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It is well known that the fluid-particle acceleration is intimately related to the dissipation rate
of turbulence, in line with the Kolmogorov assumptions. On the other hand, various experimental
and numerical works have reported as well its dependence on the kinetic energy, which is generally
attributed to intermittency and non-independence of the small-scale dynamics from large-scale ones.
The analyses given in this paper focus on statistics of the fluid-particle acceleration conditioned on
both the local dissipation rate and the kinetic energy. It is shown that this quantity presents an
exponential dependence on the kinetic energy with a growth rate independent of the Reynolds
number, in addition to the expected power law behavior with the dissipation rate. The exponential
growth, which clearly departs from the previous propositions, reflects additional kinematic effects of
the flow structures on the acceleration. Regarding intermittency, to account for the persistence of the
effect of the large-scales on the dissipation rate, it is further proposed scaling laws for the Reynolds
number dependence of the conditional and unconditional acceleration variance using Barenblatt’s
incomplete similarity framework. It is then shown that both these intermittency and kinematic
effects can be combined in a multiplicative cascade process for the acceleration depending on the
kinetic energy and the dissipation rate. On the basis of these observations, we introduce a vectorial
stochastic model for the dynamics of a tracer in turbulent flows. This model incorporates a fractional
log-normal process for the dissipation rate recently proposed, as well as an additional hypothesis
regarding non-diagonal terms in the diffusion tensor which naturally leads to the decomposition
between tangential and centripetal acceleration. This model is shown to be in good agreement with
direct numerical simulations and presents the essential characteristics of the Lagrangian turbulence
highlighted in recent years, namely (i) non-Gaussian acceleration, (ii) scale separation between
the norm of the acceleration and its components, (iii) anomalous scaling law for the Lagrangian
velocity spectra, and (iv) negative skewness of the increments of the mechanical power, reflecting
the temporal irreversibility of the dynamics.

I. INTRODUCTION

With the advances of experimental techniques and the increase in computing power of the last decades, remarkable
features of the dynamics of fluid particles in turbulent flows have been discovered. Among other things, the measure-
ment of the probability distribution of the acceleration of these tracers has been shown to be very clearly non-Gaussian
with a high frequency of observing very intense events [48, 63, 64, 93]. Even for moderate Reynolds numbers, it is
relatively common to observe accelerations more than 100 times greater than its standard deviation. In addition, the
components of acceleration and its norm present very different correlation times, the ratio of these characteristic times
increasing with the Reynolds number [65, 66, 71] showing that the dynamics of the tracers is influenced by the full
spectrum of turbulence scales. On one hand, the short-time correlation of the acceleration component is connected to
the centripetal forces in intense vorticity filaments [14, 66]. On the other hand, the acceleration norm has been shown
to be directly correlated with the local dissipation rate of turbulence [15, 39, 79, 98], in accordance with Kolmogorov’s
hypotheses. Nevertheless, various experimental and numerical works have also reported its dependence on local kinetic
energy [2, 13, 17, 26, 63, 79, 87], which is generally attributed to non-independence of the small-scale dynamics from
large-scale ones. In this view, the Lagrangian acceleration is essentially given by the local gradients of the velocity, but
the latter present correlation with the kinetic energy caused by direct energy transfers between large- and small-scales
in the energy cascade [90]. The absence of proper scale separation explains that the Lagrangian correlation functions
present power laws with anomalous exponents which can be described by the multifractal formalism [3, 12, 23, 51, 85]
as the signature of intermittency and persistence of viscous effects. To end this list, we mention the asymmetry of
the fluctuations of the mechanical power received or given up by a fluid particle reflecting the temporal irreversibility
of its dynamics [28–30, 75, 96].

Such complex phenomenology must be attributed to the collective and dissipative effects. Indeed according to the
Navier-Stokes equation, the acceleration of a fluid particle is essentially given by the pressure field which is determined
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by the motion of all the other particles [27, 91]. Moreover, although the Laplacian term in the Navier-Stokes equation
is of order Re−1 smaller than the pressure gradient term, the viscosity cannot be neglected. Indeed, as a small force
integrated over a long period could be significant, the viscosity insidiously affects the fluid tracer velocity. Which
in turn influences the particle acceleration through modification of the pressure gradient and local interactions are
intrinsically inseparable from the nonlocal ones. This is manifested by the persistence of the Reynolds number effect
on the acceleration statistics, even for very large Reynolds numbers. Such a scenario is supported by [24, 25, 69] who
showed that adding noise to an inviscid Lagrangian flow leads to irreversibility of the dynamics.

Following the Kolmogorov first hypothesis [44, 46] stating that locally homogenous turbulent flows are universal, it
should be possible, in principle, to propose a stochastic model that reproduces the dynamics of a single fluid particle
by effectively accounting for the interactions with all the other fluid particles. Let us note that the Kolmogorov first
hypothesis received some support from recent studies [18, 52, 88]. In order to propose such a stochastic model, our main
assumption in this paper is to write the increments of the acceleration vector of a fluid particle as dai = Midt+DijdWj .
Both M and D depend on the particle acceleration a and velocity u. The latter is simply given by the kinematic
relation of a fluid particle ui =

∫
aidt. It is indeed a necessary condition that a depends on u to present a restoring

effect that can counteract the diffusion in velocity space and have statistically stationary dynamics of the fluid particle.
We will propose closed expressions for M and D from basic consideration using as a starting point the acceleration
statistics conditioned on both the local values of the dissipation rate and the kinetic energy observed from direct
numerical simulations (DNS) and presented as well in this paper. It will be shown that introducing a "maximal
winding hypothesis" associated to a non-diagonal diffusion tensor, this simple stochastic model reproduces all the
statistical feature of the Lagrangian dynamics presented above without any adjustable parameter.

Let us first review some previous works on the stochastic modeling for the Lagrangian dynamics (see also [2]). Among
the pioneering works, Sawford [83] proposed a scalar Gaussian model for the acceleration presenting a feedback term
proportional to the velocity. Pope and Chen [74] devised a Langevin like equation for the velocity coupled with a
log-normal model for the dissipation through the introduction of conditional statistics. Similarly [10, 76, 77] proposed
an extension of the Sawford model leading to a non-Gaussian scalar model for the acceleration. This work was further
refined by [49] who also advanced a non-Gaussian scalar model for the dynamics by prescribing an ad hoc shape of
the conditional acceleration statistics with the dissipation along with a linear dependence on the velocity. The model
introduced in [80] describes increments of the derivative of acceleration in a so-called third-order model to better
account for the Reynolds number dependence on the acceleration statistics. Recently [92] proposed generalization
to an infinite number of layers leading to smooth 1D trajectory along with a multifractal correction to account for
intermittency, as introduced in [4, 43, 57]. An acceleration vector model has been proposed in [78] by imposing
an empirical correlation between velocity and acceleration, with additive noise leading to Gaussian statistics for the
acceleration. Likewise, [73] presented a 3D Gaussian model, with linear dependence on the velocity as well as an
extension to non-homogenous flows. In order to account for intermittency effect, in [8, 35, 36, 81, 82, 101] the 3D
acceleration vector is given by the product of two independent stochastic processes, one for the acceleration norm
the other for its orientation. In these models the velocity feedback on the dynamics is realized by a coupling with
a large eddy simulation framework. To summarize, to our knowledge, a 3D vectorial model for the tracer dynamics
that is autonomous and reproducing the essential features of Lagrangian turbulence (irreversibility, non-Gausianty,
multifractality) has not yet been proposed.

The essential building block of previously cited models is the conditional acceleration statistics. Previous studies
have focused on conditional statistics with either the velocity or the dissipation rate separately. From the extensive
analysis of [98], one can conclude that the acceleration variance conditioned on the dissipation rate ε presents a power
law behavior for large values of ε with a Reynolds number dependent exponent reflecting that the small-scale dynamics
are not independent of large-scales.

Regarding the links between the fluid particle acceleration and their velocity, Biferale et al. [13] argue that according
to the Heisenberg-Yaglom scaling for the acceleration 〈a2〉 ∼ a2

η = 〈ε〉3/2ν−1/2 = 〈K〉9/4L−3/2ν−1/2, with ν the
kinematic viscosity, K = 1/2uiui the kinetic energy and L the characteristic size of large structures, one should
expect that the variance of the velocity-conditioned acceleration behaves like: 〈a2|K〉 ∝ K9/4. Then on the basis of
the multifractal formalism, they proposed a very close scaling law, 〈a2|K〉 ∼ K2.3. The proposed relation was observed
to be in agreement with DNS for large velocity, typically |u| > 3σu with σu =

√
2/3〈K〉. These events remain very

rare since the PDF of the fluid velocity is Gaussian so the range of validity of the power law is, at best, very limited.
On the other hand, Sawford et al. [87] propose that 〈a2

x|ux〉 ∼ u6
x based on a mechanism involving vorticity tubes.

This scaling law which seems compatible with the first measurements of the acceleration conditioned on velocity in
[63], is confirmed neither by the DNS of [13] nor in a second experimental paper by Crawford et al. [26] which gave
more credit to the K9/4 law. As mention above, it is been proposed that the dependence of the acceleration on the
velocity arises through the dependence of the dissipation rate on the kinetic energy due to intermittency effect [13].
Additionally, [90] propose that the dependence on velocity is a consequence of direct and bi-directional coupling of
large- and small-scales caused by kinematic relations related to non-local interactions.
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In this paper we study the acceleration statistics conditional on both the kinetic energy and the dissipation rate.
To our knowledge such doubly-conditional statistics of the acceleration have never been presented. It will be shown
that the variance can be expressed as 〈a2|ε,K〉 ∼ exp(αK/〈K〉 + γ ln ε/〈ε〉). This result is clearly in contrast with
the previously proposed power law dependence on velocity. It shows that the influence of the large-scales through the
intermittent distribution of the dissipation rate, which manifests through the Reynolds number dependence of the
coefficient γ, is supplemented by an explicit dependence on the local kinetic energy. This direct dependence on the
large-scale characteristics is of a kinematic nature as it appears independent of the Reynolds number. The behavior
of the doubly-conditional acceleration can be interpreted as a consequence of scaling symmetry for the fluid-particle
acceleration incorporating both the intermittency and the kinematic effects of the flow structure. We also propose to
apply the incomplete similarity framework introduced by Barenblatt to explain the dependence of the statistics of the
acceleration conditional to the dissipation rate on the Reynolds number and to account for the intermittency effect.
That enables to provide as well new scaling relations for the unconditional variance in good agreement with the DNS.
Eventually the doubly-conditional statistic of the acceleration which gives a relation between the force, the energy
and the power will serve as a corner stone to build the stochastic model for the dynamics of a fluid particle mentioned
above. Although such a model could be of interest for practical applications, its construction is relevant to study the
specificities of the Lagrangian description of turbulence by linking the cascade picture to the fluid particles dynamics
on the basis of the behavior of the conditional statistics obtained by the DNS of the Navier-Stokes equations.

In section II we present the statistic of the acceleration conditioned on the local values of the dissipation rate
and kinetic energy obtained from DNS. Then we show that the Reynolds number dependence on the acceleration
conditioned on the dissipation rate can be described using the Barenblatt incomplete similarity. We deduce a new
relation for the unconditional acceleration variances. To end this section, we show that these new results can be
interpreted as a multiplicative cascade for the acceleration with scale dependent kinematic effects. Then in section
III we give the derivation of the stochastic model for the single fluid particle dynamics taking as an initial step
the doubly-conditional acceleration variance, and present the outcome of the model for the Reynolds number up to
Reλ = 9000 along with comparison with DNS results when available.

