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Ab initio Gibbs ensemble Monte Carlo
simulations of the liquid–vapor equilibrium
and the critical point of sodium

Zhi Li, *a Christophe Winisdoerffer,b François Soubiran ac and Razvan Caracasad

The ab initio (ai) Gibbs ensemble (GE) Monte Carlo (MC) method coupled with Kohn–Sham density functional

theory is successful in predicting the liquid–vapour equilibrium of insulating systems. Here we show that

the aiGEMC method can be used to study also metallic systems, where the excited electronic states play

an important role and cannot be neglected. For this we include the electronic free energy in the formu-

lation of the effective energy of the system to be used in the acceptance criteria for the MC moves. The

application of this aiGEMC method to sodium yields a good agreement with available experimental data

on the liquid–vapour equilibrium densities. We predict a critical point for sodium at 2338 � 108 K and

0.24 � 0.03 g cm�3. The liquid structure stemming from aiGEMC simulations is very similar to the one

from ab initio molecular dynamics. Since this method can determine phase transition without computing the

Gibbs free energy, it may offer a new possibility to study other materials with a reasonable computational cost.

1 Introduction

Phase equilibria are fundamental processes in chemistry and
physics and have dramatic consequences in every field of
science and every aspect of our lives. For example, vaporization
and condensation of water or freezing and melting of ice are
crucial for the climate change and water circulation on Earth as
well as for the emergence of life.1 The equilibria between
liquids and solids are cornerstones of the whole evolution of
rocky planets.2,3 Fluid–fluid mixing and unmixing are of
utmost importance from soft matter science and the industry
of emulsions all the way to planetary differentiation.4–6

Given the available experimental apparatus, the equilibria
between condensed phases and gases are much more difficult
to investigate than the transitions in condensed matters. And
difficulties are only increasing when addressing the critical
points, i.e. the points where differences between two phases,
like liquids and gases, vanish. Critical points have been exten-
sively studied experimentally especially under near-ambient
conditions.7 Under higher pressure, multi-anvil press and
diamond anvil cell have been used for decades.8 Unfortunately,

critical points lying above 1500 K and at low densities are
extremely challenging to obtain experimentally. For these parti-
cular conditions, computational studies can be extremely useful,
and sometimes are the only way forward for the time being.

The numerical study of phase equilibria is a relatively
straightforward problem since it means equating the pressures,
temperatures and chemical potentials of two different
systems.9 If the first two are relatively easy to achieve numeri-
cally, the difficulty comes from the last equality: computing
chemical potentials is extremely difficult since it requires the
knowledge of the entropy of each phase, which can only be
derived from the absolute partition function. Techniques such
as molecular dynamics (MD) or Monte Carlo (MC) simulations
only provide average quantities but not the absolute partition
function.10 Numerous methods have been proposed to circum-
vent this issue. The most evident one consists in computing the
free energy of the system using a reference point and the
thermodynamic integration (TDI).11 This is however computa-
tionally expensive and a reference system is not always easy to
find. A more direct approach consists in simulating layers of
two different phases and observe the evolution of the interfaces
to determine the most stable phase.12,13 This is more efficient
than the TDI but is challenging to set up and highly prone to
finite-size effects. Finally, in the Gibbs ensemble Monte Carlo
(GEMC) method, one simulates two nearly independent phases
at the same time through a MC simulation and ensures the
equilibrium by performing specific Metropolis moves allowing
to exchange volume and particles.14 This directly mimics the
macroscopic equilibrium at a microscopic level, but avoids the
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interface issues allowing for a more reliable determination of
the phase equilibrium.

The success of all the methods outlined in the previous
paragraph rely on the quality of the description of the intera-
tomic interaction. In classical simulations these interactions
are reproduced by simplified functions that disregard the
actual complexity of the electronic interactions. A viable alter-
native is to fully consider the quantum effects, which are
especially important for molecular systems or for metals where
the electronic states and occupations change with temperature
and pressure. The state-of-the-art method to tackle this issue
is the Kohn–Sham formulation (KS) of density functional
theory (DFT),15,16 and its finite temperature extension (FT) by
Mermin,17 which can account for the quantum behavior of the
electrons in a computationally cost-effective manner. TDI18–22

and two-phase simulations23,24 have been linked to DFT calcu-
lations to significantly improve the accuracy of the predictions
of phase transitions for condensed matter.

