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In this paper, we consider a reduced model of anaerobic digestion with recycling between organic matter and organic acid. The model is a four-dimensional system of ordinary differential equations. With the same removal rates, we give a complete analysis for the existence and local stability of all steady states of the system. We show that the model can have at most four steady states where a positive steady state is unique and is stable when it exists. To describe how the system behaves according to the control parameters represented by the dilution rate and the input concentration of the substrate, we determine theoretically the operating diagram by plotting the various conditions of existence and stability. We show that the steady states can bifurcate only through transcritical bifurcations. On the other hand, we determine the rate of biogas produced in each steady state according to the regions of the operating diagram.

INTRODUCTION

Anaerobic digestion is a biological process in which organic matter is transformed by microorganisms is transformed into biogas in the absence of oxygen. It is used for the treatment of wastewater and the production of energy in the form of biogas. The process (AD) is usually considered to be composed of four stages hydrolysis, acidogenesis, acetogenesis and methanogenesis. During the first stage, complex organic molecules are broken down into simple sugars, fatty acids and amino acids. During acidogenesis, acidogenic bacteria transform the simple substrate into acetic acid, volatile fatty acids or AGV, alcohols, hydrogen and carbon dioxide. Then, the AGV and alcohols are used by acetogenic bacteria and are converted into acetic acid as well as carbon dioxide and hydrogen. Finally, the bacteria acetoclasts convert acetic acid into methane and carbon dioxide, and the hydrogen-trophic methanogenic bacteria convert hydrogen and carbon dioxide into methane.

In this work, we consider a reduced model anaerobic digestion [START_REF] Giovannini | On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen[END_REF]) with recycling between organic matter S 1 and organic acid S 2 . The two-step model describes the following two reaction schemes

k 1 S 1 -→X 1 + k 3 S 2 + k 7 H 2 + k 5 CH 4 (1) k 4 S 2 + k 8 H 2 -→X 2 + k 2 S 1 + k 7 CH 4
(2) where the first microbial population X 1 transforms the organic matter S 1 into organic acids S 2 , methane CH 4 , and hydrogen H 2 at a reaction rate µ 1 . Products of the first reactions would then be used by the second population X 2 to produce methane at reaction rate µ 2 . For i = 1, . . . , 8, k i represent the coefficients pseudo-stoichiometric. The substrates S 1 and S 2 are introduced in the reactor with the inflowing concentrations S in 1 and S in 2 , respectively, and a dilution rate D. These reactions are described by the following system of differential equations introduced in [START_REF] Giovannini | On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen[END_REF]):

Ṡ1 =D S in 1 -S 1 -k 1 µ 1 (S 1 ) X 1 + k 2 µ 2 (S 2 ) X 2 (3) Ẋ1 = (µ 1 (S 1 ) -D) X 1 (4) Ṡ2 =D S in 2 -S 2 + k 3 µ 1 (S 1 ) X 1 + k 4 µ 2 (S 2 ) X 2 (5) Ẋ2 = (µ 2 (S 2 ) -D) X 2 , (6) with gaseous output q CH4 =β 1 µ 1 (S 1 )X 1 + β 2 µ 2 (S 2 )X 2 (7) q H2 =β 3 µ 1 (S 1 )X 1 -β 4 µ 2 (S 2 )X 2 ,
(8) where q CH4 , q H2 represent respectively the methane and hydrogen flow rate. For i = 1, . . . , 4, β i represent the physicochemical parameter. The specific growth rates of acidogenesis µ 1 (•) and methanogens µ 2 (•) are of Monod type. In this case, the system (3)-( 6) describes a mutualistic relationship (for example El [START_REF] Hajji | Association between competition and obligate mutualism in a chemostat[END_REF]) where the two microorganisms cooperate to mutually produce the substrate necessary for the other's growth. In fact, the first species noted X 1 grows on a substrate S 1 forming a product S 2 which is necessary for the growth of a second species X 2 . The latter produces the substrate S 1 which is necessary for the growth of species X 1 . Thus, the second bacterium X 2 cannot develop if the first X 1 bacteria are not present and the first bacteria X 1 cannot grow if the second bacteria X 2 is not present.

The analysis of this model is original and has not been studied in the literature. Our main objective in this paper is the mathematical analysis of the model for general growth rates and the same dilution rates. In addition, we determine the operating diagram of the model according to the control parameters. Finally, we study the production of biogas (methane and hydrogen) according the various regions of the operating diagram. This paper is organized as follows: in section 2, we make a change of variable in order to reduce the pseudostoichiometric coefficients allowing to simplify the mathematical model. Then, we present the assumptions made on the growth functions of species. Section 3 is devoted to the analysis of the existence and local stability conditions of steady states. These results are illustrated in section 4 by determining the operating diagrams which describe the regions of existence and stability. In section 5, we are also interested in maximum levels of methane and hydrogen produced. Finally, conclusions are drawn in the last section 5. The proofs of all results are reported in Appendix A. The parameter values used in figures are provided in Table A.1.

REDUCED MODEL AND ASSUMPTIONS

In what follows, we study model ( 3)-( 6) using the following general assumption on the growth rates. For i = 1, 2 the function µ i belongs to C 1 (R + ) and satisfies: Hypothesis 1. µ i (0) = 0 and µ i (S i ) > 0 for all S i > 0.

Assumption 1 means that the substrate is necessary for the growth of the two species. In addition, the growth rate of each species increases with the concentration of the substrate.

In order to simplify the mathematical analysis, we can rescale the model ( 3)-( 6) using the following change of variables

s 1 = S 1 k 3 k 1 , x 1 = k 3 X 1 , s 2 = S 2 , x 2 = k 4 X 2 . (9)
We obtain the following model:

ṡ1 =D s in 1 -s 1 -f 1 (s 1 ) x 1 + ωf 2 (s 2 ) x 2 (10) ẋ1 = (f 1 (s 1 ) -D) x 1 (11) ṡ2 =D s in 2 -s 2 + f 1 (s 1 ) x 1 -f 2 (s 2 ) x 2 (12) ẋ2 = (f 2 (s 2 ) -D) x 2 , (13) 
where,

s in 1 = S in 1 k 3 k 1 and s in 2 = S in 2 
, the growth functions are:

f 1 (s 1 ) = µ 1 k 1 k 3 s 1 , f 2 (s 2 ) = µ 2 (s 2 ) ( 14 
)
and

ω = k 3 k 2 k 1 k 4 (15)
In what follows, we consider model ( 10)-( 13). According to Hypotheses 1, for i = 1, 2, we first make the following general assumption on the growth rates f i . Hypothesis 2. f i (0) = 0 and f i (S i ) > 0 for all S i > 0. Hypothesis 3. 0 < ω < 1, where is defined by (15).

Using the two reaction schemes (1-2), we see from the biological point of view that k 1 > k 3 > 0 and k 4 > k 2 > 0, that is the Hypothesis 3 is verified. In particular, it is satisfied also for the estimated values of the pseudostoichiometric coefficients in [START_REF] Giovannini | On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen[END_REF]).

To preserve the biological meaning of our model ( 3)-( 6), we prove the following result. Proposition 4. For any nonnegative initial condition, the solution of the model ( 10)-( 13) exists for all nonnegative times, remains nonnegative and is positively bounded. In addition, the set Ω

= {(s 1 , x 1 , s 2 , x 2 ) ∈ R 4 + : s 1 + x 1 - ωx 2 = s in 1 and s 2 + x 2 -x 1 = s in 2 }
is positively invariant and a global attractor for (10)-( 13).

MATHEMATICAL ANALYSIS OF THE MODEL

In this section, we determine the existence and the local asymptotic stability conditions of all steady states of model ( 10)-( 13). A steady state exists if and only if all its components are nonnegative. Model ( 10)-( 13) can have at most four steady states, which we denote as follows:

• E 0 (x 1 = x 2 = 0): the washout of both species. • E 1 (x 1 = 0, x 2 > 0): species x 1 is extinct while species x 2 survives. • E 2 (x 1 > 0, x 2 = 0): species x 2 is extinct while species x 1 survives. • E * (x 1 > 0, x 2 > 0): both species are maintained.
From Hypothesis 2, when equations f i (s i ) = D have solutions, they are unique and we define the usual breakeven concentrations

λ i (D) = f -1 i (D), i = 1, 2. Otherwise, we put λ i (D) = +∞.
To simplify the notations, we will denote in the following λ i for λ i (D).

In the following proposition, we give the necessary and sufficient conditions of the existence and stability of all steady states of the model ( 10)-( 13). For convenience, we shall use the abbreviation LES for Locally Exponentially Stable. Proposition 5. Assume that Hypotheses 2 to 3 hold. Then, the four steady states of (10)-( 13) are given in Table 1. The conditions of their existence and local stability are given in Table 2.

Table 1. Steady states of (10)-( 13).

s 1 , s 2 components x 1 , x 2 components E 0 s 1 = s in 1 , s 2 = s in 2 x 1 = 0, x 2 = 0 E 1 s 1 = λ 1 , s 2 = s in 1 + s in 2 -λ 1 x 1 = s in 1 -λ 1 , x 2 = 0 E 2 s 1 = s in 1 + ω(s in 2 -λ 2 ), s 2 = λ 2 x 1 = 0, x 2 = s in 2 -λ 2 E * s 1 = λ 1 , s 2 = λ 2 x 1 = s in 1 +ωs in 2 -λ 1 -ωλ 2 1-ω x 2 = s in 1 +s in 2 -λ 1 -λ 2 1-ω
Table 2. Existence and stability conditions of steady states of system (10)-( 13).

Existence

Local stability E 0

Always exists

s in 1 < λ 1 and s in 2 < λ 2 E 1 s in 1 > λ 1 s in 1 + s in 2 < λ 1 + λ 2 E 2 s in 2 > λ 2 s in 1 + ωs in 2 < λ 1 + ωλ 2 E * s in 1 + s in 2 > λ 1 + λ 2 , s in 1 + ωs in 2 > λ 1 + ωλ 2
LES whenever it exists

OPERATING DIAGRAMS

The operating diagrams describe the various existence and stability regions of the steady states according to control parameters D, s in 1 and s in 2 which are the most easily parameters to manipulate in a chemostat. It is the best tool presented for the biologist to understand the asymptotic behavior of the process according to the control parameters. Several articles are based on the study of operating diagrams such as in [START_REF] Daoud | Modèles mathématiques de digestion anaérobie: effet de l'hydrolyse sur la production du biogaz[END_REF][START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF]; [START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF]). However, since it is difficult to visualize all the regions of the operating diagrams in the three-dimensional space, we choose to analyze it in the two-dimensional plane (D, s in 1 ) by fixing the parameter s in 2 . The other cases can be treated similarly. For simplicity, the growth rates f and g are chosen of Monod type which are written:

f 1 (s 1 ) = m 1 k1 k3 s 1 k S1 + k1 k3 s 1 and f 2 (s 2 ) = m 2 s 2 k S2 + s 2 , (16) 
where m i is the maximum growth rate and k Si is the halfsaturation (or Michaelis-Menten) constant associated to s i , for i = 1, 2. The biological parameter values used in all figures are provided in Table A.1. To determine the different regions in the operating diagram, we need to define some auxiliary functions listed in Table 3. Using Table 3. Notations, auxiliary functions and their domains of definition.

Curve Auxiliary functions Domains of definition

γ 0 s in 1 = λ 1 (D) D ∈ [0, m 1 [ γ 1 s in 1 = λ 2 (D) D ∈ [0, m 2 [ γ 2 s in 1 = λ 1 (D) + λ 2 (D) -s in 2 D ∈ [0, min(m 1 , m 2 )[ γ 3 s in 1 = λ 1 (D) + ω(λ 2 (D) -s in 2 ) D ∈ [0, min(m 1 , m 2 )[ γ 4 D = D * := f 2 (s in 2 )
for all s in 2 the definitions of the auxiliary functions in the Table 3, we determine in the following proposition the relative positions of γ i , i = 0, 2, 3 and of the vertical line γ 4 .

Proposition 6.

• For all s in 2 ≥ 0, the three curves γ 0 , γ 2 , γ 3 and the vertical line γ 4 intersect at the same point (D * , λ 1 (D * )) in the plane (D, s in 1 ) where D * = f 2 (s in 2 ) (see Fig. 1).

• If D > D * , then λ 1 < λ 1 + ω(λ 2 -s in 2 ) < λ 1 + λ 2 -s in 2 . (17) • If D < D * , then λ 1 + λ 2 -s in 2 < λ 1 + ω(λ 2 -s in 2 ) < λ 1 .
(18) Proposition 7. The existence and local stability of steady states E 0 , E 1 , E 2 and E * in the regions J i , i = 0, . . . , 5 of the operating diagram shown in Figs. 1, 2 and 3 are given in Table 4. Fig. 2(a) shows that the vertical line γ 4 become the s in 1 axis when s in 1 = 0 such that the regions J 3 to J 5 disappear. In this case, the system can not exhibits the extinction on first species with the survivability of the second species as time becomes large. Fig. 2(b) shows that the addition of s in 2 could favor the stability of E 2 , that is, the exclusion of the first species.

By decreasing ω towards zero, the process becomes similar to that of the two-step anaerobic digestion model without recycling of the organic matter. The operating diagram in Fig. 3 shows the reduction of the coexistence region J 4 . Using the coefficients pseudo-stoichiometric of (Giovannini 2018)), Fig. 3(b) show the disappearance of this region. Proposition 8. The bifurcation analysis of the steady states of ( 10)-( 13) by crossing the surfaces of Γ according to the operating parameters D and s in 1 is summarized in Table 5.

Condition Region E 0 E 1 E 2 E * s in 1 < λ 1 , s in 2 < λ 2 J 0 S s in 1 + s in 2 < λ 1 + λ 2 s in 1 > λ 1 J 1 U S s in 1 + s in 2 > λ 1 + λ 2 s in 2 < λ 2 J 2 U U S s in 1 > λ 1 , s in 2 > λ 2 J 3 U U U S s in 1 + ωs in 2 > λ 1 + ωλ 2 s in 1 < λ 1 J 4 U U S s in 1 + ωs in 2 < λ 1 + ωλ 2 s in 2 > λ 2 J 5 U S s in 1 D γ 0 γ 1 γ 2 γ 3 γ 4 D * J 0 J 1 J 2 J 3 J 5 J 4 s in 1 D γ 0 γ 2 γ 4 γ 3 ↑ ↑ Fig. 1. Operating diagram of (10)-(13) s in 2 > 0 and ω = 0.5. (a) s in 1 D J 0 J 1 J 2 γ 0 γ 2 (b) J 0 J 1 J 2 J 3 J 5 J 4 s in 1 D γ 0 γ 2 γ 4 γ 3 ↑ ↑ Fig. 2. Operating diagram in case (a) s in 2 = 0 and ω = 0.5; case (b) s in 2 > 0 and ω = 0.3. (a) s in 1 D J 0 J 1 J 2 J 3 J 5 J 4 γ 0 γ 2 γ 4 γ 3 ↑ ↑ (b) J 0 J 1 J 2 J 3 J 5 s in 1 D γ 0 γ 2 γ 4 ↑ Fig. 3. Operating diagram in case s in 2 > 0: (a) ω = 0.1 (b) ω = 6.869 × 10 -14 . et al. (
Table 5. Nature of bifurcations of the steady states of ( 10)-( 13) by crossing to the surfaces of Γ. The letter TB means a transcritical bifurcation.

Curve Transition Bifurcation γ 0 J 0 to J 1 TB:

E 0 = E 1 γ 2 J 1 to J 2 TB: E 1 = E * γ 4 J 2 to J 3 TB: E 0 = E 2 γ 0 J 3 to J 4 TB: E 0 = E 1 γ 3 J 4 to J 5 TB: E 2 = E *

THE RATE OF BIOGAS PRODUCED

Methane rate produced

Both reactions (1) and ( 2) show that the methane CH 4 is produced by acetogenic bacteria X 1 or hydrogenotrophic methanogenic bacteria X 2 . According to the equation ( 7), the rate of methane produced at steady state

E(S * 1 , X * 1 , S * 2 , X *
2 ) is given by the following formula (see for example [START_REF] Daoud | Modèles mathématiques de digestion anaérobie: effet de l'hydrolyse sur la production du biogaz[END_REF]):

q * CH4 = β 1 µ 1 (S 1 |S 1 =S * 1 )X 1|X 1=X * 1 +β 2 µ 2 (S 2|S 2=S * 2 )X 2|X 2 =X * 2 . (19) 
Using the change of variables ( 9) and ( 14), we obtain

q * CH4 = β 1 k 3 f 1 (s 1 |s 1 =s * 1 )x 1|x 1=x * 1 + β 2 k 4 f 2 (s 2|s 2=s * 2 )x 2|x 2=x * 2 .
Using the s 1 and s 2 components, x 1 and x 2 components of each steady state in Table 1, the rate of methane produced is summarized in Table 6. Table 6. Rate of methane produced in each steady state of the model ( 10)-( 13).

q * CH 4 E 0 0 E 1 β 1 k 3 D(s in 1 -λ 1 ) E 2 β 2 k 4 D(s in 2 -λ 2 ) E * β 1 D(s in 1 +ωs in 2 -λ 1 -ωλ 2 ) k 3 (1-ω) + β 2 D(s in 1 +s in 2 -λ 1 -λ 2 ) k 4 (1-ω) • If (D, s in 1 ) ∈ J 1
, the rate of methane produced can be approximated asymptotically by the rate of methane at the steady state E 1 .

• If (D, s in 1 ) ∈ J 2 ∪ J 3 ∪ J 4 , the rate of methane produced can be approximated asymptotically by the rate of methane at the steady state E * .

• If (D, s in 1 ) ∈ J 5 , the rate of methane produced can be approximated asymptotically by the rate of methane at the steady state E 2 . Fig. 4 shows the different curves of methane rate for various values of s in 1 where their colors correspond to the position of the point (D, s in 1 ) in the regions of the operating diagram. According to the estimated values of parameters in [START_REF] Giovannini | On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen[END_REF]), the maximum value of methane production is then reached in the region J 2 (in magenta) see Fig. 4(b). However, with another set of parameters the maximum value of methane production is observed in the regions (J i , i = 2, 3, 4) (see Fig. 4)(a). 2) show that the hydrogen H 2 comes from the substrate S 1 by X 1 then would be used by X 2 to produce methane. According to the equation (8), the rate of hydrogen produced at steady state

E(S * 1 , X * 1 , S * 2 , X *
2 ) is given by the following formula (see [START_REF] Daoud | Modèles mathématiques de digestion anaérobie: effet de l'hydrolyse sur la production du biogaz[END_REF]):

q * H2 = β 3 µ 1 (S 1 |S 1 =S * 1 )X 1|X 1=X * 1 -β 4 µ 2 (S 2|S 2 =S * 2 )X 2|X 2=X * 2 . ( 20 
)
Using the change of variables ( 9) and ( 14), we obtain

q * H2 = β 3 k 3 f 1 (s 1 |s 1 =s * 1 )x 1|x 1=x * 1 - β 4 k 4 f 2 (s 2|s 2=s * 2 )x 2|x 2=x * 2 .
Using the s 1 and s 2 components, x 1 and x 2 components of each steady state in Table 1, the rate of hydrogen produced is given in Table 7.

Table 7. Rate of hydrogen produced in each steady state of the model ( 10)-( 13).

q *

H 2

E 0 0 E 1 β 3 k 3 D(s in 1 -λ 1 ) E 2 -β 4 k 4 D(s in 2 -λ 2 ) E * β 3 D(s in 1 +ωs in 2 -λ 1 -ωλ 2 ) k 3 (1-ω) - β 4 D(s in 1 -s in 2 -λ 1 -λ 2 ) k 4 (1-ω)
• If (D, s in 1 ) ∈ J 5 , no hydrogen production as it is consumed immediately by bacteria X 2 to produce methane CH 4 .

• If (D, s in 1 ) ∈ J 1 , the rate of hydrogen produced can be approximated asymptotically by the rate of hydrogen at E 1 .

• If (D, s in 1 ) ∈ J 2 ∪ J 3 ∪ J 4 , the rate of hydrogen produced can be approximated asymptotically by the rate of hydrogen at E * .

According to the estimated values of parameters in [START_REF] Giovannini | On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen[END_REF]), the production of hydrogen is maximum when there is competitive exclusion of a second species (J 1 ). Moreover, no hydrogen production has been observed in the region (J 4 ) (see Fig. 5(b)). With another set of parameters the production of hydrogen is maximum when there is coexistence between the two species (J i , i = 2, 3, 4) (see Fig. 5(a)).

CONCLUSION

In this work, we have analyzed mathematically a reduced model of anaerobic digestion with recycling between or-(a) ganic matter S 1 and organic acid S 2 . First, we have analyzed the existence and local stability of all steady states by determining their necessary and sufficient conditions as a function of the operating parameters. Second, we have studied the behavior of the system (10)-( 13) in the plane (D, s in 1 ) for s in 2 fixed. The operating diagram shows that the system can have a unique stable steady state: either of coexistence (J i , i = 2, 3, 4) or washout (J 0 ) or exclusion of one of two microbial species (J i , i = 2, 5). In addition, the emergence of steady states and the change of stability can be only by a transcritical bifurcation. Then, we have determined the rate of biogas in each steady state and we have illustrated the maximum rate of biogas produced according to the region of operating diagrams. The production of biogas is not maximum when there is coexistence between the two species but it could be maximum when there is competitive exclusion of a species.

H 2 s in 1 = 2.7 1.2 0.2 s in 1 = 0.01 D E * E 1 ← (b) E * E 1 ← H 2 s in 1 = 2
In this work, we have shown the importance of recycling organic matter to maximize and/or minimize methane and hydrogen production (see Figs. 4 and5). Moreover, the operating diagram shows the sensitivity of the process according to the pseudo-stoichiometric coefficients. However, several questions remain open as the effect mortality or maintenance on the behavior of the system where the removal rates are distincts. In future work, we will analyze the global stability of all steady-states of the model. Appendix A. PROOFS
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 4 Existence and stability of steady states in the regions of the operating diagram. The letter S (resp. U) means that the corresponding steady state is LES (resp. unstable). No letter means that the steady state does not exist.

Proof of Proposition 4. Since the vector field defined by the model ( 10)-( 13) is C 1 , the uniqueness of solution to initial value problems holds. From ( 10)-( 13), for i = 1, 2

x i (t) = 0, for any t ≥ 0 ⇒ ẋi (t) = 0. If x i (0) = 0, i = 1, 2 then x i (t) = 0 for any t ≥ 0 as the boundary face x i ≡ 0 is invariant in the vector field C 1 by ( 10)-( 13). If x i (0) > 0, then x i (t) > 0 for any t ≥ 0 as x i ≡ 0 cannot be reached in finite time by trajectories for which x i (0) > 0 by the uniqueness of solutions. On the other hand for all initial conditions s 1 (0) ≥ 0 and s 2 (0) ≥ 0, if exists t 1 ≥ 0 and t 2 ≥ 0 such that

). Without loss of generality, we can assume that t 1 ≤ t 2 . For all t ≤ t 2 , we have that s 2 (t) ≥ 0. Then, it flows that ṡ1 (t 1 ) > 0 for any t ≤ t 1 . Hence s 1 (t) ≥ 0 for all t. In fact, for any t ≤ t 1 , we have s 1 (t 1 ) = 0 and s 1 (t) ≥ 0. Then ṡ1 (t 1 ) ≤ 0. which contradicts ṡ1 (t 1 ) > 0. By the same reasoning, we have s 2 (t) ≥ 0 for all t. Therefore, all solutions of (10)-( 13) remain nonnegative. Let 10)-( 13), it follows that ż1 = D(s in 1 -z 1 ) and ż2 = D(s in 2 -z 2 ). (A.1) Using Gronwall's lemma, we obtain

Thus, z 1 and z 2 are bounded. Then, z 1 + z 2 and z 1 + ωz 2 are bounded. In addition,

Therefore, the solutions of ( 10)-( 13) are positively bounded and are defined for all t ≥ 0. From (A.2) and (A.3), we deduce that the set Ω is positively invariant and is a global attractor for ( 10)-( 13).

Proof of Proposition 5. The steady states of ( 10)-( 13) are given by the solutions of the following equation:

we obtain the set of equations s in 1 -s 1 -x 1 + ωx 2 = 0 and s in 2 -s 2 -x 2 + x 1 = 0 (A.8) By solving (A.8), we obtain x 1 and x 2 with respect to s 1 and s 2 :

(A.9) For E 0 , we have x 1 = x 2 = 0. Using (A.8), we have s 1 = s in 1 and s 2 = s in 2 . Thus, E 0 always exists. For E 1 , we have x 1 > 0 and x 2 = 0. Using (A.5), we have f 1 (s 1 ) = D. From Hypothesis 2, we obtain s 1 = λ 1 (D). Hence, (A.8) results in

Thus, E 1 exists if and only if the s 1 and x 1 -components are positive, which is equivalent to s in 1 > λ 1 (D). For E 2 , we have x 1 = 0 and x 2 > 0. Using (A.7), we have

. For E * , we have x 1 > 0 and x 2 > 0. Using (A.5) and (A.7), we have f 1 (s 1 ) = D and f 2 (s 2 ) = D. From (2), we obtain s 1 = λ 1 (D) and s 2 = λ 2 (D). Using (A.9), we have

Parameter values used for (3)-( 6) when the growth rates f 1 and f 2 are given by ( 16). In all figures, we have s in 2 = 0.5. Since, x 1 > 0 and x 2 > 0. Thus, E * exists if and only if,

To analyze the local stability, we use the change of variables: 10)-( 13) can be written ż1 =D

(A.14) In the variables (z 1 , z 2 , x 1 , x 2 ) where z 1 and z 2 are defined by (A.10), the steady-states E 0 , E 1 , E 2 and E * are given by:

(1)

Let J denote the Jacobian matrix of (A.11)-(A.14) at (z 1 , z 2 , x 1 , x 2 ):

)

)-D which are nonnegative. Since J is a block matrix defined by (A.15), its eigenvalues are -D (with multiplicity 2) together with the eigenvalues of the matrix J 3 . At E 0 , the Jacobian matrix J 3 defined by (A.16) is written as follows:

The eigenvalues are negative if and only if s in 1 < λ 1 (D) and s in 2 < λ 2 (D). The Jacobian matrix at E 1 is given by

.

The eigenvalues of J 1 3 are given by:

Similarly, the Jacobian matrix at E 2 is given by

.

The eigenvalues of J 2 3 are given by:

The Jacobian matrix at E * is given by

2 )x * 2 = m 21 which are positive. Thus, det(J * ) = (1-ω)m 11 m 22 > 0, tr(J * ) = -(m 11 +m 22 ) < 0. Therefore, E * is LES if, and only if, it is exists. Proof of Proposition 6. For all s in 2 ≥ 0, we have λ 2 (D * ) = s in 2 . Therefore, λ 1 (D * ) + λ 2 (D * ) -s in 2 = λ 1 (D * ) and λ 1 (D * ) + ω(λ 2 (D * ) -s in 2 ) = λ 1 (D * ). Consequently, the curves γ 0 , γ 2 , γ 3 and the vertical line γ 4 intersect at the same point. For D > D * , we have λ 2 (D) > s in 2 . As 0 < ω < 1, then 0 < ω(λ 2 (D) -s in 2 ) < λ 2 (D) -s in 2 , i.e., (17) holds. Similarly, the result holds when D < D * .