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ANTI-DIFFUSIVE ALTERNATE-DIRECTIONS SCHEMES FOR THE

TRANSPORT OF STEP FUNCTIONS

L. Batteux1, F. Duval2, R. Herbin3, J.-C. Latché4 and P. Poullet5

Abstract. The purpose in this paper is to design finite-volumes schemes on structured grids for
the transport of piecewise-constant functions (typically, indicator functions) with as low diffusion
as possible. We first propose an extension of the so-called Lagrange-projection algorithm, or down-
wind scheme with an Ultrabee limiter, for the transport equation in one space dimension with a
non-constant velocity; as its constant velocity counterpart, this scheme is designed to capture the
discontinuities separating two plateaus in only one cell, and is referred to as ”anti-diffusive”. It is
shown to preserve the bounds of the solution. Then, for two and three dimensional problems, we
introduce a conservative alternate-directions algorithm, an show that this latter enjoys a discrete
maximum principle, provided that the underlying one-dimensional schemes satisfy a property which
may be seen as a flux limitation, possibly incorporated a posteriori in any explicit scheme. Nu-
merical tests of this alternate-directions algorithm are performed, with a variety of one-dimensional
embedded schemes including the anti-diffusive scheme developed here and the so called THINC
scheme. The observed numerical diffusion is indeed very low. With the anti-diffusive scheme, the
above-mentionned a posteriori limitation is necessary to preserve the solution bounds, but, in the
performed tests, does not introduce any visible additional diffusion.
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1. Introduction

We address in this paper the following problem, posed over a domain Ω of Rd, d = 1, 2, 3,

∂ty + div(yu) = 0, div(u) = 0, (1)

where y is a scalar variable, i.e. a function from Ω to R and u stands for a velocity field. We pay a special
attention to the cases where y is a step function, such as the indicator function in multiphase flow problems
like liquid-solid flows or liquid-gas flows dealt with by the so-called Volume-Of-Fluid (VOF) method.

The aim of this paper is to study some recent finite-volume schemes to solve (1) which have been designed
to reduce the numerical diffusion as much as possible and to propose some (to ourknowledge) novel variants.
More precisely speaking, we first introduce some schemes for the one-dimensional transport with a non-
constant velocity:

- We first propose an extension to the non-constant velocity case of the Lagrange-projection introduced
in [5] for constant velocity flows. The original scheme enjoys the property of exactly transporting the
Heaviside function (and so, in fact, any step function, see [5]), and the proposed extension is designed
to satisfy a similar property, namely the fact that a discontinuity is captured in only one cell. We
show in addition that it satisfies a local discrete maximum principle.

- Then we recall a class of schemes based on a reconstruction-transport-projection paradigm, focusing on
the so called THINC scheme where the reconstruction is performed by a hyperbolic tangent profile [4].
We show that this scheme also satisfies a local discrete maximum principle.
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5 Université des Antilles (pascal.poullet@univ-antilles.fr)



- Finally, for comparison purposes, we include in the study a standard MUSCL-like scheme based on
an algebraic limitation of the reconstructed interface values [13].

Then we turn to the implementation of these schemes to multi-dimensional problems on structured meshes
thanks to the alternate-direction technique. As already stated in [2, Section 3.1], preserving the maximum
principle at each step may force to give up conservativity. Let us explain this issue in the time-semi-discrete
setting, for instance for a two-dimensional problem. Let yn, y(1) and yn+1 be the approximation of y at
time tn, after a step of transport in the first direction and at tn+1 respectively, and let us denote by u(1)

(resp. u(2)) the vector function defined by u(1) = (u(1), 0)t (resp. u(2) = (0, u(2))t), where u(1) (resp. u(2))
is the first (resp. second) component of the velocity field u. In the general case, u(1) and u(2) are not
divergence-free. The time discretization is performed with a forward Euler time; the alternate-direction
algorithm, switching to a transport formulation of Equation (1) to preserve the maximum principle thus
reads:

Transport in the first direction
1

δt
(yx − yn) + div(ynux)− yn div(ux) = 0,

Transport in the second direction
1

δt
(yn+1 − yx) + div(yxuy)− yx div(uy) = 0,

with δt the time-step. Observe that the non-conservativity stems from the difference in the factor multiplying
div(u(1)) and div(u(2)) in the first and second equation, respectively. A conservative algorithm may thus be
recovered, for instance, by switching from y(1) div(u(2)) to yn div(u(2)) in the second equation, but the price
to pay seems to be to loose the maximum principle. Surprisingly, this is not so. In fact, we show that the
maximum principle is satisfied when the one-dimensional scheme is the above mentioned MUSCL scheme;
moreover, it also satisfied for the antidiffusive schemes introduced in Section 2 provided that they satisfy
an additional limitation. The resulting algorithms are compared on classical benchmarks for volume of fluid
(VOF) schemes.