In the classical Gibbs ensemble scheme,25 the potential
energy evaluated from a force field is used in the acceptance
criterion for a trial move. This can be extended to include ab
initio simulations, where the internal energy of the electron–ion
system plays a similar role as the potential energy in the
classical scheme. In the pioneering work of Siepmann et al.,26

the GEMC method has been combined with KS-DFT – often
referred as ab initio (aiGEMC) – to improve its accuracy. Ever
since different groups have applied the aiGEMC technique
to calculate the liquid–vapor equilibrium line of water,27–29

methanol, methane30 and argon.31 All above materials are
insulators and have a critical point that is below 700 K. Due
to the relatively large band gaps, the thermal excitation of
electrons in these systems is not significant, while it may play
an important role in determining the phase equilibrium of
metallic systems at high temperature.

In metals, in order to capture the thermal excitations of
electrons, it is necessary to make full use of FT-KS-DFT which
explicitly includes the contribution of excited electronic states.
Because of the extra electronic entropy term in FT-KS-DFT
framework, at finite temperature, a great care should be given
to the electronic contribution as the excited states also play a
role in the acceptance ratio. A first attempt of ab initio MC
simulations on a metal was performed on liquid lithium in the
isothermal–isobaric and canonical ensemble32 with encoura-
ging success.

In the present paper, we present the formalism of the Gibbs
ensemble coupled to FT-KS-DFT, followed by its practical
implementation. We then apply the finite temperature aiGEMC
method to compute the liquid–vapor equilibrium of sodium
for which several experimental data sets are available.33–35

The critical densities and temperatures range from 0.175 to
0.3 g cm�3 in density and from 2485 to 2573 K in temperature. The
sodium vapor is mainly an atomic gas without large clusters,36

which thus greatly simplifies the structural constraints. Moreover,
as FT-KS-DFT has proven to be reliable in the study of the
condensed phases of sodium,37,38 it may serve as an excellent
testing ground to extend this application of FT-KS-DFT to cover

the gaseous phase of a metal as well. We demonstrate that the
aiGEMC offers a great way of computing a fully ab initio liquid–
vapor phase diagram and of positioning the critical point.

2 Methodology
2.1 Statistical physics considerations

Statistical mechanics enables access to the thermodynamic
properties of a system through the computation of its partition
function. Although the expression of this partition function
depends on the statistical ensemble, disregarding some
very peculiar situations, the Gibbs theorem39–42 ensures that
all the statistical ensembles are equivalent in the thermody-
namic limit. Unfortunately, evaluating the partition function is
a formidable task and cannot be performed analytically except
for a few well-known cases, e.g. the ideal gas. It was soon
realized that computational approaches offer a convenient
way to circumvent these difficulties, as illustrated by the
famous numerical experiment run by Metropolis and collabora-
tors on the MANIAC computer.43 These methods have been
extensively used in many scientific fields, with numerous
refinements specific to each context. However, one major
concern needs to be addressed before investigating the
liquid–gas equilibrium of sodium within a GEMC approach.
Unlike previous studies with aiGEMC on systems with a low
critical temperature and large band gap, the studied tempera-
ture range here is high enough so that electronic excitations
must be taken into account consistently within the framework
of finite temperature DFT. This problem is of considerable
conceptual importance, and thus warrants a brief outline of
statistical mechanics derivations in order to find an appropri-
ate energy term that can be used in the acceptance criterion for
a MC trial move.

2.1.1 Mixed quantum-classical systems. In the canonical
NVT ensemble, a system of N nuclei (considered here to be
identical) characterized by their positions {R̂}N and momenta
{P̂}N, and their corresponding Ne electrons {{r̂}Ne

,{p̂}Ne
}, can be

described by a Hamiltonian H associated to some boundary
conditions. The canonical partition function reads:40,44

ZðN;V ;TÞ ¼ Trfexpð�bHÞg; (1)

where H � H({R̂}N,{P̂}N,{r̂}Ne
,{p̂}Ne

), b = (kBT)�1, kB is the Boltz-
mann constant, and T is the temperature. The number of
electrons Ne does not appear as a variable in ZðN;V ;TÞ as
the charge neutrality is assumed. The Hamiltonian can be
split into three parts: a nuclear part Hn({R̂}N,{P̂}N), an
electronic part He({r̂}Ne