II. SCALING LAWS OF THE ACCELERATION

A. Methodology

We present in this section results concerning the statistics of the acceleration of a fluid particle. These results have
been obtained from 5 direct numerical simulations (DNS) of isotropic turbulence in a periodic box with Taylor-scale
Reynolds numbers of Reλ = 50, 90, 150, 230 and 380. We used pseudo-spectral code as detailed in [53, 99, 101]. The
DNS was carried with resolutions of 1283, 2563, 5123, 10243 and 20483 with the large scale forcing proposed by [47].
For each simulation we have η/∆x = 1 with η = 〈ε〉−1/4ν3/4 the Kolmogorov length scale and ∆x the grid size. The
statistics are computed from 40 3D fields sampled at roughly each large-eddy-turnover time.

We will show statistics of the acceleration conditioned by the dissipation rate and the kinetic energy. Note that
in this paper we consider the pseudo-dissipation ε̃ = ν(∂jui)

2, which is the second invariant of the velocity gradient

tensor multiply by the viscosity rather than the dissipation ε =
1

2
ν(∂jui+∂iuj)

2. We prefer to show here the statistics
of the pseudo-dissipation to be consistent with the next section of the paper, in which we will use the log-normal
distribution hypothesis for the dissipation. Indeed, this property is very well verified for the pseudo-dissipation whereas
it is only approximate for the dissipation [98]. Nevertheless, the statistics presented below have also been computed
considering the dissipation, ε, and no significant differences were observed. To lighten the paper, in the sequel, we
will drop the tilde in the notation of the pseudo-dissipation, as well, in the text, we will write dissipation instead of
pseudo-dissipation.

B. Conditional statistics given the dissipation and the kinetic energy

In order to illustrate the relationships between acceleration, energy dissipation and kinetic energy, we show in Fig.
1 visualizations of these quantities at the same instant obtained from our DNS. We notice that ln a2/〈a2〉 and ln ε/〈ε〉
show a fairly marked correlation although the acceleration appears more diffuse than dissipation. We also notice that
to some extent the kinetic energy and the dissipation rate appears correlated. In addition, it seems that some areas
of the flow where the kinetic energy is high also correspond to regions of high acceleration magnitude.

Figure 2 presents the variance of the acceleration of a fluid particle conditioned to the local values of the kinetic
energy and the dissipation rate: 〈a2|ε,K〉. In Fig. 2 (Top), the levels of the logarithm of the conditional variance
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FIG. 1. Visualization of the instantaneous fields of the square of the acceleration, of the dissipation and of the kinetic energy
in a cut y − z of the flow by DNS at Reλ = 380. (Left): ln(a2/ < a2 >); (Middle): ln(ε/ < ε >) and (Right): K/ < K >.

are shown as a function of K and of ε. We see that the conditional variance of the acceleration depends on these
two quantities and that the dependence on K seems somewhat similar to that of ln ε. In a more quantitative way,
we show in Fig. 2 (Left) the variance of the acceleration as a function of ε for different values of K. We can see that
the shape of the curves remains globally unchanged when K varies and also presents the same shape as the variance
conditioned by ε only as also presented in this figure. Essentially, it is observed that the conditional variance presents
power law behavior for ε� 〈ε〉 with an exponent close to 3/2 and a prefactor depending on K. As discussed in more
details below, we observe a slight deviation of the scaling law compared to the acceleration conditioned only by the
dissipation.

Figure 2 (Right) shows the variance of the acceleration as a function of K for different values of ε. As expected, we
find that the variance of the acceleration increases with K. We clearly notice an exponential growth of the variance
over the whole range of K with a growth rate α which appears independent of ε:

〈a2|ε,K〉 = cεa
2
η exp(αK/〈K〉) (1)

with a2
η = 〈ε〉3/2ν−1/2 = 〈ε〉/τη the so-called Kolmogorov acceleration and the prefactor cε depending on ε. From our

DNS it appears that α ≈ 1/3 for all the Reynolds numbers considered here. We also find the same value of α from
the database of [9, 50] obtained for Reλ = 400 suggesting that the value of α is independent of the Reynolds number.

This exponential behavior contrasts with the references mentioned in the introduction in which power laws behavior
for the variance conditioned on K solely had been proposed. Nevertheless, we can notice that exponential growth
does not seem to disagree with the data presented in these references. Interestingly, this relationship only depends on
a characteristic velocity, (not a time and a length scale separately). The absence of characteristic time is attributed
to the scale separation between large structures and small ones (the large structures of the flows appear as quasi
stationary and infinite to the smallest ones such that only their relative velocity matters). The independence of the
coefficient α on the Reynolds number tends to confirm that the velocity scale used for the nondimensionalization of
the argument of the exponential is appropriate.

In appendix A we propose to estimate the factor cε as:

cε ≈ A 〈a2|ε〉/a2
η (2)

where A =

(
1− 2

3
α

)3/2

, which is equal to A = 7
√

7/27 ≈ 0.686, for α = 1/3, neglecting a small logarithmic

dependence on ε/〈ε〉.
Consequently, for large Reynolds numbers, the doubly-conditioned variance of the fluid-particle acceleration is

expressed as

〈a2|ε,K〉 = A 〈a2|ε〉 exp(αK/〈K〉) . (3)
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FIG. 2. Variance of acceleration conditioned on the local dissipation rate and kinetic energy obtained from DNS at Reλ = 380.
(Top) Map of ln〈a2|ε,K〉/a2η versus ln ε/〈ε〉 and K/〈K〉. (Left) Plot, in logarithmic scales, of 〈a2|ε,K〉/a2η against ε/〈ε〉 for
K/〈K〉 = 0.025, 0.1, 0.5, 1, 2, 3, 5, 6.5 ± 30% from orange to black. Comparison with 〈a2|ε〉/a2η in gray dashed line and with
the power law (ε/〈ε〉)3/2 in gray dotted line. (Right) Plot, in semi-logarithmic scales, of 〈a2|ε,K〉/a2η against K/〈K〉 for
ε/〈ε〉 = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ± 30% from orange to black. Comparison with 〈a2|K〉/a2η in gray dashed line and
with exp(αK/〈K〉) with α = 1/3 in gray dotted line.

This relation is confirmed in Fig. 3 which presents the conditional variance of the acceleration normalized by
Aa2

η exp(αK/〈K〉) as a function of ε for different values of K as well as normalized by A〈a2|ε〉 = 〈a2|ε,K = 0〉
as a function of K for different values of ε. It can be seen that a fairly good overlap of the various curves is obtained,
confirming the self-preserving character of the acceleration conditioned on both the kinetic energy and the dissipation
rate. We see in this relation an explicit effect of the local kinetic energy on the acceleration. Since the argument of the
exponential depends on K/〈K〉 not on a local Reynolds number, it suggests pure kinematic effects for the acceleration
which is likely associated to the divergence free constrain and the non-locality of the pressure gradient. There is also
indirect effect through the dependence of the dissipation rate on the large-scale structures. The later is manifested
as Reynolds number dependence of the conditional acceleration on the dissipation rate solely. This intermittency
effect is analyzed further in the next section. We postpone to section II E further comments on the behavior of the
doubly-conditioned variance.
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FIG. 3. Normalized variance of acceleration conditioned on the local dissipation rate and kinetic energy obtained from DNS
at Reλ = 380. (Left) Plot of 〈a2|ε,K〉/Aa2η exp(αK/〈K〉) against ε/〈ε〉 for various values of K. Comparison with 〈a2|ε〉/a2η in
gray dashed line and with the power law (ε/〈ε〉)3/2 in gray dotted line. (Right) Plot of 〈a2|ε,K〉/〈a2|ε,K = 0〉 against K/〈K〉
for various values of ε/〈ε〉. Comparison with 〈a2|K〉/a2η in gray dashed line and with exp(αK/〈K〉) with α = 1/3 in gray dotted
line The ranges for the fixed values of K and ε for both plots are the same as in Fig. 2.

C. Similarity of the conditional statistics given the dissipation

We propose now to focus with more details on the scaling law of the acceleration variance conditioned on the
dissipation rate only, 〈a2|ε〉. For that we consider the DNS data from Yeung et al. [98], along with our DNS data.
Figure 4(Left) presents the conditional acceleration variance for Reynolds numbers in the range Reλ = 40 to 680. We
first notice that for weak values of the dissipation rate (ε � 〈ε〉) the value of the conditional acceleration variance
tends towards an asymptotic value, which depends on the Reynolds number. The saturation of the conditional
acceleration shows that the local acceleration is not only determined by the microstructure of the flow, and that it
presents somehow effects of the large structures of the flow which dominates in low dissipative regions. We denote by
a2

0 the asymptotic value of the conditional variance:

a2
0 = lim

ε→0
〈a2|ε〉 . (4)

Assuming that the acceleration of fluid particles in low dissipative regions is mainly influenced by large scales, we can
estimate a2

0 as a2
0 ∼ 〈K〉/τ2

L with τL the integral time scale of the flow. This leads to the following estimate:

a2
0/a

2
η ∼ τη/τL ∼ Re−1

λ . (5)

We test this scaling law for a0 in Fig. 4(Right) by presenting a2
η/a

2
0 as a function of Reλ from the different DNS

datasets. We observe a linear growth rate of a2
0/a

2
η with 1/Reλ.

For large values of ε, we notice in Fig. 4(Left), as already reported in [98], that the conditional variance presents a
power law behavior with ε. The exponent of this scaling law is seen to evolve continuously with the Reynolds number,
and seems to tend asymptotically towards ε3/2. From dimensional analysis we define f as:

〈a2|ε〉
ε3/2ν−1/2

= f(ε/〈ε〉, Reλ) . (6)

In the inset of Fig. 4(Left), it is seen that f seems to admit an asymptotic constant value for ε � 〈ε〉 only in the
limit of very large Reynolds number. For intermediate Reynolds numbers, f presents power-law behavior with ε for
ε� 〈ε〉 but with a Reynolds number dependent exponent. This implies an absence of similarity of the flow when the
Reynolds number is changed and the persistence of the Reynolds number effect, even for large Reynolds numbers,
which highlights an absence of proper scale separation suggesting direct coupling between large- and small-scales.
This is reminiscent of the incomplete similarity framework proposed by Barenblatt [5–7]. Following Barenblatt, we
assume that f presents an incomplete similarity in ε/〈ε〉 and absence of similarity in Reλ. Accordingly we write

f(ε/〈ε〉, Reλ) = B (ε/〈ε〉)β (7)
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where the anomalous exponent β, and the prefactor B are both functions of Reλ. Arguing for a vanishing viscosity
principle, it can be assumed that the critical exponent becomes independent of the Reynolds number in the limit of
asymptotically large Reynolds number. Finally arguing that the dependence of B and β on the Reynolds number
is small, Barenblatt further proposed that they presents inverse logarithmic dependence on Reλ, which is also in
agreement with the log-similarity proposed by [21, 32]. Expending β and B in power of 1/ ln(Reλ) yields, keeping
only the leading-order term in Reλ:

β = β0 + β1/ lnReλ (8)
B = B0 +B1/ lnReλ (9)

To have a finite limit, consistently with the vanishing viscosity principle, we need β0 = 0. The remaining constants
B0, B1 and β1 are then determined by comparison with the DNS data. From the inset of Fig. 4(Left) we see that
both β and B are increasing functions of Reλ implying that both B1 and β1 are negative. In Fig. 5(Left) we assess
the relations (7)-(9) by plotting

χ =
1

γ
ln(1/B 〈a2|ε〉/a2

η) , (10)

with

γ = 3/2 + β , (11)

against ln(ε/〈ε〉) for various Reynolds numbers. It is observed that with B0 = 17.1, B1 = −54.7 and β1 = −1, all the
DNS data collapse on the line χ = ln(ε/〈ε〉) (the bisectrix of the graph) for ε� 〈ε〉, validating the scaling relation.

