes [START_REF] Benzi | On the multifractal nature of fully developed turbulence and chaotic systems[END_REF][START_REF] Frisch | A simple dynamical model of intermittent fully developed turbulence[END_REF][START_REF] Kolmogorov | On the log-normal distribution of particles sizes during break-up process[END_REF][START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF][START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF][START_REF] Yaglom | The Influence of Fluctuations in Energy Dissipation on the Shape of Turbulence Characteristics in the Inertial Interval[END_REF]. Such model proposes to express the locally space-averaged dissipation over a volume of size = Lλ n , with L the large-scale of the flow and λ < 1, as:

ε n = ε 0 ε 1 ε 0 . . . ε n ε n-1 = ε 0 n i=1 ξ i (D1)
Assuming that ξ i = ε i /ε i-1 are independent positive random numbers with identical distribution across scales we write:

ln ε n ε 0 = n i=1 ln ξ i (D2)
Therefore according to the central limit theorem the term on the right must present a normal distribution with parameters µ = nµ ξ and σ 2 = nσ 2 ξ . The parameters µ ξ et σ 2 ξ appear as fundamental unknowns, but can nevertheless be related with the relation µ ξ = -σ 2 ξ /2 obtained from the moments of a log-normal variable in order to guarantee that the average energy flux is conserved throughout the cascade. Setting = η (i.e. n = ln(η/L)/ ln λ ∼ ln Re λ ) we obtain a model for the local dissipation rate. The log-normal distribution for ε has been confirmed for example by DNS of [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF]. Moreover for the variance of the logarithm of the local dissipation rate is then σ 2 = σ ξ ln λ ln η/L = A + B ln Re λ as predicted by Kolmogorov and Oboukhov [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF][START_REF] Oboukhov | Some specific features of atmospheric tubulence[END_REF]. Such evolution for σ 2 has been also confirmed by the DNS of [START_REF] Yeung | Acceleration and dissipation statistics of numerically simulated isotropic turbulence[END_REF] showing that σ 2 ≈ 3/8 ln Re λ /10. Such multiplicative process also implies a logarithmic evolution of the spatial correlation of the dissipation rate as explained by Mandelbrot [START_REF] Mandelbrot | Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence[END_REF]. We consider the dissipation rate at two points A and B, ε A n and ε B n , both defined on the same scale n. The points A and B are separated by a distance L > r > η from each other and we note k = ln(r/L)/ ln λ, then 0 < k < n. Clearly, the greater the distance between the two points, the larger the scale of their common root in the cascade:

ε A n = ε AB 0 ε AB 1 ε AB 0 . . . ε AB k ε AB k-1 ε A k+1 ε A k . . . ε A n ε A n-1 (D3) ε B n = ε AB 0 ε AB 1 ε AB 0 . . . ε AB k ε AB k-1 ε B k+1 ε B k . . . ε B n ε B n-1 (D4) 
In the two previous equations, we have distinguished by the exponents A and B the variables which are specific to points A and B and by AB those which are common. This can be expressed as:

ln ε A n ε 0 = k i=1 ln ξ AB i + n i=k+1 ln ξ A i (D5) ln ε B n ε 0 = k i=1 ln ξ AB i + n i=k+1 ln ξ B i (D6)
The correlation between ln ε A n and ln ε B n is defined as

R ln ε (r) = (ln ε A n ε 0 -µ)(ln ε B n ε 0 -µ) = ln ε A n ε * ln ε B n ε * (D7)
where we noted ε * = ε 0 e µ . Introducing similarly ξ * = e µχ and ξ = ξ/ξ * we express the correlation as:

