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Abstract—This paper addresses the constrained control in
relationship with time-delayed systems application. We are par-
ticularly interested in its potential application to driving simu-
lation. Driving simulators are electro-mechanical structures that
reproduce the environment of a driver (steering wheel, pedals,
seat, road displayed on a screen,...) and are able to move within a
restricted safe area on purpose to reproduce the driver’s feelings
and particularly the acceleration ones through the inner ear.
Those movements are controlled by the Motion Cueing Algorithm
(MCA) which consists in a Model-based Predictive Controller
(MPC) converting in closed loop the expected acceleration to
displacements all by observing the physical constraints. Its design
is realized in a way to minimize the difference between effective
felt acceleration and the expected one. In this application context,
the movements inertia and communication protocols may induce
delays between the computation block of the controller and the
response that lead to serious discomforts of the humans in the
simulators, known under the Motion Sickness symptoms. In the
present paper, we revisit the control formulation for this motion
cueing algorithm in a control perspective and propose a control
strategy that compensates the delays in way to satisfy real-
time constraints during implementation in a simple yet effective
manner. The performance and limitation of a such strategy are
discussed to raise the awareness on the design trade-off and
decisions.

Index Terms—Predictive Control, Control Systems Design,
Real Time Applications

I. INTRODUCTION

Real-time control of industrial process practically implies
delays between signal generation and response measurement
with well known implication in the complexity and stability
of the underlying processes [1]. Those delays are of different
natures: actuators inertia, communication or command com-
putation in the optimal control case. They can be disruptive,
particularly for critical real-time systems where signals have
to be sent at the right moment.

The present paper is devoted to control of high performance
driving simulators [2] which purpose is to reproduce as close
as possible the driver feelings by the platform movements in a
restrictive and safe workspace (the range of the maneuvering
area is around 10m2). Car manufacturers have first focused
on visual stimuli with display of virtual road environments
on a screen in front of the driver, then they have add motion
actuators to stimulate equilibrium feelings sensed in the inner
ear. The displacements are deduced from the expected accel-

eration, computed by a software implementing the real vehicle
dynamics, by a function called Motion Cueing Algorithm
(MCA) [3].

In this framework, acceleration restitution induces discom-
fort when not synchronized with visual stimuli. Those draw-
backs are know in the literature as Motion Sickness, who
received the attention of different communities in the last 50
years, with the common goal of translating the underlying
phenomena towards mathematical models [4]–[6]. The reason
for such an interest in the mathematical modeling of the
motion sickness is simple: such a model will enable its
predictions and ultimately lead to strategies for its mitigation.

While driving simulators controllers were initially designed
with open-loop filter-based structures, most of the publications
nowadays focus on closed loop algorithms based on real-
time management of the prediction such as Model Predictive
Control (MPC) [7]–[10] in order to enhance the constraints
management and avoid some sickness features such as back-
lash effects [11]. The real-time control of such platform which
comes with important safety constrained leads to computa-
tionally involving schemes. Some improvements have been
proposed in term of complexity reduction [12] and recently
explore alternative schemes such as neural network solver
implementation [13]. However, aside the constraint handling
and the computational limitations, the inherent delays are
particularly difficult to handle in the control design with direct
implications in the motion sickness phenomena. The goal of
this work is to propose a control design which prevent the
driver from feeling unease, by dealing with the time-delay
from the design stage in the predictive control framework.

The classical approach for the delay compensation consists
in translating the problem in an extended state space repre-
sentation using past control actions and then design a MPC
controller for the undelayed resulting model [14]. However,
this approach is facing computational limitations particularly
for a real-time implementation due to the curse of dimensional-
ity which emerges with the extended state space and become
more difficult to overcome when the delay increases. Most
publications deal with this issue by proposing set-invariance
based perspective [14], [15] or investigate an approach close
to the Smith predictor philosophy [16].

In this work, we propose an MPC design based on maximal
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Fig. 1. Driving simulator scheme

controllable set for delayed linear systems in the same way of
MPC alleviation philosophy for undelayed ones. The back-
ground of driving simulators modelization and delay compen-
sation are addressed in Section II. The Maximal controllable
set approach is developed in section III. The framework and
simulation results are given in Section IV and discussed in
Section V.

II. PROBLEM FORMULATION

The schematic view of the dynamic platform is depicted
in the Figure 1. The basis of the structure (inclined gray
plate in the figure) can move longitudinally and laterally by
means of the integrated rails and it can be tilted by electrical
actuators which equip the hexapod. Those different physical
actuators are controlled with a low level (internal) feedback
law which tracks position (for the rails) and tilt (for the
hexapod) references. These reference signals are provided by
the Motion Cueing Algorithm (MCA) which is the block that
concerns the effective design of this work.