We can go a step further by using the low dissipative limit of the conditional acceleration. For that we introduce

χ0 = limε→0 χ =
1

γ
ln(1/B a2

0/a
2
η). With this definition, χ−χ0 = ln

[(
〈a2|ε〉/a2

0

)1/γ] tends to 0 in the low dissipative

regions (ε � 〈ε〉 ). On the other hand, for ε � 〈ε〉, χ − χ0 should be equal to χ − χ0 = ln(ε/〈ε〉) − χ0 =

ln
[
ε/〈ε〉

(
Ba2

η/a
2
0

)1/γ]. This is seen in Fig. 5(Right) that presents the evolution of
(
〈a2|ε〉/a2

0

)1/γ against

ζ = ε/〈ε〉
(
Ba2

η/a
2
0

)1/γ (12)

for the various Reynolds numbers considered here.
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FIG. 4. (Left) Acceleration variance conditioned on the local dissipation rate normalized by the Kolmogorov acceleration
〈a2|ε〉/a2η. The continuous line are for our DNS for Reλ = 50, 90, 150, 230 and 380 from orange to black; the dashed lines
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the power law (ε/〈ε〉)3/2. Inset conditional acceleration normalized by ε3/2ν−1/2. (Right) a2η/a20 as a function of Reλ with
a20 = limε→0〈a2i |ε〉 the acceleration variance in low dissipative regions. Gray dots for the DNS of Yeung et al., black crosses for
our DNS. Comparison with the line 0.0028Reλ + 1.16 in dashed lines.
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β = β1/ ln(Reλ) and B0 = 17.1, B1 = −54.7 and β1 = −1, for various Reλ: continuous line for our DNS at Reλ = 50,
90, 150, 230 and 380 from orange to black; and dashed lines correspond to the DNS of Yeung et al. [98] for Reλ = 40,
139, 238, 385, 680, from orange to black. Comparison with the line χ = ln ε/〈ε〉 in gray dashed line. (Right) Evolution of(
〈a2|ε〉/a20

)1/γ
= exp(χ−χ0) against ζ = ε/〈ε〉

(
Ba2η/a

2
0

)1/γ for the various Reynolds numbers. Inset: plot of
(
〈a2|ε〉/a20

)1/γ−1

against ζ = ε/〈ε〉
(
Ba2η/a

2
0

)1/γ .
It is interesting to note that the curves are all overlapping even for intermediate values of ε, suggesting that the

conditional acceleration variance can be cast in a self-similar form:

〈a2|ε〉 = a2
0 (φ(ζ))

γ (13)

with φ a universal function of only one argument φ = φ(ζ) with the asymptotics φ(ζ) = 1 for ζ � 1 and φ(ζ) = ζ for
ζ � 1. Making a Taylor expansion of φ around ζ = 0 and using a matching asymptotic argument, simply yields to

φ(ζ) = 1 + ζ . (14)

It is seen in the inset of the Fig. 5(Right) that the proposed expression for φ gives a good approximation of the
data over the whole range of ε and Reλ. We can indeed observe more than 5 decades of quasi-linear growth of(
〈a2|ε〉/a2

0

)1/γ − 1 = exp(χ− χ0)− 1 with ζ.
The non-dimensional function f introduced in (6) can, in consequence, be expressed as:

f(ε/〈ε〉, Reλ) = B (ε/〈ε〉)β
(

1 +
1

ζ

)3/2+β

, (15)

where the term within the brackets is interpreted as a correction factor for small dissipative regions. Accordingly, we
obtain the following expression for the conditional acceleration variance:

〈a2|ε〉 = Ba2
η

((
1

B

a2
0

a2
η

)1/γ

+
ε

〈ε〉

)γ
. (16)

As γ = 3/2 + β and B evolve slowly with Reλ, their expressions remain speculative and would require a much larger
range of Reynolds numbers to be validated.

D. Reynolds number dependence of the unconditional acceleration variance

Assuming the distribution of the dissipation, we can integrate relation (16) to obtain the unconditional variance

〈a2〉 =

∫
〈a2|ε〉P (ε)dε , (17)
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and thus propose an alternative formula to the empirical relations proposed in [38, 87, 98]. We consider that ε/〈ε〉
presents a log-normal distribution with parameter σ2 ≈ 3/8 lnReλ/Rc with Rc = 10 as shown by [98] from DNS data,
consistently with the proposition of Kolmogorov and Oboukhov [46, 67]. Notice nevertheless that other expressions for
σ2 have been proposed in the literature reflecting the vanishing viscosity limits [20]. Taking for 〈a2|ε〉 the expression
(16), we perform the integration numerically with the expression (8) and (9) for β and B with the values of B0, B1

and β1 and the expression of a2
0/a

2
η proposed above. The resulting evolution of the acceleration variance with the

Reynolds number is presented in Fig. 9. It is seen that the predicted acceleration variance is in very good agreement
with the DNS of [98] and our DNS and is also very close to the relation proposed by [87] for Reλ < 1000.

The first term within the brackets in (16) is the footprint of the large-scale structures whose effects is vanishing
if the local dissipation rate is larger than ε/〈ε〉 � (B a2

η/a
2
0)−1/γ and therefore can be neglected when the Reynolds

number is large since a2
η/a

2
0 ∼ Reλ. Hence, for large Reynolds numbers, equation (16) reduces to:

〈a2|ε〉/a2
η = B

(
ε

〈ε〉

)γ
. (18)

With this expression, the acceleration variance is simply estimated from the moments of the log-normal distribution
as:

〈a2〉
a2
η

= B (Reλ/Rc)
9/64+3β(1+β/2)/8

. (19)

This expression, also presented in Fig. 9, is shown to converge to the previous estimate as the Reynolds number
increases.

In appendix B, we show that the integral (17) can be expressed from the generalized binomial series expansion. We
further obtain the following estimation for the acceleration variance keeping only the first two terms:

〈a2〉
a2
η

= B

(
Reλ
Rc

)3/16γ(γ−1)
(

1 + γ

(
1

B

a2
0

a2
η

)1/γ (
Reλ
Rc

)−3/8(γ−1)
)
. (20)

In Fig. 9, it is seen that this relation almost overlaps with the direct numerical calculation of the variance though
(17). The term within the brackets enables to measure the contribution from small Reynolds number effects. At
Reλ ≈ 100, the two estimates (19) and (20) for the variance differ by about 20%, while there is about 8% in difference
at Reλ ≈ 500. That confirms that the term containing a2

0 is indeed vanishing at large Reynolds numbers.
The previous estimations of the acceleration variance tend asymptotically to the following power law:

〈a2〉/a2
η = 7.62Re

9/64
λ , (21)

where we have used (8) to obtain the value of the prefactor, R−9/64
c B0 exp(3β1/8) ≈ 7.62. This expression is presented

as well in Fig. 9, confirming that the convergence toward the power law is very slow, and that (19) should be considered
as an intermediate asymptotic expression for the acceleration variance.

E. Multiplicative cascade for the acceleration

Substituting (18) into (3), we can eventually estimate the doubly-conditional acceleration variance for large Reynolds
numbers as:

〈a2|ε,K〉/a2
η = C exp(αK/〈K〉)

(
ε

〈ε〉

)γ
, (22)

where C = AB, with expressions of A and B determined above.
As mentioned above and apparent in the previous formula, the acceleration depends on the local value of the kinetic

energy, along with the local dissipation rate. The acceleration, being mainly due to the pressure gradient, it present
a non-local behavior. The fact that the acceleration depends on the local kinetic energy but not on a local Reynolds
number reflects that its non-locality is a purely kinematic effect. Further, the exponential dependence on the kinetic
energy suggests that the acceleration can respond to the structures of all sizes.

To illustrate this point, we discuss a multiplicative cascade model for the acceleration that incorporates effect of
the full spectrum of the flow strucutre. Fluctuations of the locally-space-averaged dissipation rate can be modeled by
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multiplicative cascades [11, 31, 45, 57, 62, 97]. Such model proposes to express the local dissipation over a volume of
size ` = Lλn, with λ < 1 and L being the large-scale of the flow, as the product of n random numbers ξi:

ε` = 〈ε〉
n∏
i=1

ξi . (23)

Typically, for n large, this yields log-normal distribution of ε` assuming the ξi are independent and identically
distributed (and have as well finite variance).

We propose likewise to write the squared acceleration, coarse-grained at scale `, as :

a2
` = a2

0

n∏
i=1

θi . (24)

The scale-to-scale factor θi is given by:

θi = exp

(
α

〈K〉
1

2
v2
i

)
(ξi)

γ = exp

(
α

〈K〉
1

2
v2
i + γ ln ξi

)
, (25)

where vi is here the velocity of eddies of size `i = Lλi, which is also a fluctuating quantity. The exponential modulation
is then interpreted as an entrainment acceleration due to these structures.

With this expression we obtain:

a2
` = a2

0 exp

(
α

〈K〉

n∑
i=1

1

2
v2
i + γ

n∑
i=1

ln ξi

)
. (26)

Setting n = ln(η/L)/ ln(λ) ∼ lnReλ, η being the Kolmogorov length scale, we have K =
∑n
i=1

1

2
v2
i due to the additive

nature of the kinetic energy. Thereby using (23), we obtain back (22) by taking the conditional average of (26). The
order of magnitude of the eddy velocities can be estimated from the Kolmogorov relation, (ε``)

1/3, showing that the
sum is a priori dominated by the large-scales but, on the other hand, because of the intermittent behavior of ε`, it
may well happen that the the inertial-scale structures can be dynamically important.

Note that in this multiplicative model, we have transposed the statistical relation (22) to an instantaneous version.
Such idealization, find support in the invariance of the conditional PDF, which is shown in appendix C. An other
important point to mention, is that although we assume that the local acceleration depends both on K and ε it is
not assumed that those two variables are independent.

The dissipation presents large fluctuations leading to very important accelerations and, even if the acceleration
orientation is changing rapidly, it can cause a local increase of the velocity. When the kinetic energy becomes
significantly larger than its averaged value, then the modulation of the acceleration by the exponential term becomes
preponderant, thus offering a feedback mechanism allowing the obtention of the normal fluctuations of the velocity.
This dynamic scenario appears consistent with the recent DNS analysis of [70] showing that the fluid-particles can
undergo energy gains in intense dissipative regions and is developed in the next section.

III. STOCHASTIC MODELING OF THE FLUID-PARTICLE DYNAMICS

A. Model formulation

The foregoing multiplicative model suggests that the acceleration norm can be determined from the local kinetic
energy and dissipation rate. The relation (22) is pointwise and so it applies equally well to both Lagrangian and
Eulerian descriptions. However, in the Lagrangian framework, the kinematic relation between velocity and acceleration
allows proposing a model for the acceleration depending only on the local dissipation rate. The evolution of the later
along the particle path is to be obtained from a stochastic process. For the derivation of this model, we will rely on
the relation (22), in which the contribution from low dissipative events are neglected:

a2 = f(K, ε) = a2
ηC

(
ε

〈ε〉

)γ
exp

(
α
K

〈K〉

)
. (27)
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We express the increments of a2 as a second order Taylor expansion in K and ε,

da2 = a2

(
α
dK

〈K〉
+ γ

dε

ε
+
α2

2

dK2

〈K〉2
+
γ(γ − 1)

2

dε2

ε2
+ γα

dK

〈K〉
dε

ε

)
. (28)

We consider ε as stochastic variable reflecting the very large number of degrees of freedom that control them. In a
fairly general way, we consider that the dissipation ε follows a multiplicative stochastic process:

dε = εΠdt+ εΣdW , (29)

where dW are the increments of the Wiener process (〈dW 〉 = 0 ; 〈dW 2〉 = dt). We specify the terms Π and Σ below.
Substituting (29) into (28) one obtains, following the Ito calculus, at first order in dt :

da2 = a2

[
α

〈K〉
P + γΠ +

γ(γ − 1)

2
Σ2

]
dt+ γa2ΣdW . (30)

We used the identity dK = uidui = uiaidt = Pdt, where P is the mechanical power per unit of mass exchanged by
the fluid particle. Even if Π and Σ are given, eq. (30) is not closed, as it remains to estimate P = aiui, which requires
the knowledge of ai and ui.

As mentioned in the introduction, we introduce a vectorial stochastic model for the dynamics of a fluid particle.
We are looking for a stochastic process of the form:

dui = aidt , (31)
dai = Midt+DijdWj , (32)

where dWj are the increments of the jth component of a tridimensional Wiener process (〈dWj〉 = 0 ; 〈dWidWj〉 =
dtδij). A priori, the vector M and the tensor D depend on the vectors a and u =

∫
adt. Indeed, M must depend on

u to allow the particle velocity to reach a statistically steady state.
Now, we propose expressions for Mi and Dij . For this, we want to impose, on the one hand, that the model is

isotropic (〈aiaj〉 = 0 for i 6= j) and, on the other hand, that its norm a2 = aiai is compatible with the expression
(30). We therefore write the stochastic equation for a2

ij = aiaj derived from (32), thanks to the Ito formula:

da2
ij = ajdai + aidaj + daidaj

= (Miaj +Mjai +DikDjk) dt+ (ajDik + aiDjk) dWk . (33)

For the square of the norm a2 = aiai, we have:

da2 = (2aiMi +DijDij) dt+ 2aiDijdWj . (34)

We then proceed by identification between (34) and (30), in a similar way as [34] and [68], by identifying first the
square of the diffusion term and then the drift term.

1. Identification of the diffusion term and the maximum winding hypothesis

Quite generally, we can decompose the diffusion tensor into:

Dij = c1δij + Sij + Ωij , (35)

where Sij is a zero-trace symmetric tensor and Ωij is an antisymmetric tensor. The latter can be written as Ωij =
εijkωk with εijk the Levi-Civita permutation symbol and ωk a pseudo-vector. Sij must be zero in order to guarantee
the statistical isotropy of the acceleration. But Ωij can be different from 0. Indeed, the experimental results of [64]
and numerical results of [71] have shown that the acceleration presents a scale separation between the evolution of
the components and its norm, and that this separation can be modeled using processes for the acceleration norm
and its orientation vector [36, 81, 100]. A stochastic model for orientation can be formulated as a diffusion process
with a rotational part in the diffusion tensor [36, 95]. Since the model for the dynamics (31) - (32) involves only
two vectors, a and u, we propose to form the pseudo-vector ω from these two vectors in order to get a closed model:
ωk = c2εklmalum. The model remains statistically isotropic and the chirality of the flow is not broken either since the
odd moments of dWj are zero (Gaussian with zero mean). In other words, the sign of c2 does not matters. We then
have:

Dij = c1δij + c2(aiuj − ajui) . (36)
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It is to be noted that c1 and c2 are not constant.
By identifying the square of the diffusion term between (30) and (34) we find:

γ2(a2)2Σ2 = 4aiajDikDjk . (37)

Expanding it by using expression (36), we find:

γ2(a2)2Σ2 = 4a2(c21 + c22(2a2K − P 2)) , (38)

which gives for c1:

c21 =
γ2

4
a2Σ2 − c22(2a2K − P 2) = a2

(
γ2

4
Σ2 − 2c22K

(
1− a2

T

a2

))
, (39)

where we have introduced the tangential acceleration aT , as the projection of the acceleration vector in the direction
of the velocity vector: aT = aiui/

√
u2 = P/

√
2K. Equation (39) imposes a constraint on c2 in order to guarantee the

positivity of c21:

c222K ≤ γ2

4
Σ2 , (40)

since 0 ≥ 1 − a2
T

a2
≥ 1. So, in order to guarantee the positivity of c21 whatever K, c22 must be proportional to 1/K.

Introducing a parameter cR as c22 =
γ2

4
Σ2 c

2
R

2K
, with the constraint c2R ≤ 1, we obtain:

c21 =
γ2

4
Σ2
(
a2(1− c2R) + c2Ra

2
T

)
. (41)

Subsequently, we only consider the limit cR = 1 that corresponds to the maximum rotational part of the diffusion
tensor. We will discuss this choice in more detail below in section III C, when presenting the results.

Finally, from (36) and the expressions of c1 and c2, we write the components of the diffusion tensor as

Dij =

√
γ2

4
Σ2

[√
a2
T δij +

√
a2
N εijkbk

]
, (42)

where we introduced the normal component aN of the acceleration a2
N = a2 − a2

T , and the bi-normal unit vector1
bk = εklmulam/|εhijuiaj |.

Note that bk, aT and aN are not well defined when K = 0. However, c2 must vanish when u = 0 and we can
therefore consider that cR = 0 in that case.

2. Determination of the drift term

Identifying the drift term between (34) and (30), we get:

2aiMi +DijDij = a2

(
α

〈K〉
P + γΠ +

γ(γ − 1)

2
Σ2

)
. (43)

From (42) the term DijDij is computed as 2

DijDij =
γ2

4
Σ2
(
2a2 + a2

T

)
. (44)

1 To obtain this relation we notice that aiuj − ajui = εijkεklmalum and that the vector bk is the unit vector collinear to εklmalum: bk =

εklmalum/|εhijaiuj |. By expanding the norm, we have: (εhijaiuj)
2 = 2a2K − P 2. We therefore write: εklmalum = bk

√
2a2K − P 2 =

bk
√
2K

√
a2 − a2T = bk

√
2K

√
a2N .

2 DijDij =
γ2

4

a2T δijδij︸ ︷︷ ︸
3

+a2N εijkbkεijlbl︸ ︷︷ ︸
2δklbkbl

, δklbkbl = 1 since b is a unit vector and with a2 = a2T + a2N , we obtain the result.
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We then have

aiMi = a2

(
α

2〈K〉
P +

γ

2
Π− γ

4
Σ2

)
− a2

T

γ2

8
Σ2 (45)

To go further we must now specify the terms Π and Σ used for the stochastic process for ε. Various models for
the dissipation have been proposed. Pope and Chen [74] proposed a simple model based on the exponential of an
Orstein-Uhlenbeck process (see appendix D2). Here, we rely on the model proposed in [22, 68]. This non-Markovian
log-normal model presents a logarithmic decrease in the correlation of ε which is consistent with the idea of a turbulent
cascade and a multiplicative process (see appendix D1), unlike the Pope and Chen model which gives an exponential
decrease, see also the discussion in [55]. As presented in appendix D2, the drift and diffusion terms are written
respectively as:

Π =
1

τε

(
− ln

ε

〈ε〉
+

σ2

2Λ2

(τε
τc
− Λ2

)
+
σ

Λ
Γ̂τε

)
, (46)

and

Σ =

√
σ2

Λ2τc
, (47)

with σ2 the variance of the logarithm of ε, τε the correlation time of ε, τc the regularization time scale of the process
(taken equal to the Kolmogorov dissipative time τη), Λ2 a normalization factor, and Γ̂ the convolution of the Wiener
increments with a temporal kernel, ensuring the non-markovian property of the process. In the process for ε proposed
by [22, 68], the latter corresponds to a fractional Gaussian noise with 0 Hurst exponent [58] regularized at scale τc.
The expression of the convolution kernel proposed by [22, 68], and recalled in the appendix D2, applies to a scalar
noise since the dissipation rate is a scalar, whereas the acceleration model involves a vectorial noise. Therefore, the
kernel in Γ̂ includes a projection in order to apply to the vectorial Wiener increments:

Γ̂ = −1

2

∫ t

−∞

1

(t− s+ τc)3/2
PjdWj(s) (48)

By proceeding in a similar way as [68], the projection operator is obtained by identification between the diffusion
terms of (30) and (34):

Pj =
2aiDij

γa2Σ
=

√
a2
T − aT
a2

aj + ej (49)

where we have used the relation recall in footnote 1 and where ej is the unit vector tangent to the trajectory,
ei = ui/

√
2K. It is interesting to remark that the rotational part of the diffusion tensor induces an asymmetry of the

projector between positive and negative power exchange (recall that P =
√

2KaT ). Indeed for P ≥ 0, Pj = ej while
for P < 0 one has Pj = (1 − 2p2)ej − 2p

√
1− p2bj with p = P/

√
2Ka2. In both cases, as it can be readily checked,

P is a unit vector.
Substituting the expression (46) and (47) for Π and Σ in (45) we have

aiMi = a2

(
α

2〈K〉
P − γ

2τε

(
ln

ε

〈ε〉
+

1

2
σ2 − σ

Λ
Γ̂τε
))
− a2

T

γ2

8

σ2

Λ2τc
. (50)

According to (27), we can write:

ln

(
ε

〈ε〉

)
=

1

γ

(
ln
a2

a2
η

− lnC − α K

〈K〉

)
, (51)

which gives, once substituted into (50),

aiMi = a2

 α

2〈K〉

(
P +

K

τε

)
− 1

2τε

ln
(a2

a2
η

)
− lnC +

γ

2
σ2 − γ σ

Λ
Γ̂τε︸ ︷︷ ︸

−Γ̂∗


− a2

T

τc

γ2

8

σ2

Λ2︸ ︷︷ ︸
σ2
∗

. (52)
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In order to simplify the notations, we have introduced Γ̂∗ = γ
σ

Λ
Γ̂τε + lnC − γ

2
σ2 and σ2

∗ =
γ2

8

σ2

Λ2
. It is interesting to

notice that in (52) the terms P +
K

τε
=
dK

dt
+
K

τε
acts as a penalization leading the correlation of the kinetic energy

to decay exponentially.
We then propose for Mi an expression compatible with (52). Proceeding by identification, we have the following

relation:

Mi =
α

2〈K〉

(
λaiP + (1− λ)a2ui + ai

K

τε

)
−ai

(
ln
(a2

a2
η

)
− Γ̂∗

)
1

2τε

−σ
2
∗
τc

a2
T

a2
ai +Bi , (53)

where we have introduced the vector Bi, such that Biai = 0 as well as the factor λ that both account for the
indeterminacy inherent to the inverse projection. By assuming again that there are only two vectors at our disposal,
we can take Bi =

α

2〈K〉
λ′
(
Pai − a2ui

)
by introducing the factor λ′. Note that from the point of view of the projection,

the factors λ and λ′ are arbitrary in the sense that the scalar product of ai and (53) gives (52) whatever their values.
We can nevertheless notice that the terms involving λ and λ′ can be combined, and, by noting cu = λ+ λ′, we get:

Mi =
α

2〈K〉

(
ai
(
cuP +

K

τε

)
− (cu − 1)a2ui

)
−ai

(
ln
(a2

a2
η

)
− Γ̂∗

)
1

2τε

−σ
2
∗
τc

a2
T

a2
ai . (54)

We can notice that the terms of the first line correspond to the coupling with the velocity, those of the second take
into account the log-normal character of the dissipation and the last term is due to the rotational part of the diffusion
tensor. The diffusion term (42) becomes, by using expression (47):

Dij =

√
2σ2
∗

τc

[√
a2
T δij +

√
a2
N εijkbk

]
. (55)

We have thus specified our stochastic model for the dynamics of a fluid particle. It is given by (31), (32), (54) and
(55).