,{p̂}Ne
), and a third part, which takes into

account the interaction between the electrons and the nuclei
Hn–e({R̂}N,{r̂}Ne

). It should be emphasized that, at this stage, the
partition function is expressed in purely quantum mechanical
terms, as H depends on both the nuclear operators {R̂}N,{P̂}N

and the electronic operators {r̂}Ne
,{p̂}Ne

. Because of the small-
ness of the mass ratio m/M, where m is the electronic mass and
M the nuclear one, the quantum behaviour of the nuclei can be
safely neglected for most of the thermodynamic conditions.
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Then the partition function takes the following form, up to
some Oð�h2Þ corrective terms:45

Z ¼ 1

N!h3N

ðYN
i¼1

dRidPi exp �bHeffðfPgN ; fRgNÞ
� �

Þ; (2)

where Heff is the (effective) nuclear Hamiltonian:

HeffðfPgN ; fRgNÞ ¼
XN
i¼1

Pi
2

2M
þUeffðfRgN ; bÞ: (3)

The first term is the kinetic nuclear term and the second
is the effective nuclear potential term; the latter includes
the free energy of the electrons of the system for a given nuclei
configuration {R}N:

Ueff ðfRgN ; bÞ ¼
X
iaj

Z2

Ri � Rj

�� ��þ FeðfRgN ; bÞ: (4)

The first term is the Coulomb interaction of the nuclei of
charge Z, and the second term is the electronic free energy at
fixed nuclear configuration:

Fe Rf gN ; b
� �

¼ �1
b
ln Trfr̂g;fp̂g exp �bHe fRgN ; fr̂gNe

; fp̂gNe

� �� �
;

(5)

with the electronic Hamiltonian reading:

He ¼
XNe

a¼1

p̂a
2

2m
þ
X
aab

1

r̂a � r̂b
�� ���X

a;i

Z

r̂a � Rij j: (6)

The electrons are thus treated for a specific nuclear configu-
ration and then an average must be performed over the
different configurations. Note that in eqn (6), the electronic
positions and momenta are operators because the electrons
must be treated in the quantum mechanical framework.

At this point, we need to stress that eqn (2) is the standard
expression of the classical partition function for the canonical
ensemble. It means that the nuclei are treated according to the
classical mechanics in an effective potential Ueff [eqn (4)] which
includes all electronic degrees of freedom [eqn (5)] plus the
coulombic interaction between nuclei. This effective nuclear
potential Ueff encompasses the quantum behaviour of the
electrons in a consistent way through the computation of the
corresponding free energy contribution.

In practice, we split the computation of the partition func-
tion eqn (2) in two distinct problems. The first deals with
the evaluation of the multi-dimensional (6N) integral, which
is sampled using the MC Gibbs ensemble approach. The
second corresponds to the computation of the effective nuclear
potential energy including the free energy of electrons, which is
done using FT-KS-DFT.17 In the following sub-sections we detail
the methodology that we have developed in order to perform
such a computation.

2.1.2 Partition function in the Gibbs ensemble. We will
only outline the GEMC method to set our notations. More
details can be found in Panagiotopoulos (1987).25 Performing
the integrals over the momenta {P}N (which are no more operators

but classical canonical coordinates) and renormalizing the coor-
dinates {R}N by the factor L � V1/3 leads to the standard partition
function in the Gibbs ensemble:

Z ¼
XNtot

N1¼0

ðVtot

0

dV1Z1ðN1;V1;TÞ � Z2ðN2;V2;TÞ

¼
XNtot

N1¼0

ðVtot

0

dV1
VN1

1 VN2
2

N1!N2!L
3ðN1þN2Þ
dB

�Z1
config N1;L1;Tð Þ � Z2

config N2;L2;Tð Þ;

(7)

where LdB ¼ h
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMkBT
p

is the de Broglie wavelength,

ZconfigðN;L;TÞ ¼
Ð QN
i¼1

dsi exp �bHeffðfsgNÞ
� �

and si A [0;1] 8i. It

should be emphasized that Heff({s}N) corresponds to the Hamilto-
nian of the N nuclei interacting through an effective potential
associated to the electronic free energy within a box with volume
V = L3. It is interesting to note that the partition function as
written in eqn (7) includes the possibility for one box to be empty
or to have zero volume. Although counter-intuitive, these states, if
explored by the GEMC algorithm, must be taken into account.
This was already pointed out by Smit in the 80s.46 However it
means that we need to pay a peculiar attention to the definition of
the statistical quantities since for instance the specific energy is
then undefined. Nevertheless, extensive quantities are all properly
defined.

