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Abstract

Every odd prime number p can be written in exactly (p + 1)/2
ways as a sum ab + cd of two ordered products ab and cd such that

min(a,b) > max(c,d). This gives an elegant proof of Fermat’s Theorem
1

expressing primes in 1 + 4N as sums of two squares .
Theorem 0.1. For every odd prime number p there exist exactly (p+1)/2
sequences (a,b,c,d) of four elements in the set N = {0,1,2,...} of non-
negative integers such that p = ab + cd and min(a,b) > max(c,d).

As a consequence we obtain a new proof of an old result discovered by
Fermat. (The old rascal did not want to spoil his margins and left the proof
to Euler who had no such qualms.)

Corollary 0.2. Every prime number in 1 4+ 4N is a sum of two squares.

Proof of Corollary 0.2. If p is a prime number congruent to 1 (mod 4), the
number (p + 1)/2 of solutions (a,b,c,d) defined by Theorem 0.1 is odd.
The involution (a,b,c,d) — (b,a,d,c) has thus a fixed point (a,a,c,c)
expressing p as a sum of two squares. O

Nowadays a venerable old hat, Corollary 0.2 has of course already quite
a few proofs. Some are described in the entry “Fermat’s theorem on sums of
two squares” of [7]. The author enjoyed the presentation of a few ’elemen-
tary’ proofs given in [3]. Several of these proofs are based on the existence
of a fixed point:

Zagier (based on previous work of Liouville and Heath-Brown) published
a one sentence proof in [8].

Elsholtz, see Section 1.6 of [3], combined two approaches based on Eu-
clidean lattices by Grace and Lucas resulting in a proof somewhat reminis-
cent of the present proof.

'Keywords: Primes, sum of two squares, lattice. Math. class: Primary: 11A41.
Secondary: 11HO06.



Christopher, see [2], gave a proof based on the existence of a fixed point of
an involution acting on suitable partitions with parts of exactly two different
sizes (amounting essentially to solutions of p = ab+ cd without requirements
of inequalities).

The set S, of solutions defined by Theorem 0.1 is invariant under the
action of Klein’s Vierergruppe with non-trivial elements acting by

(a,b,c,d) — (b,a,c,d),(a,b,d,c),(b,a,d,c)

(i.e. by exchanging either the first two elements, or the last two elements,
or the first two and the last two elements). The following tables list all
elements (a, b, c,d) with a,b,c,d decreasing together with the size $(O) of
the corresponding orbit under Klein’s Vierergruppe for the sets Sag, S31, S37:

a b c d|40)

a b ¢ d|§0) a b ¢ d|80O) 37 1. 0 0| 2
291 0 0 2 31 1 0 0 2 18 2 1 1 2
14 2 1 1 2 15 2 1 1 2 12 3 1 1 2
7T 4 1 1 2 10 3 1 1 2 9 4 1 1 2
9 3 2 1 4 6 5 1 1 2 6 6 1 1 1
5 o 4 1 2 7T 4 3 1 4 7T 5 2 1 4
5 5 2 2 1 9 3 2 2 2 11 3 2 2 2
5 4 3 3| 2 5 5 3 2| 2 T 4 3 3| 2
15 16 5 5 4 3| 2
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Establishing complete lists S, of solutions for small primes is a rather pleas-
ant pastime and rates among the author’s more confessable procrastinations.

A rough sketch for proving Theorem 0.1 goes along the following lines:
Every solution p = ab+cd in S, can be encoded by two vectors u = (a,c),v =
(—d,b) generating a sublattice Zu + Zv of index p in Z2. It is thus enough
to understand the number of solutions encoded by every sublattice of index
p in Z2. Such sublattices are in one-to-one correspondence with all p + 1
elements of the the projective line F, U {oo} over the finite field F,. An
element p encoding the slope p = g of [a : b] (using the obvious convention
for y1 = o0o) defines the sublattice A,(p) = {(z,y) € Z* | ax + by = 0
(mod p)} of index p in Z2 The two lattices Ag(p) = Z(p,0) + Z(0,1) and
Aoo(p) = Z(1,0) + Z(0, p) with singular slopes 0,00 ¢ [ give rise to the two
exceptional solutions p-1+0-0 and 1-p+0-0. The two lattices A;(p) and
A_1(p) with self-inverse slopes 1 and —1 do not correspond to a solution.
Every pair of distinct lattices A, (p), A,-1(p) with mutually inverse slopes
w, e Iy \ {1, =1} gives rise to exactly one solution in S,. Theorem 0.1
follows now easily.