R ln ε = n i=1 (ln ξ A i -µ ξ ) n j=1 (ln ξ B i -µ ξ ) = n i=1 ln ξ A i n j=1 ln ξ B j = k i=1 ln ξ AB i + n i=k+1 ln ξ A i   k j=1 ln ξ AB j + n j=k+1 ln ξ B j   = k i=1 k j=1 ln ξ AB i ln ξ AB j + k i=1 n j=k+1 ln ξ AB i ln ξ AB j + n i=k+1 k j=1 ln ξ A i ln ξ AB j + n i=k+1 n j=k+1 ln ξ AB i ln ξ B j = k i=1 k j=1 δ ij σ 2 ξ = kσ 2 ξ (D8)
To obtain this results we used the hypothesis that within the same branch, the events at a given scale are independent of those at another scale, ln ξ AB i ln ξ AB j = δ ij σ 2 ξ , as well as vanishing correlation between branches A and B: ln ξ A i ln ξ B j = 0. This gives a logarithmic evolution of the correlation coefficient ρ ln ε = R ln ε /σ 2 , in the range η < r < L:

ρ ln ε = ln ε A n ε * ln ε B n ε * ln 2 ε n ε * = k n = ln L/r ln L/η = 1 - ln r/η ln L/η (D9)
Although not trivial, this result can be transposed for the temporal correlation along particle path [START_REF] Borgas | The Multifractal Lagrangian Nature of Turbulence[END_REF][START_REF] Huang | Lagrangian cascade in three-dimensional homogeneous and isotropic turbulence[END_REF][START_REF] Meneveau | On the Lagrangian nature of the turbulence energy cascade[END_REF][START_REF] Sawford | Direct numerical simulation studies of Lagrangian intermittency in turbulence[END_REF]. The logarithmic behavior of the correlation is confirmed by DNS, as it can be seen in [START_REF] Letournel | Reexamining the framework for intermittency in Lagrangian stochastic models for turbulent flows: A way to an original and versatile numerical approach[END_REF] where the evolution of the Lagrangian correlation of the logarithm of the dissipation is presented.

Stochastic Modeling of the dissipation

It has been proposed to model the dissipation rate as stochastic multiplicative process. Such process can be generically expressed as :

dε = εΠdt + εΣdW (D10)
with dW the increment of the Wiener process ( dW = 0 and dW 2 = dt) and where Π and Σ are to be determined.

Considering that ε follows a log-normal distribution with parameter σ 2 and µ = -σ 2 /2, we define the standard normal variable χ (Gaussian random variable with zero mean and unit variance) as:

ε ε = exp σχ -σ 2 /2 (D11) 
A stochastic process for χ has to be given in order to obtain the stochastic process for ε, via the Ito transformation. Pope and Chen [START_REF] Pope | The velocity-dissipation probability density function model for turbulent flows[END_REF] proposed to obtain χ from an Orstein-Uhnlebbeck process with a characteristic time τ ε :

dχ = - χ τ ε dt + 2 τ ε dW (D12)
According to the Ito formula, this gives for Π and Σ :

Π = -ln ε/ ε -σ 2 /2 /τ ε (D13) Σ = 2σ 2 /τ ε (D14)
This process gives as expected log-normal distribution for ε (normal distribution for χ) as well as an exponential decrease of the correlation of ln ε with a characteristic time τ ε . This exponential behavior is not consistent with the multiplicative cascade model as discuss above. It rather corresponds to a direct energy transfer from large to small-scales.

To ensure a logarithmic decorrelation of the dissipation, Chevillard [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] proposed to adapt the Gaussian multiplicative chaos introduced by Mandelbrot [56]. This leads to a multifractal model in which the increment of the Wiener process in (D12) is replaced by a fractional Gaussian noise:

dχ = - χ τ ε dt + 1 Λ dW 0 τc (D15)
here, dW 0 τc is formally a fractional Gaussian noise with a 0 Hurst exponent, regularized at a time scale τ c , and Λ is a normalization factor ensuring unit variance for χ. The value of Λ is dependent on the specific regularization of dW 0 τc . As explained in [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] this process can be reexpressed as

dχ(t) = - χ τ ε + Γ Λ dt + 1 √ Λ 2 τ c dW (D16)
with dW the increments of a standard Wiener process and Γ corresponds to a convolution of the Wiener increments:

Γ = - 1 2 t -∞ (t -s + τ c ) -3/2 dW (s) (D17)
where dW (s) is the increments of the same realization of the Wiener process as in (D16). In (D17), the regularization time τ c prevent the divergence of the kernel when s → t. The normalization factor Λ is estimated as Λ = X 2 where X obey the stochastic equation (D16) in which Λ has been set to 1. The stochastic process (D16) gives a logarithmic correlation for χ: χ(t)χ(t -s) ∼ ln τ ε s for τ c s τ ε , as illustrated in the Fig. 16. With the Ito transformation, we obtain the process for ε from (D16). This gives for Π and Σ :

Π = -ln ε ε + σ 2 2Λ 2 τ ε τ c -Λ 2 + σ Λ Γτ ε /τ ε (D18) Σ = σ 2 Λ 2 τ c (D19)
3. Efficient calculation of the stochastic convolution Γ

In order to obtain a stationary process the lower bound of the integration is set to -∞. For the numerical computation of this integral, the lower limit has to be truncated. We present in figure 17 one realization of the evolution of the integral Γ(t, τ ) = -1 2 t t-τ (t -s + τ c ) -3/2 dW (s) when the lower bound varies. We see that for values larger than τ ε the integral converges to a value (which remains random). In addition, the convergence threshold does not seem to depend on the time step used. So in practice Γ will be calculated with a lower-bound set to t -5τ ε .

To obtain these calculations, the integral (D17) giving the value of Γ at time t n = n dt has been discretized as proposed by [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] Γ n = - This direct calculation requires a lot of memory in order to keep the last N hist instants and requires a very large number of operations, of the order of N t × N hist where N t is the number of time steps of the simulation. Thus this direct method is difficult to use in practice when τ ε /τ η ∼ Re λ becomes large.

For this reason [START_REF] Chevillard | Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence[END_REF] proposed to speed up significantly the calculation using the fast Fourier transforms (FFT). The integral at time n dt is then computed as Γ n = -1/2z n where z n = F F T -1 (Z k ) is given by the inverse Fourier transform of Z k . Z k = X k Y k is the convolution in spectral space between x n and y n (X k = F F T (x n ) and Y k = F F T (y n )) where x n and y n are the sequences dW n and (s n + τ c ) -3/2 padded with zeros such that they have N > N hist + N t points. This algorithm is indeed much faster. Nevertheless, the memory occupation becomes more important since all the values of the sequence dW n must be known simultaneously in order to calculate the Fourier transform, which limits the possibility of using this algorithm for large Reynolds numbers.

Such limitation can be overcome by using the approach proposed in [START_REF] Letournel | Reexamining the framework for intermittency in Lagrangian stochastic models for turbulent flows: A way to an original and versatile numerical approach[END_REF] based on the inverse Laplace transform of the convolution kernel. In this approach Γ is estimated as a weighted sum of correlated Orstein-Uhlenbeck processes with characteristic time ranging from τ c to τ ε .

Despite its efficiency, this technic, nor the one based on FFT, cannot be used to determine the Γ that appears in the vectorial stochastic model for the acceleration, or as noted by [START_REF] Pereira | A multifractal model for the velocity gradient dynamics in turbulent flows[END_REF] for velocity gradients. Indeed in such cases it is not the increments of the components of the Wiener process which are convoluted, but a projection of them as shown in [START_REF] La Porta | Fluid particle accelerations in fully developed turbulence[END_REF]. The issue is that the projection cannot by computed a priori, because it requires knowing a i and u i , as seen in [START_REF] Lamorgese | A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence[END_REF].