Ensemble averages can be estimated by the famous MC
importance sampling algorithm introduced by Metropolis
et al.43 which is at the core of the GEMC approach. For obvious
reasons, full monographs were dedicated to the presentation and
discussion of this method and its possible improvements.47–51

Three types of trial move o(ld) - n(ew) are considered in our
GEMC simulations: (i) random displacement of a randomly
chosen particle, (ii) random volume rearrangement, (iii) random
transfer of a randomly chosen particle between the two sub-
systems. The Metropolis scheme defines the following acceptance
rules as:

accðo! nÞ ¼ minð1;NðnÞ=NðoÞÞ; (8)

with NðnÞ=NðoÞ given by:10,25,52

� (i) particle (belonging to box j) displacement:

NðnÞ
NðoÞ ¼

e�bUjðnÞ

e�bUjðoÞ
� e�bDUj ; (9)

� (ii) volume exchange V1(o) - V1(n) and V2(o) - V2(n):

NðnÞ
NðoÞ ¼

V1ðnÞ
V1ðoÞ

	 
N1 V2ðnÞ
V2ðoÞ

	 
N2

e�bDðU1þU2Þ; (10)

� (iii) particle transfer from box j = 1 to box j = 2:

NðnÞ
NðoÞ ¼

V2

V1

	 

N1ðoÞ
N2ðnÞ

	 

e�bDðU1þU2Þ; (11)

which leads to proper ensemble averages evaluations. For the
last two types of trial moves, the new energies U1(n) and U2(n)
must be both computed and compared to the old ones, either
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because of the volume modification or because of the change in
chemical composition.

2.2 Setup of the GEMC calculations

The implementation of the Markov chain described in the
previous section is relatively straightforward. We define three
probabilities ZDispl. = 0.5, ZVol. = 0.25, and ZPart. = 0.25 for the
choice among the different moves for each cycle, such as ZDispl.

+ ZVol. + ZPart.= 1. We define dsmax as the maximal (normalized)
particle displacement, which can be different for the two boxes,
chosen such as to reach an acceptance ratio for moves of type (i)
around 50% for each sub-system, and dVmax as the maximal
volume exchange, similarly optimized for an acceptance rate of
about 50%. The detailed values are compiled in Table 2.

In particular for sodium we used as initial conditions a
liquid box of 17 Å with 80 atoms and an empty vapor box of 25 Å
for the simulations below 2000 K, and a liquid box of 18 Å with
80 atoms and an empty vapor box of 18 Å at 2000 K. One
accepted configuration at 2000 K served as starting point for the
simulations at 2100 K, 2200 K, 2300 K and 2400 K. At 2500 K, we
start with two 40-atoms boxes of 17 Å. In addition, we have
performed an extra simulation at 2000 K with 120 atoms to
estimate the finite-size effect, which is found to be small at this
condition (see Fig. 1). All the simulation boxes are cubic and
the dimensions above define the edge of the box. The equili-
brium values and their uncertainty were calculated using the
autocorrelation technique.10 The error bars reported in the
following sections are one-Sigma error bars.

When compared to single-box simulations, GEMC is right-
fully considered to be affected by surface finite-size effects.
It means that if a liquid–gas phase transition should happen,
interface issues are avoided. However one should keep in mind
that other finite-size effects exist, such as divergence of the
correlation length and critical slowing down, and may play an
important role, especially in the vicinity of a critical point.

These effects are at the heart of the brilliant refinements of the
‘‘basic algorithm’’ that are implemented in codes designed to
run GEMC simulations such as MCCCS Towhee,53 VMMC54 and
CP2K.26 The limited number of atoms we have in our cells does
not preclude such finite-size effects. However, as we will show
in Section 3, the relatively good agreement with the experi-
mental data is reassuring. We also chose on purpose to not
include pre-biased moves or more complex moves to our
algorithm in order to carefully check our implementation using
VASP and the electron free energy. We thus limit the possible
flaws in our sampling. It is clear that in order to have a faster
algorithm one needs to consider such more intricate moves.

