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The length dependence of thermal conductivity over more than two orders of magnitude has been systematically
studied for a range of materials, interatomic potentials, and temperatures using the atomistic approach-to-
equilibrium molecular dynamics (AEMD) method. By comparing the values of conductivity obtained for a given
supercell length and maximum phonon mean free path (MFP), we find that such values are strongly correlated,
demonstrating that the AEMD calculation with a supercell of finite length actually probes the thermal conductivity
corresponding to a maximum phonon MFP. As a consequence, the less pronounced length dependence usually
observed for poorer thermal conductors, such as amorphous silica, is physically justified by their shorter average
phonon MFP. Finally, we compare different analytical extrapolations of the conductivity to infinite length and
demonstrate that the frequently used Matthiessen rule is not applicable in AEMD. An alternative extrapolation
more suitable for transient-time, finite-supercell simulations is derived. This approximation scheme can also be
used to classify the quality of different interatomic potential models with respect to their capability of predicting
the experimental thermal conductivity.

DOI: 10.1103/PhysRevB.94.054304

I. INTRODUCTION

The thermal properties of materials are modified at the
shortest length and time scales, when the characteristic
diffusion length becomes comparable with the characteristic
system length. Typically, thermal conductivities decrease
when approaching the nm scale [1,2], while the electrical
conductivity is affected to a much lesser extent, thereby making
nanostructured materials good candidates for thermoelectric
devices. Moreover, because of the larger surface/volume ratio,
the impact of the thermal resistance at the interfaces between
different materials becomes concomitantly of increasing im-
portance in nanostructured materials. Both effects combine
in integrated circuits reaching the nm scale, and hamper
the dissipation of heat generated in the nm-long channel of
the most advanced transistors [3], thus representing one of the
main limits to the further increase of microprocessor operating
frequency. Achieving detailed atomistic understanding of
thermal transport appears therefore as a crucial prerequisite
to overcome such limitations.

Atomistic simulations can help one to understand which
physical parameters control the heat path when short length-
scale effects become important. In particular, molecular dy-
namics (MD) simulations contain all the ingredients to implic-
itly simulate the collisions of phonons at the origin of the heat
conduction. They can be viewed as computer experiments on a
well-controlled atomic structure, in a configuration that can be
exploited to extract information about thermal properties. In
the equilibrium MD (EMD) approach [4], the oldest among the
MD variants of thermal conductivity calculation, the atomistic
system is equilibrated at a given temperature and the thermal
conductivity, defined as the same proportionality coefficient
between the heat current and the temperature gradient as in
the Fourier’s law, is deduced from the fluctuation-dissipation
theorem. In the “direct” method [5], on the other hand, a
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steady-state heat current is established between a heat source
and a heat sink, and the linear gradient of the temperature
profile is used to extract the thermal conductivity, again
according to the Fourier’s law. In a different, time-dependent
approach, temperature transients can also be used to study
the thermal response [6,7]. Recently [8,9], we have shown
that when a simulated temperature pulse establishes a step-
difference temperature profile in a material, the transient to
the equilibrium temperature is exponential, making it easy
to extract a typical decay time of the thermal pulse. Using
the heat equation, the thermal conductivity can be obtained
from this decay time. The advantage of this method, which
we called “approach-to-equilibrium molecular dynamics” or
AEMD, is that time transients occur faster, compared to both
the attainment of a stationary regime of thermal conduction
across a spatial gradient, as in the direct method, and the
numerical convergence required for the Green-Kubo relation
in the EMD method. Therefore, much larger system sizes can
be studied with AEMD, containing up to 4.5 millions atoms
[9], and with length LZ as long as 0.1 mm for a graphene
two-dimensional supercell [10].