The dynamics of a high performance1 driving simulator can
be summarized with the following time-delay discrete-time
linear model obtained by the discretization with the sampling
time Ts (considered in the present application for the available
benchmark at 10 ms):

x(k + 1) =

1 Ts 0
0 1 0
0 0 1

x(k) +

T 2
s

2 0
Ts 0
0 Ts

u(k − d)

y(k) =
[
0 0 g

]
x(k) +

[
1 0

]
u(k − d)

(1)

The state vector x(k) =
[
p(k) v(k) θ(k)

]ᵀ
includes

three physical components: position, speed and tilt angle while
the output u(k) =

[
ul(k) ur(k)

]ᵀ
corresponds to the linear

lateral/longitudinal2 acceleration of the rails and the tilt rate,
g denotes the gravitational acceleration.

1The high-performance is understood here in the sense that the low level
control of the logitudinal/lateral/tilt movements is tuned to deliver a fast and
accurate responses.

2We include here for brevity one axis state space model (e.g. lateral),
knowing that a counterpart (1) exists for the other axis (e.g. longitudinal).

Practically, the simulator integrates under the workspace
constraints the acceleration information provided by the soft-
ware module which generates the virtual scene. Here we
assume the workspace constraints to be symmetrical with
respect to their origin:

|p(k)| ≤ pmax, (2)
|v(k)| ≤ vmax, (3)
|θ(k)| ≤ θmax. (4)

The power supply and the maximal tilt rate felt by a person
restricts the inputs equally:

|ul(k)| ≤ ul,max, (5)
|ur(k)| ≤ ur,max. (6)

Thus, as the considered constraints are polyhedral, in the
following we will considered the compact formulation X =
{x ∈ Rn | Fxx ≤ gx} for the state constraints and U = {x ∈
Rm | Fux ≤ gu} for input constraints.

Remark. The model (1) is obtained from the lineariza-
tion of the nonlinear dynamics whose response is y(k) =
g sin(θ(k))+ul cos(θ(k)) and corresponds to the acceleration
felt by the driver in his/her frame. The assumption of small
angles is valid in automotive driving simulators which have
limited variations with respect to other fields of application
involving immersive virtual reality.

Time-delays are issued by communication protocol and the
time-response of the low-level platform dynamics [17] and can
be taken into account in the model, with a time-invariant value
d ∈ N.

In this paper, we assume the both actuation channels are
associated to the same delay. This can always be enforced by
considering d to be the upper bound of delays on the respective
actuation channels. In practice, even if they present slightly
differences, the delays are in the range (50-100 ms).

The Figure 2 depicts the operating principles for the control
system (1). The objective is to provide an accurate tracking of
the acceleration signal.

Remark. The acceleration signal (output of the system) is in
direct relation with the input signal and thus the control loop
can be formalized as a tracking problem for an (over-actuated)
system. This trivial problem meets however the physical lim-
itations of the state constraints. As such, most acceleration
profiles need to be replaced by admissible trajectories all by
minimizing the Motion Sickness (which is related principally
to the time-lag but also to the tracking error).

Remark. The acceleration trajectory to be tracked is avail-
able at the current moment in time and its extrapolation is
subject to important uncertainties due to poor predictability
of human reactions in relationship with the scene and the
motion cueing algorithm. In control related notions, this means
that the future trajectory {ak+1|k, ak+2|k, ak+3|k, ...} can be
made available but it cannot be granted to be receded at the
next time instant (i.e ak+j|k+i may consistently differ from



Controller x(k + 1) = Ax(k) + Bu(k − d) Platform
aref u(k) x(k) y(k) = Cx(k) +Du(k − d)

Fig. 2. Block diagram of the control structure operating

ak+j|k+i+1 for j > i + 1 > 0). The accurate tracking of a
particular sequence can turn to a poor performance in case
of trajectory update from the MCA. The first conclusion in
this respect is that control design has to ensure a recursive
feasibility mechanism independent of the assumptions on the
tails of the future trajectories.

Taking into account also the time-delay particularity of the
dynamical model, this last remark impose recursive feasibility
requirements exclusively based on the current state and the
previous control inputs.

The classical approach for the constrained control design for
time-delay systems is the predictive control (MPC) using an
extended state-space model. This state-space prediction model
includes the past control actions in the extended state vector

ξ(k) =
[
x(k) u(k − d) . . . u(k − 1)

]ᵀ
.

With this artefact, the extended dynamics become:

ξ(k + 1) = Aξξ(k) +Bξu(k)

y(k) = Cξξ(k)
(7)

where:

Aξ =


A B 0 . . . . . . 0
0 0 I . . . . . . 0
...

...
. . . . . .