Nailing down all the pesky details is tedious but elementary and is the
content of Section 1.



A very sketchy last Section discusses algorithmic and statistical aspects
and ends with Theorem 2.3 giving a formula for the number of solutions of
n = ab — cd with (a, b, c,d) in N* such that min(a, b) > max(c, d).

1 Proof of Theorem 0.1

Henceforth, a lattice denotes always a discrete subgroup of a Euclidean
vector space. We will mainly work with sublattices of the lattice Z? of
all integral points of the Euclidean plane R? (endowed with its standard
orthogonal basis). A basis of a lattice A of rank (or dimension) 2 is a set
u, v of two elements in A such that A = Zu + Zv.

The following result is a special case of Pick’s Theorem?:

Lemma 1.1. Two linearly independent elements u,v of a 2-dimensional
lattice A form a basis of the lattice A if and only if the triangle with vertices
(0,0),u,v contains no other elements of A.

Proof. The parallelogram P with vertices (0,0),u,v,u + v is a fundamental
domain of the sublattice Zu+Zv of A spanned by v and v. The two elements
u, v generate thus A if and only if only vertices of P belong to A.

Since P and A are invariant under the affine involution x — —z +u-+v
exchanging the two triangles with vertices (0,0),u,v and u,v,u + v, the
parallelogram P intersects A exactly in its vertices if and only if the triangle
defined by (0,0),u, v intersects A exactly in its vertices. O

Two bases fi, fo and g1, g2 of R? are interlaced if Rf; URfy URgy U
Rgo intersects the unit circle S' in eight distinct points such that points of
(Rfi URf) NSt and points of (Rg; URge) NSt alternate on St.

Lemma 1.2. Two bases f1, fo and g1,92 of a 2-dimensional lattice A =
7.f1 + Zfa = Zg1 + Zgo are never interlaced.

Proof. Up to sign-changes and up to exchanging the roles of f; and fo we
have otherwise fi = agy+ g2 and fo = vg1 —dgo where «, 3,7, are strictly
positive integers. This implies that g; belongs to the segment joining é f1
to %fg contained in the convex hull of (0,0), f1, fo. Lemma 1.1 implies thus
g1 = fi1 or g1 = fo in contradiction with strict positivity of «, 5,7, 6. O

Remark 1.3. Lemma 1.2 follows also from the inequality det < : _55 ) =

—ad — By < —1.

2Pick’s theorem gives the area %b—i— 1—1 of a closed lattice polygon P (with vertices in
7?) containing b lattice points 9P N Z? in its boundary and 4 lattice points in its interior.



We consider the eight open cones of R? forming the complement of the
four lines defined by zy(z? — y?) = 0. We call these eight open cones
windmill-cones (in the hope of turning the content of this paper into a piece
of loftier mathematics) and we colour them alternately black and white,
starting with a black E-NE windmill-cone {(z,y) | 0 < y < z} (using the
conventions of wind-roses).

A basis e, f of R? is a black windmill basis if e and f are contained in
the open upper half-plane, one element in {e, f} belongs to the open black
E-NE windmill cone and the other element in {e, f} belongs to the open
black N-NW windmill cone. A white windmill basis is defined similarly by
exchanging the role of the two black E-NE and N-NW windmill cones with
the two white N-NE and W-NW windmill cones of the upper half-plane.