B. Parameters and numerical approach

From a dimensional point of view, to determine the physical parameters of the stochastic model, one must specify
time and velocity scales as well as a Reynolds number. This amounts for example to imposing the average kinetic
energy 〈K〉, the average dissipation rate 〈ε〉 and the viscosity ν. From these physical parameters, we calculate
a2
η = 〈ε〉3/2ν−1/2, τη = 〈ε〉−1/2ν1/2. We can also get the Reynolds number based on the Taylor scale Reλ = u′λ/ν =

2
√

15/3 〈K〉/
√
〈ε〉ν with u′ =

√
2〈K〉/3 and λ2 = 15νu′2/〈ε〉. We then deduce the Lagrangian integral times scale

τL as τL = 0.08Reλτη from the DNS results reported by [37, 84].
The parameter σ2 is estimated using the relation given by [98]: σ2 ≈ 3/8 lnReλ/Rc with Rc ≈ 10 compatible

with the prediction of Kolmogorov and Obhoukov [46, 67]. As mentioned in [46] and [62], the specific value of Rc is
depending on the large-scales. Since the influence of the large-scales is neglected in our modeling (see section IID),
we choose in the following simply σ2 ≈ 3/8 lnReλ. We set as well α = 1/3 and γ = 3/2 + β with β = −1/ lnReλ
in accordance with the results of the DNS presented above. The prefactor C is computed as C = c0AB where A =(

1− 2

3
α

)3/2

≈ 0.686, B = 17.1−54.7/ lnReλ as determined by DNS. The term c0 is introduced so that the predicted

acceleration variance follows (19), as one would expect from the construction of the stochastic model, despite the fact
that we take σ2 = 3/8 lnReλ instead of σ2 = 3/8 lnReλ/Rc. Consequently, we have c0 = (1/Rec)

9/64+3β/8(1+β/2).
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For simplicity we have used τc = τη and τε = τL. From τε and τc we calculate the value of the normalizing constant
Λ as explained in D2. Finally, for the parameter cu, which is the only free parameter of the model, we have determined
numerically that with cu = 5.22 the ratio K/〈K〉 is 1 on average for all values of the Reynolds number.

The sample paths of this model are obtained by numerical integration of the stochastic differential equation.
Numerical integration is made with an explicit Euler scheme by taking a time-step dt = τη,min/100 with τη,min =√
ν/εmax, an estimation of the minimum dissipative time scale likely to happen during the simulation. This is

estimated from the log-normal distribution of the dissipation: τη,min = τη exp(−xσ/2 + σ2/4), with x = 6 by
considering that the probability that a random number following the normal distribution reaches a value of 6 standard
deviation is sufficiently low (see (D11)).

For the calculation of the convolution term Γ̂ appearing in (54), we propose in appendix D3 an efficient algorithm.
A simple Python script presenting the algorithm used to integrate the proposed stochastic model is available in

supplemental material [1].

C. Results

We show in Fig. 6 a realization of this process for Reλ = 1100. We see the temporal evolution of the components
of acceleration and velocity. There is a very intermittent acceleration with an alternation of periods in which the
acceleration of the fluid particle is almost zero with phases of very intense activity. This results in fluid-particle
trajectories, obtained by integration of the velocity xi =

∫
ui(t)dt, in long quasi-ballistic periods with typical length

of the order of the integral scale (L ≈ 〈K〉3/2/〈ε〉) and short term disruptions during which the trajectory rolls up on
itself.
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FIG. 6. A realization of the stochastic process for Reλ = 1100. Top left: evolution of the acceleration with time, ax: red, ay:
green, az: blue, |a|: black. Bottom left: evolution of the velocity with time, ux: red, uy: green, uz: blue, |u|: black. Right: 3D
trajectory of a fluid particle for a duration of 100 τL.

We have simulated the stochastic model for 15 different Reynolds numbers between Reλ = 70 and 9000. In each
case, we have computed 26,000 realizations. The simulations are carried out over a period of 120τL, over which we
exclude an initial transitional regime of 20τL for the calculation of the statistics. In all cases, the initial value of the
components of acceleration and velocity are sampled from the normal distribution having a standard deviation of
10−9aη for the acceleration and 10−9

√
2〈K〉/3 for the velocity. We can indeed notice from (54) and (55) that, if the

acceleration is exactly zero, the stochastic model predicts that the acceleration would remain so. However, it should
be noted that this event has a zero probability, and that for arbitrarily small, but non-zero, accelerations, the model
presents an evolution towards a non-trivial stationary state. This is illustrated in Fig. 7, which presents the temporal
evolution of the variance of the velocity and of the acceleration for Reλ = 1100, calculated from all the realizations.
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initial condition for the acceleration and velocity with very small magnitude. Comparison in dashed gray line with the expected
values: (19) for the acceleration and the prescribe value of u′ =

√
2〈K〉/3 for the velocity.

Figure 8 shows the evolution with the Reynolds number of the mean kinetic energy in the stationary state. In this
figure, we see that the average kinetic energy is equal, within the statistical convergence, to the value prescribed to
the model. We note that the value of the average kinetic energy is directly related to the value of the parameter cu
in (54) as mentioned above.
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FIG. 8. Evolution with the Reynolds number, in the stationary regime, of the kinetic energy obtained by the stochastic model
normalized by the prescribed kinetic energy 〈K〉.

Regarding the variance of the acceleration, we expect, by construction of the stochastic model, that the predicted
value follows the log-normal relation (19). We observe in Fig. 9, that it is indeed the case, with only slight deviations
for the largest Reynolds numbers which are attributed to numerical errors. We recall that the underestimation of the
acceleration variance at small Reynolds numbers compared to the DNS or (20) stems from the fact that the model
is based on the relation (22) in which the effect of low dissipative and large-scale structures are neglected (see the
discussion in section IIC). This simplification enables to obtain the analytical formulation of the model proposed here.

Figure 10 compares the autocorrelation of the components of the acceleration and of its norm calculated from the
stochastic model for Reλ = 400 with the calculations from the DNS of [9, 50]. It can be seen that the characteristic
times of these two quantities are very different and that it is in good agreement with the DNS. It should be mentioned
that the scale separation between the components and the norm results from the rotational part of the diffusion
tensor. Indeed, no scale separation is found when cR is set to zero in equation (41) (corresponding then to a diagonal
diffusion tensor). We see in (42) that considering this rotational part, leads to the decomposition of the acceleration
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FIG. 9. Evolution with the Reynolds number, in the stationary regime, of the kinetic energy normalized by the prescribed kinetic
energy 〈K〉 (left) and of the acceleration variance normalized by the Kolmogorov acceleration (right). Data from the stochastic
model (red plus) and comparison with our DNS data (black crosses) and the DNS data from [98] (gray dot-dash line), with the
relation 3 × 1.9Re0.135λ (1 + 85Re−1.35

λ ) from [87] (gray dash dot line), with the numerical integration of 〈a2〉 =
∫
〈a2|ε〉P (ε)dε

with 〈a2|ε〉 given by (16) and P (ε) log-normal (continuous red line), with its approximation of (20) (red dotted lines), with the
large-Reynolds number limit relation (19) (red dashed line) and with the asymptotic power law (21) (gray dotted lines).

into its normal and tangential component. The former is associated with the intense rotation that rapidly changes
the acceleration direction, whereas the second is associated with the variation of the kinetic energy of the particle.

Figure 10 also presents the evolution of the autocorrelation coefficient of the velocity components and of the power.
It can be seen here also that the agreement with the DNS is relatively good. In Fig. 10, we also show the evolution
of the characteristic correlation times for these four quantities with Reynolds numbers in the range Reλ = 70− 9000
as predicted by the stochastic model. The characteristic correlation time for the velocity, the acceleration norm,
the acceleration components and the power are τu =

∫
ρui(τ)dτ , τ|a| =

∫
ρ|a|(τ)dτ , τai =

∫
|ρai |(τ)dτ and τP =∫

|ρP |(τ)dτ . It can be seen in Fig. 10 that the scales for the norm of the acceleration and for the velocity normalized
by τL remains quasi-constant with the Reynolds number and that the ratio between the correlation scale for the
velocity and τL is of order 1. Note that the characteristic time entering the model formulation is τε (the correlation
time of the dissipation rate following the path of a fluid particle). For the calculation of the model, we simply set
τε = τL arguing that the two quantities should be closed. It is therefore interesting to remark that the integral time of
the velocity is very close to the prescribe one τu ≈ τL. Regarding the correlation scales for a component of acceleration
and for the power normalized by τL, they both present a variation close to 1/Reλ, as expected.

We also show in figure 10 autocorrelation coefficient of ai, (a2)1/2, P = aiui and ui for Reynolds numbers in
the range Reλ = 70 − 9000 obtained from the model. It is seen that, when the time shift is normalized by the
corresponding integral time scale, the correlation coefficients of the power and of the acceleration component remains
nearly unchanged with the Reynolds number. We observe as well that the shape of the autocorrelation obtained from
DNS is well reproduced, although the decay predicted by the model is too fast at very short time lag. This is attributed
to the fact that the dissipative region is only taken into account in the model via the cutoff τc = τη of the kernel
Γ̂. We observe that the correlation for the acceleration norm presents a logarithmic decrease, reflecting the absence
of characteristic time for its evolution. As expected, the correlation norm exhibits a lower slope as the Reynolds
number increases. This is directly attributed to the use of the non-Markovian process of [22] for the dissipation rate,
which proposes a logarithmic evolution of the autocorrelation in agreement with the underlying model of the turbulent
energy cascade as discussed in appendix D.

The shape of the velocity correlation from the model is overall close to the DNS. At small τ , it presents some
dependence on the Reynolds number, while at large time shift (i.e. τ of the order of τL) the correlation decreases
exponentially, as it can be seen in the inset of figure 10f, in agreement with DNS and experiments. The exponential
relaxation results from the terms P + K/τε = dK/dt + K/τε appearing in the drift part of the stochastic model
(53). It is interesting to remark that the presence of this term in the model is a direct consequence of the exponential
dependence of the conditional acceleration variance on the kinetic energy (22). This term leads to the Reynolds number
dependence on the velocity correlation observed at small τ , which is connected to the logarithmic decorrelation of the
acceleration norm, to vanish at large τ at which it relaxes exponentially. This suggests therefore anomalous scaling
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FIG. 10. (a) Evolution of the autocorrelation of ai (black), (a2)1/2 (red), ui (blue) and P = aiui (green) from the stochastic
model for Reλ = 400 and comparison with the DNS data from [9] in dashed lines. (b) Evolution of the integral time scale of ai
(black), (a2)1/2 (red), ui (blue) and P = aiui (green) normalized by τL with the Reynolds number. (c,d,e,f) Evolution of the
autocorrelation of ai, (a2)1/2, P = aiui and ui respectively, for Reλ = 400, 567, 800, 1130, 1600, 2263, 3200, 4526, 6400 and
9051 from orange to black and comparison with the DNS data from [9] in dashed lines. In these plots the time lag is normalized
by the corresponding integral time scale. For panel. f, inset: logarithmic scaling of the y-axis and comparison with exp(−τ/τu)
in dotted line.
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at intermediate time lag.
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FIG. 11. Velocity spectra from the stochastic model for Reλ = 400 to Reλ = 9000 from orange to black and comparison with
the DNS data from [9] at Reλ = 400 (gray dashed line), with the Hinze spectra ω−2 (gray dot-dashed line), and with the power
law with anomalous exponent ω−2+9/64 (gray dotted lines).

We show in Fig. 11 the velocity spectrum for Reλ between 400 and 9000, which we compare with the DNS of [9]
for Reλ = 400. We see a good agreement between the DNS and the stochastic model. For higher Reynolds numbers,
we clearly see that a power law behavior develops at intermediate scales. We see that the slope of the power law
deviates from the Hinze spectra [89] predicted by dimensional arguments similar to those presented by Kolmogorov,
with spectra less stiff than ω−2. This shows that the proposed stochastic model leads to an anomalous scaling that
reflects the persistent influence of the Reynolds number in the inertial-scales. We further notice that the slope that
develops at intermediate scales are close to −2 + 0.14, where 0.14 is the exponent of the asymptotic power law of the
acceleration variance with the Reynolds number determined in (21) (see also Fig. 9). We see here a confirmation of
the relation between the acceleration scaling and the anomalous scaling of the velocity spectra proposed by [30].

We present in Fig. 12 the PDFs of the velocity and of the acceleration for Reλ = 400 ∼ 9000, as well as the
comparison with the DNS of [9]. First, we find that the velocity distribution is very close to a Gaussian distribution
for all Reynolds numbers, while the acceleration presents a much more stretched distribution. For Reλ = 400 the
acceleration PDF is in very good agreement with the DNS, and, the model predicts an increase of the stretching of
the tails with increasing the Reynolds number. We also show in this figure the PDF of the velocity increments for
different time shifts δτui = ui(t + τ) − ui(t) at Reλ = 400. We observe that the distribution gradually returns to a
Gaussian distribution as the time shift increases, and that at each time shift the agreement with the DNS of [9] is
very good. This is confirmed by the presentation of the flatness of the velocity increments for Reλ = 400 ∼ 9000,
which reflects the strongly non-Gaussian behavior on small-scales which decreases to 3 for the larger-scales. Here also
we notice a good agreement with the DNS of [9] for Reλ = 400. We also show in the inset, a quasi-linear increase of
the flatness of the acceleration with the Reynolds number.

Finally, in Fig. 13 we show the second and third moments of the power P = aiui. It is observed that the increases
of both moments with the Reynolds number are in close agreement with the power law supported by the DNS results
of [96], 〈P 2〉/〈ε〉2 ∼ Re

4/3
λ and −〈P 3〉/〈ε〉3 ∼ Re2

λ . Clearly, the third order moment is negative, meaning that the
time irreversibility of the dynamics of a fluid particle in a turbulent flow is correctly reproduced by the proposed
stochastic model. The skewness of the power, S = 〈P 3〉/〈P 2〉3/2, seems to converge to -0.5 as the Reynolds number
increases, as reported in [96].

IV. DISCUSSION AND FINAL REMARKS

In this paper, we have analyzed the behavior of the acceleration statistics conditioned on both local dissipation
rate and local kinetic energy, which to our knowledge have not been considered before. We have reported that the
doubly-conditional variance is proportional to the acceleration variance conditional on the dissipation rate solely, with
the proportionality factor depending exponentially on the kinetic energy: 〈a2|ε,K〉 = A exp(αK/〈K〉) 〈a2|ε〉. For
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FIG. 12. PDF of ai(top left) and comparison with the DNS data from [9], and PDF of ui (top right) and comparison with the
normal distribution, for Reλ = 400 to 9000 from orange to black. (Bottom left) PDF of the velocity increments for various times
shift: τ/τη = 610, 200, 70, 22, 7.3, 2.4, 0.8 and 0.25 each time lag is shifted upward by one decade for Reλ = 400 comparison
with the PDF of the acceleration from the model (red) and from the DNS of [9] (gray) and the PDF velocity (blue). (Bottom
right) Evolution of the Flatness of the velocity increments versus the time shift for Reλ = 70 to 9000 from orange to black and
evolution of the flatness of the acceleration with the Reynolds number and comparison with the linear law in the inset.

large enough Reynolds number we show that A = (1− 2α/3)
3/2 and we proposed that the α coefficient is independent

of the Reynolds number and its value α = 1/3 was obtained from the DNS.
This expression shows a direct effect of the kinetic energy, a large-scale quantity, on the Lagrangian acceleration.

Furthermore since the argument of the exponential depends on K/〈K〉, not on a local Reynolds number, it suggests
a kinematic effect for the acceleration which may be due to the non-locality of the pressure. More specifically, these
effects can be due to the interaction of vorticity and strain [27]. In case of persistent large-scale strain, intense
vorticity tube would be generated and align with the principal direction of the strain [61]. It was shown that such
vortical structure can produce significant acceleration in the direction of the vorticity [8, 54]. Anyway, although
the proper physical mechanism leading to the exponential dependence of the acceleration on the kinetic energy
deserve further studies it is an additional effect to the influence of the large-scales on the acceleration through the
intermittency of the dissipation rate. To study this later effect, we subsequently have proposed to account for the
Reynolds number dependence of the acceleration variance conditional on the dissipation rate within the intermediate
asymptotic framework [7] leading to: 〈a2|ε〉 = a2

ηB(ε/〈ε〉)3/2+β for ε� 〈ε〉 with B and β depending logarithmically on
the Reynolds number as the signature of the intermittency and the persistence of viscous effects. Further, we advance
an expression for the conditional acceleration variance valid for the whole range of fluctuations of ε by accounting
for the dominant effect of the large-scale structures in low dissipative regions (see equation (16)). From this finding
we determine the evolution of the unconditional acceleration variance with the Reynolds number (equation (20)) and
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show that it is in good agreement with DNS, which gives another empirical validation of the incomplete similarities
assumption used to obtain these results.

Eventually, for large Reynolds numbers, we propose to express the doubly-conditional variance as 〈a2|ε,K〉 =
Ca2

η exp(αK/〈K〉 + γ ln ε〈ε〉), γ = 3/2 + β, which can be viewed as the results of a multiplicative process for the
acceleration. Such process can be interpreted as a momentum fluctuation cascade that includes kinematic effects by
eddies all along the turbulence spectrum.

Based on these results we propose a 3D stochastic model for the dynamics of a fluid particle that reproduce the
essential features of the Lagrangian dynamics observed from DNS and experiments. To obtain such model, (i) we
have assumed, inline with the Kolmogorov universality hypothesis, that the dynamics can be described as a set of
stochastic differential equation dai = Midt + DijdWj ; dui = aidt, with Mi and Dij depending on the velocity and
acceleration along with Reynolds number dependent parameters. (ii) We used the doubly-conditional acceleration
variance obtained in this paper, to model the instantaneous relation of the dynamics between acceleration (or force),
kinetic energy, and energy dissipation. This amounts to consider that the remaining degree of freedom can be
discarded in procedure similar to an adiabatic elimination [33] as discussed by [20]. (iii) We introduce a non-diagonal
diffusion tensor along with a maximum winding hypothesis to ensure its physical realizability. (iv) We consider that
the dissipation rate along the trajectory is given by the non-Markovian log-normal process proposed recently by
[22], giving logarithmic correlation consistently with the turbulent cascade picture. The model is closed by using
the relation DK/Dt = P = aiui. For the model, it implies dependence of K on ε through the dependence of a2

on ε. This can be interpreted as feedback of the small scales on the large scales. On the other hand, the influence
of the large-scales on the small-scales is accounted for in the model through the intermittent cascade model for the
dissipation rate. With these 4 hypothesis, we obtain the model given by equations (31), (32), (54) and (55) which
reads:

dai =

[
α

2〈K〉

(
ai
(
cuP +

K

τε

)
− (cu − 1)a2ui

)
− ai

(
ln
(a2

a2
η

)
+ Γ̂∗

)
1

2τε
− σ2

∗
τc

a2
T

a2
ai

]
dt

+

√
σ2
∗
τc

[√
a2
T δij +

√
a2
N εijkbk

]
dWj (56)

We show that the proposed model predicts Lagrangian dynamics presenting non-gausssianity, long-range correla-
tions, anomalous scaling and time irreversibility. Moreover statistics obtained from the stochastic model are in good
agreement with the DNS.

In (56) the term proportional to α, which follows directly from the exponential dependence of the conditional
acceleration on the kinetic energy, involves the coupling between velocity and acceleration and leads to the exponential
relaxation of the velocity correlation for large time lag along with one-time Gaussian distribution for the velocity.
Introducing a rotational part in the diffusion tensor naturally leads to decomposition of the acceleration vector into its
tangential part and its normal components. Since the normal part is associated with the curvature of the trajectory,
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the rotational part of the diffusion leads to the emergence of a time-scale separation between the correlation of the
norm and the components of the acceleration. The term associated with the non-Markovianity of the dissipation
along with the rotational part produce irreversible dynamics, as seen by the skewness of the exchanged power and
ensures a scale separation between velocity and acceleration. These three points can be easily checked, by taking
α = 0 or cR = 0 in (41) or by using for Π the Markovian log-normal dissipation model proposed by [74] rather than
the non-Markovian one of [22].

It is worth noting that from the conditional acceleration statistics obtained from DNS of the Navier-Stokes equa-
tion, it is possible to establish, in a fairly natural way, that is to say without using any other hypothesis than the
cascade picture, a link between the refined Kolmogorov assumption and the dynamics of fluid particles. It would be
interesting to analyze further the stochastic equation to demonstrate the irreversibility of the dynamics, the emer-
gence of anomalous scaling or to study the geometry of the particle trajectory e.g. its curvature and torsion, as well
as to further test the conditional statistics between the acceleration and the velocity. Also interesting could be the
improvement of the modeling of the high frequency part of the spectrum. Indeed the dissipative part of the spectrum
is not well reproduced by the model of [22] which intends to model the dissipation rate in the inertial range.

In order to simplify the construction of the model, we have not taken into account the non-local effects of the
largest structures of the flow, arguing that their effect vanish as the Reynolds number increases (term with a2

0 in eq.
(16)). Based on the relation (16) it is possible to account for the large-scale in the stochastic modeling. However,
since this term is dependent on the Reynolds number, it is likely that it also depends on the flow configuration
and boundary conditions. The proposed stochastic model could be further generalized to address shear flows [8]
and improve Reynolds-averaged simulations [41, 72]. This model could be used among other things to improve the
calculation of the dynamics of a dispersed phase with the large eddy simulation (LES) approach [36, 101, 102]. Finally,
let us mention that an interesting extension could be the coupling of the proposed model with stochastic model for
the evolution of the velocity gradients as proposed in [34, 42, 59, 68].
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Appendix A: Estimation of cε

To evaluate the cε factor appearing in (1), we use the following relation between the conditional averages 3:

〈a2|ε〉 =

∫
dK〈a2|ε,K〉P (K|ε) (A1)

Substituting relation (1) in (A1), we find, assuming that cε is independent of K

〈a2|ε〉/a2
η = cε

∫
dK exp(αK/〈K〉)P (K|ε) (A2)

If the kinetic energy is statistically independent of the dissipation rate (i.e. P (K|ε) = P (K)) the integral in the
previous relation takes a constant value and cε is proportional to 〈a2|ε〉. However such an assumption is only
approximate at moderate Reynolds numbers as shown from our DNS. Indeed, it is seen in Fig. 14, that the average
of K conditioned on ε has a weak logarithmic dependence on ε. Note that the average dissipation rate conditional
on the kinetic energy can be found in [94]. We also present in Fig. 14 the probability density of the kinetic energy
conditioned on the dissipation rate. In this figure, the PDF is normalized by its mean value 〈K|ε〉. It is to note that
for large values of the dissipation rate, the conditional PDF takes a self-similar form:

P (K/〈K|ε〉|ε) = PG(K/〈K|ε〉) (A3)

3 This relation is simply obtained from the relation between the joint PDF and the conditional PDF: P (a2, ε,K) = P (a2|ε,K)P (ε,K) =
P (a2|ε,K)P (K|ε)P (ε) and the relation between the joint probability density of a2, ε,K and a2, ε: P (a2, ε) =

∫
dKP (a2, ε,K).
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FIG. 14. (Left) Average of the kinetic energy conditioned on the local dissipation rate from our DNS for Reλ = 50, 90, 150,
230 and 380 in continuous lines from orange to black respectively, and comparison with the relation 〈K|ε〉/〈K〉 = 0.4 ln(ε/〈ε〉).
(Right) Probability density function of the kinetic energy conditioned on the dissipation rate, normalized by its average 〈K|ε〉,
from our DNS at Reλ = 380 for ε/〈ε〉 = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50± 30% from orange to black. Comparison with the
marginal PDF of the kinetic energy in dashed line and with the PDF (A5) in dotted line.

Thus by combining the previous relations, one can write:

〈a2|ε〉/a2
η = cε

∫
dK∗ exp(α∗K∗)PG(K∗) (A4)

where we have introduced K∗ = K/〈K|ε〉 and α∗(ε) = α 〈K|ε〉/〈K〉. In addition, we see in Fig. 14 that the self-
similar form of the distribution of K∗ knowing ε is well approximated by the following distribution obtained from the
Maxwell distribution (i.e. assuming that the three components of the velocity are Gaussian and independent):

PG(x) =
3√
π

√
3

2
x exp

(
−3

2
x

)
(A5)

Note that the average of this distribution is indeed unity:
∫
xPG(x)dx = 1. With this expression for PG the integral

of equation (A4) can be computed as:

A−1
ε =

∫
dK∗ exp(α∗K∗)PG(K∗) =

(
1− 2

3
α∗
)−3/2

. (A6)

Thus, according to (A2), we have for cε:

cε = Aε 〈a2|ε〉/a2
η (A7)

The dependence of Aε with ε explains the deviation of the power law behavior between 〈a2|ε,K〉 and 〈a2|ε〉 observed
in Fig. 2b for ε� 〈ε〉.

It is to note that the integral Aε converges only if α∗ < 3/2. This observation suggests that the dependence of
〈K|ε〉/〈K〉 on ε should decrease as the Reynolds number increases to allow α∗ to remains lower than 3/2 even for
the most intense fluctuations of ε/〈ε〉, and thus ensuring the convergence of the integral. Therefore, the larger the
Reynolds number, the weaker the dependence of 〈K|ε〉/〈K〉 on ε. This is consistent, with the statistical independence
between the local values of the kinetic energy and of the dissipation at large Reynolds numbers, in line with scale
separation of the turbulent cascade. Accordingly, we simply propose to write:

cε ≈ A 〈a2|ε〉/a2
η (A8)

where A =

(
1− 2

3
α

)3/2

, which is equal to A = 7
√

7/27 ≈ 0.686, for α = 1/3, neglecting the small logarithmic

dependence in ε/〈ε〉.
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Appendix B: Analytical estimation of the acceleration variance

Using expression (16) for the conditional acceleration variance, we write the acceleration variance as

〈a2〉
a2
η

= B

∫ ∞
0

(Z + ε∗)
γ
P (ε∗)dε∗ , (B1)

where we introduced γ = 3/2 +β, Z =

(
1

B

a2
0

a2
η

)1/γ

and ε∗ = ε/〈ε〉 for simplicity. We can expand the term within the

integral using the generalized binomial series:

(Z + ε∗)
γ

=



∞∑
k=0

Cγ,kZ
γ−kεk∗ for ε∗ < Z

∞∑
k=0

Cγ,kZ
kεγ−k∗ for ε∗ > Z

(B2)

with Cγ,k =

(
γ
k

)
=

1

k!

k−1∏
i=0

(γ − i) the generalized binomial coefficient. In particular, we have Cγ,0 = 1 and Cγ,1 = γ.

Splitting the integral in (B1) enables to write:

〈a2〉
a2
η

= B

∞∑
k=0

Cγ,k

[
Zγ−k

∫ Z

0

εk∗P (ε∗)dε∗ + Zk
∫ ∞
Z

εγ−k∗ P (ε∗)dε∗

]
. (B3)

The two integrals are partial moments of the normalized dissipation rate. Considering that ε∗ follows the lognormal
distribution with parameters µ and σ2, with the change of variable x = (ln ε∗ − µ)/

√
σ2, we can express the partial

moments of order n as∫ ∞
Z

εn∗P (ε∗)dε∗ = exp(nµ+ n2σ2/2)

∫ ∞
(lnZ−µ)/

√
σ2

exp(−(x− n
√
σ2)2/2)dx = 〈εn∗ 〉Φ(Z, n) (B4)

with Φ(Z, n) =
1

2
− 1

2
erf

(
lnZ − µ√

2σ2
− n
√
σ2

√
2

)
. Note that since 〈ε∗〉 = 1, we have µ = −σ2/2 which gives for the

regular moments 〈εn∗ 〉 = exp(σ2n(n− 1)/2) and Φ(Z, n) =
1

2
− 1

2
erf

(
lnZ + σ2(n− 1/2)√

2σ2

)
. As well, we have for the

other partial moments ∫ Z

0

εn∗P (ε∗)dε∗ = 〈εn∗ 〉(1− Φ(Z, n)) . (B5)

For the acceleration variance, we obtain eventually the following analytical series expansion

〈a2〉
a2
η

= B

∞∑
k=0

Cγ,k
[
Zγ−k〈εk∗〉(1− Φ(Z, k)) + Zk〈εγ−k∗ 〉Φ(Z, γ − k)

]
. (B6)

This expression is observed to converge very rapidly to the numerical evaluation of the integral (B1), as there is just
minute differences when considering only the first three elements of the sum.

For Z and k small, we have Φ(Z, k) = O(1), which allow us to simplify the relation for the acceleration variance:

〈a2〉
a2
η

= B

∞∑
k=0

Cγ,kZ
k〈εγ−k∗ 〉 . (B7)

The successive terms of the series correspond to corrections of low-Reynolds number effects of increasingly high order,
since Z ∼ Re−1/γ

λ . At leading order we have

〈a2〉
a2
η

= B〈εγ∗〉 , (B8)



25

while the first order correction gives:

〈a2〉
a2
η

= B
(
〈εγ∗〉+ γZ〈εγ−1

∗ 〉
)
. (B9)

With σ2 = 3/8 lnReλ/Rc as proposed by [98], the leading order expression (B8) gives (19), and the first order
expression reads:

〈a2〉
a2
η

= B

(
Reλ
Rc

)3/16γ(γ−1)
(

1 + γ

(
1

B

a2
0

a2
η

)1/γ (
Reλ
Rc

)−3/8(γ−1)
)
. (B10)

This later expression is seen in fig. 9 to give a very good approximation of (16).

Appendix C: Conditional PDF of the acceleration

We complete the statistical description of the conditional acceleration by showing, in Fig. 15, its probability density
function (PDF). In this figure, we compare the PDF of the acceleration conditional on the dissipation and the kinetic
energy, with the PDF conditioned only by the dissipation and with the unconditional PDF obtained from our DNS at
Reλ = 380. All the PDFs are normalized by their respective standard deviation. It is observed that the conditional
PDFs present much less developed tails than the unconditional PDF. Moreover the doubly-conditional PDFs overlap
with the simply-conditional PDF, showing that conditioning by the velocity does not alter the shape of the PDF. As
well the shape is observed to be invariant for all values of ε, supporting the idea of a canonical distribution presented
in [19].
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FIG. 15. PDF of the acceleration conditional on the dissipation and the kinetic energy P (ai|ε,K) for various values of ε and K:
K/〈K〉 = 0.1, 1, 2.5 and 5±30% from orange to black respectively and ε/〈ε〉 = 0.05, 0.3, 1, 5 and 10±30% shifted respectively
by one decade upward. Comparison with the acceleration PDF conditioned only by the dissipation in gray dashed line, and
with the unconditional PDF in dotted gray line. Each PDF is normalized by its standard deviation. Data from our DNS at
Reλ = 380.

Appendix D: Modeling of the dissipation rate

1. Dissipation as multiplicative cascade process

The image of the energy cascade is naturally associated with multiplicative processes [11, 31, 45, 57, 62, 97]. Such
model proposes to express the locally space-averaged dissipation over a volume of size ` = Lλn, with L the large-scale
of the flow and λ < 1, as:

εn = ε0
ε1

ε0
. . .

εn
εn−1

= ε0

n∏
i=1

ξi (D1)
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Assuming that ξi = εi/εi−1 are independent positive random numbers with identical distribution across scales we
write:

ln
εn
ε0

=

n∑
i=1

ln ξi (D2)

Therefore according to the central limit theorem the term on the right must present a normal distribution with
parameters µ = nµξ and σ2 = nσ2

ξ . The parameters µξ et σ2
ξ appear as fundamental unknowns, but can nevertheless

be related with the relation µξ = −σ2
ξ/2 obtained from the moments of a log-normal variable in order to guarantee

that the average energy flux is conserved throughout the cascade. Setting ` = η (i.e. n = ln(η/L)/ lnλ ∼ lnReλ) we
obtain a model for the local dissipation rate. The log-normal distribution for ε has been confirmed for example by DNS
of [98]. Moreover for the variance of the logarithm of the local dissipation rate is then σ2 =

σξ
lnλ

ln η/L = A+B lnReλ

as predicted by Kolmogorov and Oboukhov [46, 67]. Such evolution for σ2 has been also confirmed by the DNS of
[98] showing that σ2 ≈ 3/8 lnReλ/10.

Such multiplicative process also implies a logarithmic evolution of the spatial correlation of the dissipation rate
as explained by Mandelbrot [56]. We consider the dissipation rate at two points A and B, εAn and εBn , both defined
on the same scale n. The points A and B are separated by a distance L > r > η from each other and we note
k = ln(r/L)/ lnλ, then 0 < k < n. Clearly, the greater the distance between the two points, the larger the scale of
their common root in the cascade:

εAn = εAB0

εAB1

εAB0

. . .
εABk
εABk−1

εAk+1

εAk
. . .

εAn
εAn−1

(D3)

εBn = εAB0

εAB1

εAB0

. . .
εABk
εABk−1

εBk+1

εBk
. . .

εBn
εBn−1

(D4)

In the two previous equations, we have distinguished by the exponents A and B the variables which are specific to
points A and B and by AB those which are common. This can be expressed as:

ln
εAn
ε0

=

k∑
i=1

ln ξABi +

n∑
i=k+1

ln ξAi (D5)

ln
εBn
ε0

=

k∑
i=1

ln ξABi +

n∑
i=k+1

ln ξBi (D6)

The correlation between ln εAn and ln εBn is defined as

Rln ε(r) = 〈(ln ε
A
n

ε0
− µ)(ln

εBn
ε0
− µ)〉 = 〈ln ε

A
n

ε∗
ln
εBn
ε∗
〉 (D7)

where we noted ε∗ = ε0e
µ. Introducing similarly ξ∗ = eµχ and ξ′ = ξ/ξ∗ we express the correlation as:

Rln ε = 〈
n∑
i=1

(ln ξAi − µξ)
n∑
j=1

(ln ξBi − µξ)〉 = 〈
n∑
i=1

ln ξ′Ai

n∑
j=1

ln ξ′Bj 〉

= 〈

(
k∑
i=1

ln ξ′ABi +

n∑
i=k+1

ln ξ′Ai

) k∑
j=1

ln ξ′ABj +

n∑
j=k+1

ln ξ′Bj

〉
=

k∑
i=1

k∑
j=1

〈ln ξ′ABi ln ξ′ABj 〉+

k∑
i=1

n∑
j=k+1

〈ln ξ′ABi ln ξ′ABj 〉

+

n∑
i=k+1

k∑
j=1

〈ln ξ′Ai ln ξ′ABj 〉+

n∑
i=k+1

n∑
j=k+1

〈ln ξ′ABi ln ξ′Bj 〉

=

k∑
i=1

k∑
j=1

δijσ
2
ξ = kσ2

ξ (D8)
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To obtain this results we used the hypothesis that within the same branch, the events at a given scale are independent
of those at another scale, 〈ln ξ′ABi ln ξ′ABj 〉 = δijσ

2
ξ , as well as vanishing correlation between branches A and B:

〈ln ξ′Ai ln ξ′Bj 〉 = 0. This gives a logarithmic evolution of the correlation coefficient ρln ε = Rln ε/σ
2, in the range

η < r < L:

ρln ε =
〈ln ε

A
n

ε∗
ln
εBn
ε∗
〉

〈ln2 εn
ε∗
〉

=
k

n
=

lnL/r

lnL/η
= 1− ln r/η

lnL/η
(D9)

Although not trivial, this result can be transposed for the temporal correlation along particle path [16, 40, 60, 86].
The logarithmic behavior of the correlation is confirmed by DNS, as it can be seen in [55] where the evolution of the
Lagrangian correlation of the logarithm of the dissipation is presented.

2. Stochastic Modeling of the dissipation

It has been proposed to model the dissipation rate as stochastic multiplicative process. Such process can be
generically expressed as :

dε = εΠdt+ εΣdW (D10)

with dW the increment of the Wiener process (〈dW = 0 and 〈dW 2〉 = dt) and where Π and Σ are to be determined.
Considering that ε follows a log-normal distribution with parameter σ2 and µ = −σ2/2, we define the standard

normal variable χ (Gaussian random variable with zero mean and unit variance) as:

ε

〈ε〉
= exp

(
σχ− σ2/2

)
(D11)

A stochastic process for χ has to be given in order to obtain the stochastic process for ε, via the Ito transformation.
Pope and Chen [74] proposed to obtain χ from an Orstein-Uhnlebbeck process with a characteristic time τε:

dχ = − χ
τε
dt+

√
2

τε
dW (D12)

According to the Ito formula, this gives for Π and Σ :

Π = −
(
ln ε/〈ε〉 − σ2/2

)
/τε (D13)

Σ =
√

2σ2/τε (D14)

This process gives as expected log-normal distribution for ε (normal distribution for χ) as well as an exponential
decrease of the correlation of ln ε with a characteristic time τε. This exponential behavior is not consistent with
the multiplicative cascade model as discuss above. It rather corresponds to a direct energy transfer from large to
small-scales.

To ensure a logarithmic decorrelation of the dissipation, Chevillard [22] proposed to adapt the Gaussian multiplica-
tive chaos introduced by Mandelbrot [56]. This leads to a multifractal model in which the increment of the Wiener
process in (D12) is replaced by a fractional Gaussian noise:

dχ = − χ
τε
dt+

1

Λ
dW 0

τc (D15)

here, dW 0
τc is formally a fractional Gaussian noise with a 0 Hurst exponent, regularized at a time scale τc, and Λ is a

normalization factor ensuring unit variance for χ. The value of Λ is dependent on the specific regularization of dW 0
τc .

As explained in [22] this process can be reexpressed as

dχ(t) =

(
− χ
τε

+
Γ

Λ

)
dt+

1√
Λ2τc

dW (D16)
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with dW the increments of a standard Wiener process and Γ corresponds to a convolution of the Wiener increments:

Γ = −1

2

∫ t

−∞
(t− s+ τc)

−3/2dW (s) (D17)

where dW (s) is the increments of the same realization of the Wiener process as in (D16). In (D17), the regularization
time τc prevent the divergence of the kernel when s→ t. The normalization factor Λ is estimated as Λ = 〈X2〉 where
X obey the stochastic equation (D16) in which Λ has been set to 1.

The stochastic process (D16) gives a logarithmic correlation for χ: 〈χ(t)χ(t − s)〉 ∼ ln
τε
s

for τc � s � τε, as
illustrated in the Fig. 16.
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FIG. 16. Correlation of χ for various values of τε/τc.

With the Ito transformation, we obtain the process for ε from (D16). This gives for Π and Σ :

Π =

(
− ln

ε

〈ε〉
+

σ2

2Λ2

(
τε
τc
− Λ2

)
+
σ

Λ
Γτε

)
/τε (D18)

Σ =

√
σ2

Λ2τc
(D19)

3. Efficient calculation of the stochastic convolution Γ

In order to obtain a stationary process the lower bound of the integration is set to −∞. For the numerical
computation of this integral, the lower limit has to be truncated. We present in figure 17 one realization of the

evolution of the integral Γ(t, τ) = −1

2

∫ t
t−τ (t− s+ τc)

−3/2dW (s) when the lower bound varies. We see that for values
larger than τε the integral converges to a value (which remains random). In addition, the convergence threshold does
not seem to depend on the time step used. So in practice Γ will be calculated with a lower-bound set to t− 5τε.

To obtain these calculations, the integral (D17) giving the value of Γ at time tn = ndt has been discretized as
proposed by [22]

Γn = −1

2

Nhist∑
m=0

(sm + τc)
−3/2 dWn−m (D20)

with sm = tn − tn−m = mdt, Nhist = 5τε/dt and dWn−m the increment of the Wiener process at time (n−m)dt.
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FIG. 17. One realization of the integral (D17) as a function of the lower bound of the integral for dt = τc/100. Comparison
between the direct calculation of the history integral (D17) (black line) and the optimized calculation with Ns = 12 (red
crosses).

This direct calculation requires a lot of memory in order to keep the last Nhist instants and requires a very large
number of operations, of the order of Nt ×Nhist where Nt is the number of time steps of the simulation. Thus this
direct method is difficult to use in practice when τε/τη ∼ Reλ becomes large.

For this reason [22] proposed to speed up significantly the calculation using the fast Fourier transforms (FFT).
The integral at time ndt is then computed as Γn = −1/2zn where zn = FFT−1(Zk) is given by the inverse Fourier
transform of Zk. Zk = Xk Yk is the convolution in spectral space between xn and yn (Xk = FFT (xn) and Yk =
FFT (yn)) where xn and yn are the sequences dWn and (sn + τc)

−3/2 padded with zeros such that they have N >
Nhist + Nt points. This algorithm is indeed much faster. Nevertheless, the memory occupation becomes more
important since all the values of the sequence dWn must be known simultaneously in order to calculate the Fourier
transform, which limits the possibility of using this algorithm for large Reynolds numbers.

Such limitation can be overcome by using the approach proposed in [55] based on the inverse Laplace transform of
the convolution kernel. In this approach Γ is estimated as a weighted sum of correlated Orstein-Uhlenbeck processes
with characteristic time ranging from τc to τε.

Despite its efficiency, this technic, nor the one based on FFT, cannot be used to determine the Γ̂ that appears in
the vectorial stochastic model for the acceleration, or as noted by [68] for velocity gradients. Indeed in such cases it is
not the increments of the components of the Wiener process which are convoluted, but a projection of them as shown
in (48). The issue is that the projection cannot by computed a priori, because it requires knowing ai and ui, as seen
in (49).

For these reasons we propose a new algorithm which is fast, using a limited amount of memory and which only
requires knowing the dWn sequentially. This algorithm is derived from the one introduced for non-stochastic integrals
in [53]. As we go back in the past, we can afford to remember with less precision the noise entering this integral,
since the kernel decreases with the lag. We will thus proceed by progressive "coarse graining" and group together
the oldest dWn, by introducing an increasingly extended local average. We then decompose the sum of (D20) into
sub-sums comprising an increasing number of terms:

−2Γn =

Nhist∑
m=0

(sm + τc)
−3/2 dWn−m

=

me1∑
m=ms1

(sm + τc)
−3/2 dWn−m + . . .+

meN∑
m=msN

(sm + τc)
−3/2 dWn−m

=

N∑
j=1

mej∑
m=msj

(sm + τc)
−3/2 dWn−m

≈
N∑
j=1

(sj + τc)
−3/2 dW j (D21)
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Where we introduced sj = (mej+msj)dt/2 and dW j =
∑mej
m=msj

dWn−m such that (sj+τc)
−3/2 dW j ≈

∑mej
m=msj

(sm+

τc)
−3/2 dWn−m. The bounds mej and msj are progressively spaced as j increases leading to an increasingly coarse

splitting of the integral. This approximation of the integral can be carried out very efficiently by using a non-
homogeneous list updating for dW . The first elements of the list are updated every time steps and the older ones
less and less regularly, as described in the diagram of Fig. 18). In detail, we update the first Ns elements of the
list at each time step, the following Ns every two time steps, and the elements between iNs and (i + 1)Ns are
only updated every 2i iterations. Thus, with n × Ns elements in the list we can estimate the integral going up to∑n
i=0Ns 2idt = 2Ns(2

n − 1)dt in the past. This gives a considerable saving in computation time and memory with
good accuracy as it is illustrated in Fig. 17. For all the calculation presented in this paper we have used Ns = 12.
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FIG. 18. Diagram illustrating the coarse-graining of the integral (D17) and the non-uniform update of the list.
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