Studying large systems is important not only to push the
limits of the MD methods, but first and foremost because a
pronounced length dependence of the thermal conductivity
κ(LZ) is observed in good thermal conductors such as silicon.
The objective of the present paper is to study the physical
origin of this length dependence and to verify how well the
underlying physics is captured by the computer simulations.
In the first part of the work, we demonstrate that the length
dependence in the time-transient model, embodied by the
AEMD, originates from the cutoff on the maximum phonon
mean free path (MFP), imposed by the finite-supercell length.
By choosing silicon as the reference material, described by the
well-established environment-dependent interatomic potential
(EDIP) [11], we compare the conductivity corresponding to a
given supercell length, κ(LZ), as obtained by AEMD, to that
corresponding to a given maximum value (�max) of the phonon
MFP distribution, κ(�max), as obtained by another atomistic
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FIG. 1. Cold and hot blocks in an elongated supercell.

approach [12]. The strong correlation between the two values
allows one to explain the evidence of a length dependence
observed in the AEMD simulations, in which no other sources
of scattering besides the phonon-phonon terms are present.
In the second part of the work, we propose an extrapolation
of the κ(LZ) curves, based on the above understanding; this
is necessary, since the Matthiessen-like relation proposed
by Schelling et al. [5] for the direct method cannot be
physically justified in the context of AEMD, in which no
explicit boundaries could provide a length-dependent phonon
scattering. By applying this formula to the data obtained
by different interatomic potentials for crystalline silicon, we
highlight the ability of EDIP to quantitatively reproduce the
experimental values of thermal conductivity. Finally, we show
that the good agreement of our results with the thermal
conductivity values obtained by EMD (a method not subject to
a length dependence, once the number of phonon modes, i.e.,
the number of atoms, is large enough) rules out the existence
of one-dimensional (1D) effects, which might originate from
the extreme aspect ratio of our atomistic structures.

II. METHOD

The principle of the AEMD method is to create and
monitor a temperature transient, and use the decay time of
the temperature difference to obtain the thermal conductivity
of the system. In the present study, devoted to bulk systems,
we build atomistic lattices of Si, Ge, and SiO2 of finite size
LX, LY , and LZ , initially equilibrated at zero pressure with
periodic boundary conditions applied in the three directions.
The presence of periodic boundaries represents a periodicity
not only in the real space, but also in the dual space of
wave vectors, thus giving rise to the concept of “supercell.”
The length LZ is chosen to be much larger than the cross
section of the supercell, in order to induce a one-dimensional
heat current along z. Two Nosé-Hoover thermostats [13] are
used to split the supercell into a cold block at temperature
T1 for 0 < z < LZ/2, and a hot block at temperature T2 for
LZ/2 < z < LZ (Fig. 1).

A significant initial temperature difference T2 − T1 =
200 K is chosen to enhance the amplitude of the decay
signal in the subsequent equilibration phase, in order to get
a better precision on the transient characteristic time τ . After
typically 100 ps of MD simulation at constant {NV T }, the
two thermostats are removed and the system is left free to
reach equilibrium, at constant {NV E}. During the approach
to equilibrium, the average temperature in each block is
monitored, and the difference tends to 0 according to an
exponential decay, as shown in Fig. 2.

This configuration corresponds to the Sommerfeld heat-
conduction problem on a ring [14], with a dominant decay
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FIG. 2. Temperature difference between the hot and cold blocks
for LZ ranging from 38 to 1200 nm. Si, Tersoff potential, 300 K.

constant that is related to the thermal conductivity by the
relation

κ = LZCV

4π2S

1

τ
, (1)

with CV the heat capacity, determined from separate MD
simulations, and S the area of the cross section of the supercell
perpendicular to z.

The length dependence is then studied by varying the
supercell length LZ . The same methodology is applied to a
range of materials, from good (Si) to poor heat conductors
(amorphous SiO2), passing by intermediate materials such as
Ge and α-quartz. Moreover, the dependence on the interatomic
potential is studied for the case of Si and three interatomic po-
tentials, frequently used to describe the Si-Si interactions: the
Tersoff [15], the Stillinger-Weber [16], both with the original
parametrization and the Lee and Hwang’s parameters [17], and
the EDIP. The Ge-Ge interactions are modeled by the Tersoff
potential. In α-quartz, the interactions are modeled by the
Beest-Kramer-van Santen (BKS) potential [18]. Amorphous
silica is modeled using Munetoh’s parametrization [19] of the
Tersoff potential for both the Si-O and O-O interactions, while
Si-Si interactions are set to zero; the amorphous structure is
obtained from the quench of molten silica [8]. The impact of
the temperature is studied in the case of Si described with
Tersoff and EDIP potentials.