A 2-dimensional lattice A has a black (respectively white) windmill basis
if A =Ze+ Zf is generated by a black (respectively white) windmill basis

e, f.
Lemma 1.4. All windmill bases of a lattice have the same colour.

Proof. Otherwise we get a contradiction with Lemma 1.2 since windmill
bases of different colours are obviously interlaced. O

An odd prime-number p and an element p of F,, (henceforth identified
with {0,...,p — 1}) define a sub-lattice

Au(p) ={(z,y) €Z, |z +py=0 (mod p)} (1)

of index p in Z2. We set Aoo(p) = {(z,y) € Z, | y = 0 (mod p)}. All
p+1 lattices Ag(p), - .., Ap—1(p), Aso(p) are distinct and Z? contains no other
sublattices of prime index p.

Proposition 1.5. The four lattices Ao(p), Aoo(p), A1(p), Ap—1(p) have no
windmill basis.

Proof. Each of these four lattices is invariant under an orthogonal reflection
o, with respect to a suitable line L defined by zy(z? — %) = 0. Up to
sign changes, such an orthogonal reflection o exchanges white and black
windmill bases. Lemma 1.4 shows now non-existence of (black or white)
windmill bases for such lattices. O

The next result shows optimality of Proposition 1.5:

Proposition 1.6. Every lattice A, (p) with 2 < p < p —2 has a windmill
basis.

Proof. A, (p) contains obviously no elements of the form (£m, 0) or (£m, +p)
with m in {1,2,...,p — 1}. Since p is prime, A,(p) contains no elements
of the form (0,4+m), (£p, £m) with m in {1,...,p — 1}. Moreover, for u in



{2,...,p — 2} considered as a subset of the finite field Z/pZ, the elements
14 and 1 — p are invertible in Z/pZ. This implies that A,(p) contains also
no elements of the form +(m,m),£(m,—m) for m in {1,...,p —1}. The
intersection of a (black or white) windmill-cone with [—p,p]? defines thus
a triangle of area p?/2 > p/2 whose boundary contains no lattice-points of
A, (p) except for its three vertices. Lemma 1.1 implies now that every open
(black or white) windmill-cone contains a non-zero element (x,y) of A,(p)
with coordinates z,y in {+1,£2,...,+(p — 1)}.

There exists thus a parallelogram P of minimal area with vertices +e, £ f
in A,(p) N{—p+1,...,p—1}* such that {+e, £} intersects either all four
open black windmill-cones or all four open white windmill-cones.

Suppose for simplicity that all elements of {+e, £ f} are black (i.e. belong
to open black windmill cones). (The case where +e and +f are all white is
completely analogous.)

Since A, (p) intersects the diagonal R(1,1) and the antidiagonal R(1, —1)
in Z(p,p) and in Z(p, —p), and since A,(p) contains obviously no elements
of the form (+£a,0), (0,+a) with a in {1,...,p— 1}, all non-zero elements of
PNA,(p) belong to open windmill-cones. Suppose that P\{+e, £} contains
a non-zero element g of A, (p). Area-minimality of P and the absence of non-
zero elements in A, (p) N (Z(1,1)UZ(1, —1))N{—p+1,...,p—1}? shows that
g is contained in a white windmill cone (under the assumption that e and f
are black). Up to a sign change, the element g belongs either to the triangle
with vertices (0,0),e, f or to the triangle with vertices (0,0),e, —f. Lemma
1.1 applied to the two sets e, f and e, —f generating the same sublattice
Ze + Zf of A,(p) implies thus the existence of a non-zero element h in
PN A,(p) such that {g, £h} intersects all four open white windmill-cones.
The parallelogram with vertices +g¢,4+h in all four open white windmill-
cones is thus strictly included in P in contradiction with area-minimality of
P.

Lemma 1.1 shows now that e, f is a windmill basis (perhaps up to sign
changes) of A, (p). O

Proposition 1.7. Two windmill bases e, f and €', f' of a lattice A = Ze +
Zf = 7€ + Zf' share a common element.