2.3 Setup of the DFT calculations

We compute the energy of the two sub-systems at each MC step
using first-principles calculations in the projector augmented
wave (PAW) method55,56 of the DFT in the VASP57,58 implemen-
tation. We employ the Generalized-Gradient Approximation
in the Perdew–Burke–Ernzerhof formalism59 for the exchange
correlation term. We treat the 3s1 as valence electron configura-
tions for the PAW pseudopotentials. The partial occupancies for
the electronic calculation are calculated using a Fermi–Dirac
smearing scheme with a width corresponding to the nuclear
temperature. The energy cut-off for the plane-wave basis set was
set to 400 eV. The break condition for the electronic self-
consistent loop was 10�4 eV. The number of electronic bands
was adapted to the temperature conditions such as to cover the
entire spectrum of the fully and partially occupied states and
to include enough non-occupied bands. The Brillouin zone
was sampled with the Baldereschi point.60 A test with a grid
of 2 � 2 � 2 k-points yields results within 0.5% difference in
energy. At each MC step, for each ionic configuration we
compute the energy Ueff as defined in eqn (4) including the
free energy of the electrons in a coulombic potential due to the ions
and the ion–ion interaction. Our implementation is done outside of
the VASP package,57 which is called only as an energy routine.

To compare with the Gibbs ensemble method, we also
performed molecular dynamics simulations of the liquid phase
in the DFT framework at several densities along the 2000 K
isotherm. In order to stay consistent with the MC calculations
we used the same DFT parameters for the MD simulations. The
temperature was kept constant thanks to a Nosé thermostat.61

We used a fixed volume cell containing 80 atoms. The time step
was set to 2 fs for a total duration of 20 ps.

3 Results and discussion
3.1 Stationary state and equilibrium

At the very beginning of the simulation there is a net particle
flux from the liquid box to the vapor box since the latter is
initially empty (Fig. 1). The driving force is the difference in
chemical potentials. Because of the random character of the
acceptance of moves along the Markov chains, particles from
the gas box may also be transferred to the liquid box. This is
captured by fluctuations of the density in each of the two boxes.

Fig. 1 Evolution of the number of particles (N), cell length (L), pressure (P),
internal energy (E) and effective nuclear potential energy (U) as a function
of Monte Carlo steps in the vapor and in the liquid phase for the simulation
at 2000 K.
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After about 20 000–50 000 attempted moves, both boxes have
reached a stationary state and the equilibrium is achieved. At
equilibrium, for a temperature of 2000 K the cell length of both
boxes fluctuates around 18 Å. The pressure in the liquid phase
is 0.0 � 0.2 kbar and 0.08 � 0.03 kbar for the vapor phase. The
liquid phase has 76 atoms on average but the vapor phase
only 4. The stationary state thus seems to correspond to a
thermal, dynamical and chemical equilibrium.

The acceptance ratios reported in Table 2 are very satisfac-
tory with typical values between 10 and 75% for each move. The
1200 K simulation shows a very low acceptance rate for the
particle exchange because the temperature is very low com-
pared to the energy barrier. Since the acceptance rate is non
zero and since we ensured a long enough run we anticipate that
the results are still reliable. Fig. 1 shows the evolution of
different quantities as a function of the MC steps at 2000 K.
Table 1 lists all the values of the thermodynamic quantities.

3.2 Liquid–vapor equilibrium

As can be seen from Fig. 2, at low temperature there is a clear
distinction between the low density and the high density
phases, with two distinct peaks corresponding to the two
densities. It is then possible to determine the average thermo-
dynamic quantities of both the vapor and the liquid phases by
averaging over each distinct distribution.

As temperature increases the distributions become less and
less separated, eventually preventing for a clear difference
between the two phases. As we approach the critical tempera-
ture, the simulations have a higher probability of switching
identity or even having two phases at once in the same simula-
tion box. The latter is due to a comparable magnitude of the
surface tension effect and the entropy contribution as already
observed by Smit et al. (1989).46 It results in the appearance of
three peaks in the density distribution plot. In order to better
quantify the density of the three phases (gas, liquid and the
mixed phase), we fitted the three peaks by three Gaussian
functions (solid black line in Fig. 2) as suggested by Smit et al.
(1989).46 The center of the Gaussian is assumed to be the
average density of each phase and its width is the standard
deviation entering in the determination of the uncertainty. The
low density peak corresponds to the gaseous phase and the
high density peak to the liquid phase. The middle peak, close to
the average density of the two boxes is the mixed phase, and
is disregarded in the liquid–vapor equilibrium analysis. At
2300 K, the fluctuations become extremely large and we thus
decided to only show the results in the density plot for
reference but not to use them for the fit since they offer too
loose a constraint on the critical point. For 2400 and 2500 K
both boxes reach a very similar equilibrium and seem identical.
This means that these conditions are above the critical point.