III. LENGTH DEPENDENCE OF THERMAL
CONDUCTIVITY

A. Supercell size vs phonon mean free path in Si

The length dependence of the thermal conductivity κ(LZ)
is first studied for the already well-documented case of
bulk crystalline silicon, described by the Tersoff interatomic
potential. In this case, the supercells have a section of 16 × 16
lattice units, corresponding to 8.7 × 8.7 nm2 at 300 K. The
length is varied from 70 to 2200 lattice units, corresponding
to 38 to 1200 nm at 300 K. The decay time τ increases with
the length, as can be seen from the curves in Fig. 2 at 300 K.
A fine determination of τ and of the error is obtained by
averaging over many exponential fits of each decay curve, from
an initial time t0 ∈ [0,te/2], to te at the end of the simulation.
By this procedure, the initial fast transient corresponding to
the switching from {NV T } to {NV E} (actually an artifact
of the MD simulation) can be removed, and the intrinsic
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FIG. 3. Thermal conductivity κ of silicon vs length LZ for
temperatures ranging from 300 to 1000 K. Tersoff potential.

thermal decay time is recovered. The decay time is used
to calculate the thermal conductivity from Eq. (1) and the
resulting values are presented in Fig. 3. The target temperature,
representing the averages of the hot and cold initial values,
covers the interval from 300 to 1000 K, in steps of 100 K. For
the smallest sizes (LZ � 150 nm), the value is obtained by
averaging seven simulations initialized with different atomic
velocities following a Maxwell-Boltzmann distribution at that
temperature. Moreover, at T = 300, 500, and 1000 K, the
statistical analysis is extended to the whole range of lengths
shown in Fig. 3. Notwithstanding this accurate statistical
analysis, the corresponding error bars are small and are not
visible on the graph.

The calculated thermal conductivity strongly depends on
the supercell length over the whole temperature range. The
saturation to a constant, length-independent value of κ cannot
be obtained, even for the longest cell (LZ = 1.2 μm). In addi-
tion, the saturation value is closer to the maximum simulation
length that we could study, upon increasing the temperature:
from LZ = 0.8 to 1.2 μm, the thermal conductivity increases
by 15% at 300 K, 10% at 500 K, and 7% at 1000 K. Meanwhile,
the phonon MFPs, �, decrease upon increasing temperature
because the atomic vibrations begin to sample regions of the
energy landscape well away from the harmonic minimum. In
order to find if these two effects are related, we compared our
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FIG. 4. Effect of the cross section (in lattice units) on the
temperature transient for a length of 520 nm. EDIP potential, 300 K.

curves κ(LZ) to the κ(�max) curves of thermal conductivity as
a function of the maximum phonon MFP by Henry and Chen
[12]. In that work, they calculated the thermal conductivity
from the Boltzmann equation, by integrating over the phonon
wave vector k, and summing over the phonon modes ν:

κbulk = 1

V

∑
ν

∫
�ωνvν(k)�ν(k)

∂fBE(ων,T )

∂T
dk, (2)

where �ων is the energy of the mode ν, vν(k) is the group
velocity, fBE is the Bose-Einstein distribution of phonons at the
temperature T , and �k,ν = τk,νvk,ν is the mean free path, with
τk,ν the relaxation time of the mode. Henry and Chen carried
the integration over the phonon frequencies by using the
density of states D(ν) as input. Lattice dynamics calculations
were carried out to obtain the phonon frequencies and
eigenvectors from the dynamical matrix, the energy-dependent
group velocities, and the density of states. The relaxation
times, on the other hand, were obtained from MD trajectories
transformed to normal-mode coordinates (see Ref. [12] for
more details). The calculation of the thermal conductivity was
performed along the directions [100], [110], and [111] and
finally averaged to get the bulk thermal conductivity κbulk.
They also performed partial integrations from 0 to ν = νmax to
obtain the accumulation curve κ(�max), with �max being the
average of �(νmax).