C. Leuridan communicated to the author the following elegant proof of
Proposition 1.7:

Proof. Up to replacing A by its reflection o(A) with respect to the vertical

coordinate axis (given by o(z,y) = (—z,y)) and up to permuting e with f

and ¢ with f’, Lemma 1.4 shows that we can take e,¢’ in the open black

E-NE windmill cone and f, f’ in the open black N-NW windmill cone.
There is nothing to do if e = ¢’ or if f = f'.



Otherwise we write

€= (xeaye)7 f = (_xfayf)v
e = ('Ie’aye/), f, = (_'If"yf/)

where x,,y, are all strictly positive.

Up to exchanging the basis e, f with the basis ¢/, f/, Lemma 1.2 and the
assumptions e # €/, f # f' imply that ¢, f’ belong to the open cone spanned
by e and f.

Since e, f and €, f’ are generators of a common lattice A, there exist
strictly positive integers «, 3,7, d such that ad — v =1 and

e = ae+fBf = (Oéxe - ﬂ.%'f,Oéye +/8yf)7
ff=rve+06f = (vre — 0xf,vye + 0yy).

The inclusion of €’ in the open E-NE windmill cone amounts to the inequality
T = QTe — Bxf > Yoo = e + Byy. We have thus

AT > O‘(xe _ye) > ﬁ(xf +yf) .

Since f = (—xf,ys) belongs to open N-NW windmill cone we have y; >
xy > 0 implying xy + yy > 22 and leading to the inequality

aze > 20wy (2)

involving only strictly positive integers.
The inclusion of [ = (—zp,yp) = (yxe — dxf,v7Ye + 0ys) in the open
N-NW windmill cone shows

0xf > v, . (3)

Multiplying corresponding sides of the two inequalities (2) and (3) we get
ad > 2y after simplification by the strictly positive integer x.z;. This
leads to a contradiction by considering

l=ad—By>py>1.
O

Proposition 1.8. A lattice A of rank 2 in R? has only a finite number of
windmill bases. If A has k > 1 windmill bases, then there exists a unique
windmill basis e, f such that every windmill basis of A is of the form e, f +se
with s in {0,..., k —1}.

Proof. Suppose first that a lattice A has three distinct windmill bases e;, f;
for i = 1,2, 3 such that ﬂg’zl{ei, fi} = 0. Up to exchanging e; and f; for some
indices ¢, Proposition 1.7 shows that we can assume e; = e3. Proposition 1.7
implies now {es, f3} = {f1, f2}. The underlying windmill basis es, f3 is thus



contained in the same open windmill cone. This contradicts the definition
of a windmill basis.

All windmill bases of A start thus with a common element e. Their
second element is of the form f; = f + s;e for suitable integers s; where f is
the second basis element of a fixed windmill basis e, f for A. Since e and f
belong to different open windmill cones, the affine line f 4+ Re intersects the
open windmill cone containing f in an open interval of bounded length. The
set of all possible integers s; giving rise to windmill bases e, f + s;e is thus a
finite set of consecutive integers. Replacing f with f + min(sq,...,s;)e we
get {s1,...,s.} =4{0,1,..., k—1}. O

We call a black windmill basis u, v of a lattice A, (p) (with pin {2,...,p—
2}) standard if u = (a,c),v = (—d, b) with a, b, ¢,d € N such that min(a, b) >
max(c, d).

Proposition 1.9. Given an odd prime number p, a lattice A,(p) with p
in {2,...,p — 2} has either only white windmill bases or it has a unique
standard black windmill basis.

Proof. Proposition 1.6 shows that such a lattice has windmill bases. They
are all of the same colour by Lemma 1.4 or Proposition 1.8.

We can thus assume that A,(p) has k& > 1 black windmill bases. Propo-
sition 1.8 shows that all these windmill bases are given by e, f + se with s
in {0,...,k — 1} for a uniquely defined black windmill basis e, f. We set
u = (a,c) = e, v=(-db) = f+ (k— 1)e if e belongs to the open E-NE
windmill cone and u = (a,c) = f, v = (—d,b) = e otherwise (i.e. if e belongs
to the open N-NW windmill cone).

