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ABSTRACT

Although the discovery of the chaotic motion of the inner planets in the Solar System (Mercury to Mars) was made more than 30 years
ago, the secular chaos of their orbits still demands more analytical analyses. In addition to the high-dimensional structure of the motion,
this is probably related to the lack of an adequately simple dynamical model. We consider a new secular dynamics for the inner planets,
with the aim of retaining a fundamental set of interactions that explains their chaotic behaviour and at the same time is consistent
with the predictions of the most precise orbital solutions currently available. We exploit the regularity in the secular motion of the
outer planets (Jupiter to Neptune) to predetermine a quasi-periodic solution for their orbits. This reduces the secular phase space to the
degrees of freedom dominated by the inner planets. In addition, the low masses of the inner planets and the absence of strong mean-
motion resonances permits us to restrict ourselves to first-order secular averaging. The resulting dynamics can be integrated numerically
in a very efficient way through Gauss’s method, while computer algebra allows an analytical inspection of planet interactions when the
Hamiltonian is truncated at a given total degree in eccentricities and inclinations. The new model matches reference orbital solutions
of the Solar System over timescales shorter than or comparable to the Lyapunov time very satisfactorily. It correctly reproduces the
maximum Lyapunov exponent of the inner system and the statistics of the high eccentricities of Mercury over the next five billion years.
The destabilizing role of the g1 − g5 secular resonance also arises. A numerical experiment, consisting of a thousand orbital solutions
over one hundred billion years, reveals the essential properties of the stochastic process driving the destabilization of the inner Solar
System and clarifies its current metastable state.

Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – methods: analytical –
methods: numerical

1. Introduction

The inner Solar System, with the secular chaos of its plane-
tary orbits (Laskar 1989, 1990c; Sussman & Wisdom 1992),
holds a special status among the dynamical systems of celestial
mechanics. Even though its chaotic behaviour has been demon-
strated numerically three decades ago, still no analytical study
corroborates or rules out the role in chaos generation of the sec-
ular resonances 2(g3 − g4) − (s3 − s4) and (g3 − g4) − (s3 − s4),
between the fundamental precession frequencies of Earth and
Mars, as proposed in Laskar (1990c, 1992) and supported by
Laskar et al. (2004). This fact is probably related to the com-
plex network of dynamical interactions among the inner planets:
The fundamental precession frequencies of their orbits vary in
an intricate way over a 0.1′′ yr−1 scale in a few dozen million
years (Myr), with the exception of the Venus-dominated eccen-
tricity mode g2, which has somewhat smaller variations (Laskar
1990c; Laskar et al. 2004). This behaviour reveals the essential
high-dimensional structure of the inner Solar System, which lim-
its the possibility of faithfully modelling its dynamics with a few
effective degrees of freedom (e.g. Lithwick & Wu 2011; Batygin
et al. 2015).

Analytical insight into the motion of the inner planets
requires an appropriate dynamical modelling of the long-term
evolution of their orbits. On the one hand, such a model must be
consistent with the predictions of the reference numerical inte-
grations available in literature (Laskar 1990c, 2008; Laskar et al.
2004; Laskar & Gastineau 2009) to ensure that it reproduces the

dynamical features of the inner system with sufficient precision.
On the other hand, the corresponding Hamiltonian should be
set in a form suitable for the systematic application of canon-
ical perturbation techniques (Hori 1966; Deprit 1969), which
is essential to an unbiased analysis of such a high-dimensional
dynamics. Moreover, the possibility of numerically integrating
the equations of motion in an efficient way is fundamental for
studying the chaotic evolution of the orbital solutions in a sta-
tistical way. Unfortunately, the construction of such a model is
a delicate task. In principle, we might just consider the full N-
body Hamiltonian of the Newtonian gravitational interactions
among the Solar System planets, with the addition of the leading
corrections coming from general relativity and the Earth–Moon
interaction. This already reproduces the precession frequencies
of the inner orbits with a precision better than 0.01′′ yr−1 (Laskar
1999). However, this Hamiltonian is unnecessarily complicated
because it includes short-time harmonics, with periods shorter
than 5000 yr (e.g. Carpino et al. 1987), which are known to
generate small quasi-periodic oscillations in the inner orbits,
without being implied in chaos generation. The inner planets
are not, indeed, involved in any relevant mean-motion reso-
nance. At the same time, the long-term numerical integration
of the corresponding equations of motion is very time consum-
ing, the resulting solutions needing to be filtered to extract the
secular trend of the orbits (Carpino et al. 1987; Nobili et al.
1989). These facts suggest considering a secular Hamiltonian to
directly describe the slow movement of the planet perihelia and
nodes after proper averaging over the short-time orbital motion
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(Laskar 1984, 1985). Secular dynamics includes the essential
planet interactions responsible for chaos in the inner Solar
System and allows performing the fastest long-term numeri-
cal integrations (Laskar 1988, 1989, 1994, 2008). This enabled
the discovery of chaos in the inner system before the use of
symplectic integration schemes (Sussman & Wisdom 1992).
Unfortunately, an effective secular model for the entire Solar
System has to be of high order in planet masses, principally
because of the 5:2 near mean-motion resonance between Jupiter
and Saturn, the so-called great inequality (Laplace 1785; Laskar
1996). A simple averaging of the N-body Hamiltonian over
the planet mean longitudes, resulting in a first-order secular
dynamics in planet masses, would reproduce the fundamental
frequencies g5 and g6 (which dominate the perihelion precession
of Jupiter and Saturn, respectively) very poorly1 (Laskar 1988).
The construction of higher-order models requires the manipula-
tion of large Poisson series and the use of sophisticated computer
algebra systems. This is probably the reason why they are still not
widely used, at least as a basis of extensive research.

This paper introduces a new secular dynamics for the orbits
of the inner planets. It is based on the practical long-term regu-
larity of the outer planet trajectories (Laskar 1990c; Laskar et al.
2004; Hoang et al. 2021), the low masses of the inner planet,
and the absence of relevant mean-motion resonances in the inner
system (Sect. 2). We show that our model can be numerically
integrated with the so-called Gauss (1818) method (Sect. 3),
while its Hamiltonian is suitable for a systematic expansion
in planet eccentricities and inclinations when the algorithm of
Laskar & Robutel (1995) and a computer algebra system such as
TRIP (Gastineau & Laskar 2011, 2020) are employed (Sect. 4).
We compare its orbital solution to a reference N-body inte-
gration over short (secular) timescales (Sect. 5) and compute
the corresponding maximum Lyapunov exponent in a statisti-
cal fashion (Sect. 6). We then determine the percentages of the
high Mercury eccentricities over the next 5 billion years and
highlight the destabilizing role of the g1 − g5 secular resonance
(Sect. 7). Finally, we perform a new numerical simulation involv-
ing a thousand orbital solutions over one hundred billion years
to characterize the effective stochastic process that drives the
destabilization of the inner Solar System. We also discuss the
implications on the conjecture of a marginal stability of a sec-
ularly evolving planetary system formulated in Laskar (1996)
(Sect. 8).

2. Dynamical model

We modeled the dynamics of the largest bodies in the Solar
System by considering the Sun and the N = 8 planets as point
masses m0, (mk)k=1,N , indexed in order of increasing semi-major
axis. The barycentric coordinates of the bodies and the corre-
sponding momenta are denoted by (R0, R̃0 = m0Ṙ0), (Rk, R̃k =
mk Ṙk)k=1,N . By employing the canonical heliocentric variables
of Poincaré (1896), the Hamiltonian of the Newtonian gravita-
tional interactions among the bodies reads

H =

N∑
k=1

( ‖r̃k‖2
2µk

−G
m0mk

‖rk‖
)
+

∑
1≤k<`≤N

(
r̃k · r̃`

m0
−G

mkm`

‖rk − r`‖
)
, (1)

where rk = Rk − R0 are the planet heliocentric coordinates and
r̃k = R̃k their conjugated momenta, µk = m0mk/(m0 + mk) are the
1 Even the second-order secular dynamics in Laskar (1985) needed an
ad hoc correction of 0.27′′ yr−1 for the Saturn-dominated eccentricity
mode g6 (Laskar 1988).

reduced masses of the planets, and G is the gravitational constant
(Laskar 1991; Laskar & Robutel 1995). The Hamiltonian H is a
perturbation to the union of disjoint Kepler problems, so that it is
useful to introduce a set of canonical variables that trivially inte-
grates the unperturbed problems (e.g. Morbidelli 2002). From
now, we adopt the momentum-coordinate ordering of conjugate
pairs. Appropriate variables are (Λk, λk; xk,− jx̄k; yk,− jȳk)k=1,N ,
defined as

Λk = µk
√

G(m0 + mk)ak,

xk =
√

Λk

√
1 −

√
1 − e2

k E j$k ,

yk =
√

2Λk

(
1 − e2

k

) 1
4 sin(ik/2) E jΩk ,

(2)

where ak are the planet semi-major axes, λk the mean longitudes,
ek the eccentricities, ik the inclinations, $k the longitudes of
the perihelia, and Ωk the longitudes of the nodes (Laskar 1991;
Laskar & Robutel 1995). Throughout the paper, j =

√−1 stands
for the imaginary unit, E represents the exponential operator, and
the overbar denotes the conjugate of a complex variable. The
variables xk and yk are the Poincaré rectangular coordinates in
complex form. We refer to them throughout as Poincaré’s com-
plex variables, or simply Poincaré’s variables. With this choice
of canonical variables, the integrable part of the Hamiltonian (1)
reads

H0 =

N∑
k=1

( ‖r̃k‖2
2µk

−G
m0mk

‖rk‖
)

= −
N∑

k=1

G2(m0 + mk)2µ3
k

2Λ2
k

, (3)

so that the Poincaré complex variables are constants of motion
for the Kepler problem.

In the regime of low orbital eccentricities and inclina-
tions, which characterizes the Solar System, Eqs. (2) give xk =√

Λk/2ekE j$k + O(e3
k) and yk =

√
Λk/2ikE jΩk + O(e2

k ik, i3k), and
the Poincaré variables are also small. The principal part of the
two-body perturbation in Eq. (1) can therefore be expanded as a
Fourier series in the planet mean longitudes, with polynomial
coefficients depending on the Poincaré variables (e.g. Laskar
1990b, 1991; Laskar & Robutel 1995),

U1 = −G
mm′

‖r − r′‖ = −G
mm′

a′
∑
`,`′∈Z

Ũ`,`′E j(`λ+`′λ′),

Ũ`,`′ =
∑

Γ
`,`′
N (α)XnX′n′X̄n̄X̄′n̄′YmY′m′Ȳm̄Ȳ′m̄′ ,

(4)

where N = (n, n′, n̄, n̄′,m,m′, m̄, m̄′) is a tuple of non-negative
integers2. Following Laskar & Robutel (1995), we defined the
dimensionless Poincaré variables X = x

√
2/Λ, Y = y/

√
2Λ and

the semi-major axis ratio α = a/a′, with a < a′. The analyti-
cal expression of the coefficients Γ

`,`′
N (α), only depending on the

semi-major axis ratio, is given in Laskar & Robutel (1995) in
terms of Laplace coefficients. The indirect part of the two-body
perturbation can also be expanded as a Fourier series in the mean
longitudes,

T1 =
r̃ · r̃′
m0

=
∑
`,`′∈Z

T̃`,`′ (Λ,Λ′,X,X′,Y,Y′) E j(`λ+`′λ′). (5)

2 The symmetries of the planetary Hamiltonian (1) imply constraints
on the exponents (`, `′,N) known as D’Alembert rules (e.g. Laskar &
Robutel 1995; Morbidelli 2002). The rotational invariance requires n +
n′ + m + m′ − n̄ − n̄′ − m̄ − m̄′ + ` + `′ = 0, while it follows from planar
symmetry that the terms of the series Ũ`,`′ are even with respect to the
variables (Y,Y′, Ȳ, Ȳ′).

A1, page 2 of 25



F. Mogavero and J. Laskar: Long-term dynamics of the inner Solar System

The computation of the Fourier coefficients T̃`,`′ is outlined in
Appendix A. Equations (4) and (5) allow explicitly computing
the Fourier expansion of the Hamiltonian perturbing function,

H1 =
∑

1≤k<`≤N

(
r̃k · r̃`

m0
−G

mkm`

‖rk − r`‖
)

=
∑
`∈ZN

H̃` E j`·λ, (6)

where λ stands for the vector of the planet mean longitudes, λ =

(λ1, . . . , λ8), and the coefficients H̃` depend on all the remaining
canonical variables.

2.1. Secular dynamics

The long-term dynamics of the Solar System planets, in partic-
ular that of the inner planets, essentially consists of the slow
precession of their perihelia and nodes, driven by secular, that is,
orbit-averaged, gravitational interactions (Laskar 1990c; Laskar
et al. 2004). A secular Hamiltonian describing this long-term
motion can be introduced in its simplest form by searching
for a change of variables that eliminate at first order in the
planet masses all the harmonics with non-null wave vectors `
in the Fourier expansion of the perturbation (6). In canonical
perturbation theory (Hori 1966; Deprit 1969; Morbidelli 2002),
this elimination is achieved through a canonical transforma-
tion defined as the time-1 flow of a generating Hamiltonian S
satisfying the homologic equation

H1 + {S ,H0} = 〈H1〉, (7)

where the braces represent the Poisson bracket. The angle-
bracket operator stands for averaging over the mean longitudes,

〈·〉 =
1

(2π)N

∫
TN

dλ·, (8)

with the integration defined over the hypertorus TN at fixed val-
ues of all the remaining canonical variables. This means that
〈H1〉 is the Fourier coefficient H̃0 corresponding to the null har-
monic in the expansion (6). The homologic Eq. (7) gives the
generating Hamiltonian S as a formal Fourier series,

S = − j
∑

`∈ZN\{0}

H̃`

` · nE j`·λ, (9)

where n = ∂H0/∂Λ is the vector of the planet mean motions. The
secular Hamiltonian Ĥ is formally given by the Lie transform
generated by the function S and applied to the Hamiltonian H,

Ĥ = ELS H
∣∣∣∣
Λ̂,λ̂,x̂,ŷ

, E±LS · =
+∞∑
n=0

(±1)n

n!
Ln

S · , (10)

where LS · = {S , ·} is the Lie derivative associated with the
generating Hamiltonian, L0

S is defined as the identity operator,
and Ln

S · = LS Ln−1
S · for n ≥ 1. The Hamiltonian Ĥ in Eq. (10)

is expressed in the new canonical variables (Λ̂k, λ̂k; x̂k,− j ˆ̄xk;
ŷk,− j ˆ̄yk)k=1,N , which we call the secular variables. They are
related to the original variables by the Lie transforms

Λk = ELS Λ̂k, λk = ELS λ̂k, xk = ELS x̂k, yk = ELS ŷk. (11)

The original variables are therefore the superposition of the sec-
ular variables and short-time oscillations generated by the n ≥ 1

terms of the Lie transforms. Because we are interested in the
long-term dynamics of the planets, we only focus on the secular
variables. To keep a simpler notation, we therefore omit the hat
on the secular variables from now on.

Differently from the outer planets, the inner planets are
not currently involved in strong mean-motion resonances. More
precisely, a maximum contribution of only 0.07′′ yr−1 to the
fundamental precession frequencies of the inner orbits in the
Laplace-Lagrange solution arises from the second order in the
planet masses (Laskar 1985, Table 8). This same contribution is
0.9′′ yr−1 for the outer planets, mainly due to the great inequality
of Jupiter and Saturn. Building on this fact, we chose to trun-
cate the series (10) at first order in the planet masses, that is, we
neglected quadratic and higher-order terms with respect to the
Fourier coefficients H̃`. We expect the main contribution to the
precession frequencies of the inner orbits to come from the lin-
ear terms, given the low masses of the inner planets. In absence
of strong mean-motion resonances, in Eq. (9) the denominators
` · n involving at least one inner planet are sufficiently far from
zero. Under these assumptions, the higher-order terms only pro-
duce small corrections to the dynamics generated by the leading
terms. Using the homologic Eq. (7), we thus obtain

Ĥ = H0 + 〈H1〉. (12)

The resulting secular Hamiltonian Ĥ is simply the average of
the N-body Hamiltonian (1) over the planet mean longitudes.
The averaging process is mathematically equivalent to replacing
each planet by its instantaneous Keplerian orbit, with the cor-
responding mass distributed along it in a way that is inversely
proportional to the local orbital speed of the planet. The secu-
lar dynamics is thus the slow gravitational interaction of these
Keplerian rings. This equivalence was pointed out by Gauss
(1818), and it is thus referred to as Gauss’ dynamics. As a
result of the averaging over the mean longitudes, the Λk vari-
ables are constants of motion in the secular dynamics, and so
are the semi-major axes of the planets. The resulting Hamilto-
nian system consists of two degrees of freedom for each planet3,
corresponding to the two Poincaré complex variables xk and yk.

General relativity and minor effects. The dynamical inter-
actions described by the Hamiltonian (1) are not sufficient to
finely reproduce the precession frequencies of the inner orbits; to
this end, additional physical effects must be taken into account
(Laskar 1999). It is well known that general relativity contributes
with 0.430′′ yr−1 to the secular precession of the Mercury perihe-
lion. This correction is critical for the statistics of the long-term
destabilization of the inner orbits (Laskar 2008; Laskar &
Gastineau 2009) because it moves the system away from the
g1 − g5 secular resonance, which is responsible for the very high
eccentricities of Mercury (Laskar 2008; Batygin & Laughlin
2008; Boué et al. 2012). We therefore included in the Hamil-
tonian (12) the leading secular contribution of general relativity,
which reads

ĤGR =

N∑
k=1

G2m2
0mk

c2a2
k

15
8
− 3√

1 − e2
k

 , (13)

where c is the speed of light (e.g. Saha & Tremaine 1992;
Mogavero 2017). We point out that the first term in the sum-
mation only depends on the semi-major axis ak and is thus
3 The entire planetary system is therefore described by 16 degrees of
freedom, even reduced to 15 when the conservation of the z-component
of the total angular momentum is taken into account.
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a constant quantity in the secular dynamics. The next largest
effect to be taken into account would be the Earth-Moon grav-
itational interaction, accounting for a 0.077′′ yr−1 contribution
to the secular perihelion precession of the Earth (Laskar 1999).
However, this is the order of magnitude of the contribution
coming from the Hamiltonian terms at second order in the
planet masses, which is neglected in our model. At degree 2
in planet eccentricities and inclinations, Laskar (1985, Table 8)
reported contributions from the second order of 0.073′′ yr−1

and 0.062′′ yr−1 to the Earth-dominated and Mars-dominated
eccentricity modes g3 and g4, respectively, the other frequency
corrections being at least ten times smaller. Because the denom-
inators ` · n appearing in Eq. (9) and involving the inner planets
are not close to zero, we expect the contributions from higher
degrees to be generally smaller than those from degree 2. We
therefore chose to exclude the Earth-Moon interaction in our
model, preferring to work with a Hamiltonian whose depen-
dence on eccentricities and inclinations is exact, as compared
to a non-decisive increase in precision on the orbit precession
frequencies. Moreover, we know that the N-body Hamiltonian
(1), corrected for general relativity, reproduces the maximum
Lyapunov exponent of the inner Solar System (Rein & Tamayo
2018).

Therefore, apart from irrelevant constant terms only depend-
ing on the semi-major axes in Eqs. (3) and (13), the secular
Hamiltonian of the eight Solar System planets considered in our
study reads

Ĥ = −
8∑

k=1

G
m0mk

ak


k−1∑
`=1

m`

m0

〈
ak

‖rk − r`‖
〉

+ 3
Gm0

c2ak

1√
1 − e2

k

 .
(14)

2.2. Forced inner planets

As discussed in the Introduction, the secular Hamiltonian (14)
would not correctly reproduce the frequencies of the Jupiter- and
Saturn-dominated eccentricity modes g5 and g6, respectively.
Fortunately enough, the very small variations over billions of
years of the precession frequencies of the outer orbits, compared
to those of the inner orbits (Laskar 1990c; Laskar et al. 2004;
Hoang et al. 2021), naturally suggest a way to make out of the
Hamiltonian (14) a very effective model for the inner system.
This is achieved by choosing, once and for all, an explicit quasi-
periodic time dependence for the orbits of the giant planets, that
is, by expressing the corresponding Poincaré complex variables
as finite Fourier series,

xk(t) =

Mk∑
`=1

x̃k` E jmk` ·φ(t)

yk(t) =

Nk∑
`=1

ỹk` E jnk` ·φ(t)


k ∈ {5, 6, 7, 8}, (15)

where t denotes the time, x̃k` and ỹk` are complex amplitudes, mk`
and nk` are integer vectors, and φ(t) = ωot, with ωo the vector of
the (constant) fundamental precession frequencies of the outer
orbits, denoted asωo = (g5, g6, g7, g8, s6, s7, s8)4 (Laskar 1990c).
The number of harmonics Mk,Nk appearing in the decompo-
sitions depends on the planet. When this predetermined time

4 The frequency of the Jupiter-dominated inclination mode s5 is null
because the total angular momentum of the system is conserved.

dependence is injected into Eq. (14), we obtain the Hamiltonian
H of a forced secular inner Solar System,

H[(xk, yk)k=1,4, t]= Ĥ[(xk, yk)k=1,4, (xk=xk(t), yk=yk(t))k=5,8]. (16)

The explicit time dependence in the Hamiltonian H physically
means that the inner planets interact with each other while mov-
ing in an external gravitational potential generated by the giant
planets5. The inner planets thus constitute an open system, and
the corresponding dynamics does not possess any fundamental
integral of motion, such as the energy or angular momentum. As
a result of the predetermination of the outer orbits, in addition to
the explicit time dependence, the HamiltonianH possesses eight
degrees of freedom. As already stated, compared to the second-
order secular system of Laskar (1984, 1985), our model neglects
terms of order higher than one in the planet masses. Neverthe-
less, the precession frequencies of the outer orbits can be set to
very precise values in Eq. (15). Moreover, the Hamiltonian (16)
is not truncated in eccentricities or in inclinations, so that the
range of validity of its dynamics extends to very excited states,
provided that the Keplerian orbits of the planets do not cross each
other. This makes our model perfectly suited to exploring the
very long-term evolution of the inner system, even when highly
eccentric and inclined orbits become statistically recurrent.

2.3. Construction of the outer planet solution. Initial
conditions

The quasi-periodic form of the outer orbits in Eq. (15) was estab-
lished numerically and is explicitly reported in Appendix D. The
full equations of motion of the main bodies of the Solar System
were numerically integrated over 30 Myr in the future, following
the comprehensive model of Laskar et al. (2011). The initial con-
ditions of the integration were adjusted through least squares to
the high-precision planetary ephemeris INPOP13b (Verma et al.
2014; Fienga et al. 2014) that extends over 1 Myr. Throughout the
paper, we refer to this direct numerical integration as LaX13b.
Through frequency analysis (Laskar 1988, 1993, 2005; Laskar
et al. 1992) of the orbital solution, the leading secular harmon-
ics of the dimensionless Poincaré variables of the outer planets
(Xk,Yk)k=5,8 were extracted to construct the Fourier series (15)
as in Laskar (1988, 1990c). This was performed up to a numer-
ical precision that no longer allows recognizing new harmonics
as linear combination of the fundamental frequencies ωo in an
unambiguous way. The precision of the outer planet solution is
shown in Table D.4. We report there the root mean square of
the dimensionless Poincaré variables of the outer planets in the
LaX13b solution, and that of the corresponding residuals after
subtraction of their quasi-periodic decomposition from Eq. (15)
and filtering out of the non-secular Fourier components. The
effectiveness of the quasi-periodic approximation is illustrated
in Figs. D.1 and D.2.

The choice of the secular semi-major axes and that of the
initial conditions for the secular Poincaré variables of the inner
planets deserves a discussion. In principle, the initial secular
variables have to be computed by inverting the Lie transforms
in Eq. (11). They should not be set to the initial value of the
corresponding original variable because this might cause an off-
set in the secular frequencies of the motion as a result of the
short-time (high-frequency) oscillations generated by the Lie

5 The terms in Ĥ only involving outer planet variables can be discarded
in Eq. (16) because they depend on time alone and no longer affect the
inner planet dynamics.
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transform. This is a general rule when averaged dynamical sys-
tems are constructed (e.g. Laskar & Simon 1988). To avoid the
explicit computation of the generating function S in Eq. (9) and
the related Lie transforms, appropriate initial conditions for the
secular Solar System can be effectively computed by filtering
out the short-time components of the numerical solution of the
non-averaged system, as we did here. The constant term in the
frequency analysis of the variables Λk, performed on the LaX13b
solution, provides the value of the secular semi-major axes of
the planets (Table D.1). Moreover, a polynomial expansion in
time over the first few thousand years of the same solution, once
filtered, provides the nominal initial conditions for the secular
Poincaré complex variables of the inner planets (Table D.2).

3. Numerical integration. Gauss’s method in
Hamiltonian formalism

The dimensionless Hamilton equations for the forced inner
system (16) read

Ẋk = − 2 j
Λk

∂H
∂X̄k

, Ẏk = − j
2Λk

∂H
∂Ȳk

(17)

for k ∈ {1, 2, 3, 4}. Because of the averaging over the mean longi-
tudes in Eq. (14), these equations include double integrals of the
form

∂

∂Z̄

〈
1

‖r − r′‖
〉

=
1

2π

∫ 2π

0
f · ∂r

∂Z̄dλ, (18)

f =
1

2π

∫ 2π

0
− r − r′

‖r − r′‖3 dλ′, (19)

where Z stands for X or Y, alternatively. The equations of
motion (17) are thus non-algebraic, and the numerical compu-
tation of the derivatives is in principle much more complex
than in N-body dynamics or in polynomial secular systems as
in Laskar (1985, 1990c). Nevertheless, it is well known that the
Eqs. (17) can be integrated numerically in a very efficient way
through the so-called Gauss method (Gauss 1818; Bour 1855;
Hill 1882). The vector f in Eq. (19) is proportional to the gravita-
tional force exerted on a test particle by a Keplerian ring, and can
be analytically expressed in terms of complete Legendre elliptic
integrals (e.g. Olver et al. 2020, Chapter 19). This was first shown
by Gauss (1818), who at same time introduced the arithmetic-
geometric mean to numerically evaluate these special functions
in a few elementary iterations and with high precision. Build-
ing on its modern derivation in Musen (1970), we implemented
Gauss’s method into our complex Hamiltonian formalism (17).
This allows, in particular, to eliminate the degeneracy typically
appearing at e = 0 (circular orbits) and i = 0 (equatorial orbits)
(e.g. Fouvry et al. 2020), which is fundamental to guaranteeing
high numerical precision. We employed a dedicated algorithm
based on piecewise minimax rational function approximation
to numerically compute the complete elliptic integrals in dou-
ble floating-point precision at the cost of elementary functions
(Fukushima 2015). The remaining simple integral in Eq. (18) was
then effectively evaluated with the trapezoidal rule, which con-
verges exponentially fast with the number of function evaluations
because of the periodicity of the integrand (e.g. Touma et al.
2009). We applied the trapezoidal rule in an adaptive way by
doubling the number of function evaluations until the estimated
relative error on the integral was smaller than 10−12. Because
the convergence of the numerical integral is exponential, the

Table 1. Average wall-clock time on an Intel(R) Core(TM) i7-7700T
CPU at 2.90 GHz for the numerical integration of the forced inner sys-
tem according to the total degree of truncation of the Hamiltonian in
eccentricities and inclinations (H2n is given in Eq. (25), and H in
Eq. (16)).

H2n 4 6 8 10 H
100 Myr orbital solution 1.3 s 7.5 s 35 s 4 m 01 s 2 m 48 s

resulting error is often orders of magnitude smaller than this
tolerance.

We integrated Eqs. (17) using an Adams PECE method of
order 12 and a conservative time step of 250 yr, as in Laskar
(1994). In absence of any fundamental integral of motion (see
Sect. 2.2), we estimated the integration error after a time T
following Laskar (1994). Starting from the nominal initial con-
ditions, we integrated the dynamics over the time interval [0,
T /2] and then backwards to the initial time. By denoting the
deviations from the initial coordinates of the system in the
phase space as (δXk(T ), δYk(T ))k=1,4, we defined the relative
integration error as

δ(T ) = max
k∈{1,...,4}

{ ∣∣∣∣∣Re[δXk(T )]
Re[Xk(0)]

∣∣∣∣∣ , ∣∣∣∣∣ Im[δXk(T )]
Im[Xk(0)]

∣∣∣∣∣ ,∣∣∣∣∣Re[δYk(T )]
Re[Yk(0)]

∣∣∣∣∣ , ∣∣∣∣∣ Im[δYk(T )]
Im[Yk(0)]

∣∣∣∣∣ }, (20)

where (Xk(0),Yk(0))k=1,4 are the initial conditions of the system.
Over the time interval T ∈ [0, 20] Myr, the average integration
error is well described by the power law δ(T ) = δ0[1 + (T/T0)α],
with δ0 = 9 × 10−15, T0 = 0.6 Myr and α = 1.2. Therefore we
have δ(10 Myr) ≈ 3 × 10−13, and δ(10 Gyr) ≈ 10−9 when we
extrapolate by ignoring the chaotic behaviour of the solution.
The integration error is therefore similar to that of the secular
system in Laskar (1994). We emphasize that our fixed-time-step
integration scheme allows us to reach very highly excited orbital
states. Violations of the precision goal on the integral (18) typ-
ically occur only when the system is already close to the first
intersection of the instantaneous Keplerian orbits of two planets
(see Sect. 7), and they are related to an intrinsic discontinuity in
the equations of motion (17) at orbit crossing (e.g. Touma et al.
2009).

From a computational perspective, the choice of a multi-
step method is well adapted to our dynamical system because
the derivative evaluation constitutes by far the most expensive
step of the integration scheme. When it is implemented in the
C programming language, Gauss’s method allows us to compute
100 Myr orbital solutions of the forced inner planets in a few
minutes on a PC, as shown in Table 1. Therefore the computa-
tional cost is comparable to that of the secular system of Laskar
(1990c), in spite of the different complexity of the correspond-
ing Hamiltonians. The rather involved analytical derivations to
adapt Gauss’s method to our complex Hamiltonian formalism is
the subject of a forthcoming paper (Mogavero, in prep.), along
with the release of the C program implementing it.

4. Analytical expansion. Computer algebra

In addition to its fast numerical integration, our dynamical model
allows a systematic analytical development of its Hamiltonian
by means of computer algebra. We employed TRIP, a computer
algebra system dedicated to perturbation series, especially those
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Table 2. Number of monomials of variables (xk, x̄k, yk, ȳk)k=1,8 in Ĥ2n (Eqs. (2), (24)) and of variables {(uk, ūk, vk, v̄k)k=1,4, (E jφk(t))k=1,7} in H2n
(Eqs. (42), (44), (48)) according to the truncation degree.

2 4 6 8 10

Ĥ2n

Monomials 129 1345 6561 23 213 66 253
Disk usage 21 kB 215 kB 1.0 MB 3.7 MB 10.6 MB

Wall-clock time 2.4 s (137%) 2.5 s (129%) 3.0 s (154%) 5.7 s (187%) 17.1 s (272%)

H2n

Monomials 8 6304 188 024 3 394 892 42 817 100
Disk usage – 0.9 MB 29.5 MB 547.6 MB 7.1 GB

Wall-clock time – 0.15 s (447%) 3.4 s (773%) 1 m 16 s (1038%) 20 m 37 s (1343%)
Harmonics 1 2748 69 339 1 029 137 10 279 581

Notes. It also shows the disk space in bytes occupied by the series, their computation time on an Intel(R) Xeon(R) CPU E5-2698 v3 at 2.30 GHz
(CPU time in parentheses), and the number of Fourier harmonics in H2n according to Eq. (52).

of celestial mechanics (Laskar 1990a; Gastineau & Laskar 2011,
2020). The main objects of its symbolic kernel are the Poisson
series, that is, multivariate Fourier series whose coefficients are
multivariate Laurent series,

S (z1, . . . , zn, ϕ1, . . . , ϕm) =
∑

Ck,`z
k1
1 · · · zkn

n E j(`1ϕ1+···+`mϕm), (21)

where (zp)p=1,n and (ϕp)p=1,m are complex and real variables,
respectively, k = (kp)p=1,n ∈ Zn, ` = (`p)p=1,m ∈ Zm and Ck,` are
complex coefficients.

Following Laskar & Robutel (1995), the low eccentricities
and inclinations in the Solar System can be exploited to develop
the averages appearing in Eq. (14) as formal series in Poincaré’s
variables (xk, x̄k, yk, ȳk)k=1,8. Eq. (4) gives〈

a′

‖r′ − r‖
〉

=
∑

Γ
0,0
N (α)XnX′n′X̄n̄X̄′n̄′YmY′m′Ȳm̄Ȳ′m̄′ . (22)

The rotational invariance of the secular Hamiltonian (14)
requires n + n′ + m + m′ − n̄ − n̄′ − m̄ − m̄′ = 0, while from
planar symmetry, it follows that m + m′ + m̄ + m̄′ is an even
integer. These relations imply that the monomials in Eq. (22)
are even with respect to the (x, x′, x̄, x̄′) and (y, y′, ȳ, ȳ′) vari-
ables separately. The relativistic terms in Eq. (14) are readily
expanded,

1√
1 − e2

=
1

1 − xx̄/Λ
=

∞∑
p=0

( xx̄
Λ

)p
. (23)

By truncating the series (22) and (23) at a given total degree 2n
(n ∈ N0) in Poincaré’s variables (xk, x̄k, yk, ȳk)k=1,8 and after sub-
stitution in Eq. (14), we obtain a polynomial secular Hamiltonian
for the ensemble of the Solar System planets,

Ĥ2n =

n∑
p=0

Ĥ(2p), (24)

where Ĥ(2p) groups all the monomials of same total degree 2p.
Expansion (24) is readily obtained in TRIP, which implements
the algorithm of Laskar & Robutel (1995) to compute a trun-
cation of the series (22). The truncated Hamiltonian (24) is in

the form of a Poisson series (21) in Poincaré’s complex vari-
ables, with no angular dependencies. The crucial point here is
that its coefficients only depend on the planet masses and secular
semi-major axes, which are constant parameters in our dynam-
ics. They can therefore be numerically evaluated once and for all,
to obtain very compact series. This is shown in Table 2, which
gives the total number of monomials in Eq. (24) with respect to
the degree of truncation, along with the disk usage of the corre-
sponding series when stored in a plain-text file, and their typical
computation time in TRIP.

The expansion (24) straightforwardly provides a truncated
Hamiltonian for the forced inner system (16),

H2n =

n∑
p=1

H(2p) ,

H(2p)[(xk, yk)k=1,4, t]= Ĥ(2p)[(xk, yk)k=1,4, (xk=xk(t), yk=yk(t))k=5,8].
(25)

The computation of the equations of motion for the truncated
Hamiltonian (25) only requires taking the derivatives of a multi-
variate polynomial, and can thus be systematically performed in
TRIP. We set the resulting polynomials in Horner form to ensure
speed and stability of their numerical evaluation, and wrapped
them into a C code to achieve the best computational perfor-
mance6. The equations of motion were then integrated through
the Adams PECE method of order 12 employed for Gauss’s
dynamics, with the same time step of 250 years. The typical
computational cost of a 100 Myr orbital solution is shown in
Table 1, listed according to the degree of truncation. In light
of the pertinence of the forced inner system that we shown in
Sect. 5, the truncated Hamiltonian (25), at degrees 4 and 6 in
particular, is the best of very fast and still realistic dynamical
models of the inner Solar System.

4.1. Forced Laplace-Lagrange dynamics

For low eccentricities and inclinations, the secular Hamiltonian
(14) is a perturbation of the integrable Laplace–Lagrange (LL)
problem. Its truncation at degree 2 in Poincaré’s variables gives
the quadratic form

ĤLL = Ĥ(2) = x†Mx + y†Ny, (26)
6 Numerical integration of ODEs is also available directly in TRIP.
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where we have defined the column vectors x = (x1, . . . , x8)T and
y = (y1, . . . , y8)T , T is the transposition operator, and the dag-
ger stands for the Hermitian transposition, that is, x† = x̄T . The
matrices M and N are real and symmetric. Because the variables
x and y are not coupled in the LL Hamiltonian, the follow-
ing derivations focus on the degrees of freedom related to x. A
similar treatment holds for the y variables.

After substituting the time dependence of the outer planet
variables given in Eq. (15), we obtain

HLL(x) = x†Mx
∣∣∣∣
(xk=xk(t))k=5,8

=
(
x†i , x

†
o(t)

) (Mii Mio
MT

io Moo

) (
xi

xo(t)

)
,

(27)

where we have defined the inner and outer planet column vec-
tors, xi = (x1, x2, x3, x4)T and xo(t) = (x5(t), x6(t), x7(t), x8(t))T ,
respectively, and the real matrix M is written as a block matrix,
with Mii and Moo symmetric 4× 4 matrices. When terms that
only depend on time are discarded, the Hamiltonian reads

HLL(x) = x†i Miixi + 2 Re
(
x†i Mioxo(t)

)
, (28)

where Re stands for the real part of a complex quantity. The
Hamiltonian (28) corresponds to a forced Laplace–Lagrange
system. Because it is quadratic in the inner vector xi, we can
analytically solve the corresponding equations of motion and
introduce appropriate action-angle variables.

Solution of the equations of motion. The matrix Mii is
real and symmetric and can thus be diagonalized through an
orthogonal matrix OM,

Mii = OM DMOT
M. (29)

The columns of OM are the eigenvectors of Mii, while the diag-
onal entries of DM = −diag(gLL) are the corresponding real
eigenvalues7, gLL being a column vector. The orthogonal matrix
OM induces the canonical change of variables8 (xi,− jx†i ) →
(x′i ,− jx′i

†) defined as

x′i = OT
Mxi. (30)

The transformed Hamiltonian reads

HLL(x) = x′i
†DMx′i + 2 Re

(
x′i
†M′

ioxo(t)
)
, (31)

with M′
io = OT

M Mio. The corresponding Hamilton equations are
given by

ẋ′i = − j
∂HLL(x)

∂x′i
† = − j

(
DMx′i + M′

ioxo(t)
)
, (32)

and constitute a first-order inhomogeneous matrix ordinary dif-
ferential equation. The general solution can be written as

x′i(t) = x′i,F(t) + x′i,f(t). (33)

The free solution x′i,F(t) is the general integral to the asso-
ciated homogeneous equation ẋ′i = − jDMx′i , representing the

7 The minus sign in the definition of the matrix DM is such that the
precession frequencies of the perihelia $̇ have the same sign as gLL
8 In our notation, the canonical momenta constitute column vectors,
while the coordinates are wrapped in row vectors.

autonomous perihelia precession of the inner orbits, while the
forced solution x′i,f(t) is a particular integral of the complete
Eq. (32), which arises from the gravitational forcing of the outer
planets. We define, once and for all, the forced solution as

x′i,f(t) = − j E− jtDM

∫ t

dτE jτDM M′
ioxo(τ). (34)

When the decomposition given in Eq. (15) is employed, the
components of the forced solution are

(x′i,f)k =

8∑
`=5

M∑̀
p=1

(M′
io)k` x̃`p

(gLL)k − m`p · ωo
E jm`p·φ k ∈ {1, 2, 3, 4}. (35)

The (constant) denominators appearing in Eq. (35) are far from
zero because the inner planets are not involved in the corre-
sponding secular resonances. The forced solution is thus well
defined.

4.2. Proper modes

The following derivation shows that a canonical transformation
exists that depends on time, (x′i ,− jx′i

†) → (u,− ju†), such that
the transformed LL Hamiltonian reads HLL(u) = u†DMu. As in
the case of an autonomous Laplace–Lagrange system, the new
canonical variables u will physically correspond to the free part
x′i,F(t) of the solution in Eq. (33) (e.g. Morbidelli 2002). We thus
begin by defining a new set of variables u such that

x′i = u + x′i,f(t). (36)

By using the fact that x′i,f(t) is a solution to Eq. (32), and discard-
ing terms only depending on time, the forced LL Hamiltonian in
Eq. (31) can be written as

HLL(x) = u†DMu + ju† ẋ′i,f(t) − jẋ′†i,f(t)x′i . (37)

We now ask that the change of variables (x′i ,− jx′i
†)→ (u,− ju†)

derive from a time-depending generating function F(x′i ,− ju†, t)
that satisfies

∂F
∂t

= − ju† ẋ′i,f(t) + jẋ′†i,f(t)x′i , (38)

so that the last two terms in Eq. (37) cancel out in the trans-
formed Hamiltonian. By integrating the above equation with
respect to time, we obtain

F(x′i ,− ju†, t) = − ju†x′i,f(t) + jx′†i,f(t)x′i + f (x′i ,u
†), (39)

where f (x′i ,u
†) is an unknown function that has to be deter-

mined. Because the generating function F depends on the old
momenta x′i and the new coordinates − ju†, it must verify the
relations (e.g. Landau & Lifshitz 1969)

∂F
∂x′i

= jx′i
†,

∂F
∂u†

= ju, (40)

which imply

jx′†i,f(t) +
∂ f
∂x′i

= jx′i
†, − jx′i,f(t) +

∂ f
∂u†

= ju. (41)
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With the choice f (x′i ,u
†) = ju†x′i , these relations are both

equivalent to Eq. (36).
The previous derivations imply that the variable transforma-

tion (xi,− jxi
†)→ (x′i ,− jx′i

†)→ (u,− ju†) is canonical, with

u = OT
Mxi − x′i,f(t), (42)

HLL(u) = HLL(x) +
∂F
∂t

= u†DMu. (43)

We call the complex variables u the proper modes of the
Poincaré’s variables xi. In the forced Laplace-Lagrange dynam-
ics, they simply rotate in the complex plane, with constant
angular frequencies given by gLL. According to Eq. (42), the cor-
responding Poincaré variables thus result in a superposition of
these independent harmonic oscillations and those arising from
the forcing of the outer planets. When higher-degree terms of
the Hamiltonian (25) are taken into account, the dynamics of
the proper modes becomes coupled, and their frequency spec-
trum is no longer monochromatic. Physically, the proper modes
u correspond to the variables (z∗k)k=1,4 defined in Laskar (1990c).
Nevertheless, it is important to emphasize that their mathemati-
cal definitions do not coincide. The transformation matrix OM
does not include contributions at the second order in planet
masses, as that considered in Laskar (1990c) does. Moreover,
transformation (42) is non-linear in the forcing of the outer plan-
ets, in the sense that harmonics of order9 |m| greater than one are
present in the decomposition (15) (see Table D.5) and thus in the
forced solution (35).

Similar derivations allow us to define the proper modes
u of the Poincaré variables yi by means of a time-dependent
canonical change of variables (yi,− jyi

†)→ (u,− ju†),

u = OT
Nyi − y′i,f(t), (44)

HLL(u) = u†DNu. (45)

We have defined

N =

(
Nii Nio
NT

io Noo

)
, Nii = ON DNOT

N, (46)

the columns of ON being the eigenvectors of Nii, while the
diagonal entries of DN = −diag(sLL) are the corresponding real
eigenvalues. Using the quasi-periodic decomposition in Eq. (15),
the components of the forced solution y′i,f(t) are

(y′i,f)k =

8∑
`=5

N∑̀
p=1

(N′io)k`ỹ`p

(sLL)k − n`p · ωo
E jn`p·φ k ∈ {1, 2, 3, 4}. (47)

where N′io = OT
NNio.

When the proper modes u, u have been defined, it is very
useful to establish a corresponding truncated Hamiltonian of the
form

H2n =

n∑
p=1

H(2p), (48)

where H2 = HLL(u) + HLL(u) = u†DMu + u†DNu is the LL
Hamiltonian. To define higher-degree truncations, we first con-
sidered the non-quadratic part δĤ of the secular Hamiltonian

9 We define the order of a harmonic as the 1-norm of its wave vector,
that is, |m| = ∑7

`=1 |m` |.

(14), truncated at a given total degree in Poincaré’s variables
(xk, x̄k, yk, ȳk)k=1,8,

δĤ2n =

n∑
p=2

Ĥ(2p). (49)

Then, the proper modes u, u were injected in (49) by means of
Eqs. (42) and (44), and the Poincaré variables of the outer planets
were replaced by their quasi-periodic decompositions given in
Eq. (15). However, these substitutions do not conserve the degree
of the terms in the expansion because non-linear harmonics are
present in Eqs. (15), (35), and (47), that is, harmonics of order |m|
or |n| greater than one. These harmonics are in principle much
smaller than the linear ones and generate higher-degree terms
in the substitution process. To define the terms H(2p), p ≥ 2 in a
consistent way, we therefore introduced a fictitious real variable
ε to redefine the quasi-periodic decompositions (15) as

x(ε)
k (t) =

Mk∑
`=1

ε |mk` | x̃k` E jmk` ·φ(t)

y(ε)
k (t) =

Nk∑
`=1

ε |nk` |ỹk` E jnk` ·φ(t)


k ∈ {5, 6, 7, 8}, (50)

meaning that each harmonic is treated to be of degree |mk` | or
|nk` | for the purpose of the expansion10. The forced solutions (35)
and (47) were modified accordingly. The series resulting from
the substitution of variables in (49) can thus be truncated at
total degree 2n with respect to {(uk, ūk, vk, v̄k)k=1,4, ε}. Finally,
addition of the quadratic terms H2 by definition gives the trun-
cated Hamiltonian (48). Truncation is effectively performed in
TRIP in parallel with variable substitutions thanks to a dedicated
monomial truncated product (Gastineau & Laskar 2011), which
allows us to minimize the computational cost of the expansion.
It is worthwhile to note that at the end of the expansion pro-
cess, the Hamiltonian terms that only depend on time can be
removed because they are dynamically irrelevant. When numer-
ical evaluations involving the terms of the Hamiltonian have
to be performed, the fictitious variable ε is simply set to 1.
In Table 2 we show the total number of monomials of vari-
ables {(uk, ūk, vk, v̄k)k=1,4, (E jφk(t))k=1,7} in the Hamiltonian H2n
according the degree of truncation. We also report the typical
computation time of the series in TRIP, related to the trans-
formation (xk, x̄k, yk, ȳk)k=1,8 → {(uk, ūk, vk, v̄k)k=1,4, (E jφk(t))k=1,7}.
We note the dramatic increase in the number of terms caused by
this change of variables. We point out that the precise number
of monomials in H2n depends on the particular quasi-periodic
decomposition (15) we used in this work (see Appendix D).

4.3. Action-angle variables

Action-angle variables corresponding to the proper modes
u, u are introduced by standard canonical transformations
(u,− ju†)→ (X,χ) and (u,− ju†)→ (Ψ,ψ) defined as

uk =
√

Xk E− jχk ,

vk =
√

Ψk E− jψk ,
(51)

for k ∈ {1, 2, 3, 4}. The Laplace–Lagrange Hamiltonian thus
reads H2 = −gLL · X − sLL ·Ψ and it is trivially integrable. These
10 This would be the case if these terms came from some analytical
non-linear secular theory.
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Table 3. Frequency in arcsec yr−1 of the largest-amplitude Fourier harmonic for each proper mode of the Poincaré variables (xk, yk)k=1,4 over the
time interval [0, 20] Myr.

g1 g2 g3 g4 s1 s2 s3 s4

LaX13b 5.546 7.457 17.388 17.928 –5.617 –6.983 –18.844 –17.759
La90 5.531 7.460 17.379 17.927 –5.620 –7.011 –18.846 –17.758
H 5.577 7.446 17.390 17.932 –5.588 –6.993 –18.901 –17.817

H4 5.631 7.457 17.371 17.923 –5.602 –7.071 –18.922 –17.817
H6 5.560 7.453 17.396 17.935 –5.628 –7.002 –18.894 –17.816
H8 5.576 7.446 17.390 17.932 –5.589 –6.993 –18.900 –17.816
H10 5.577 7.446 17.390 17.932 –5.587 –6.993 –18.901 –17.817

Notes. For solutions LaX13b and La90, the proper modes (z?k , ζ
?
k )k=1,4 defined in Laskar (1990c) are employed, and for our solutions we use the

proper modes (uk, uk)k=1,4.

transformations allow us to expand the Hamiltonian H2n as a
Fourier series of the angle variables χ, ψ and φ(t) = ωot,

H2n =
∑
k∈Z8

∑
`∈Z7

H̃k,`
2n (I) E j(k·θ+`·ωot), (52)

where H̃k,`
2n are complex amplitudes, and we employed a compact

notation for the action-angle variables,

I = (X,Ψ), θ = (χ,ψ). (53)

Only a finite number of harmonics have non-zero amplitude in
Eq. (52) because we deal with a truncated Hamiltonian. We also
recall that because the Hamiltonian is a real function, we have
H̃−k,−`

2n = H̃k,`
2n for all k, `. In Table 2, we show the number of

harmonics in Eq. (52) according to the truncation degree of the
Hamiltonian, that is, the number of different wave vectors (k, `)
up to a global minus sign.

The explicit time dependence of the Hamiltonian H2n can be
easily absorbed in a phase-space extension through the definition
of action-angle variables for the trivial degrees of freedom of the
outer orbits. We introduce (Φ,φ) such that the new Hamiltonian
reads

H?2n = ωo ·Φ +
∑
k∈Z8

∑
`∈Z7

H̃k,`
2n (I) E j(k·θ+`·φ), (54)

with Φ = (Φk)k=1,7. The dynamics of the additional angles is
thus consistently given by φ̇ = ωo, while that of the actions Φ is
irrelevant. This autonomous formulation is useful in the context
of canonical perturbation theory.

5. Comparison with reference dynamical models

When averaged models are constructed, it is essential to compare
the resulting trajectories to those of the nominal Hamiltonian or
to the solutions of a more comprehensive dynamical model. This
allows validating both the underlying averaging approximations
and the choice of the initial conditions for the secular variables
(see Sect. 2.3 and Appendix D). In this section, we compare
the orbital solution of the forced inner system (Eq. (16)) with
the direct numerical integration of the full equations of motion
LaX13b, which was used to predetermine the secular motion of
the outer planets (Sect. 2.3 and Appendix D). We also consider
the secular solution of Laskar (1990c), denoted as La90 from
now on, because it constitutes the most precise secular model to
this day.

The comparison of the different models begins at short
secular timescales in Fig. 1, where we show the inner planet
eccentricities and inclinations over 250 000 yr in the future. The
plots indicate that our model correctly reproduces the secular
behaviour of the LaX13b solution. This is particularly mani-
fest in the eccentricity plots, where the forced model constitutes
the average of the short-time (orbital) oscillations of the direct
integration, as the La90 solution does as well. In particular, the
behaviour of the solutions at the origin of time shows that the
initial conditions for the secular variables of this work are cor-
rectly determined. Some small periodic differences between the
two secular models appear in some of the plots, with the La90
solution generally being more precise in reproducing the long-
term average of the direct integration. However, these deviations
are practically irrelevant at these scales.

In Fig. 2, the comparison is extended to a longer time inter-
val of 10 Myr to evaluate how long our solution remains close to
the direct integration. The solution La90 nearly coincides with
LaX13b in these plots (see Laskar et al. 2004) and is there-
fore not shown. The general agreement shown over the first few
million years by the curves in Fig. 2 is still very satisfactory.
For longer times, the divergence of the two models becomes
noticeable. First of all, the orbital oscillations sometimes show
different amplitudes. Nevertheless, as we are not interested in the
construction of a secular ephemeris (the solution La90 is clearly
more adapted to this end), this is not the most relevant point.
When we consider that the inner Solar System has a Lyapunov
time of about 5 Myr (see Sect. 6), the crucial aspect is rather the
slow dephasing of the solutions appearing from this comparison
because it translates into a difference in the fundamental frequen-
cies of the motion. To ensure that the forced model faithfully
reproduces the resonant structure of the inner system, it is essen-
tial to quantify these deviations. To this end, we performed a
frequency analysis of the proper modes of the Poincaré variables
(xk, yk)k=1,4 for the different orbital solutions over the [0, 20] Myr
time interval. For solutions LaX13b and La90, we employed
the proper modes (z?k , ζ

?
k )k=1,4 defined in Laskar (1990c), and

for our solution we used the proper modes (uk, uk)k=1,4 (using
(z?k , ζ

?
k )k=1,4 gives the same results at the numerical precision of

the comparison). Table 3 shows the dominant frequency in the
Fourier spectrum for each proper mode, according the notation
of Laskar (1990c). The average absolute difference between the
LaX13b solution and ours is a few hundredths of an arcsecond
per year, with a maximum of 0.06′′ yr−1 in the case of s3 and
s4. This agrees with the behaviour shown in Fig. 2 and the gen-
eral expectation from the discussion of the model precision in
Sect. 2.1. When combinations of the fundamental frequencies
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Fig. 1. Eccentricities (left side) and inclinations (right side) over the invariant plane J2000 (see Appendix D.2) of the inner planets over 250 000 yr
in the future. The solid black line stands for the full (i.e. non-filtered) direct integration LaX13b, while the red line is the solution of our forced
model in Eq. (16). The secular integration La90 is represented by the dashed blue line. The maximum relative root mean square of our model
residuals is 2% for the eccentricities and 0.7% for the inclinations.
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Fig. 2. Eccentricities (left side) and inclinations (right side) over the invariant plane J2000 (see Appendix D.2) of the inner planets over 10 Myr in
the future. The solid black line stands for the full (i.e. non-filtered) direct integration LaX13b, and the red line is the solution of our forced model
in Eq. (16). The secular solution La90 nearly coincides with the direct integration in these plots and it is therefore not shown.
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(which determine the resonant structure) are considered, the dif-
ferences between the two models can be even smaller. In the
case of the two leading resonances (g1 − g5) − (s1 − s2) and
2(g3 − g4)− (s3 − s4) described in Laskar (1990c), the deviations
are only 0.01′′ yr−1 and 0.004′′ yr−1, respectively.

Table 3 also reports the fundamental frequencies of the
truncated modelH2n (Eq. 25) for different total degrees of trun-
cation. When combinations of frequencies (g1 − g5) − (s1 − s2)
and 2(g3 − g4) − (s3 − s4) are considered, models H4 and H6
almost show the same deviations from solution LaX13b as the
non-truncated forced model H . This suggests that the truncated
model should already realistically reproduce the resonant struc-
ture of the inner system at the lowest degrees. We also note that
the orbital solutions of modelsH8 andH10 nearly coincide with
that of the non-truncated forced modelH over the first 20 Myr.

6. Finite-time maximum Lyapunov exponent

When the adequacy of our dynamical model has been estab-
lished over a few million years, we have to assess whether it is
able to correctly reproduce the resonant structure of the inner
Solar System over longer times. Even though the fundamental
frequencies in Table 3 suggest that this is the case, the com-
putation of the maximum Lyapunov exponent (MLE) remains
an essential test because its value is related to the width of
the leading resonant harmonics of the Hamiltonian, which are
the dynamical sources of stochasticity (Chirikov 1979). At this
point, it is important to realize that the non-null probability of
an unstable evolution of the inner planets (Laskar 1994, 2008;
Batygin & Laughlin 2008; Laskar & Gastineau 2009) prevents
the existence of the MLE as an infinite-time limit, as in its usual
mathematical definition (Oseledec 1968); the consideration of a
finite-time MLE (FT-MLE) is pertinent to our case. Because we
do not have an efficient numerical algorithm for evaluating the
variational equations of Gauss’s dynamics at our disposal, we
considered the FT-MLE given by the two-particle algorithm pro-
posed in Benettin et al. (1976), which was used in Laskar (1989).
This method computes the divergence of close trajectories of a
dynamical system, by considering the motion of reference and
shadow particles, initially separated by a tiny vector d0 in the
phase space. At time intervals τ, a renormalization procedure
applied to the trajectory separation d(t) again brings the shadow
particle at a distance ||d0|| from the reference particle. The result-
ing FT-MLE depends in an intricate way on the initial position
of the reference particle in the phase space, so that its asymp-
totic evolution is chaotic (and independent of the choice of the
vector d0, Benettin et al. 1976). Therefore computing it acquires
full physical significance only for an ensemble of trajectories.

In Fig. 3, we show the computation of the FT-MLE of the
forced inner Solar System over 5 Gyr in the future for an ensem-
ble of 1148 stable orbital solutions with initial conditions very
close to the nominal ones (see Sect. 7 for the definition of an
unstable solution in the framework of our model). On the left
vertical axis, we report the FT-MLE expressed as an angular
frequency in arcsec yr−1, while on the right axis, we show the
corresponding Lyapunov time, defined as FT-MLE−1, given in
million years. The dark grey region represents at each renormal-
ization time the interquantile range of the observed probability
density function (PDF) of the FT-MLE, which by definition
encloses 50% of the solutions around the median (shown by the
red line). In the same manner, the light grey region corresponds
to the [1th, 99th] percentile range of the PDF, enclosing 98% of
the probability. The two FT-MLEs reported in Laskar (1989) are
also shown with black lines.
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Fig. 3. Finite-time maximum Lyapunov exponent (FT-MLE) and corre-
sponding Lyapunov time FT-MLE−1 of the forced inner Solar System
over 5 Gyr from an ensemble of 1148 stable orbital solutions with very
close initial conditions.

As stated above, the initial conditions of each solution in the
ensemble are very close to the nominal conditions. They were
chosen by taking the relative variation of each coordinate of the
nominal phase-space vector as a normal random variable with
zero mean and a standard deviation of 10−9. The initial condi-
tions thus follow a multivariate Gaussian distribution centred at
the nominal phase-space position of the system, with a diago-
nal covariance matrix. The width of this distribution is of the
same order of magnitude as that in Laskar (2008, Table 1). The
initial position of each shadow particle around the correspond-
ing reference particle was then chosen according to the same
kind of Gaussian distribution, with a relative standard deviation
of 10−8. Such a value should minimize the accumulation over
long timescales of numerical errors, due to the floating-point
implementation of the algorithm of Benettin et al. (1976), when
working in double precision (Tancredi et al. 2001; Mei & Huang
2018). In Fig. 3 the computation of the FT-MLE for the nominal
initial conditions is shown by dotted blue lines for a set of 16 dif-
ferent initial tangent vectors d0. This manifestly shows that our
FT-MLEs are asymptotically independent of d0, the asymptotic
regime being practically reached in a few hundred million years.
In the same manner, our computation was tested to be asymp-
totically independent of the renormalization time τ, set to 5 Myr
in our computation, and of the norm chosen for the phase-space
vectors, taken here to be Euclidean as usual.

For times shorter than 100 Myr, Fig. 3 shows that the dis-
tribution of the FT-MLE only reflects the choice of different
initial tangent vectors d0 around essentially the same refer-
ence trajectory, that is, the nominal trajectory. Therefore this
part of the plot can be discarded because of its non-asymptotic
character. We also note that for t < 100 Myr, the PDF of the
FT-MLE tends to shrinks with increasing time, as expected by
the asymptotic behaviour of the method (see the blue lines and
two curves from Laskar 1989). For longer times, the PDF begins
to broaden because each orbital solution acquires a macroscopi-
cally different FT-MLE, which chaotically depends on its initial
conditions. The time-asymptotic regions shown in Fig. 3 thus
represent the probabilistic knowledge of the FT-MLE of the inner
Solar System, which arises from its chaotic behaviour and our
determination of the current planet positions and velocities.

The dark blue line in Fig. 4 shows the kernel density esti-
mate (Rosenblatt 1956; Parzen 1962) of the PDF of the Lyapunov
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time FT-MLE−1 at 5 Gyr, along with the corresponding cumula-
tive distribution function (CDF) on the upper horizontal axis.
We employed the standard Gaussian kernel and Silverman’s rule
of thumb to select the optimal bandwidth (Silverman 1986). We
also show through the light blue region the pointwise confidence
interval at the 98% level of the estimated PDF, obtained through
nonparametric bootstrap, that is, by resampling with replacement
of the original data (Efron 1979). The value of about 5 Myr typ-
ically reported in literature (Laskar 1989; Sussman & Wisdom
1992) is right in the bulk of our PDF, even though the distri-
bution rather peaks at 3.7 Myr and the average value is 4.3 Myr.
The value of 6.5 Myr found in Rein & Tamayo (2018) can also be
accounted for by our computation. The curves of Laskar (1989)
suggest that the asymptotic PDFs of the two secular models
should largely overlap. Finally, we note that the value of 1.1 Myr
numerically found in Batygin et al. (2015) as the Lyapunov time
of a simplified Mercury dynamics does not agree with our find-
ings. Figures 3 and 4 show that even considering the diffusion
of the planet orbits over 5 billion years, a high FT-MLE like
this is practically never reached by our dynamical model, even
though the latter includes all the Hamiltonian harmonics taken
into account in Batygin et al. (2015).

7. Orbit excitation over 5 Gyr

In this section, we perform a statistical study of the orbit exci-
tation in the forced inner system over 5 Gyr in the future with
the aim to assess if our model is able to reproduce the rate of
the high Mercury eccentricities observed in Laskar (2008) and
Laskar & Gastineau (2009). Following Laskar (1994), we charac-
terize the unstable evolutions of the system by defining a secular
collision as the intersection of the instantaneous Keplerian orbits
of a pair of planets. Numerically, such an event is easily detected
by tracking the relative positions of their mutual nodes, that is,
the intersections of each orbit with the orbital plane of the other
planet. When two orbits cross, a pair of mutual nodes exchanges
their positions along the line of nodes (i.e. the intersection of
the two orbital planes). This computation is inexpensive in the
context of Gauss’s dynamics and can be performed at each time
step of the integration scheme. When a secular collision occurs,

Table 4. Confidence interval at the 98% level of the probability
P(supt≤5 Gyr e1(t) > emax) in percent, where e1 is the eccentricity of
Mercury.

emax LG09 La08 This work

0.35 (46.9, 51.5) (37.5, 48.0) (48.5, 50.8)
0.4 (23.6, 27.6) (20.0, 29.1) (20.3, 22.1)
0.5 (3.15, 4.97) (1.90, 5.84) (1.74, 2.38)
0.6 (0.60, 1.53) (0.39, 2.80) (0.38, 0.71)
0.7 (0.57, 1.48) (0.39, 2.80) (0.32, 0.62)
0.8 (0.54, 1.43) (0.28, 2.50) (0.28, 0.57)
0.9 (0.51, 1.38) (0.03, 1.50) (0.08, 0.26)

Notes. LG09 represents the 2501 orbital solutions in Laskar &
Gastineau (2009), while La08 stands for the 478 integrations in Laskar
(2008). The statistics of this work derives from an ensemble of
10 560 orbital solutions.

our averaged model is no longer a good long-term approximation
of the original N-body dynamics, in which the involved planets
can experience a close encounter, possibly leading to a physical
collision or to the escape of one of two planets from the Solar
System (Laskar 1994). We thus denote by τc the time of the first
secular collision for a given orbital solution. The statistics of the
first-collision time τc should provide an estimate of the rate of
catastrophic events in the real inner system. Moreover, by stop-
ping the numerical integration at the first secular collision, we
are not involved in extrapolating our secular dynamics out of
its validity range, and the use of a fixed-time-step integration
scheme (see Sect. 3) turns out to be sufficient and even suitable.
We note that a secular collision of a planet and the Sun can be
simply defined to occur whenever its pericenter distance a(1− e)
is smaller than the Sun radius.

We performed an ensemble of 10 560 numerical integrations
of the forced inner system over 5 Gyr. The initial conditions were
chosen according to the same multivariate Gaussian distribution
centred at the nominal values as in Sect. 6. The relative stan-
dard deviation of each phase-space coordinate is 10−9, which is
the same order of magnitude as that in Laskar (2008, Table 1).
Table 4 shows the observed probability of having a maximum
Mercury eccentricity greater than a given value over the entire
time. The statistics of our dynamical model is compared to the
statistics resulting from Laskar (2008, Table 3) and Laskar &
Gastineau (2009, see Table C.1 of this paper). The statistical
bounds represent the Wilson (1927) score interval, correspond-
ing to a 98% confidence level. At our statistical precision11, the
probabilities of the high Mercury eccentricities in the forced
inner system are fully compatible with those arising in the sec-
ular model of Laskar (1990c). They also represent a very good
estimate of the probabilities resulting from N-body dynamics,
even if they are somewhat lower. This agrees with the general
expectations from an averaged model, which has fewer degrees
of freedom (Laskar 1994, 2008). When the midpoints of the sta-
tistical intervals are compared, Table 4 might also suggest that
the true probabilities of our model are slightly lower than those in
Laskar (2008). If this is true, it would agree with the expectation
of a higher regularity of the forced model because the degrees
of freedom dominated by the outer planets (their fundamental
frequencies in particular) are frozen into a quasi-periodic time

11 As there is no reason for the true probabilities of the three different
dynamical models to be exactly the same, their statistical intervals are
not likely to overlap for a very large number of orbital solutions.
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Fig. 5. Evolution of the fundamental frequency g1, as defined by
Eq. (56), in the 42 collisional orbital solutions (top panel). Six solu-
tions are isolated in the bottom panel. The horizontal line stands for the
constant fundamental frequency g5.

dependence. Moreover, the Hamiltonian terms at second order in
planet masses could also contribute to somewhat larger chaotic
excursions of the inner orbits.

7.1. Secular collisions

In the 10 560 orbital solutions of our ensemble, we found 42
secular collisions, corresponding to a 98% confidence interval
(0.28%, 0.57%) for the probability P(τc ≤ 5 Gyr). Out of the
2501 integrated solutions of Laskar & Gastineau (2009), six col-
lisions between Mercury and the Sun, nine collisions between
Mercury and Venus, and one collision between Mars and the
Sun are found (see Appendix C). These 16 events correspond
to a 98% confidence interval (0.36%, 1.13%) for the probability
of a physical collision. Our definition of a secular collision thus
provides a very good estimate of the probability of a physical
collision in the non-averaged inner Solar System over the next
5 Gyr, probably somewhat lower, in agreement with the previous
discussion.

All the secular collisions in our ensemble of orbital solu-
tions involve the Mercury–Venus pair, with a maximum Mercury
eccentricity ranging from 0.797 to 0.966. In particular, in 41
out of 42 collisional solutions, it is higher than 0.8, while in
15 solutions, it exceeds 0.9. This implies that the statistics corre-
sponding to the cases emax = 0.8 and 0.9 in Table 4 is affected by
the choice of stopping the numerical integration when the first
secular collisions is detected, independently of the fact that this
might not correspond to a physical collision in the non-averaged
dynamics. We emphasize that as a consequence, the statistics
of the secular collisions other than that of the Mercury–Venus
pair cannot be correctly reproduced by our numerical computa-
tion because events like this, as observed in Laskar & Gastineau
(2009), always require a very high Mercury eccentricity at some
previous time.

7.2. Secular resonance g1 – g5

The destabilizing role of the secular resonance g1 − g5, able
to drive Mercury orbit to very high eccentricities, has first
been established numerically (Laskar 2008; Batygin & Laughlin
2008) and was then confirmed by an analytical study (Boué et al.
2012). We conclude this section by showing that the g1 − g5 res-
onance is indeed reached by the collisional orbital solutions of
our ensemble. While g5 ≈ 4.257′′ yr−1 is constant in our dynam-
ical model, the frequency g1, which dominates the spectrum of
the Poincaré variable x1 and thus the precession of Mercury per-
ihelion, is numerically computed in the following way. Given an
orbital solution, we sample the corresponding Poincaré variables
x with a time step ∆t = 1000 yr, that is, we consider the time
series x(tn) with tn = n∆t and n ∈ N0. The proper mode u1(tn)
is thus computed through Eq. (42) and the corresponding angle
variable χ1(tn), following the definition in Eq. (51), retrieved as
an unwrapped phase, that is, as a continuous function of time.
The instantaneous (angular) frequency ω1 of the proper mode u1
is given by (Cohen 1995)

ω1 = −dχ1

dt
. (55)

We could analytically compute the derivative of Eq. (42) to
obtain the time series ω1(tn). In practice, we employed numer-
ical differentiation via the Lagrange five-point formula (Olver
et al. 2020) because very high numerical precision is unnec-
essary here. As it is, the frequency ω1(tn) presents short-time
oscillations that hide its long-term evolution. To suppress these
high-frequency fluctuations, we therefore defined the time series
g1(tn) as the output of the low-pass Kolmogorov–Zurbenko (KZ)
filter (Yang & Zurbenko 2010, and references therein) applied to
ω1(tn),

g1(tn) = KZ[ω1(tn)]. (56)

The KZ filter is defined as an iteration of the common moving
average and is comprehensively characterized in Appendix B.
For our application, we used three iterations of the moving aver-
age and a cutoff frequency of 1 Myr−1 (see Appendix B). This
particular choice is motivated by the typical duration of the libra-
tion episodes of the g1 − g5 resonance, which only last a few
million years (Laskar 2008; Batygin & Laughlin 2008).

In the top panel of Fig. 5 we present the time evolution of the
fundamental frequency g1 in the 42 collisional integrations. We
isolate in the bottom panel six solutions to show the typical evo-
lution of a single curve more clearly. As previously discussed,
the curves stop at the first secular collision. The horizontal line
represents the constant fundamental frequency g5 and thus the
location of the g1 − g5 resonance. Within the first 2 Gyr, the
chaotic diffusion of g1 in the solutions of Fig. 5 is limited to no
more than 0.25′′ yr−1 with respect to its initial value. Neverthe-
less, when lower values of about 5′′ yr−1 are eventually reached,
the dynamics of g1 starts to be characterized by large random
variations. This seems to reproduce the large chaotic zone related
to the resonance g1 − g5, with a half-width of more than 1′′ yr−1,
which has been reported in Laskar (2008, Fig. 6(a2))12. In all
the curves, the fluctuations eventually lead to a crossing of the
resonance (corresponding locally to a libration of the related
argument) shortly before the first secular collision.

12 Although no analytical computations of the g1 − g5 half-width are
reported in literature, a high value like this would not be completely
unexpected for a linear secular resonance.
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8. Numerical experiment over 100 Gyr

In this last section, we present the results of a numerical experi-
ment in which we integrated an ensemble of orbital solutions of
the forced inner system over 100 Gyr in the future. Through these
simulations, we aim to characterize the type of stochastic process
that arises from the Hamiltonian (16) and drives the destabiliza-
tion of the inner system in a regime where the highly excited
orbits no longer represent rare events, as they do in Sect. 7. This
type of simulation clearly does not correspond in any way to the
real future evolution of the orbits of the inner planets over much
more than 5 Gyr. It is well known that over the next 7 Gyr, the
Sun will experience a significant mass loss, down to 0.54 M�, as
it leaves the main sequence (Sackmann et al. 1993). As a con-
sequence, the semi-major axes of the planet will adiabatically
inflate by a factor of 1.85. Even more critically for the fate of
the inner system, it is likely that the innermost planets Mer-
cury, Venus, and the Earth will be engulfed by the Sun as its
radius expands along the red giant branch, marking the end of
their existence (Rybicki & Denis 2001; Schröder & Smith 2008).
Therefore this section intends to investigate the very long-term
stochastic behaviour of the dynamical system (16), without infer-
ring any conclusion on the real evolution of the inner system over
these timescales.

We numerically integrated an ensemble of 1042 orbital
solutions of the forced inner system over 100 Gyr. The initial
conditions were chosen according the same Gaussian distri-
bution as in Sect. 7, but with different realizations, to obtain
different evolutions over the first 5 Gyr. As in the previous sec-
tion, the numerical integration was stopped at the first secular
collision. In Fig. 6 we show the probability density function of
the time τc of the first secular collision. In the context of stochas-
tic processes, this represents the hitting time (or first hit time)
corresponding to the subspace of the phase space realizing a sec-
ular collisions between planets. The blue curve in the lower panel
of Fig. 6 represents the PDF estimated through the kernel den-
sity estimation (KDE) method (Rosenblatt 1956; Parzen 1962).
We employed a standard Gaussian kernel and Silverman’s rule
of thumb to select the optimal bandwidth (Silverman 1986). The
PDF was normalized in such a way that its integral over 100 Gyr
is equal to the overall percentage of secular collisions obtained
in the experiment13, that is, 890/1042 ≈ 85.4%. The blue region
in the lower panel of Fig. 6 represents the pointwise confidence
interval for the PDF at the 98% level, obtained via nonparametric
bootstrap, that is, by resampling with replacement of the origi-
nal data (Efron 1979). This region thus corresponds pointwisely
to the [1th, 99th] percentile range of the bootstrapped estimated
PDF. We emphasize that for simplicity, we did not correct for
the bias arising in the kernel density estimation, so that strictly
speaking, we show a confidence region for the expectation of
the KDE and not for the true subjacent PDF (Chen 2017). When
referred to the true PDF, this confidence region typically repre-
sents an undercoverage at the points where the function bends,
that is, where its second derivative is large. Even if we could
consider simple corrections for the KDE bias (Chen 2017), this
would not be completely satisfactory given the very small num-
ber of events that we deal with over the first few billion years.
These corrections of the confidence intervals are sufficiently
small, however, to not affect at all the conclusions we infer in
this section. To give a further idea of the statistical variance, in
Fig. 6 we also show in red the PDF of τc over the first 5 Gyr

13 All the first secular collisions, with the exception of a single Earth-
Mars event, involved the Mercury-Venus pair (see Sect. 7.1)
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Fig. 6. Kernel density estimation of the PDF of the time τc of the first
secular collision from 1042 integrations of the forced inner system over
100 Gyr (blue line in the lower panel). The estimate of the CDF is shown
as a blue line in the upper panel. The blue regions represent the point-
wise confidence intervals at the 98% level from bootstrap. In red we
show the PDF estimate over 5 Gyr from the 10 560 orbital solutions of
Sect. 7. The dashed black lines stand for the analytical PDF (57) with
T1 = 27.6 Gyr and α = 0.9 and the corresponding CDF.

estimated from the ensemble of 10 560 orbital solutions pre-
sented in Sect. 7. We finally report in the upper panel of Fig. 6
the estimated cumulative distribution function (CDF) as a func-
tion of time, which gives the probability of a collisional evolution
within a given time, along with its pointwise confidence interval
at 98% obtained through bootstrap.

8.1. Marginal stability of the inner Solar System

The PDF of the time τc of the first secular collision peaks at
17.6 Gyr, with a 98% confidence interval (15.4, 20.1) Gyr, while
its median is 40.8 Gyr, with a 98% confidence interval (38.2,
43.5) Gyr. The percentage of collisional evolutions over 100 Gyr
has a 98% confidence interval (82.8%, 87.9%). These findings
clarify the state of metastability that characterizes the inner Solar
System according to the definition of Laskar (1996). Over a
timescale comparable to its age, that is, over the next 5 Gyr, the
inner system is statistically very stable, with a probability of only
about 0.5% of an unstable evolution (see Sect. 7.1). Nevertheless,
here we find that this probability increases very fast with time, so
that the system rapidly becomes statistically unstable over longer
timescales, meaning that unstable evolutions no longer represent
rare events. In particular, the probability of an instability is about
20% already at 20 Gyr and is 50% at 40 Gyr. In the conjecture
of Laskar (1996), this picture should characterize any secularly
evolving planetary system: At each moment of its formation his-
tory, a planetary system should be in a state of marginal stability,
that is, it should be practically stable over a timescale compara-
ble to its age, while strong instabilities arise very fast over longer
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times, resulting in more stable configurations of the surviving
planets.

8.2. Destabilization of the inner Solar System as a stochastic
process

In the framework of the simplified model introduced in Batygin
et al. (2015), Woillez & Bouchet (2020) recently applied the the-
ory of the white-noise limit for slow-fast dynamical systems (e.g.
Gardiner 1985) to describe the long-term dynamics of Mercury
through an effective stochastic process. They showed that the
instability timescale of the Mercury orbit is reproduced by the
hitting time of a one-dimensional Wiener process with a reflect-
ing barrier. The corresponding PDF peaks at 1.3 Gyr (Woillez
& Bouchet 2020, Fig. 4), in agreement with the analysis in
Batygin et al. (2015). This timescale is an order of magnitude
shorter than that in Fig. 6, and the simplified dynamics of Mer-
cury predicts a high probability of instability over the Solar
System age, in contrast with the findings of realistic models.

In this section, we reconsider the stochastic process dis-
cussed in Woillez & Bouchet (2020) to characterize the overall
structure of the PDF in Fig. 6. To fix ideas, it could describe the
long-term wanderings of the fundamental frequency g1 towards
the destabilizing secular resonance g1 − g5 (see Sect. 7.2) in
an approximate way. Numerically, the PDF of g1 is asymmet-
ric, with a longer tail that diffuses towards low values, while its
upper end is nearly fixed at about 6′′ yr−1 (Hoang et al. 2021, see
also Fig. 5). Therefore we assumed that g1 performs a random
walk described by a Wiener process starting at g1,0 = g1(t = 0),
and considered an upper reflecting barrier at g1,max > g1,0. We
assumed that a secular collision rapidly occurs whenever the
secular resonance g1 − g5 is reached, as shown in Fig. 5; this
was taken into account by considering an absorbing barrier at
g1 = g5. The PDF ρ(τ) of the hitting time τ = inft{g1(t) ≤ g5} is
thus given by (e.g. Schwarz 1992; Woillez & Bouchet 2020)

ρ(τ) =
π

2T1

∞∑
n=0

(
n +

1
2

)
sin

[
π

(
n +

1
2

)
α

]
E−π

2(n+ 1
2 )2

τ/4T1 , (57)

where α = (g1,0 − g5)/(g1,max − g5) and T1 = (g1,max − g5)2/4D,
with D being the diffusion coefficient of the Wiener process.
After a least-squares search, we plot in Fig. 6 the curve (57)
with parameters T1 = 27.6 Gyr and α = 0.9. Even if the real ran-
dom walk performed by the frequency g1 and the destabilization
mechanism in general are likely to be much more complex, a
Wiener process with a reflecting barrier is able to reproduce the
overall behaviour of the observed PDF at the level of our statisti-
cal precision and apart from a certain excess of events in the tail
of the distribution14. On the one hand, this shows that at short
times, the PDF behaves as

ρ(τ) =

( T0

πτ3

) 1
2

E−
T0
τ , for τ � T1, (58)

where T0 = α2T1. In this regime, the PDF coincides with that
of the hitting time of a standard Wiener process (i.e. without
reflecting barrier). The very fast decay of the density probabil-
ity for τ → 0 in Eq. (58) characterizes the rare destabilizations
of the Mercury orbit over the first few billion years. In par-
ticular, the instanton phenomenology described in Woillez &

14 We stress that this result is independent of the hypothesis of which
precise dynamical quantity (if any) undergoes the stochastic process
considered here.

Bouchet (2020) could indeed apply to the real Solar System (this
scenario still needs to be tested through integration of realis-
tic models such as ours.). On the other hand, Eq. (57) shows
that for τ → +∞ the decay of the observed PDF is at least
exponentially fast, with a characteristic time equal to 4T1. This
behaviour results from the reflecting barrier taken into account in
the stochastic process; it would not be reproduced by a standard
Wiener process because the corresponding PDF has a polyno-
mial heavy tail proportional to τ−3/2, as shown by Eq. (58). In
particular, the average of the hitting time as given by Eq. (57) is
finite, differently from Eq. (58).

We note that Woillez & Bouchet (2020) reported T0 =
1.56 Gyr, a value that is more than ten times lower than that
in Fig. 6, that is, T0 = 22.4 Gyr, in agreement with the previ-
ous discussion about the validity of the simplified dynamics of
Mercury in Batygin et al. (2015). Here, we emphasize that the
incompatibility with realistic models seems to be related to the
limitations of some of the simplifying assumptions15. As dis-
cussed in Sect. 7, averaged models generally tend to produce
slower instabilities with respect to the full dynamics because
the number of degrees of freedom is smaller. Nevertheless, the
model of Batygin et al. (2015) produces instabilities that are
ten times faster than in our dynamics, even though our model
includes all the dynamical interactions considered in the simpli-
fied model. This lack of continuity in the destabilization time
with respect to the complexity of the dynamical model seems
rather severe.

We conclude this section by noting that a lower bound for
the typical instability time of the Mercury orbit can be estimated
from the maximum Lyapunov exponent (Fig. 3) if we assume
that no dynamical constraints prevent g1 from diffusing at a rate
determined by the leading secular resonances. In particular, the
resonance (g1 − g5) − (s1 − s2), with a libration frequency of
0.12′′ yr−1, is among the leading resonances affecting the fre-
quency g1 (Laskar 1990c). We may estimate an upper bound on
the diffusion coefficient D as

Dmax =
(2πMLE)2

MLE−1 ≈ 0.77
(
arcsec yr−1

)2
Gyr−1, (59)

with 2πMLE = 0.1′′ yr−1 (this is also the lower limit for the MLE
in Fig. 3). A lower bound on the typical destabilization time of
Mercury orbit is thus given by

T0,min =
(g1,0 − g5)2

4Dmax
≈ 0.56 Gyr, (60)

with g1,0 = 5.577′′ yr−1 (Table 3) and g5 = 4.257′′ yr−1 . Equa-
tion (60) gives essentially the same diffusion timescale as in
Batygin et al. (2015) and Woillez & Bouchet (2020). This is
already two orders of magnitude greater than the Lyapunov time
of the system, but it is still insufficient to explain the findings
of Fig. 6. This means that some dynamical constraints effec-
tively cause the diffusion towards the g1 − g5 resonance to be
slower than in the estimates (59) and (60). Certain secondary
resonant harmonics, in particular, must play a determining role
in the destabilization of the inner Solar System.

9. Conclusions

We introduced a new secular model for the dynamics of the
inner planets of the Solar System. It exploits the practical con-
stancy of the fundamental precession frequencies of the outer
15 Freezing the fundamental frequencies of the inner planet orbits other
than g1 and s1 is probably one of the sources of these discrepancies.
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planet orbits over timescales of billion years, the low masses of
the inner planets, and the absence of strong mean-motion reso-
nances in the inner system. The range of validity of the resulting
dynamics extends to very high eccentricities and inclinations, up
to a secular planetary collision, that is, the geometric intersection
of the instantaneous Keplerian orbits of two planets. The new
model can be studied analytically by truncating the Hamiltonian
at a given total degree in planet eccentricities and inclinations,
with the aid of a computer algebra system such as TRIP. It can
also be integrated numerically in a very efficient way through
Gauss’s method. The orbital solution matches the predictions
of a comprehensive model of the Solar System at a very satis-
factory level over timescales shorter than or comparable to the
Lyapunov time. The new model also correctly reproduces the
maximal Lyapunov exponent of the inner system and the statis-
tics of the highly eccentric Mercury orbits over the next 5 billion
years. Moreover, the destabilizing role of the secular resonance
g1 − g5 clearly stands out. We performed a numerical experiment
consisting of a thousand orbital solutions of the inner Solar Sys-
tem over one hundred billion years to explore a regime in which
unstable orbits are statistically common. We first pointed out the
fast growth of the rate of orbit instabilities in the framework of
planetary system formation through successive metastable states.
We then showed that the PDF of the time of the first secular col-
lision is reasonably well reproduced by a Wiener process with
a reflecting barrier, which could be performed, for example, by
the fundamental precession frequency g1. Given the robustness
of the statistical predictions of our dynamical model over 5 Gyr,
the main properties of this PDF, that is, the characteristic time of
its peak and the behaviours at short and long times, are likely to
represent what would arise from the full dynamics of the plan-
ets. We finally argued that a dynamical mechanism is needed to
explain the rarity of the large excursions of g1 up to the g1 − g5
secular resonance within the next 5 Gyr.

We emphasize that the new dynamical model can be straight-
forwardly implemented after it is truncated at degree 4 in
planet eccentricities and inclinations by using the correspond-
ing expression of the two-body secular Hamiltonian reported
in Laskar & Robutel (1995, Appendix) and the quasi-periodic
secular solution for the outer planets given in Appendix D.
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Appendix A: Indirect part of the two-body
Hamiltonian perturbing function

We outline the derivation of the coefficients T̃`,`′ of the indirect
part of the two-body perturbation in the Fourier expansion (5)
by adapting the presentations of (Laskar 1991; Laskar & Robutel
1995; Laskar & Boué 2010). From Sect. 2, we have

T1 =
r̃ · r̃′
m0

=
µµ′

m0
3 · 3′, (A.1)

where 3 = r̃/µ denotes the velocity vector tangent to the instan-
taneous Keplerian ellipse of a given planet. In the reference
frame of the Keplerian orbit, with the origin at the Sun, the x-
axis directed towards the pericenter, and the z-axis normal to the
orbital plane, the components of the vector 3 read

3 =
na2

r

 − sin E√
1 − e2 cos E

0

 , (A.2)

where E is the eccentric anomaly, n =
√

G(m0 + m)/a3 is the
mean motion, and r = ||r|| is the heliocentric orbital distance.
After transformation to the fixed reference frame, the velocity
components are given by

3 =
na2

r
R(i,Ω)R3($)

 − sin E√
1 − e2 cos E

0

 , (A.3)

where the rotation matrices R(i,Ω) = R3(Ω)R1(i)R3(−Ω) and
R3($) are given in (Laskar 1991; Laskar & Robutel 1995).

We introduce the eccentric longitude F = E + $, which
obeys the modified Kepler equation

λ = F + Im
(
z E− jF

)
= F + γ Im

(
XE− jF

)
, (A.4)

where z = eE j$ and γ =
√

1 − XX̄/4. By using the fact that
1 − r/a = γRe

(
XE− jF

)
, and after some algebra, we find

R3($)

 − sin E√
1 − e2 cos E

0

 =

− sin F + (2γ)−1 Im (X) (1 − r/a)
cos F − (2γ)−1 Re (X) (1 − r/a)

0

 .
(A.5)

By employing the complex formalism of (Laskar & Robutel
1995), we can thus write

na2

r
R3($)

 − sin E√
1 − e2 cos E

0

 =

(Z
0

)
,

Z = jna
[
a
r

E jF − X
2γ

(a
r
− 1

)]
.

(A.6)

The application of matrix R(i,Ω) in Eq. (A.3) then gives

R(i,Ω)
(Z

0

)
= Re (Zµ) , µ = δ−1


η2 + Ȳ2

− j
(
η2 − Ȳ2

)
−2 jηȲ

 , (A.7)

with δ = 1 − XX̄/2 and η =
√

1 − XX̄/2 − YȲ. The scalar
product in Eq. (A.1) thus reads

3 · 3′ =
1
2

Re
(
ZZ′µ · µ′ +ZZ̄′µ · µ̄′

)
. (A.8)

The coefficients T̃`,`′ are readily derived after the quantities a/r
and (a/r)E jF , appearing in Eq. (A.6), are expanded in Fourier
series of the mean longitude λ. We have

a
r

=

+∞∑
`=−∞

c`E j`λ, with c` =
1

2π

∫ 2π

0

a
r

E− j`λdλ. (A.9)

By using Eq. (A.4) and the fact that dλ/dF = r/a, a classical
calculation gives c` = J`(`e) E− j`$, where the J` are the Bessel
functions of the first kind. The following alternative expression
of the Fourier coefficients,

c` =

+∞∑
m=−∞

(− j)mJm(`γ ImX) J`−m(`γReX), (A.10)

can be straightforwardly expanded in series of X and X̄, and is
well defined at zero eccentricity. In a similar manner, we obtain

a
r

E jF =

+∞∑
`=−∞

 +∞∑
m=−∞

(− j)mJm(`γ ImX) J`−1−m(`γReX)

 E j`λ.

(A.11)

Appendix B: Kolmogorov-Zurbenko filter

Low-pass filters are employed in time-series analysis to extract
the long-term (low-frequency) components of a given signal.
A dedicated low-pass filter has been constructed in (Carpino
et al. 1987) to recover the secular changes of the giant planet
orbits from the numerical output of an N-body integration.
Here we propose the use of the Kolmogorov-Zurbenko filter
(Yang & Zurbenko 2010) as an out-of-the-box, computationally
advantageous, and still effective choice.

We consider the real-valued time series

ξn = ξ(n∆t), n ∈ Z, (B.1)

resulting from the discrete sampling of a continuous signal
ξ(t), with constant sampling rate ωs = 2π/∆t. In the frequency
domain, the time series is characterized by its discrete-time
Fourier transform

ξ̃(ω) =

+∞∑
n=−∞

ξnE− jωn∆t, (B.2)

which is a periodic function with period ωs and can thus be
restricted to the interval |ω| ≤ ωs/2. The action of a finite-
impulse-response filter F on the time series is defined as the dis-
crete convolution of the signal ξn with a given finite sequence dn,

F[ξ]n = (d ∗ ξ)n =

M∑
m=−M

dmξn−m, (B.3)

M being a non-negative integer. The sequence dn is the impulse
response function of the filter, and LM = 2M + 1 is the filter
length. A liner filter is characterized by the discrete-time Fourier
transform d̃(ω) of its impulse response, which is called the
frequency response of the filter, and gives the spectrum of the
output signal as

F̃[ξ](ω) = d̃(ω)ξ̃(ω). (B.4)

Ideally, a low-pass filter should be characterized by a null
response above a given cutoff frequency, that is, d̃(ω) = 0 for
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Fig. B.1: Impulse response of the Kolmogorov-Zurbenko filter (the
moving average corresponds to the case k = 1). The axes have been nor-
malized to show the asymptotic Gaussian behaviour of the function. The
standard normal distribution N(0, 1) is represented by the solid black
curve.

ω > ωc, while the response should be unitary at lower frequen-
cies, that is, d̃(ω) = 1 for ω ≤ ωc. Moreover, the filter must not
change the phase of the Fourier components of the signal, that
is, Im(d̃(ω)) = 0. This is achieved by requiring dn = d−n ∈ R
(Carpino et al. 1987). Nevertheless, a real filter is rather charac-
terized by a passband, |d̂(ω)−1| ≤ ρ for |ω| ≤ ωp, ρ being a given
maximum loss; a stopband, |d̂(ω)| ≤ α for |ω| ≥ ωc, α being a
given maximum gain; and a transition band between ωp and ωc,
where the response function smoothly decreases from ≈1 to ≈0.

One of the simplest low-pass filters is the moving average
(MA),

MAM[ξ]n =
1

2M + 1

M∑
m=−M

ξn−m, (B.5)

which simply constitutes the local unweighted average of the
signal over a time window LM∆t. Computationally, the mov-
ing average is very advantageous; however, it is well known
that it provides a poor attenuation of the Fourier components
of the signal in the stopband (see Fig. B.2). Kolmogorov pro-
posed to bypass this problem by applying the moving average
iteratively (Yang & Zurbenko 2010, and reference therein). The
Kolmogorov-Zurbenko filter is thus defined as

KZM,k=1[ξ] = MAM[ξ],
KZM,k[ξ] = MAM[KZM,k−1[ξ]], k ≥ 2.

(B.6)

The output signal of this filter is given by

KZM,k[ξ]n =
1

(2M + 1)k

M∑
m1=−M

· · ·
M∑

mk=−M

ξn−∑k
`=1 m`

=

=

kM∑
s=−kM

CM,k
s

(2M + 1)k ξn−s,

(B.7)

where CM,k
s is the number of ways of choosing k integers in the

interval [−M,M] such that their sum is equal to s. The numbers
CM,k

s can be expressed as the coefficients of the finite Laurent
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Fig. B.2: Absolute value of the frequency response for the Kolmogorov-
Zurbenko filter (the moving average corresponds to the case k = 1). The
vertical dashed black line stands for the cutoff frequency fc given by
Eq. (B.14), while the horizontal coloured lines represent the maximum
gains in the stopband αk = ηk. The vertical dotted coloured lines show
the passband frequencies fp given by Eq. (B.17) for a loss level of 5%,
which is represented by the horizontal dotted black line.

series
(∑M

`=−M z`
)k

(Yang & Zurbenko 2010), that is,

kM∑
s=−kM

CM,k
s zs =

(
z−M + . . . + 1 + . . . + zM

)k
. (B.8)

The impulse response (IR) of the KZ filter given in Eq. (B.7),
IRM,k

s = CM,k
s /Lk

M , can be interpreted as a discrete probability
distribution function (PDF) over the interval [−kM, kM], result-
ing from the convolution of k uniform distribution over [−M,M].
The central limit theorem implies that for k � 1, this PDF is
asymptotically Gaussian, with zero mean and variance equal
to kσ2

M , σ2
M =

(
L2

M − 1
)
/12 being the variance of the discrete

uniform distribution over [−M,M]. This is shown in Fig. B.1.
The width of the impulse response therefore scales as

√
kM for

M, k � 1, even if the filter length LkM is linear in k.

Appendix B.1: Frequency response

The following derivations describe the behaviour of the KZ filter
in the M � 1 regime. Its frequency response (FR) is simply the
kth power of that of the moving average,

FRM,k( f ) =

[
sin(π f LM)
LM sin(π f )

]k

, | f | ≤ 1
2
, (B.9)

where f = ω∆t/2π is the angular frequency in units of the sam-
pling rate ωs. The zeros of the frequency response are given by

FRM,k( f ) = 0 ⇐⇒ f LM ∈ Z \ {0}, (B.10)

as shown in Fig. B.2. Following (Carpino et al. 1987), we define
the dimensionless cutoff frequency fc as

|FRM,k( f )| ≤ αk for | f | ≥ fc, (B.11)

where we have defined the maximum gain in the stopband αk =
|FRM,k( f ?M)|, f ?M being the frequency of the first local maximum
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Table B.1: Frequency response of the KZ filter for M � 1. Maximum gain in the stopband αk = ηk. Ratio of the cutoff frequency fc
to the passband frequency fp for two different maximum loss ρ.

k 1 2 3 4 5
αk 2.17 · 10−1 4.72 · 10−2 1.03 · 10−2 2.23 · 10−3 4.84 · 10−4

fc/ fp, ρ = 5% 4.63 6.53 7.99 9.22 10.3
fc/ fp, ρ = 1% 10.4 14.7 18.0 20.8 23.3

of |FRM,k( f )| for f > 0. In the regime M � 1, this frequency is
given by the first positive solution x? of the equation

x = tan(x), (B.12)

where x = π f LM . Numerically, we find x? ≈ 4.49. Therefore we
obtain f ?MLM = x?/π ≈ 1.43, independently of k, and the gain
αk = ηk, with η = |sin(x?)|/x? ≈ 0.217, which is thus asymptoti-
cally independent of M. These results are shown in Fig. B.2. The
cutoff frequency fc can be computed from Eq. (B.11) through the
first positive solution xc of the equation

ηx = |sin(x)|, (B.13)

which is found numerically to be xc ≈ 2.55. The cutoff frequency
of the KZ filter is thus given by

fcLM = xc/π ≈ 0.813, (B.14)

independently of M and k in the asymptotic regime M � 1.
Figure B.2 and Table B.1 show that with a small number k of iter-
ations, the KZ filter is already able to provide a strong attenuation
in the stopband. Given its straightforward numerical implemen-
tation through Eq. (B.6), the KZ filter is an effective general
choice for a low-pass filter. However, choosing a very large num-
ber k of iterations would reduce the passband in the frequency
response of the filter. We define the dimensionless passband fp
as

FRM,k( f ) ≥ 1 − ρ, for | f | ≤ fp, (B.15)

where 0 < ρ � 1 is a given maximum loss. In the regime M �
1, by developing the frequency response in a Taylor series about
x = 0, we have

1 − x2
p

6
+

x4
p

120
+ O(x6

p) = (1 − ρ)1/k, xp � 1. (B.16)

By neglecting terms of order O(x6
p), the pertinent solution is

given by

fpLM =

√
10
π

√
1 −

√
1 − 6

5

[
1 − (1 − ρ)1/k

]
. (B.17)

At first order in
√
ρ/k, we obtain

fpLM =

√
6
π

√
ρ

k
+ O

(
ρ

k

)
, (B.18)

which shows that the passband shrinks as k−1/2, as shown in
Fig. B.2. This dependence on k is fortunately sublinear. Gen-
erally speaking, a reasonable choice of the number of iterations
should be restricted in our opinion to 3 ≤ k . 5, as suggested by
Table B.1. We note that the resulting transition band can easily
span more than one decade of frequency, and it is thus not nar-
row, as in more complex filters (e.g. Carpino et al. 1987). This is
the main drawback of the simplicity of the KZ filter.

Appendix C: Additional statistics for (Laskar &
Gastineau 2009)

In (Laskar & Gastineau 2009), 2501 numerical integrations of
the full Solar System were performed over 5 Gyr using the
SABA4 high-order symplectic integrator (Laskar & Robutel
2001). In most cases, the step size was constant, but for the
integrations that included close planetary encounters or effec-
tive collisions, the step size was very much reduced in order to
conserve the accuracy of the integration. This led to very long
integration times for some of the runs, and not all the solutions
were completed at the time of the publication of the paper. All
2501 runs were started on August 7, 2008. Of these, 2472 were
completed in 2008, but 22 ended in 2009 and another 7 in 2010,
the last was completed on June 15, 2010. We present here the
full statistics resulting from these numerical integrations, which
have since been presented in many conferences, but were never
published. In Table C.1 we give the total number of solutions for
which the eccentricity of Mercury reaches a given value over 500
Myr to 5000 Myr. This table is similar to Table S1 of (Laskar
& Gastineau 2009), but provides the total number of solutions
instead of the percentage. In the last column, we also provide
the values reached after full completion of the numerical inte-
grations in June 2010. All the other numbers were unchanged.

em0 500 1000 1500 2000 3000 4000 5000
0.35 75 227 358 504 795 1046 1231
0.40 7 49 97 167 315 472 639
0.50 0 0 3 7 24 51 99
0.60 0 0 1 2 4 12 24
0.70 0 0 1 2 3 11 22/23
0.80 0 0 1 2 2 10 21/22
0.90 0 0 1 2 2 8 19/21

Table C.1: Number of solutions that reach a given eccentricity of
Mercury (em0) over a given time (500, 1000, 1500, 2000, 3000,
4000, and 5000 Myr). The statistics are made over 2501 orbital
solutions as published in (Laskar & Gastineau 2009). In the three
bottom rows of the last column (5 Gyr), the second number is
the number reached after full completion of all the integrations
in June 2010.

In the last column of Table C.1, the number of solutions for
which the eccentricity of Mercury extends beyond 0.9 increased
from 19 to 21. Of these 21 solutions, 6 present a collision of Mer-
cury with Venus (i.e. their centre of mass distance is smaller than
the sum of their radii), 9 a collision of Mercury with the Sun, 5
reach 5 Gyr without collision, but with very close encounters
(e.g. one solution presents an encounter of Mercury with Venus
with less than 1800 km between the two surfaces), and one solu-
tion has a very close encounter of Mars with the Earth (surface
distance less than 794 km), followed by a collision of Mars with
the Sun.
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Appendix D: Quasi-periodic secular solution for
the outer planets

We use a quasi-periodic solution for the secular evolution of the
orbits of the outer planets (Jupiter to Uranus), denoted hereafter
as QPSO. In order to achieve a realistic modelling, this solu-
tion was deduced from a numerically integrated full solution of
the Solar System. The solution of reference (LaX13b) used an
identical model as in (Laskar et al. 2011), but was initially fitted
to the improved INPOP13b high-precision planetary ephemeris
(Verma et al. 2014; Fienga et al. 2014), extended over 1 Myr. The
model was then integrated over 30 Myr to derive a quasi-periodic
approximation through frequency analysis (Laskar 1988, 2005).
The variables considered here are the Poincaré complex canon-
ical variables in Eq. (2), scaled to suppress the semi-major axis
(or Λ) dependence, that is,

X = x

√
2
Λ

=
√

2
√

1 −
√

1 − e2 E j$,

Y = y

√
1

2Λ
=

(
1 − e2

) 1
4 sin(i/2) E jΩ .

(D.1)

It should be noted thatX = z + O(e3) andY = ζ + O(e2 sin(i/2)),
where z = eE j$ and ζ = sin(i/2)E jΩ are the classical, non-
canonical, complex elliptic elements.

The derivation of the QPSO model needs some care. We
wish to obtain a model that contains only the secular frequen-
cies pertaining to the outer planet system. The secular terms
related to the inner planets are thus discarded. Because of the
presence of the 5:2 close mean-motion resonance among Jupiter
and Saturn and the proximity of the 2:1 mean motion resonance
in the Uranus-Neptune system, several short-period terms (with
arguments involving the planetary mean motions) have also to be
discarded. The solution comprises a small number of terms and
is fully given in Tables D.5 and D.6. Only the terms for which
the angular argument is recognized in an unambiguous way as
a combination of the fundamental frequencies (Table D.3) were
selected because we wished to derive an analytic model for the
outer planets variables. These are expressed in the form

Z =

N∑
n=1

Z̃n E jkn·ωot (D.2)

where Z stands for X or Y, alternatively, ωo =
(g5, g6, g7, g8, s6, s7, s8) is the vector of the fundamental secular
frequencies of the outer planet system, given in Table D.3, and
kn ∈ Z7 is a septuple of integers.

In order to test this model, we compared it to the full solu-
tion LaX13b (Figs. D.1 and D.2). Only the real parts of X and Y
are represented because the imaginary parts lead to very similar
plots. The full solution from LaX13b is plotted in purple, while
the residuals after the analytical model QPSO was removed are
plotted in green. For the inclination variables (Yk), these resid-
uals are very small and appear as a straight line in the plots
(Fig. D.2). This is not the case for the eccentricity variables (Xk),
where a significant band of residuals appears in green (Fig. D.1).
This is mostly due to the short-period terms in the full LaX13b
solution. When the largest of these terms are removed, the resid-
uals become much smaller, as shown by the black curves (see
also Table D.4).

Appendix D.1: Secular initial conditions

To complete the QPSO solution or to integrate the secular equa-
tions by Gauss’s averaging method (Sec. 3), the values of the

secular semi-major axes âk are needed, or more precisely, those
of the secular canonical variables Λ̂k ∝

√
âk, which are constant

in the secular system. We defined the secular semi-major axes as
the square of the secular averages 〈√ak〉 in the LaX13b solution
(Table D.1), i.e. âk = 〈√ak〉2. The mean mean motions Nk (sec-
ular averages of the mean motions) and the values of the mean
longitudes at the origin λ0k were also derived from the LaX13b
solution and are provided in Table D.1. The remaining initial
conditions of the secular system, corresponding to the complex
variables (Xk,Yk), were obtained by a least-squares fit of a poly-
nomial of degree 5 in time to the full LaX13b solution over the
first few thousand years after the short-period component was
removed by Fourier filtering (Table D.2).

Appendix D.2: La2004 invariant reference frame

All the solutions given here are established in the invariant refer-
ence frame, which would ideally be the (x, y, z) reference frame,
whose z-axis is aligned with the total angular momentum of the
system, and with the x-axis pointing towards the equinox J2000.
Nevertheless, this convention is not very practical because this
invariant reference frame would change for any small varia-
tion of planetary masses or number of objects in the system.
In the numerical long-term integrations of (Laskar & Gastineau
2009; Laskar et al. 2011), we therefore adopted a fixed reference
frame, which is the conventional invariant reference frame of the
orbital solution La2004 of (Laskar et al. 2004), which has been
widely used in the paleoclimate community. We call this ref-
erence frame the La2004 invariant reference frame. It is thus a
fixed reference frame that is derived from the ICRF equatorial
reference frame (Ma et al. 1998) by the fixed transformation

uinv = Rx(θ1)Rz(θ3)uICRF , (D.3)

where Rx and Rz are rotation matrices defined as

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 ,
Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 ,
(D.4)

and

θ1 = −0.4015807829125271 ,
θ3 = −0.06724103544220839 .

(D.5)
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k 〈ak〉 (au) 〈√ak〉 (au1/2) Nk (rad yr−1) λ0k (rad)
1 + 3.8709826346795750e−1 + 6.2217220269433726e−1 + 2.6087903147673952e+1 − 1.9409256207851238e+0
2 + 7.2332656745540558e−1 + 8.5048604874990819e−1 + 1.0213285580208819e+1 + 3.1147692710442865e+0
3 + 9.9999548642649372e−1 + 9.9999769746809641e−1 + 6.2830757971490190e+0 + 1.6916552864570649e+0
4 + 1.5236795439419937e+0 + 1.2343740652952826e+0 + 3.3406125732385012e+0 − 1.4103263138988523e−1
5 + 5.1927031282775076e+0 + 2.2787503028934468e+0 + 5.2968797602323869e−1 + 5.4918813383105469e−1
6 + 9.5493731166789555e+0 + 3.0902059273326929e+0 + 2.1329780126024636e−1 + 8.2272979387628475e−1
7 + 1.9216488649834947e+1 + 4.3836614414294299e+0 + 7.4781213910514538e−2 − 8.6189037349800601e−1
8 + 3.0106792749722608e+1 + 5.4869659219790110e+0 + 3.8132752280987267e−2 − 1.0322632668252640e+0

Table D.1: Secular average of the semi-major axes (〈ak〉), mean mean motions (Nk), and mean longitudes at the origin (λ0k) in the full
solution LaX13b in the La2004 invariant reference frame (see Sec. D.2) derived by frequency analysis. The secular average of the
action-like variable

√
ak is also provided because it cannot be directly obtained from 〈ak〉: due to the contribution of the short-period

terms, the average 〈 f (x)〉 of f (x) is not f (〈x〉).

k Re(Xk) Im(Xk) Re(Yk) Im(Yk)
1 + 5.6990505842292892e−2 + 1.9872894591036927e−1 + 4.6165713227763444e−2 + 2.9410664010632515e−2
2 − 4.1735654068702976e−3 + 5.3327342759766343e−3 + 1.1928053604473932e−2 + 1.4987173725293589e−2
3 − 2.7278550885769647e−3 + 1.6484645103357756e−2 + 3.3422496351974010e−3 − 1.3363750560862579e−2
4 + 8.2969437680297631e−2 − 4.3116239799066092e−2 + 1.4518563462960753e−2 − 1.7430317715928134e−3
5 + 4.7651130651270288e−2 + 9.0836135513906891e−3 + 1.9689371814761709e−3 − 2.0725403616100885e−3
6 + 4.7464039310316251e−4 + 5.5529067938940795e−2 − 4.1232378462891421e−3 + 7.0205383101661738e−3
7 − 4.5530988000471201e−2 + 8.4408377405346107e−3 + 5.5957559447492129e−3 − 7.0021269706505322e−3
8 + 6.4028803643053234e−3 + 6.3248118090214632e−3 − 6.2175356759488895e−3 − 1.2331754395710286e−3

Table D.2: Initial conditions for the secular eccentricity (Xk) and inclination (Yk) variables at time J2000 in the La2004 invariant
reference frame (see Sec. D.2), derived from the full LaX13b solution. In the first column, k is the index of the planet, and in columns
2 and 3, Re(Xk) and Im(Xk) are the real and imaginary part of the eccentricity variables Xk. In columns 4 and 5, Re(Yk) and Im(Yk)
are the same quantities for the inclination variables.

arcsec yr−1

g5 + 4.2574706495769208e+0
g6 + 2.8245402509991674e+1
g7 + 3.0879599203482901e+0
g8 + 6.7303498995492750e−1
s6 − 2.6347830405033751e+1
s7 − 2.9925307659382381e+0
s8 − 6.9173578620513787e−1

Table D.3: Values of the fundamental secular frequencies of the
outer Solar System derived by frequency analysis of the LaX13b
solution over 30 Myr. These values were used in the QPSO
model. They may slightly differ from the corresponding values
given in (Laskar et al. 2004, 2011).

Jupiter Saturn Uranus Neptune
max(|X|) × 106 63668 87244 74248 16993

max(|∆X|) × 106 3433 3993 4617 2308
max(|∆2X|) × 106 932 2817 1463 364

rms(X) × 106 46990 58506 47647 10128
rms(∆X) × 106 2130 1876 2497 1404

rms(∆2X) × 106 341 1066 323 89
max(|Y|) × 106 4262 8908 10120 7054

max(|∆Y|) × 106 47 92 108 51
rms(Y) × 106 3237 7870 8905 5905

rms(∆Y) × 106 19 35 33 20

Table D.4: Maximum and root mean square (rms) of the vari-
ables X,Y in the full LaX13b solution and of the differences
with their QPSO model Xs,Ys (∆X = X − Xs, ∆Y = Y − Ys).
For the eccentricity variable X, the same values are given after
removing the main short-period terms Xc (∆2X = X − Xs − Xc)
(see Figs. D.1 and D.2).
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n Re(X̃n) Im(X̃n) g5 g6 g7 g8 s6 s7 s8
Jupiter

1 3.9355222649836610e−2 2.0091205352205602e−2 1 0 0 0 0 0 0
2 8.7066820380533507e−3 − 1.3074566807550854e−2 0 1 0 0 0 0 0
3 − 8.2479311026874128e−4 1.6219245178173808e−3 0 0 1 0 0 0 0
4 4.3644617155629635e−4 3.6982470511425620e−4 − 1 2 0 0 0 0 0
5 − 1.6066790855383061e−4 − 1.0789988494431164e−4 1 1 − 1 0 0 0 0
6 − 1.6498638598462650e−4 − 1.0869857779342080e−4 − 1 1 1 0 0 0 0
7 1.0937458300137176e−4 5.6433525785796263e−5 − 1 2 0 0 1 − 1 0
8 8.5006502723719633e−5 7.1060850357874042e−5 1 0 0 0 − 1 1 0
9 − 2.7299373985450095e−5 6.4538424302377966e−5 2 0 − 1 0 0 0 0

10 3.2040993080287076e−5 − 3.7642412972847125e−5 0 2 − 1 0 0 0 0
11 1.9199352898954454e−5 5.4871593139050202e−5 0 0 0 1 0 0 0
12 − 2.1420886245050815e−5 2.0070283084590094e−5 − 2 3 0 0 0 0 0
13 9.7884950272160402e−6 − 1.1528203620115796e−5 − 2 2 1 0 0 0 0
14 − 6.4760245885223307e−6 9.7064946705620636e−6 0 − 1 0 0 2 0 0

Saturn
1 − 2.6735064579495354e−2 4.0147278432709689e−2 0 1 0 0 0 0 0
2 2.9365236482935035e−2 1.4991233172235453e−2 1 0 0 0 0 0 0
3 − 1.4720163989740585e−3 − 1.2472787791106869e−3 − 1 2 0 0 0 0 0
4 − 6.8748119559295436e−4 1.3516157882362077e−3 0 0 1 0 0 0 0
5 4.9631439815354689e−4 3.3334599996898677e−4 1 1 − 1 0 0 0 0
6 5.0410851738721387e−4 3.3210459157965804e−4 − 1 1 1 0 0 0 0
7 − 3.3825396912499196e−4 − 1.7459211633013424e−4 − 1 2 0 0 1 − 1 0
8 − 2.5925687680288125e−4 − 2.1668870819116260e−4 1 0 0 0 − 1 1 0
9 − 1.0852577202837296e−4 1.2750655350023438e−4 0 2 − 1 0 0 0 0

10 − 4.6777512194793370e−5 1.2559406460037114e−4 2 − 1 0 0 0 0 0
11 6.9601743332890669e−5 − 6.5337803141444139e−5 − 2 3 0 0 0 0 0
12 1.9059552532015572e−5 5.4460189585479054e−5 0 0 0 1 0 0 0
13 − 3.3260941738184332e−5 3.9045961061362962e−5 − 2 2 1 0 0 0 0
14 − 1.8327645535629047e−5 4.4381655444927067e−5 2 0 − 1 0 0 0 0
15 1.6832831093654628e−5 − 2.5231972103884829e−5 − 2 3 0 0 1 − 1 0
16 1.9485028357121861e−5 − 1.8629237185287101e−5 0 1 0 0 − 1 1 0
17 1.3531984986636972e−5 − 2.0332362024269671e−5 0 − 1 0 0 2 0 0

Uranus
1 − 3.3516665527223363e−2 − 1.7110181361426769e−2 1 0 0 0 0 0 0
2 − 1.3168012223376812e−2 2.5888592859517973e−2 0 0 1 0 0 0 0
3 8.5812650851483144e−4 − 1.2886280579699632e−3 0 1 0 0 0 0 0
4 5.5001023804251395e−4 1.5768772504826957e−3 0 0 0 1 0 0 0
5 − 3.7488766418176093e−4 − 2.5628502554155236e−4 − 1 0 2 0 0 0 0
6 1.8595341017043558e−4 − 4.0628416200819552e−4 2 0 − 1 0 0 0 0
7 6.1419633897654503e−5 − 3.8157567361894473e−5 0 0 0 1 0 − 1 1
8 − 4.8677965279021335e−5 − 3.2236597182724679e−5 − 1 1 1 0 0 0 0
9 − 1.7354342210696565e−5 4.5904026894682532e−5 0 1 0 0 1 − 1 0

10 2.2036143287116906e−5 3.4065981233013441e−5 0 0 1 0 0 1 − 1
11 3.2445476543283863e−5 2.7491971542182629e−5 − 1 2 0 0 0 0 0
12 1.4570603907287206e−5 − 3.9111620103262798e−5 2 − 1 0 0 0 0 0
13 − 3.4710330596857471e−5 − 1.2868365278212245e−5 1 − 1 1 0 0 0 0

Neptune
1 3.0124292308931207e−3 8.6106841210746767e−3 0 0 0 1 0 0 0
2 1.6799504499698586e−3 − 3.3014578256236110e−3 0 0 1 0 0 0 0
3 1.6855558947835656e−3 8.6062600108725124e−4 1 0 0 0 0 0 0
4 9.2455797923682499e−5 1.2548047080946322e−4 0 0 1 0 0 1 − 1
5 5.7121148764694937e−5 − 8.5774015603758624e−5 0 1 0 0 0 0 0
6 − 1.7043313379296477e−5 5.5214648783483626e−5 2 0 − 1 0 0 0 0
7 − 5.0730275098891472e−5 1.7656865611016711e−5 − 1 0 1 1 0 0 0
8 − 4.6217102122902557e−5 8.6886583776811327e−6 1 0 − 1 1 0 0 0

Table D.5: Quasi-periodic decomposition (Eq. D.2) of the secular solution for the outer planets for the eccentricity variable X.
The first column is the index n of the terms ranked by decreasing amplitude. Columns 2 and 3 are the real and imaginary
parts of the complex amplitude X̃n. The last 7 columns are the integer coefficients kn of the secular fundamental frequencies
(g5, g6, g7, g8, s6, s7, s8).
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n Re(Ỹn) Im(Ỹn) g5 g6 g7 g8 s6 s7 s8
Jupiter

1 1.7488173284935253e−3 − 2.6183244274251252e−3 0 0 0 0 1 0 0
2 5.4086264886788772e−4 2.0008212164609817e−4 0 0 0 0 0 0 1
3 − 3.4991238273175804e−4 3.2977145829984634e−4 0 0 0 0 0 1 0
4 − 1.8308342659255464e−5 − 1.5291916542971615e−5 1 − 1 0 0 0 1 0
5 1.4043531453627062e−5 1.1934392862719320e−5 − 1 1 0 0 1 0 0
6 7.8810622671801405e−6 − 1.1871211261358110e−5 0 2 0 0 − 1 0 0
7 5.9643858674840883e−6 1.0197242568214183e−5 1 0 − 1 0 0 1 0
8 6.7104749336174370e−6 7.0850042988014965e−6 − 1 0 1 0 0 1 0
9 7.5756401983704222e−6 3.8603677665594590e−6 1 1 0 0 − 1 0 0

10 5.9778122148403010e−6 3.0620950992005088e−6 1 − 1 0 0 1 0 0
11 − 2.1572046295338697e−6 5.8221465688096679e−6 2 0 0 0 − 1 0 0
12 5.5060848892241336e−6 1.0748962916018817e−7 0 0 1 − 1 0 1 0
13 3.6055121619276866e−6 2.3835869329764091e−6 − 1 0 1 0 1 0 0
14 3.0826004389954454e−6 2.0622614907196112e−6 1 0 − 1 0 1 0 0

Saturn
1 − 4.3551504624732961e−3 6.5205184658223064e−3 0 0 0 0 1 0 0
2 5.2100147631152049e−4 1.9273799677446370e−4 0 0 0 0 0 0 1
3 − 2.8379662031061457e−4 2.6741614761702752e−4 0 0 0 0 0 1 0
4 4.6758845331323253e−5 3.9087781691034812e−5 1 − 1 0 0 0 1 0
5 − 1.9580115731859662e−5 2.9490631827283331e−5 0 2 0 0 − 1 0 0
6 − 1.7652537335071599e−5 − 8.9921682226792706e−6 1 1 0 0 − 1 0 0
7 5.4933935882853390e−6 − 1.4791745653763672e−5 2 0 0 0 − 1 0 0
8 − 9.8967096662986720e−6 − 5.0668618867237504e−6 1 − 1 0 0 1 0 0
9 5.5991180901835754e−6 9.2383183832156914e−6 1 0 − 1 0 0 1 0

10 − 8.3001644772275482e−6 − 5.4822443203989674e−6 − 1 0 1 0 1 0 0
11 − 8.4231240803385387e−6 − 5.6221713943930228e−6 1 0 − 1 0 1 0 0
12 4.3080242579548885e−6 − 4.9727282168325052e−6 0 − 1 1 0 0 1 0
13 4.6767916324411297e−6 4.9364726673458742e−6 − 1 0 1 0 0 1 0
14 5.3492390903931119e−6 1.1516431592670172e−7 0 0 1 − 1 0 1 0

Uranus
1 6.4509456587545097e−3 − 6.0800433007360578e−3 0 0 0 0 0 1 0
2 − 5.2144272869098863e−4 − 1.9450453182598740e−4 0 0 0 0 0 0 1
3 1.9588947834103037e−4 − 2.9327923348973088e−4 0 0 0 0 1 0 0
4 − 2.3212752397668531e−4 − 1.9717826296471695e−4 − 1 1 0 0 1 0 0
5 − 1.2149356527579389e−4 − 1.5156742923710744e−4 1 0 − 1 0 0 1 0
6 − 1.2811598024162592e−4 − 1.3534877221356973e−4 − 1 0 1 0 0 1 0
7 − 5.2966451675750289e−5 2.5077699446788398e−5 0 0 − 1 1 0 0 1
8 1.6984719605072953e−5 − 1.9936933726180298e−5 0 1 − 1 0 1 0 0
9 − 2.4457738819518524e−6 1.8969234909116482e−5 2 0 0 0 0 − 1 0

10 1.2046673620575406e−5 1.5300754359230831e−6 1 0 1 0 0 − 1 0
11 − 7.8758536093341333e−6 − 6.6184659114505215e−6 1 − 1 0 0 0 1 0

Neptune
1 − 5.4490991487018952e−3 − 2.0144507098382057e−3 0 0 0 0 0 0 1
2 − 7.7303138004431132e−4 7.2861855867743536e−4 0 0 0 0 0 1 0
3 4.3096387136203190e−5 3.6612167171941073e−5 − 1 1 0 0 1 0 0
4 − 5.7346979760257004e−5 − 4.5712045540159025e−7 0 0 1 − 1 0 1 0
5 2.0971470945766545e−5 − 3.1399605917613957e−5 0 0 0 0 1 0 0
6 1.8895546258392125e−5 1.9903787862297811e−5 − 1 0 1 0 0 1 0
7 − 6.3733664965820864e−6 1.6355452734395612e−5 1 0 − 1 0 0 0 1
8 − 1.0680967225253630e−5 1.2532923143655674e−5 0 1 − 1 0 1 0 0
9 7.6134109660753571e−6 − 3.6727669507265366e−6 0 0 − 1 1 0 0 1

10 3.0786794242300075e−7 − 6.0431372258343262e−6 1 0 0 − 1 0 1 0
11 − 5.1451015466983096e−6 − 6.1085028343284465e−7 1 0 1 0 0 − 1 0

Table D.6: Quasi-periodic decomposition (Eq. D.2) of the secular solution for the outer planets for the eccentricity variable Y.
The first column is the index n of the terms ranked by decreasing amplitude. Columns 2 and 3 are the real and imaginary
parts of the complex amplitude Ỹn. The last 7 columns are the integer coefficients kn of the secular fundamental frequencies
(g5, g6, g7, g8, s6, s7, s8).
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Fig. D.1: Real part of the eccentricity variable X (Eq. D.1). The purple curve is the full LaX13b solution. The green curve is the residual after the
contribution of the secular model QPSO is removed from LaX13b. The black curve is the same after the main short-period terms are removed from
the residuals.
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Fig. D.2: Real part of the inclination variable Y (Eq. D.1). The purple curve is the full LaX13b solution. The green curve is the residual after the
contribution of the secular model QPSO is removed from LaX13b.
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