The calculations by Henry and Chen were performed
with the EDIP potential, and they obtained bulk thermal
conductivities of 175 and 25 W/(K m), respectively, at 300
and 1000 K. We performed calculations by AEMD using
the same interatomic potential at 300, 500, and 1000 K. The
cross section of our supercells is equal to 7 × 7 lattice units,
except for the largest supercells (LZ > 1 μm) that were only
achievable using a smaller section of 4 × 4 lattice units. We
checked at smaller LZ (520 nm) that the decay transients only
differ by less than 1% between the 7 × 7 and 4 × 4 case, and
that the cross section could not be further decreased without
significantly increasing the noise (Fig. 4).
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The thermal conductivity κ(LZ) obtained by AEMD is
plotted in Fig. 5 together with the MFP-dependent conductivity
by Henry and Chen κ(�max). Figure 5 shows a very similar
quantitative behavior of κ(LZ) and κ(�max). In order to
better quantify the relation between the supercell length and
the phonon MFPs, we have determined, for each value of
LZ , the �max corresponding to the same value of thermal
conductivity. The result is plotted in Fig. 6. A strong correlation
is obtained, thus demonstrating that the κ(LZ) curves obtained
by AEMD indeed probe the phonon MFP distribution, through
an accumulation function whose upper-MFP cutoff coincides
with the value of LZ . This also gives support to other works
[10], also based on our AEMD method, in which such a
relationship was taken for granted, but not fully demonstrated.

B. Comparison between “good” and “bad” conductors

We have studied the κ(LZ) dependence in various materials
(Fig. 7). The target temperature is equal to 500 K in the four
cases. The supercell cross section is equal to 16×16 lattice
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FIG. 7. Thermal conductivity vs length for silicon, germanium,
α-quartz, and a-SiO2. 500 K.

units for Si and Ge, 18×18 hexagonal units for α-quartz and
4.7×4.7 nm2 for a-SiO2.

The infinite-length thermal conductivity can be obtained
for silica. In a-SiO2, the notion of phonon cannot be strictly
used due to the atomic disorder, and heat carrier MFPs
are expected to be very short. The pink curve in Fig. 7
shows a plateau at ≈1 W/(K m) on the whole length range,
which indicates maximum MFP in the nm range. The thermal
conductivity of crystalline α-quartz changes by less than 3%
for LZ > 150 nm, which indicates the existence of phonon
MFPs larger by two order of magnitude compared to a-SiO2.
Larger maximum MFPs are indeed expected in this crystalline
phase of silica, where the scattering is not limited by the
atomic disorder. The infinite-length thermal conductivity is not
attained in crystalline germanium, suggesting the existence of
μm-long phonon MFPs. The coupled behavior of maximum
MFP and thermal conductivity is perfectly consistent with the
deductions from the kinetic theory: the thermal conduction is
poorer in materials where phonon scattering is higher or, in
other words, where phonon MFPs are smaller.

In conclusion, the more pronounced length dependence
obtained for the lower temperatures, and/or for increasingly
better thermal conductors, can be explained by the larger
phonon MFPs distribution. In the AEMD method, the supercell
length acts as a cutoff in the maximum MFP accounted for in
the simulations, and this provides a way to probe the phonon
MFPs distribution. Notably, the AEMD method can be applied
to the whole range of conductors, despite the longer transients
in the case of poor conductors, since the decay time is inversely
proportional to the thermal conductivity [Eq. (1)]. The latter
drawback is compensated by a less pronounced, or even
nonexistent, length dependence of κ , which makes it possible
to determine the thermal conductivity with a computational
cost comparable to that required for better thermal conductors
such as Si.

IV. EXTRAPOLATING THE BULK THERMAL
CONDUCTIVITY

We have shown in the previous section that the length
dependence of the thermal conductivity in AEMD can be
interpreted as a cutoff on the phonon MFP distribution. In
this section, a physical interpretation of this dependence is
presented.

Notably, a clear length dependence of the thermal con-
ductivity is always observed when boundaries are explicitly
introduced, such as a physical materials interface, or the heat
source and sink used in the direct MD method. In such cases,
the following formulation is used to extrapolate the bulk
thermal conductivity:

1

κ1(LZ)
= 1

κbulk

(
1 + λ

LZ

)
, (3)

where λ has the dimension of a length. This formulation,
initially proposed by Schelling et al. [5], is based on the
kinetic theory formulation of the thermal conductivity. The
relaxation time is written by means of a Matthiessen rule,
combining the phonon-phonon scattering time and a boundary
scattering time. This latter term “naturally” introduces a LZ

dependence in the thermal conductivity.
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On the other hand, the length dependence of the conductiv-
ity could also be given a purely numerical interpretation, as a
Taylor expansion of the intrinsically length-dependent quantity
κ , converging at its asymptotic value for LZ → ∞. Such an
expansion was proposed by Sellan [20], under the assumption
of computing a distribution of frequency-dependent relaxation
times for each phonon mode, to be fitted by a series expansion.
The first-order Taylor expansion would coincide with the same
formulation in Eq. (3), and the eventual extension to second
order could be used, to further improve the numerical fit of the
length-dependent data,

1

κ2(LZ)
= 1

κbulk

[
1 + λ

LZ

+ 1

2

(
μ

LZ

)2]
, (4)

with μ another parameter having as well the dimension of a
length.

Both formulations have been applied in previous works to
extrapolate at infinite length the thermal conductivity values
obtained by AEMD [9,21,22]. For the simulations of the
present study, using the two fitting procedures gives results
as shown in Fig. 8. Both formulations appear to capture quite
well the length dependence, with the second-order expansion
providing even a slight improvement at short LZ .

However, in the AEMD approach, both Eqs. (3) and (4) can
only be viewed as convenient mathematical fitting functions,
since in this method there are no sources of boundary scattering
(the supercell is fully periodic), and the apparent length
dependence cannot be physically justified by such expressions.
The purpose of the present section is to propose a formulation
based on a different physical interpretation, compatible with
the length dependence obtained in AEMD.

Starting from Eq. (2), we first assume an effective linear
relation dispersion, valid at low frequencies (ω < ω0), for
which ων = vgk and fBE ≈ kT /(�ω). This assumption relies
on the demonstration [23,24] that the major contribution
(>95%) of the thermal conductivity of bulk silicon comes from
acoustic phonons. Using this assumption, we now rewrite the

integral as a function of the frequency ω:

κbulk = 1

V

∑
ν

∫ ω0

0
�ωvg�ν(ω)

∂fBE(ω,T )

∂T
4πω2dω (5)

∝
∑

ν

∫ ω0

0
ω2�ν(ω)dω. (6)

The frequency dependence of � can be taken as �(ω) ∝ ω−n,
and plugged in Eq. (6) to obtain

κbulk ∝
∫ ω0

0
ω2−ndω. (7)

Now we can change again the integration variable to �,
obtaining

κbulk ∝
∫ ∞

�0

�−3/nd� ∝ (
�

1−3/n

0 − �1−3/n
max

)
, (8)

with �0 an adjustable parameter, corresponding to the lower
limit in the MFP domain where the above assumption of a
linear relation dispersion is valid, i.e., �0 = �(ω0).

We have shown in the previous section that AEMD
simulations at finite LZ have the consequence of cutting the
maximum MFP to a value �max � LZ < �bulk. Therefore, the
AEMD thermal conductivity at a length LZ can be interpreted
in the same way as Eq. (8), but terminating the integral at a
finite maximum MFP, approximately equal to LZ:

κ(LZ) ∝
∫ LZ

�0

�−3/nd� ∝ (
�

1−3/n

0 − L
1−3/n

Z

)
. (9)

In this way, the thermal conductivity dependence on the
supercell length LZ [or, equivalently, κ(�max)] reads

κ(LZ) = κbulk

[
1 −

(
LZ

�0

)1−3/n]
, (10)

provided 0 < n < 3. For phonon-phonon scattering by the
Umklapp mechanism, the frequency dependence of the MFP
is in ω−2, and the interpolating function becomes

κ(LZ) = κbulk

(
1 −

√
�0

LZ

)
. (11)

Equation (11) is one particular case of the general forms
obtained by Yang and Dames [25] for the accumulation
functions.

We have applied this square-root (Sqrt) interpolation
function to the κ(LZ) values obtained by AEMD simulations.
The values of κbulk and �0 for each simulation are given in
Tables I and II. The interpolation using the Sqrt formulation is

TABLE I. κbulk [W/(K m)] obtained by fitting our AEMD results
by Eq. (11).

Temperature (K) 300 400 500 600 700 800 900 1000

EDIP 169 81 23
Tersoff 233 176 145 111 96 76 66 54
Stillinger-Weber 152
Lee 124
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TABLE II. �0 (nm) obtained by fitting our AEMD results by
Eq. (11).

Temperature (K) 300 400 500 600 700 800 900 1000

EDIP 130 90 30
Tersoff 188 137 125 90 74 68 60 54
Stillinger-Weber 119
Lee 98

plotted in green in Fig. 8 in the case of EDIP calculations at
500 K. The Sqrt formulation matches well with the results
of the AEMD simulations at large LZ , i.e., in the long-
wavelength domain for which the above derivation is valid
(LZ > �0). The values of �0 (Table II) correspond to the range
where significant contributions to the thermal conductivity
start accumulating (Fig. 5). The values of the bulk thermal
conductivity extrapolated using the Sqrt formulation and the
first- and second-order formulations are close, although the
value is consistently lower with Eq. (3). These differences will
be discussed in the following.

The Sqrt interpolation function [Eq. (11)] has also been
applied to the AEMD simulations with the Tersoff (Fig. 9) and
Stillinger-Weber (Fig. 10) interatomic potentials, as well as for
Ge (Fig. 11) and α-quartz (Fig. 12). The length dependence at
large LZ is again in good agreement with Eq. (11) in all cases:
the Sqrt model, which relies on two assumptions, namely a
length dependence equal to a MFP accumulation, and a phonon
MFP due to intrinsic (Umklapp) scattering, appears to capture
well the length dependence of AEMD simulations, for a large
range of materials and temperatures. The fact that the formula
fails at very short lengths should not be surprising: the purpose
of any fitting function in this context is to provide the best
possible extrapolation to infinite length, not to reproduce the
MD results. In this sense, the Sqrt formulation has the evident
advantage of being physically grounded, instead of being just
a numerical fit.
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FIG. 9. Thermal conductivity of Si vs length obtained by AEMD
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V. DISCUSSION

A thorough comparison of the thermal conductivity calcu-
lated with different methods, different interatomic potentials,
and for different materials, has been rarely discussed in the
literature [26,27]. This is the purpose of the present section.

The AEMD bulk thermal conductivity obtained for silicon
with the four different interatomic potentials is presented in
Fig. 13. It can be seen that a truly quantitative agreement with
the measurements can be obtained by using EDIP. The thermal
conductivity is overestimated using Tersoff and Stillinger-
Weber and, although the parametrization of the latter potential
by Lee and Hwang has some effect on the thermal conductivity,
the bond strengthening proposed in that formulation is not
enough to match the experimental conductivity values.

The values of thermal conductivity obtained from different
methods, and fitted according to various formulations, can
be compared in Fig. 14 for the case of Si with the Tersoff
potential. Fitting the AEMD κ(LZ) curves by Eq. (11)
does not drastically change the value of κbulk, compared to
the value obtained using Eqs. (3) and (4). However, it is
worth underscoring once more that the Sqrt (although valid
only at large enough LZ) provides a physically grounded
interpretation of the length dependence for these cases (like
AEMD) in which no sources of boundary scattering exist. Also
the thermal conductivity obtained by Howell [28], using the
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FIG. 11. Thermal conductivity of Ge vs length obtained by
AEMD (points) and fit by Eq. (11) (curves). Tersoff potential, 500 K.
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FIG. 12. Thermal conductivity of α-quartz vs length obtained by
AEMD (points) and fit by Eq. (11) (curves). BKS potential, 500 K.

direct method and adjusting the length dependence at first order
[Eq. (11)], is comparable to the present results (the residual
small difference could be due to a better precision in the present
simulations, thanks to the larger LZ used).

Even more interesting is the comparison with the results
from methods that do not present an intrinsic length depen-
dence, such as EMD and lattice dynamics. The results obtained
at 300 K by He et al. [27] using EMD are in agreement with
our values. Therefore, it is verified that although in AEMD
one uses typically elongated supercells, with a very extreme
aspect ratio between the LZ and LX,LY length (up to 900), a
true 3D bulk conductivity is extracted, and not a 1D-reduced
value, which would lead necessarily to an underestimation of
κ . Finally, it can be seen that the results obtained by lattice
dynamics (LD) by computing the three-phonon scattering at
300 K lie in the upper interval of the results found by AEMD.
This is due to the fact that MD simulations implicitly account
for phonon-phonon scattering mechanisms at any order, and
not only for three-phonon collisions as it was the case in
Ref. [27].

The agreement between the calculation of the thermal
conductivity by the various methods becomes even better with
the EDIP potential, as shown in Fig. 15. The same conclusions
already drawn using the Tersoff potential, i.e., a slight
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FIG. 13. Silicon bulk thermal conductivity vs temperature.
Calculations by AEMD using various interatomic potentials and
experiments [29].
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with the 1st and 2nd order formulations, and by the Sqrt. “Direct
method” [28] extrapolated using Eq. (3) (DM). EMD, classical (Class.
LD) and quantum (Quant. LD) lattice dynamics calculations [27].

difference between the bulk thermal conductivities obtained
from Eqs. (3) or (11), and good agreement with the EMD
results are again obtained. In this case, the agreement with
combined LD-MD calculations by Henry and Chen [12] is even
better. Moreover, all of the values at different temperatures
appear to be in close agreement with the experiment, as it
can be seen in the inset, with an offset smaller than 10%
at 300 K and 30% at 1000 K. The larger offset at higher
temperature is due to atomic vibrations sampling the energy
landscape further away from the minimum, in an increasingly
anharmonic regime that is difficult to account for by using
empirical interatomic potentials.
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FIG. 15. Si bulk thermal conductivity calculated using EDIP
potential and various molecular dynamics approaches: AEMD
extrapolated at 1st and 2nd order formulations, and by the Sqrt.
EMD and mixed LD and MD calculations (LD-MD) [12]. In inset,
κtheo − κexpt in percentage of κexpt.
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EDIP potentials, and ab initio (ab initio). Data from Ref. [30].

The apparently better agreement with experimental values
obtained by using the EDIP potential is not easy to justify.
Neither the phonon spectrum, and consequently the phonon
velocity distribution, nor the heat capacity calculated by Porter
et al. [30] display any quantitative differences, whenever
the Tersoff, Stillinger-Weber, and EDIP potentials are used.
Concerning the relaxation times, or mean free paths, these are
intimately related to the ability of the interatomic potential
to predict the anharmonicity, which is quantified by the
Grüneisen parameters. The same authors show that none of the
three interatomic potentials are able to predict the experimental
values of the Grüneisen parameters (Fig. 16); in particular, for
the acoustic modes, these coefficients are not negative enough
to match the experiments. Care must therefore be taken, in
that this agreement of the thermal conductivity obtained using
EDIP with the experimental values is likely to be fortuitous.

VI. CONCLUSION

In this work, we carried out an extensive study of the
length dependence of the thermal conductivity in atomistic
molecular dynamics simulations. Such a length dependence is
typically observed in simulations in which boundary scattering
is present by construction of a supercell, as well as in
simulations methods (such as our AEMD) in which no sources
of boundary scattering apparently exist. It is instead absent in
other techniques, such as equilibrium MD and lattice dynamics
that although more expensive computationally and limited

to three-dimensional homogeneous systems, can be used as
benchmark for comparison.

The length dependence observed in the MD simulations
is found to be more pronounced for materials with a higher
thermal conductivity, or for the lower temperatures for any
given material. By comparing the length dependence of the
thermal conductivity, and the accumulation of the thermal con-
ductivity with increasingly long phonon mean free paths, we
obtain a good correlation between the two. This demonstrates
a physical correspondence between the kind of numerical
cutoff imposed by the supercell finite length and the maximum
phonon mean free paths sampled in the simulation of heat
diffusion.

In a second part of our study, we used the idea that the length
of the AEMD supercell acts as a cutoff for the maximum
phonon mean free path, to derive a physically motivated
extrapolation scheme. A semianalytical model, which assumes
a length dependence equal to the MFP accumulation, and
phonon MFP limited only by the intrinsic scattering by
Umklapp, is shown to capture well the long-wavelength length
dependence in AEMD, over a large interval of temperatures
and for materials ranging from bad to good heat conductors.

This analytical model was further used to extrapolate the
thermal conductivity of silicon at infinite length, since in
this material the phonon MFPs are too large even for the
biggest MD simulations. This formulation avoids the misuse
of previously established extrapolation schemes, which could
only be justified in particular MD simulations such as the direct
method. We show that for a given interatomic potential, the
extrapolated values are in agreement with other extrapolations
obtained from the direct method, and with simulation methods
free of any length dependence. The additional conclusion is
therefore that the strongly elongated supercell used in the
AEMD method does not prevent extraction of a correct bulk
value of the thermal conductivity.

Finally, we also showed that AEMD simulations using the
EDIP potential could provide values of κ for silicon that are
the closest to the experiment; in addition, such an agreement
could not be justified by the anharmonicity of this potential,
as quantified by the Grüneisen parameters.
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