For these reasons we propose a new algorithm which is fast, using a limited amount of memory and which only requires knowing the dW n sequentially. This algorithm is derived from the one introduced for non-stochastic integrals in [START_REF] Roy De Bonneville | Numerical simulations of the agitation generated by coarse-grained bubbles moving at large Reynolds number[END_REF]. As we go back in the past, we can afford to remember with less precision the noise entering this integral, since the kernel decreases with the lag. We will thus proceed by progressive "coarse graining" and group together the oldest dW n , by introducing an increasingly extended local average. We then decompose the sum of (D20) into sub-sums comprising an increasing number of terms: Where we introduced s j = (m ej +m sj )dt/2 and dW j = mej m=msj dW n-m such that (s j +τ c ) -3/2 dW j ≈ mej m=msj (s m + τ c ) -3/2 dW n-m . The bounds m ej and m sj are progressively spaced as j increases leading to an increasingly coarse splitting of the integral. This approximation of the integral can be carried out very efficiently by using a nonhomogeneous list updating for dW . The first elements of the list are updated every time steps and the older ones less and less regularly, as described in the diagram of Fig. 18). In detail, we update the first N s elements of the list at each time step, the following N s every two time steps, and the elements between iN s and (i + 1)N s are only updated every 2 i iterations. Thus, with n × N s elements in the list we can estimate the integral going up to n i=0 N s 2 i dt = 2N s (2 n -1)dt in the past. This gives a considerable saving in computation time and memory with good accuracy as it is illustrated in Fig. 17. For all the calculation presented in this paper we have used N s = 12. 
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 1 FIG. 1. Visualization of the instantaneous fields of the square of the acceleration, of the dissipation and of the kinetic energy in a cut y -z of the flow by DNS at Re λ = 380. (Left): ln(a 2 / < a 2 >); (Middle): ln(ε/ < ε >) and (Right): K/ < K >.

2 ηFIG. 2 .

 22 FIG. 2. Variance of acceleration conditioned on the local dissipation rate and kinetic energy obtained from DNS at Re λ = 380. (Top) Map of ln a 2 |ε, K /a 2η versus ln ε/ ε and K/ K . (Left) Plot, in logarithmic scales, of a 2 |ε, K /a 2 η against ε/ ε for K/ K = 0.025, 0.1, 0.5, 1, 2, 3, 5, 6.5 ± 30% from orange to black. Comparison with a 2 |ε /a 2 η in gray dashed line and with the power law (ε/ ε ) 3/2 in gray dotted line. (Right) Plot, in semi-logarithmic scales, of a 2 |ε, K /a 2 η against K/ K for ε/ ε = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ± 30% from orange to black. Comparison with a 2 |K /a 2 η in gray dashed line and with exp(αK/ K ) with α = 1/3 in gray dotted line.

FIG. 4 .

 4 FIG. 4. (Left) Acceleration variance conditioned on the local dissipation rate normalized by the Kolmogorov acceleration a 2 |ε /a 2 η . The continuous line are for our DNS for Re λ = 50, 90, 150, 230 and 380 from orange to black; the dashed lines correspond to the DNS of Yeung et al. [98] for Re λ = 40, 139, 238, 385, 680, from orange to black. Comparison with the power law (ε/ ε ) 3/2 . Inset conditional acceleration normalized by ε 3/2 ν -1/2 . (Right) a 2 η /a 2 0 as a function of Re λ with a 2 0 = limε→0 a 2 i |ε the acceleration variance in low dissipative regions. Gray dots for the DNS of Yeung et al., black crosses for our DNS. Comparison with the line 0.0028Re λ + 1.16 in dashed lines.

FIG. 5 .

 5 FIG. 5. (Left) Evolution of χ = 1 γ ln(1/B a 2 |ε /a 2 η ), with γ = 3/2 + β versus ln ε/ ε with B = B0 + B1/ ln(Re λ ) and β = β1/ ln(Re λ ) and B0 = 17.1, B1 = -54.7 and β1 = -1, for various Re λ : continuous line for our DNS at Re λ = 50, 90, 150, 230 and 380 from orange to black; and dashed lines correspond to the DNS of Yeung et al. [98] for Re λ = 40, 139, 238, 385, 680, from orange to black. Comparison with the line χ = ln ε/ ε in gray dashed line. (Right) Evolution of a 2 |ε /a 2 0 1/γ = exp(χ -χ0) against ζ = ε/ ε Ba 2 η /a 2

with φ a universal

  function of only one argument φ = φ(ζ) with the asymptotics φ(ζ) = 1 for ζ 1 and φ(ζ) = ζ for ζ 1. Making a Taylor expansion of φ around ζ = 0 and using a matching asymptotic argument, simply yields to

FIG. 6 .