We claim that u,v is a standard black windmill basis of A, (p): We have
a > ¢ since u = (a,c) belongs to the open E-NE windmill cone and b > d
since v = (—d, b) belongs to the open N-NW windmill cone.

Since u —v = (a +d,c — b),v = (—d,b) is not a windmill basis we have
b>c. If b= c, the vectors u—v = (a+d,0),v = (—d, b) are a basis of A,(p).
This implies a +d = p and b = 1 contradicting the inequalities 1 < d < b.

Since u = (a,c),v +u = (a — d,b + ¢) is not a windmill basis, we have
a > d. If a = d, the vectors u = (a,c),v+u = (0,b+ c) are a basis of A, (p).
This implies b + ¢ = p and a = 1 contradicting the inequalities 1 < ¢ < a.

Unicity follows easily from Proposition 1.8 describing the complete set
of windmill bases for A, (p). O

Proof of Theorem 0.1. Given an odd prime number p, we denote by S, the
set of all solutions (a,b, ¢, d) as defined by Theorem 0.1.

We associate to a solution (a, b, ¢, d) in S, the two vectors u = (a,¢), v =
(—d,b) and we consider the sub-lattice A = Zu+ Zv of index p = ab— ¢(—d)
in Z? generated by u and v. Since p is prime, there are exactly two solutions



with ed = 0, given by (p,1,0,0) and (1,p,0,0) corresponding to the lattices
Z(p,0) + Z(0,1) and Z(1,0) + Z(0, p).

We suppose henceforth e¢d > 0. The vectors u and v are then contained
respectively in the black E-NE and the black N-NW windmill-cone and form
a standard black windmill basis of the lattice A.

Sub-lattices of prime-index p in Z? are in bijection with the set of all p+1
points on the projective line IP’le over the finite field F,,. More precisely, a
point [a : b] of the projective line defines the lattice

Aat) = {(z,y) € Z* | az + by =0 (mod p)}

corresponding to the lattice A,(p) defined by (1) where u = b/a (mod p)
using obvious conventions. We have already considered lattices associated to
the two solutions with cd = 0. By Proposition 1.5, the lattices corresponding
to p = £1 (mod p) have no windmill basis and yield thus no solutions.
All (p — 3) lattices A, (p) with p € {2,...,p — 2} have windmill bases by
Proposition 1.6.

Since A, (p) and A, (p) (respectively A,—1 (mod p)(p)) differ by a hor-
izontal (respectively diagonal) reflection, they have windmill bases of dif-
ferent colours. Proposition 1.9 shows that exactly (p — 3)/2 values of u in
{2,...,p—2} correspond to lattices A,(p) with unique standard black wind-
mill bases. These (p — 3)/2 lattice are thus in one-to-one correspondence
with solutions in (a, b, ¢,d) in S, such that e¢d > 0. Taking into account the
two degenerate solutions p-14+0-0 and 1-p+0-0, the number of elements
in the set S, equals thus (p —3)/2+2= (p+1)/2. O

Remark 1.10. The lattice A = Z(a,c) + Z(—d,b) associated to a solution
(a,b,c,d) in S, has a fundamental domain given by the union of the rectangle
of size a x b with vertices (0,0), (a,0), (a,b), (0,b) and of the rectangle of size
d x ¢ with vertices (a,0), (a + d,0), (a + d,c), (a,c).

2 Complements

2.1 Constructing the solution associated to {y, p—u} C {2,...,p—
2}

Given an odd prime number p, every pair {u,p— p} with pin {2,...,p—2}

defines exactly one solution in S, and all solutions except (p,1,0,0) and

(1,p,0,0) are of this form. The associated solution can be constructed as
follows: Gauflian lattice-reduction applied to

Au(p) = Z(p,0) + Z(—p,1) = {(z,y) | t + py =0 (mod p)}

yields a basis containing a shortest vector w in A, (p). Proposition 2.1 gives
an efficient construction of a black windmill basis either for A, (p) or for



Ap—u(p). Propositions 1.8 and 1.9 show how to construct the standard
black windmill basis (a,c),(—d,b) from an arbitrary black windmill basis
for A, (p) or for Ap_,(p).