Based on the equilibrium densities, we can plot a vapor–
liquid coexistence curve as shown in Fig. 3. In general we obtain
a good agreement compared to experimental data available in
the literature.33 At 1200 K, the saturated liquid density is 20%
lower than that of experiments, which may be due to the choice
of PBE as an exchange correlation functional as already noted T
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in previous studies of argon.31 A precise direct determination of
the critical point is made difficult by the finite size of our
system since the correlation length is expected to tend to
infinity at the critical point; this cannot be captured within
our small simulation cells. The critical point may however be
approximated using the law of rectilinear diameter:62

rL þ rV ¼ 2 rc þ B 1� T

Tc

	 
� �
(12)

together with the scaling law63

rL � rV ¼ A 1� T

Tc

	 
b

; (13)

where rL and rV are the densities of the coexisting liquid and
vapor, at a given temperature T. The fitted parameters are the
critical temperature Tc and density rc, and the two constants A

and B. b is the critical exponent, which is fixed here at 0.326,64

as for other three dimensional systems.10,63

We obtained the critical point by applying the scaling law to
all data points above 2000 K. Using our data we obtain our best
fit with A = 0.87 � 0.1 and B = 0.19 � 0.03. The critical point lies
at 2338 � 108 K and 0.24 � 0.03 g cm�3. We stress here that the
density values at 1800 K are compatible with the extrapolation
of the scaling law, providing confidence in our fit. Our theo-
retical critical temperature is slightly lower than the experimental
value at 2573 � 171 K,33 and the critical density is similar to the
experimental value of 0.21 � 0.02 g cm�3. We want to underline
that both our values and the experimental ones are the result
of extrapolations, as in both cases it is too challenging to
obtain equilibrium data in the very vicinity of the critical point.
With this in mind, the good agreement that we obtain between
our calculations and experiments confirms the suitability of the
ab initio Gibbs ensemble method for the determination of accu-
rate coexistence curves. We also include the Clausius–Clapeyron

Table 2 Acceptance ratio for the different moves in the present ab initio Gibbs ensemble study at 1200, 1500, 1800, 2000, 2100, 2200, 2300, 2400 and
2500 K. The maximum displacement dsmax is in reduced coordinates of [0,1)

Temperature
[K]

Particle displacement in Box1 Particle displacement in Box2 Volume exchange
Atom swap
acceptance ratioAcceptance ratio dsmax Acceptance ratio dsmax Acceptance ratio dVmax [Å3]

1200 0.50 0.035 0.78 0.23 0.55 300 0.006
1500 0.41 0.052 0.73 0.16 0.50 420 0.07
1800 0.58 0.05 0.41 0.10 0.45 700 0.13
2000 0.54 0.055 0.50 0.13 0.60 550 0.18
2000a 0.48 0.04 0.39 0.1 0.46 700 0.14
2100 0.52 0.07 0.54 0.1 0.56 700 0.21
2200 0.49 0.072 0.58 0.08 0.57 710 0.26
2300 0.61 0.07 0.45 0.10 0.52 800 0.29
2400 0.53 0.078 0.55 0.08 0.59 650 0.39
2500 0.50 0.078 0.53 0.08 0.52 650 0.37

a We perform an extra simulation at 2000 K with 120 atoms to estimate the finite-size effect on the liquid–vapour equilibrium density.

Fig. 2 (A) Density versus Monte Carlo steps for the Gibbs ensemble
simulations at 1200, 1500, 1800, 2000, 2100, 2200, 2300, 2400 and
2500 K from top to bottom, respectively. (B) Corresponding unnormalized
probability distribution functions.

Fig. 3 Liquid–vapor equilibrium of Na obtained from the ab initio Gibbs
ensemble simulations (blue circles) and its comparison with the experiment33

(black stars). The black solid line is a fit for the scaling law to all data points
above 2000 K, while the black dotted line denotes the extrapolation to lower
temperature. The red solid and dotted line is the law of rectilinear diameter
with A = 0.87� 0.1 and B = 0.19� 0.03 parameters (see text for more details).
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plot of the saturated vapor pressure and density as a function of
the inverse temperature in Fig. 5. We obtain a nice affine
behavior for both the logarithm of the density and of the
pressure on these plots. We also have a relatively good agree-
ment with the experimental density data.