 6 FIG.6. A realization of the stochastic process for Re λ = 1100. Top left: evolution of the acceleration with time, ax: red, ay: green, az: blue, |a|: black. Bottom left: evolution of the velocity with time, ux: red, uy: green, uz: blue, |u|: black. Right: 3D trajectory of a fluid particle for a duration of 100 τL.

2 FIG. 7 .

 27 FIG.7. Evolution of the acceleration and velocity variance with time for the stochastic model at Re λ = 1100 starting from an initial condition for the acceleration and velocity with very small magnitude. Comparison in dashed gray line with the expected values:[START_REF] Castaing | The temperature of turbulent flows[END_REF] for the acceleration and the prescribe value of u = 2 K /3 for the velocity.

FIG. 8 .

 8 FIG.8. Evolution with the Reynolds number, in the stationary regime, of the kinetic energy obtained by the stochastic model normalized by the prescribed kinetic energy K .
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 229 FIG. 9. Evolution with the Reynolds number, in the stationary regime, of the kinetic energy normalized by the prescribed kinetic energy K (left) and of the acceleration variance normalized by the Kolmogorov acceleration (right). Data from the stochastic model (red plus) and comparison with our DNS data (black crosses) and the DNS data from [98] (gray dot-dash line), with the relation 3 × 1.9Re 0.135 λ (1 + 85Re -1.35 λ

FIG. 10 .

 10 FIG. 10. (a)Evolution of the autocorrelation of ai (black), (a 2 ) 1/2 (red), ui (blue) and P = aiui (green) from the stochastic model for Re λ = 400 and comparison with the DNS data from[START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF] in dashed lines. (b) Evolution of the integral time scale of ai (black), (a 2 ) 1/2 (red), ui (blue) and P = aiui (green) normalized by τL with the Reynolds number. (c,d,e,f) Evolution of the autocorrelation of ai, (a 2 ) 1/2 , P = aiui and ui respectively, for Re λ = 400, 567, 800, 1130, 1600, 2263, 3200, 4526, 6400 and 9051 from orange to black and comparison with the DNS data from[START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF] in dashed lines. In these plots the time lag is normalized by the corresponding integral time scale. For panel. f, inset: logarithmic scaling of the y-axis and comparison with exp(-τ /τu) in dotted line.

FIG. 11 .

 11 FIG.11. Velocity spectra from the stochastic model for Re λ = 400 to Re λ = 9000 from orange to black and comparison with the DNS data from[START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF] at Re λ = 400 (gray dashed line), with the Hinze spectra ω -2 (gray dot-dashed line), and with the power law with anomalous exponent ω -2+9/64 (gray dotted lines).
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 312 FIG.12. PDF of ai(top left) and comparison with the DNS data from[START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF], and PDF of ui (top right) and comparison with the normal distribution, for Re λ = 400 to 9000 from orange to black. (Bottom left) PDF of the velocity increments for various times shift: τ /τη = 610, 200, 70, 22, 7.3, 2.4, 0.8 and 0.25 each time lag is shifted upward by one decade for Re λ = 400 comparison with the PDF of the acceleration from the model (red) and from the DNS of[START_REF] Bec | Intermittency in the velocity distribution of heavy particles in turbulence[END_REF] (gray) and the PDF velocity (blue). (Bottom right) Evolution of the Flatness of the velocity increments versus the time shift for Re λ = 70 to 9000 from orange to black and evolution of the flatness of the acceleration with the Reynolds number and comparison with the linear law in the inset.

FIG. 13 .

 13 FIG.13. Evolution of P 2 / ε 2 (continuous black line) and -P 3 / ε 3 (dashed black line) with the Reynolds number, and comparison with the power laws Re 4/3 λ and Re 2 λ .

FIG. 14 .