...
0 . . . . . . . . . I 0
0 . . . . . . . . . . . . 0

 , Bξ =


0
...
...
I


Cξ =

[
C D 0 . . . 0

]
(8)

Then classical MPC formulation of the tracking problem is:

min
(u(k),...,

u(k+N−1))

N∑
i=1

‖yref (k + i)− y(k + i)‖2qy

+ ‖ξ(k + i)‖2Qx
+ ‖u(k + i)‖2R

s.t. ξ(k + 1) = Aξξ(k) +Bξu(k)

y(k) = Cξξ(k)

(ξ(k + 1), . . . , ξ(k +N − 1)) ∈ X× Ud

(u(k), . . . , u(k +N − 1)) ∈ U
ξ(k +N) ∈ Ωf

(9)

where qy , Qx and R are weighting matrices, N is the
prediction horizon, yref is the reference signal and Ωf is the

terminal positively invariant set and needs to be parameterized
according to an admissible trajectory. We recall the definition
of this property below for the class of linear discrete-time
systems with linear feedback structure which is of interest in
the current framework.

Definition II.1. A set Ω is positively invariant with respect to
the delay-free dynamics x(k+1) = Ax(k)+Bu(k) subject to
a linear feedback law u(k) = −Kx(k) if for any initial state
x(k) ∈ Ω it follows (A − BK)x(k) ∈ Ω and the control is
admissible −Kx(k) ∈ U.

For the linear case, this set can be constructed with the
procedure given in [18]. Unfortunately, the formulation (9)
is too complex for the real-time application considered here,
the larger extended state space size running against the curse
of dimensionality on one hand, and on the other hand the
parametrization of the terminal set being an additional burden
on the computational side.

In the following, we propose a strategy based on the
direct use of the Maximal Controllable Set (MCS) or its
approximation. This set defined as the largest set of initial
states for which there exists an admissible sequence of control
actions that makes the state trajectory to remaining in the set
itself. In the following, this set will be denoted C. In practice,
this set can be approximated by the N -step Controllable Set
CN in polyhedral form. It can be construct from a positively
invariant set through the procedure in [19].

III. MAXIMAL CONTROLLABLE SET BASED APPROACH

In this section, we adress the alleged control structure for
time-delay linear systems applied to the driving simulation
application. This MPC-based structure can be declined in two
versions, one using the memory of the past inputs, the other
using the last free state.

For the theoretical analysis of the control scheme, we
consider the following generic LTI time-delay system with
single output:

x(k + 1) = Ax(k) +Bu(k − d)

y(k) = Cx(k) +Du(k − d)
(10)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ R1×n and D ∈ R1×m.
The principle of this method is summarized in Figure 3:
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Fig. 3. Principle of the strategy proposed in Section III, the past inputs impose
the free response up to k+d while the optimized inputs are chosen such that
the predicted inputs ensure the first predicted state (at stage k + d + 1) to
belong to the controllable set C .

• knowing the past inputs construct the free-response up to
x(k + d|k)

• minimize the difference between the reference and the
predicted output over the horizon k + d, . . . , k +N

• impose as hard constraint x(k + d+ 1|k) ∈ C.
The receding horizon optimization related to the MPC

formulation is given below:

min
(u(k),...,

u(k+N−1))

d+N∑
i=d+1

‖yref (k + i)− y(k + i)‖2qy

+ ‖x(k + i)‖2Qx
+

N∑
i=1

‖u(k + i)‖2R

s.t.

x(k + i+ 1) = Ax(k + i) +Bu(k + i− d)

∀i ∈ {0, . . . , d+N − 1}
y(k + i) = Cx(k + i) +Du(k + i− d)

∀i ∈ {d+ 1, . . . , d+N}
x(k + d+ 1) ∈ C
(u(k), . . . , u(k +N − 1)) ∈ U

(11)
where qy , Qx and R are weighting matrices.

The first component of the solution is effectively applied.
Those constraints guarantee the recursive feasibility of the
controller while optimizing the cost function. The recursive
feasibility of the controller can be guaranteed using the fol-
lowing results.

Lemma III.1. Let C be an admissible controlled invariant
set with respect to the delayed-free dynamics: ξ(k + 1) =
Aξ(k) + Bv(k), where (A,B) are the matrices of (10). If
the current state x(k) ∈ C and the past inputs of (10) {u(k−
d), . . . , u(k−1)} ∈ U such that {x(k+1), . . . , x(k+d)} ∈ C,
then there exists a control action u(k) such that x(k+d+1) =
Ax(k + d) +Bu(k) ∈ C.

Proof. Let us start from the assumption that x(k) ∈ C. By
exploiting the existence of feasible control sequence such that

{x(k + 1), . . . , x(k + d)} ∈ C one can concentrate on the
delay-free dynamics:

ξ(k + 1) = Aξ(k) +Bv(k)

which is equivalent to due to time-invariance to

x(k + d+ 1) = Ax(k + d) +Bu(k)

For any ξ(k) ∈ C there exists v(k) ∈ U such that ξ(k+1) ∈ C.
By choosing u(k) = v(k) one has x(k + d+ 1) ∈ C.

Proposition III.1. Given an initial state x(0) ∈ C such
that x(0) =

[
p0 0 θ0

]ᵀ
with (p0, θ0) ∈ R2 and a past

control sequence {u(−d), . . . , u(−1)} = {0, . . . , 0}, then the
algorithm is recursively feasible.

Proof. Since no actions are provided to the plant, the trajectory
remain at the origin during d time steps. Since the origin
belongs to the maximal controllable set, the previous lemma
can be applied.

IV. SIMULATION

The simulated driving scenario investigate here is a slalom
phase followed by a turn. Here, we only observe the lateral
accelerations and movements as well as the MCA responses.
The weight parameters use for the simulation are: qy = 10,
Qx = diag(

[
50 1 1

]
), R = diag(

[
10 1

]
) and the

prediction horizon: N = 100. The simulation was computed
with MATLAB 2019a with a processor Intel(R) Core(TM) i7-
7700K CPU@4.20GHz 16Go RAM.

The Fig.4 depicts the displacement of the lateral rail, its
speed and the tilt angle profile as well as their physical
limitations that are actually satisfied along the simulation. The
acceleration rendering is compared to the reference profile
on Fig.5 where we observe the acceleration globally follows
the profile with a lower amplitude by noticing that a part
of acceleration is proportional to the tilt angle. An important
feature of the acceleration rendering is the restitution of the
shape of the reference profile, particularly during the slalom
phase (there is no saturation due to inputs constraints), then
the driver feels the correct variations. More the delay has been
compensated which can cancel the motion sickness.

The acceleration of the rail (represented on Fig.6) is added
to the tilt angle contribution. We can observe that the rail
contributes more quick components of the slalom phase while
the tilt impacts more the slow turn phase (which can be
explained by the constraints on tilt rate depicted on Fig.7).
Limitations of the rail are underlines on Fig.4 and on Fig.8
where the rail part of the state space is represented (position
and speed) with the trajectory within Maximal Controllable
Set, which means the dynamics is conservative. Fig.9 depicts
the computation time at each iteration.

V. DISCUSSION

First, this strategy is limited by the complexity of the
Controllable set. Indeed, the complexity of the optimization
problem (11) depends on the complexity of C. The curse
of dimensionality can be expected as the dimension of the
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Fig. 4. States trajectory in the time domain: rail position (upper left), rail
velocity (upper right), tilt angle (below left)

state-space increases and thus the whole complexity of the
procedure making the real-time performance unreachable.

In our application the belonging of the (d + 1)th state
to C may imply that the controller forces punctually the
trajectory to remain in C by applying the maximal input value.
This is illustrated in the following variation of the simulation
presented in the previous section. Here the design is less
conservative, the position component of the cost function has a
lower weight: Qx = diag(

[
30 1 1

]
). We can check on the

Fig.10,12 that the trajectory uses a larger area and take benefits
of the whole workspace to improve the acceleration rendering
depicted on Fig.11 with the rail acceleration input and the
reference. However, after 20s we can observe an artefact in
the rail acceleration input that impacts the response. If this
artefact is short enough, it may be filtered by the inner ear
and so not impact the driver, but it the sensibility depends
on the driver physiology. So there is a trade-off between the
conservativeness of the design (weights on states and inputs)
and the implication of delayed states constraints.

VI. CONCLUSION

Time delays are inherent to the structure of driving sim-
ulators due to the mechanical inertia and the communication
protocol between the algorithms which render the virtual scene
and the physical move of the platform, all of them having
as a joint action on the human senses. The Motion Sickness
being directly related to the time-delay, its inclusion in the
control algorithm needs to be optimized in order not to further
deteriorate the human perception.

The classical optimal control approach based on extended
state space (9) is difficult to implement on real-time systems
because of the complexity inherited from the increased dimen-
sion of parameters. In this paper we proposed a alleged control
strategy based on the knowledge of the maximal controllable
set (11) by enforcing the delayed states to remain within this
safe set at a reduced computational cost.

This strategy is recursively feasible and globally follows
the expected acceleration while satisfying states and inputs
constraints. However its performance can be limited on one
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Fig. 8. Trajectory in the state space of the rail components (position,speed),
the blue set corresponds to projection of the maximal controllable set on the
rail components

side by the size (topology) of controllable set and on the
other side by the policy of constraints activation among the
control channels. This latter drawback can be overcome with
the choice of weights in the design of the strategy.
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Fig. 12. Trajectory in the state space (rail components)
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