Given a prime p = 1 (mod 4), the fixed point (a,a, ¢, c) corresponds to
u=(a,c),v = (—c,a). We have thus a+ puc = —c+pa =0 (mod p) showing
u? = —1 (mod p). The associated pair {u,p — u} in {2,...,p — 2} defines
thus both square roots of —1 modulo p. The corresponding construction
of the associated solution a? 4+ ¢? = p boils now down to Grace’s proof of
Fermat’s Theorem as described for example in [3].

Proposition 2.1. Given an odd prime number p and p in {2,...,p — 2},
let w be a shortest non-zero element of A, (p). There exists a windmill basis
of Au(p) which contains either w or a shortest element of A, (p) \ Zw.

A solution (a,b,c,d) in S, is of hezagonal type if (a + d)? + (c — b)? <
min(a? + ¢?,b% + d?). Solutions of hexagonal type correspond to standard
black windmill bases u, v not containing a shortest non-zero lattice element
(i.e. with w—wv shorter than v and v) of A = Zu+ Zv. The associated lattice
A is close to a regular hexagonal lattice.

Sketch of proof for Proposition 2.1. After arotation by a suitable angle km/2
and perhaps a horizontal reflection, we end up with a lattice A having a
shortest non-zero element w in the open black E-NE windmill-cone. Let L,
be the closest affine line above Rw which is parallel to Rw and intersects
A\ Zw. If the intersection of L with the open black N-NW windmill-cone
contains an element r of A, we get a black windmill basis by considering
w,T.

Otherwise a geometric argument (using minimality of w and the defini-
tion of L) shows that L, intersects A in a rightmost point v of the open
white W-NW windmill-cone and in a leftmost point u of the open white
N-NE windmill-cone and we get a white windmill basis by considering wu, v.
Since u,v are separated by the black N-NW windmill-cone containing the
orthogonal line to Rw, either u or v is a shortest element of A \ Zw. 0

2.2 Statistical properties
The lattice Z(a, ¢) +7Z(—d, b) associated to a solution (a, b, ¢, d) in S, defines
. a —d
(up to homothety) a point # < . b > /SL(2, Z)onU = SL(2,R)/SL(2,Z).

Except on a set of measure zero contained in the set of all lattices having
more than one pair of minimal vectors (non-zero vectors with smallest norm),
the set U can be identified with a quotient of the unit tangent bundle of
the modular curve M classifying lattices of C up to orientation-preserving
similarity as follows: Given a basis u, v of an arbitrary lattice A = Zu+Zv in
C consisting of a vector u of minimal length and of v in the open halfspace



iu(R + iRg), we can consider the geodesic with slope & (u)/R(u) at the
marked point v/u of the hyperbolic plane H. The projection of this marked
geodesic onto the modular curve is well defined, except if v/u + Z intersects
the unit-circle.

The set of lattices without windmill bases or with (at least) two pairs of
minimal vectors defines a set of measure 0 on U/ which partitions its comple-
ment in U into two open subsets U and U, of equal measure corresponding
to all lattices with black, respectively white, windmill bases.

The distribution of all lattices of fixed large (not necessarily prime) index
tends to the natural probability measure on U, see for example Theorem
1.2 in [4]. This implies the existence of asymptotic limit-laws for all suitably
rescaled smooth quantities related to solutions in &,. Such limit-laws are
thus given by integrals over U, of suitable integrable functions.

We are going to describe a few features without (the obvious) proofs:

For every strictly positive e there exists a constant B = B(e) such that
only at most ep—;rl elements in S, satisfy the inequality max(a,b) > B./p
or Bmin(c,d) < /p, i.e. most solutions involve integers a,b,c,d of size
O(\/p). (Suitable neighbourhoods of the cusp of U can have arbitrarily
small measures.)