In order to check our Gibbs ensemble results, we also
performed a set of ab initio molecular dynamics simulations
in the canonical ensemble at 2000 K for different densities.
This allows us to analyse the structure of the liquid and to
determine the corresponding spinodal point.65 Fig. 4 shows the
variation of pressure as a function of the density along the
2000 K isotherm. This curve exhibits a clear minimum close to
0.48 g cm�3; this is the liquid spinodal point. This is the
smallest density at which the liquid is metastable. Above this

density the fluid is homogeneous, as shown for example in the
insets of Fig. 4. At lower densities, in the unstable branch,
bubbles form proving that the liquid becomes unstable.
The density of the spinodal point is close yet lower than the
equilibrium density of 0.50 � 0.02 g cm�3 predicted by the
Gibbs ensemble method. We thus have a full consistency
between these two completely different methods ensuring the
reliability of the Gibbs ensemble method.

3.3 Structure of the liquid

We compare the structure of the liquid as we obtain it using the
MC Gibbs ensemble and the MD approach. We analyse the
radial distribution function (RDF), which is defined as,

gðrÞ ¼ Vl

NlðNl � 1Þ
X
i

X
j

dðr� rijÞ
* +

; (14)

where r and rij are the distances between atoms i and j, Nl is
the total number of Na atoms in the simulation box of the
liquid phase, and Vl is the volume of the liquid simulation box.
We stress here that the calculation of the RDF in the Gibbs
ensemble is performed on a series of snapshots, and the
number of particles and volume of each phase fluctuate.

Fig. 6 shows the RDF at several temperatures as extracted
from our Gibbs ensemble simulations. The main peak lies
around 3.5 Å. Along the vapor–liquid equilibrium line, the
position of the peak changes slightly and broadens due mostly
to the temperature effects. The spherical integration of the RDF
from 0 to its first minimum gives the coordination number.

At 2000 K and 0.52 g cm�3 the agreement of the RDF as
obtained in the MC and in the MD simulations is excellent. As
the two methods start from different initial configurations and
use different paths, they give a remarkable consistent outcome
as they explore the configurational space. While this is not an

Fig. 4 Pressure evolution during the isothermal volume expansion for
sodium at 2000 K. The insets show the snapshots at 0.52 and 0.38 g cm�3,
respectively.

Fig. 5 Clausius–Clapeyron plot of the logarithm of the saturated vapor
pressure and density as a function of the inverse temperature. The solid
black squares are experimental date.33 The dashed line on the right graph
denotes the pressures from fitting vapor density to the ideal gas law. As
expected, a good agreement with calculated pressure is achieved in the
low density range. In the high density region, a deviation is observed.

Fig. 6 Radial distribution function (RDF) g(r) at 1200, 1500 and 2000 K in
the liquid phase as computed with the Gibbs ensemble MC simulations
(full lines) and with the MD one at 0.52 g cm�3, 2000 K (dotted line). The
shaded areas correspond to our estimate of the one-Sigma uncertainty.
The curves were shifted for readability. The inset shows the coordination
number as a function of the temperature.
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absolute proof that we achieved ergodicity, it strongly suggests
that our simulations are satisfying it.

4 Conclusions

We implemented the ab initio Gibbs ensemble algorithm and
performed a series of simulations to compute the liquid–vapor
equilibrium line and the critical point of sodium. We empha-
size the electronic contribution at finite temperature, which is
essential for metallic systems, but not always clearly explained
in the literature. The effective nuclear potential energy defined
in eqn (4) should be used in the acceptance rule for a MC trial
move in the Gibbs ensemble. We demonstrated that our
simulations reached a mechanical and chemical equilibrium
and the calculated phase coexistence curve and critical point
are in a good agreement with the experimental results. The
comparison of our results with molecular dynamics also
showed very good consistency. Therefore, we confirm the
reliability and validity of the ab initio Gibbs ensemble method.

This method offers a new possibility to study phase transi-
tions without computing the complete Gibbs free energy and
therefore paves the way for the outstanding questions regard-
ing phase equilibria. It is clear that the high computer cost of
such an ab initio Gibbs ensemble method precludes the use of
large simulation cells, at least for now. However, considering a
good agreement between our results and experimental data, we
can expect to obtain very satisfactory liquid–vapor equilibrium
curves for other materials.
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