 14 FIG. 14. (Left) Average of the kinetic energy conditioned on the local dissipation rate from our DNS for Re λ = 50, 90, 150, 230 and 380 in continuous lines from orange to black respectively, and comparison with the relation K|ε / K = 0.4 ln(ε/ ε ).(Right) Probability density function of the kinetic energy conditioned on the dissipation rate, normalized by its average K|ε , from our DNS at Re λ = 380 for ε/ ε = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ± 30% from orange to black. Comparison with the marginal PDF of the kinetic energy in dashed line and with the PDF (A5) in dotted line.

FIG. 15 .

 15 FIG.[START_REF] Biferale | Joint statistics of acceleration and vorticity in fully developed turbulence[END_REF]. PDF of the acceleration conditional on the dissipation and the kinetic energy P (ai|ε, K) for various values of ε and K: K/ K = 0.1, 1, 2.5 and 5 ± 30% from orange to black respectively and ε/ ε = 0.05, 0.3, 1, 5 and 10 ± 30% shifted respectively by one decade upward. Comparison with the acceleration PDF conditioned only by the dissipation in gray dashed line, and with the unconditional PDF in dotted gray line. Each PDF is normalized by its standard deviation. Data from our DNS at Re λ = 380.
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 216 FIG. 16. Correlation of χ for various values of τε/τc.
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 2 hist m=0 (s m + τ c ) -3/2 dW n-m (D20)with s m = t n -t n-m = m dt, N hist = 5τ ε /dt and dW n-m the increment of the Wiener process at time (n -m)dt.
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 17 FIG. 17. One realization of the integral (D17) as a function of the lower bound of the integral for dt = τc/100. Comparison between the direct calculation of the history integral (D17) (black line) and the optimized calculation with Ns = 12 (red crosses).

m=0(

  s m + τ c ) -3/2 dW n-m = me1 m=ms1 (s m + τ c ) -3/2 dW n-m + . . . + m eN m=m sN (s m + τ c ) -3/2 dW n-m = N j=1 mej m=msj (s m + τ c ) -3/2 dW n-m ≈ N j=1 (s j + τ c ) -3/2 dW j (D21)

  FIG. 3. Normalized variance of acceleration conditioned on the local dissipation rate and kinetic energy obtained from DNS at Re λ = 380. (Left) Plot of a 2 |ε, K /Aa 2 η exp(αK/ K ) against ε/ ε for various values of K. Comparison with a 2 |ε /a 2 η in gray dashed line and with the power law (ε/ ε ) 3/2 in gray dotted line. (Right) Plot of a 2 |ε, K / a 2 |ε, K = 0 against K/ K for various values of ε/ ε . Comparison with a 2 |K /a 2
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  FIG.[START_REF] Bos | Power fluctuations in turbulence[END_REF]. Diagram illustrating the coarse-graining of the integral (D17) and the non-uniform update of the list.
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This relation is simply obtained from the relation between the joint PDF and the conditional PDF: P (a 2 , ε, K) = P (a 2 |ε, K)P (ε, K) = P (a 2 |ε, K)P (K|ε)P (ε) and the relation between the joint probability density of a 2 , ε, K and a 2 , ε: P (a 2 , ε) = dKP (a 2 , ε, K).
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Appendix A: Estimation of cε

To evaluate the c ε factor appearing in (1), we use the following relation between the conditional averages 3 :

If the kinetic energy is statistically independent of the dissipation rate (i.e. P (K|ε) = P (K)) the integral in the previous relation takes a constant value and c ε is proportional to a 2 |ε . However such an assumption is only approximate at moderate Reynolds numbers as shown from our DNS. Indeed, it is seen in Fig. 14, that the average of K conditioned on ε has a weak logarithmic dependence on ε. Note that the average dissipation rate conditional on the kinetic energy can be found in [START_REF] Wilczek | On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from gaussianity[END_REF]. We also present in Fig. 14 the probability density of the kinetic energy conditioned on the dissipation rate. In this figure, the PDF is normalized by its mean value K|ε . It is to note that for large values of the dissipation rate, the conditional PDF takes a self-similar form: