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Abstract: In this work, we considered the mechanistic model describing the anaerobic
mineralization of chlorophenol in a three-tiered food-web, which is a six-dimensional system
of ordinary differential equations. The aim of this work is to study the sensitivity of the process
according to the biological parameters. To this end, we performed analytically the operating
diagrams, using the mathematical analysis of this model obtained in our previous studies. These
operating diagrams give the asymptotic behavior of the model with respect to the operating
parameters and show the drastic change of the asymptotic behavior of the system on the
biological parameters.
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1. INTRODUCTION

Anaerobic digestion (AD) is an important process used for
treating wastewater, municipal, industrial and agricultural
wastes. It has the advantage of producing methane and
hydrogen under appropriate conditions as a renewable
energy source. The generic AD model No.1 (ADM1) de-
veloped in Batstone et al. (2002) is very complex because
it is characterized by its extreme complexity with 32 state
variables and a large number of parameters.

A simple two-step AD model (called AM2) developed in
Bernard et al. (2001) provides satisfactory prediction of
the AD process and demonstrates the ability to repro-
duce the experimental data and the dynamical behav-
ior. Many papers in the literature have studied the AM2
model (see Bayen and Gajardo (2019); Fekih-Salem et al.
(SIADS2021); Sari et al. (2012); Xu et al. (2011) and the
reference therein).

A mathematical model of three-tiered microbial food-web
has been proposed by Wade et al. (2016), by introducing
an additional microorganism and substrate into a two-
tiered feeding chain model considered by Xu et al. (2011).
Several authors studied the three-tiered model, see El-
Hajji et al. (2017); Nouaoura et al. (DcDsB2020,S); Sari
and Wade (2017); Sobieszek et al. (2020); Wade et al.
(2016).

Using specific growth rates, Wade et al. (2016) have proven
that the model can have up to eight steady states. Several

operating diagrams, which shows the dynamic behavior of
the system with respect to the four operating parameters
(the dilution rate and the three input concentrations of
the substrates) such that the values of the biological
parameters are fixed have been constructed numerically
and they did not depict all the behavior of the model.

Sari and Wade (2017) have considered the case with only
the chlorophenol inflowing concentration has been taken
into account and general growth rates. The operating
diagrams were obtained analytically in the case without
maintenance and numerically in the case with mainte-
nance. Adding the maintenance terms, they highlighted
by a numerical stability analysis the presence of the re-
gion of instability of the positive steady state with the
appearance of a stable limit cycle via a Hopf bifurcation.
These phenomena were not depicted in Wade et al. (2016).
Indeed, they were proved theoretically in Sobieszek et al.
(2020) in the case neglecting maintenance.

In Nouaoura et al. (DcDsB2020), we have extended the
results of Sari and Wade (2017) by considering the inflow
of the three substrate concentrations. The necessary and
sufficient existence conditions of the steady states are
analytically performed in the case with maintenance. The
necessary and sufficient local stability conditions are per-
formed analytically when maintenance is excluded. Then,
these results of local stability are extended in Nouaoura et
al. (Siap2021) to the case where maintenance is included.
The one parameter bifurcation diagrams of the three-
tiered model presented in Nouaoura et al. (Siap2021,D)



were analytically constructed in the cases with and with-
out maintenance. They show that the model has in both
cases rich dynamics including bistability, coexistence and
occurrence of the limit cycle due to supercritical Hopf
bifurcation.

Recently, in Nouaoura et al. (Preprint2021), we have per-
formed theoretically the operating diagrams by using the
analytical results of the existence and stability conditions
in Nouaoura et al. (Siap2021,D). We highlighted the im-
pact of the maintenance terms and the importance of the
operating parameters on the asymptotic behavior of the
model. We have compared our results with the findings
of previous numerical study in Wade et al. (2016) where
several regions have been omitted.

In this work, we reconsider the three-tiered model pro-
posed in Wade et al. (2016). The first contribution is the
determination of the operating diagrams analytically when
only the chlorophenol is in the input of the bioreactor and
in both cases with and without decay terms, to compare
with the numerically operating diagrams obtained in Sari
and Wade (2017). The second contribution is to highlight
the sensitivity of the biological parameter on the quali-
tative behavior of the system confirming the findings of
previous numerical analysis in Sari and Wade (2017).

The paper is organized as follows. In section 2, we present
the mathematical model of three-tiered microbial species
of Wade et al. (2016). Next, in section 3, we describe
analytically the operating diagrams in both cases with and
without maintenance terms. Finally, we discuss our results
and we give some conclusions in section 4. In Appendix A,
we present the change of variables that are used to simplify
the analysis of the general model and we describe the
results of Nouaoura et al. (Siap2021,D) on the existence
and local stability of the steady states. The equations
of the curves that delimit the regions of the operating
diagrams are provided in Appendix B.

2. MATHEMATICAL MODEL

The three-tiered model, considered in Wade et al. (2016),
can be written as follows:

Ẋch = (Ychf0 (Sch, SH2
)−D − kdec,ch)Xch

Ẋph = (Yphf1 (Sph, SH2
)−D − kdec,ph)Xph

ẊH2
= (YH2

f2 (SH2
)−D − kdec,H2

)XH2

Ṡch = D
(
Sin
ch − Sch

)
− f0 (Sch, SH2)Xch

Ṡph = D
(
Sin
ph − Sph

)
+ 224

208 (1− Ych) f0 (Sch, SH2)Xch

−f1 (Sph, SH2)Xph

ṠH2
= D

(
Sin
H2
− SH2

)
− 16

208f0 (Sch, SH2
)Xch

+ 32
224 (1− Yph)f1 (Sph, SH2)Xph − f2(SH2)XH2 ,

(1)
where Sch, Sph and SH2

are the chlorophenol, phenol
and hydrogen substrate concentrations, respectively; Xch,
Xph and XH2

are the chlorophenol, phenol and hydro-
gen degrader concentrations; D is the dilution rate; fi,
i = 0, 1, 2 are the specific growth rates; Sin

ch, S
in
ph and

Sin
H2

are the inflowing concentrations in the chemostat;
kdec,ch, kdec,ph and kdec,H2 are the maintenance (or decay)
rates; Ych, Yph and YH2 are the yield coefficients. The value
224/208 (1− Ych) is the fraction of chlorophenol converted
to phenol, 32/224 (1− Yph) is the fraction of phenol that

is transformed to hydrogen and 16/208 is the fraction of
hydrogen consumed by the chlorophenol degrader Xch.

The growth functions take the following form:

f0 (Sch, SH2
) =

km,chSch

KS,ch + Sch

SH2

KS,H2,c + SH2

,

f1 (Sph, SH2) =
km,phSph

KS,ph + Sph

1

1 + SH2
/KI,H2

, (2)

f2 (SH2
) =

km,H2
SH2

KS,H2
+ SH2

.

The case with Sin
ph > 0 and Sin

H2
> 0 was analyzed

in Nouaoura et al. (Siap2021,D) using a general class
of growth functions. Following Sari and Wade (2017),
we restrict our analysis to the case where we only the
chlorophenol input substrate is added to the system, that
is, Sin

ch > 0, Sin
ph = Sin

H2
= 0. In this case, system (1) can

have up to three steady states labeled E1, E2 and E3 and
defined as follows:

• E0: the washout steady state where all populations
are extinct.

• E1: Xch > 0, Xph > 0 and XH2 = 0, where only the
hydrogenotrophic methanogens are washed out.

• E2: Xch > 0, Xph > 0 and XH2 > 0, where all three
populations are maintained.

These steady states are denoted by SS1, SS2 and SS3
in Sari and Wade (2017), and by SS1, SS4 and SS6 in
Wade et al. (2016), respectively. From Nouaoura et al.
(DcDsB2020), the components of these steady states are
given in Table A.1. The conditions of their existence and
stability are provided in Table A.2.

Remark 1. The steady state E0 always exists. There exist
at most two steady states of the form E1, that we denote
by E1

1 and E2
1 . The steady state E2 is unique if it exists (see

Sari and Wade (2017) or Nouaoura et al. (DcDsB2020)).

3. OPERATING DIAGRAMS

The operating diagrams show how behaves the system
when the operating parameters D and Sin

ch are varying
in (1). To plot the operating diagrams, we must fix the
values of the biological parameters which are provided in
Table 1 of Wade et al. (2016). From Table A.2, we define
in Table B.1 the curves Γi, i = 1, . . . , 5 which delimite
the different regions of the

(
Sin
ch, D

)
-plane. These curves

separate the operating space
(
Sin
ch, D

)
into five regions,

denoted Jj , j = 1, . . . , 5.

Using our result in Nouaoura et al. (Preprint2021), we
recall the existence and the stability of the steady states
of (1) according to the five regions Ji, i = 1, . . . , 5, of the
operating diagrams determined in Table 1.

In our previous study, Nouaoura et al. (Preprint2021), we
have extended in case where Sin

ph > 0 and/or Sin
H2

> 0.

Following Sari and Wade (2017), we plot in the following
the operating diagrams corresponding to three cases which
obtained with the numerical parameter values of KS,H2,c

given in Table B.2, in the cases with and without mainte-
nance.



Table 1. Existence and stability of steady
states in the regions of the operating diagrams.
The letter S (resp. U) means that the corre-
sponding steady state is LES (resp. unstable).
No letter means that the steady state does not

exist.
Region E0 E1

1 E2
1 E2 Color

J1 S Red
J2 S U S Green
J3 S U U S Yellow
J4 S U U Blue
J5 S U U U Blueviolet

3.1 Operating diagrams: case (a)

First, we consider the case of Fig. 4 in Sari and Wade
(2017) where KS,H2,c = 10−6. The operating diagram in
the plane

(
Sin
ch, D

)
is shown in Fig. 1. Fig. 1(i) looks very

similar to Fig. 1(ii) except near of the origin. However,
there are no new regions that appear under the influence of
the maintenance terms. Fig. 1(ii) highlights the existence
of the region J5 of instability of E2 which was already
detected in Sari and Wade (2017), a fact that was not
reported in Wade et al. (2016). Note that, each region
that has a different asymptotic behavior is colored by a
distinct color as in Sari and Wade (2017).
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Fig. 1. Operating diagrams in the plane
(
Sin
ch, D

)
, for

case (a): (i) case without maintenance, on the right
its magnification for D ∈ [0, 0.078], (ii) case with
maintenance, on the right its magnification for D ∈
[0, 0.1].

Therefore, our theoretical study shows the same behavior
as Figs. 8 and 9 in Sari and Wade (2017) and confirms the
numerical findings presented in Sari and Wade (2017), in
the both cases with and without maintenance.

3.2 Operating diagrams: case (b)

In the following, we study the operating diagrams of
system (1) in the

(
Sin
ch, D

)
-plane by assuming a small

increase to the biological parameter KS,H2,c = 4 × 10−6

as in Fig. 5 of Sari and Wade (2017). In the case with
maintenance, the value of Sin

ch, in which the positive steady
state E2 is destabilized is greater than in the case without
maintenance, as shown in the operating diagram presented
in Fig. 2.
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Fig. 2. Operating diagrams in the plane
(
Sin
ch, D

)
, for case

(b): (i) case without maintenance and on the right
its magnification for D ∈ [0, 0.25], (ii) case with
maintenance and on the right its magnification for
D ∈ [0, 0.26].

Increasing KS,H2,c leads to the disappearance of the bista-
bility region J2 of the steady states E0 and E1 and to
changes in the size of the existence and stability regions
of the other steady states. Actually, the behavior of the
system when KS,H2,c = 4 × 10−6 was already clarified
in Sari and Wade (2017), where the instability of E2 has
been studied numerically in both cases with and without
maintenance. In fact, Fig. 2 is the same as Fig. 11 in Sari
and Wade (2017), which is obtained analytically. However,
although Fig. 2 shows the same behavior as Fig. 11 in
Sari and Wade (2017) achieved only numerically. Thus,
our theoretical study confirms the numerical findings pre-
sented in Sari and Wade (2017), in the both cases that the
maintenance is excluded and included in the system.

3.3 Operating diagrams: case (c)

In the following, we analyze the effect of the biological
parameter KS,H2,c on the behavior of the process in both
case with and without maintenance. By comparing with
the results obtained in the previous subsection, we increase
the half-saturation constant KS,H2,c of the chlorophenol
degrader on the hydrogen from 4× 10−6 to 6× 10−6. The
operating diagrams shown in Fig. 3 produce similar results
as shown in the comparison of Fig. 2 in both cases, with
variations only in their shape and extent. However, Fig.
3 shows the effect of the parameter KS,H2,c on the size of
the regions, where the regions J3 and J5 diminish in the
cases with and without decay terms.
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Fig. 3. Operating diagrams in the plane
(
Sin
ch, D

)
, for

case (b): (i) case without maintenance and on the
right its magnification for D ∈ [0, 0.2], (ii) case with
maintenance and on the right its magnification for
D ∈ [0, 0.07].

3.4 Operating diagrams: case (d)

Increasing once again the biological parameter KS,H2,c,
when we consider KS,H2,c = 7 × 10−6 corresponding to
case (c) in Sari and Wade (2017). The operating diagram
in the plane

(
Sin
ch, D

)
is shown in Fig. 4. We have seen in

the operating diagram presented in Fig. 4 that the steady
states E1 never stable and E2 never exist, since I2 is empty
in both cases with and without maintenance.
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Fig. 4. Operating diagrams in the plane
(
Sin
ch, D

)
, for

case (d): (i) case without maintenance and on the
right its magnification for D ∈ [0, 0.1], (ii) case with
maintenance and on the right its magnification for
D ∈ [0, 0.1].

Fig. 4 is the same as Fig. 12 in Sari and Wade (2017),
which is obtained analytically. Thus, our theoretical study
confirms the numerical results given in Sari and Wade
(2017), in the both cases with and without maintenance,
such as Fig. 4 shows the same behavior as Fig. 12 in Sari
and Wade (2017) achieved only numerically.

4. CONCLUSION

In this work, we gave an analytical study of the operating
diagrams of the three-tiered microbial model (1) developed
in Wade et al. (2016). Considering only the chlorophenol
input substrate concentration, we compare our results with
those obtained numerically in Sari and Wade (2017). Our
main aim was to present the mathematical analysis of the
operating diagrams and to illustrate its dependence on the
biological parameters of the process.

Our theoretical study of the operating diagrams in the(
Sin
ch, D

)
-plane of Figs. 1 to 4 show the same number of

regions in both cases with and without maintenance, with
variations only in their shape and extension. Moreover, it
confirmes the numerical results of Sari and Wade (2017).
In fact, our analytical operating diagrams in the case
with only chlorophenol addition in the input show that
all asymptotic behaviors were reported in Sari and Wade
(2017). Thus, the mathematical analysis of the operating
diagram remains the only way to ensure the accuracy of
the results. Our study show the sensibility of the asymp-
totic behavior of the process on the biological parameters.

Appendix A. MATHEMATICAL ANALYSIS OF THE
MODEL

In this section, we recall from Nouaoura et al. (Siap2021,D)
the main results of existence and stability of all steady
states of system (1). Following Sari and Wade (2017),
we can rescale model (1) to reduce the number of yield
parameters and ease the mathematical analysis. We use
the following change of variables:

x0 =
Y

Y0
Xch, x1 =

Y4
Y1
Xph, x2 =

1

Y2
XH2

,

s0 = Y Sch, s1 = Y4Sph, s2 = SH2
,

(A.1)

where the yield coefficients are

Y0 = Ych, Y1 = Yph, Y2 = YH2 ,

Y3 =
224

208
(1− Y0), Y4 =

32

224
(1− Y1),

with Y = Y3Y4 and ω = 16
208Y . The inflowing concentra-

tions are:

sin0 = Y Sin
ch, sin1 = Y4S

in
ph, sin2 = Sin

H2
, (A.2)

the death rates are a0 = kdec,ch, a1 = kdec,ph and a2 =
kdec,H2 . Under the scaling (A.1), the growth functions
become:

µ0(s0, s2) =
m0s0
K0 + s0

s2
L0 + s2

,

µ1(s1, s2) =
m1s1
K1 + s1

1

1 + s2/KI
, µ2(s2) =

m2s2
K2 + s2

,
(A.3)



where

m0 = Y0km,ch,K0 = Y KS,ch, L0 = KS,H2,c,m1 = Y1km,ph,

K1 = Y4KS,ph,KI = KI,H2
,m2 = Y2km,H2

,K2 = KS,H2
.

Using the change of variables (A.1) and (A.2), and Table
2 in Nouaoura et al. (DcDsB2020), we can recall now the
steady states of system (1) in Table A.1. From Table 3
in Nouaoura et al. (Siap2021) and the change of variables
(A.2), all necessary and sufficient existence and stability
conditions of the steady states of (1) in the case with
maintenance are stated in Table A.2.

Table A.1. The steady states of (1). The func-
tion µi are given by (A.3). The function Mi,
ψi and Ψ are given in Table 11 of Nouaoura
et al. (DcDsB2020). For the general case, the
functions are given in Table 1 of Nouaoura et

al. (DcDsB2020).
s0, s1, s2 x0, x1, x2

E0

s0 = Y Sin
ch

, s1 = Y4S
in
ph

,

s2 = Sin
H2

x0 = 0, x1 = 0, x2 = 0

E1

s2 = s2

(
D,Sin

ch
, Sin

ph
, Sin

H2

)
is a solution of

Ψ(s2, D) = (1 − ω)Y Sin
ch

+Y4S
in
ph

+ Sin
H2

s0 = M0(D + a0, s2),

s1 = M1(D + a1, s2)

x0 = D
D+a0

(
Y Sin

ch
− s0

)
,

x1 = D
D+a1

(Y Sin
ch

+ Y4S
in
ph

− s0 − s1),

x2 = 0

E2

s0 = M0(D + a0,M2(D + a2)),

s1 = M1(D + a1,M2(D + a2)),

s2 = M2(D + a2)

x0 = D
D+a0

(
Y Sin

ch
− s0

)
,

x1 = D
D+a1

(Y Sin
ch

+ Y4S
in
ph

− s0 − s1)

x2 = D
D+a2

((1 − ω)(Y Sin
ch

− s0)

+Y4S
in
ph

+ Sin
H2

− s1 − s2),

Table A.2. Case of maintenance: necessary and
sufficient existence and local stability condi-
tions of steady states of (1). The functions c3,
c5, r3 and r5 are given in Table 2 in Nouaoura
et al. (Siap2021). All other functions are given

in Table 8 of Nouaoura et al. (Siap2021).
Existence conditions Stability conditions

E0 always exists

µ0

(
Sin

ch
Y, Sin

H2

)
< D + a0,

µ1

(
Sin

ph
Y4, S

in
H2

)
< D + a1,

µ2

(
Sin

H2

)
< D + a2

E1

φ1(D) ≤ (1 − ω)Y Sin
ch

+ Y4S
in
ph

+ Sin
H2

,

Sin
ch
Y > M0 (D + a0, s2),

Sin
ch
Y + Sin

ph
Y4 > M0 (D + a0, s2)

+M1 (D + a1, s2),

with s2 solution of equation

Ψ(s2) = (1 − ω)Sin
ch
Y + Sin

ph
Y4 + Sin

H2

φ2(D) > (1 − ω)Sin
ch
Y + Sin

ph
Y4

+Sin
H2

,
∂Ψ
∂s2

(s2, D) > 0 and

φ3(D) > 0

E2

φ2(D) < (1 − ω)Sin
ch
Y + Sin

ph
Y4 + Sin

H2
,

Sin
ch
Y > ϕ0(D),

Sin
ch
Y + Sin

ph
Y4 > ϕ0(D) + ϕ1(D)

c3 > 0, c5 > 0, r4 > 0, r5 > 0

Remark 2. In the case without maintenance, the necessary
and sufficient conditions of existence and local stability can
be deduced from Table A.2 by taking ai = 0, except for
the stability condition of SS6 which is given by

φ3(D) ≥ 0 or φ3(D) < 0, φ4(D,Sin
ch, S

in
ph, S

in
H2

) > 0, (A.4)

where the function φ3 is defined in Table 1 in Nouaoura
et al. (DcDsB2020) and φ4 is defined by:

φ4(D,Sin
ch, S

in
ph, S

in
H2

) = (EIx0x2 + EGφ3(D)x0x1)(Ix2+
(G+H)x1 + (E + ωF )x0) + (Ix2
+(G+H)x1 + ωFx0)GIx1x2,

(A.5)
with

E =
∂µ0

∂s0
(s0, s2), F =

∂µ0

∂s2
(s0, s2), G =

∂µ1

∂s1
(s1, s2),

H = −∂µ1

∂s2
(s1, s2), I =

dµ2

ds2
(s2).

Appendix B. TABLES

Table B.1. Definitions of the surfaces Γi, i =
1, . . . , 5.

Γ1 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY (1− ω) = φ1(D)− Sin
phY4 − Sin

H2

}
Γ2 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY (1− ω) = φ2(D)− Sin
phY4 − Sin

H2

}
Γ3 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, φ4

(
D,Sin

ch, S
in
ph, S

in
H2

)
= 0
}

Γ4 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, r5

(
D,Sin

ch, S
in
ph, S

in
H2

)
= 0
}

Table B.2. Parameter values of the biological
parameter KS,H2,c for cases (a), (b), (c) and

(d).

Cases (a) (b) (c) (d)

KS,H2,c 10−6 4× 10−6 6× 10−6 7× 10−6
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