The angular distribution arctan(c/a) of the vectors (a, ¢) is not uniform
in [0, 7/4]. This is due to the contribution of lattices with a black standard
basis involving a small minimal vector (—d,b) in the black N-NW wind-
mill cone (such lattices give rise to vectors (a,c) with ¢ much smaller than
a) and to the existence of hexagonal solutions (giving rise to lattices with
arctan(c/a) in [r/6,7/4]). The non-uniformity of this angular distribution
is at first sight slightly surprising in comparision with uniformity of the an-
gular distribution arctan(c/a) defined by a? + ¢ = p, 0 < ¢ < a for primes
p=1 (mod 4), see [6].

The proportion of solutions (a, b, ¢, d) of hexagonal type (i.e. satisfying
(a+d)*+ (c—b)? < min(a® + %, b* +d?)) in S, is fairly small (there are for
example only 4370 solutions of hexagonal type among all 500002 solutions
in S1000003) and tends to a limit corresponding to suitably oriented lattices
in a neighbourhood of the hexagonal lattice.

Remark 2.2. All reasonable asymptotical statistical properties continue to
hold for sets of solutions S,, with n not necessarily prime.

There is however perhaps no nice formula for the number of elements in
sets S, with n composite. (By the way, there are two possible definitions for
S, if n is composite: If n = ab is a non-trivial factorisation of n, one can
either accept or reject solutions of the form ab+0-c = ab+ c¢-0 = n with
1 < ¢ < min(a,b).)

2.3 A variation

The equation n = ab — cd with min(a, b) > max(c,d) is also interesting:
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Theorem 2.3. The number of elements (a,b,c,d) in N* such that n =
ab+ cd and min(a,b) > max(c,d) is given by

3 <d+1—%> .

dln, d?2>n

If p is a prime number, we get p such solutions. They correspond to all
p sublattices of index p in Z? which do not contain the vector (1,1).

Rough sketch of proof. As for the case of p = ab+ cd, the set S, of solutions
(to n = ab — ¢d with a,b,c,d in N such that min(a,b) > max(c,d)) is in
bijection with a subset of lattices of index n in Z2: A solution (a,b,c,d)
corresponds to the sublattice Z(a, ¢) + Z(d,b) of index n in Z2. Conversely,
given a sublattice A of index n in Z2, we denote by C = C(A) the convex hull
of all non-zero lattice points in NN A\ {(0,0)}. The lattice A corresponds to
a solution if and only if ANN(1,1) does not intersect the boundary 9C of the
closed (but non-compact) convex set C. Given such a lattice A, let v = (a, ¢)
and v = (d,b) be the two lattice points on ANJIC(A) which are closest to the
diagonal R(1,1). They are always separated by the diagonal R(1,1) and we
can assume a > ¢ and d < b (up to exchanging v and v). Lemma 1.1 shows
that A = Zu + Zv and it is not difficult to check that (a,b,c,d) is in S, .
Every solution (a, b, ¢, d) corresponds to such a basis u, v of a suitable lattice.
In order to count the number of elements in S, , it is thus enough to subtract
the number of ‘bad sublattices’(with OC intersecting A NZ(1,1)) from the
total number of lattices of index n in Z? (formulae giving the number of
sublattices of index n in Z? are for example given in [5] and in [9]). O

The sets S, give again rise to limit statistics defined by integrals of
suitable integrable functions on the unit tangent bundle of the modular
curve. Asymptotically, typical solutions in §,; involve integers a,b, c,d of

size roughly /n.

Remark 2.4. The convex hull C occuring in the sketched proof is closely
related to continued fractions: Given a real number 0, vertices of the convex
hull of e~*rtan(0)(7, 4 7)) N [0, 0] 4 [0, 00] \ {0} correspond essentially to
convergents of 0, see for example [1].
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