Another extension to non-constant velocity flows of the Lagrange-projection scheme, in one space dimen-
sion, may be found in [1]. It notably differs from the present formulation; indeed, the velocity is supposed to
be given at the cell centers in this latter work, while it is supposed to be known at the faces of the mesh in the
present work, in view of an implementation of the proposed transport scheme in a staggered discretization
of hydrodynamics (typically, to transport a phase indicator function in a flow computed by the so-called
Marker-And-Cell (MAC) scheme [8,9]).

The paper is organized as follows. The considered schemes for the one-dimensional transport are intro-
duced in Section 2. Their implementation in an alternate-directions algorithm is discussed in Section 3 and
Section 4 is devoted to numerical tests.

2. Schemes for one-dimensional transport

We gather in this section the presentation of the one-dimensional schemes which are used as elementary
building bricks for the alternate-direction algorithms tested in Section 4. In Section 2.1, for the convenience
of the reader, we first recall with our notations the scheme and the related results presented in [5], in the
specific case of the one-dimensional transport by a constant velocity field. Precisely speaking, we recast this
scheme as a downwind scheme, whose positivity is preserved by a CFL-dependent limiter; such a construction
may also be found in [15] (where the scheme is referred to as the Ultrabee scheme) and is recalled in [11]
(where the limiter is referred to as the upper-bound limiter). We propose an extension of this scheme to the
variable velocity transport problem in Section 2.2; in this same section, we show that, under a CFL condition,
this extension satisfies a local maximum principle. In Section 2.3, we recall some schemes already introduced
in the literature [4], which, as the Lagrange-projection scheme, consist in performing a reconstruction of the
unknown, and then compute the flux through a face by a Godunov technique; we prove for this schemes
a local maximum principle. Finally, we briefly recall in section 2.4 a MUSCL scheme (see e.g. [7, 11] for
the general formalism and [13] for the same presentation as here), which is implemented for comparison
purposes. The numerical results are shown in Section 4.
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2.1. The Lagrange-projection algorithm for the 1D constant velocity case

We deal here with the following model problem:

∂ty + u ∂xy = 0, u ∈ R, u ≥ 0.

Let y−, y and y+ be the value taken by the unknown in three successive cells, sorted from left to right.
We denote by K the middle cell and by σ the interface between K and the right cell (see Figure 1). The
numerical flux through σ outward K reads GK,σ = u yσ and our aim is to give a value for the approximation
at the face yσ. We begin with the case where K does not correspond to a (local) maximum (i.e. we suppose
(y − y−) (y+ − y) ≥ 0 and either y 6= y− or y 6= y+) and, without loss of generality, we assume y− ≥ y and
y ≥ y+, with y− > y+.

x

y−
y

y+
K

σσ′

Figure 1. Notations for the one-dimensional problem

The Lagrange-projection algorithm involves two steps: first, a reconstruction of the unknown in the cell
K supposing that the unknown is a step function taking the value y− on the left part of K and the value
y+ on the right part, y being the average of the unknown over K (see Figure 2); second, the computation of
GK,σ as the integration over the time-step of the actual flux of the reconstructed function.

x

ŷ
K

σσ′

Figure 2. Reconstruction step – Blue: initial function. Red: reconstructed function in cell K

To alleviate the notations, we suppose that K = (0, δx) and that the time interval under consideration is
(0, δt) The reconstructed function ŷ over K, at the beginning of the time step so at t = 0, reads:

ŷ(x, 0) = y− if x ≤ ξ δx, ŷ(x, 0) = y+ otherwise, with ξ =
y+ − y
y+ − y−

. (2)

Let ν be a CFL number, defined by ν = u δt
δx

. For t ≤ δx
u , the transport of ŷ at the velocity u yields

ŷ(δx, t) =

 y+ if t ≤ (1− ξ) δx
u ,

y− otherwise.

Integrating over (0, δt), we obtain that the numerical flux GK,σ through σ outward K satisfies:

δt GK,σ =

 δt u y+ if δt ≤ (1− ξ) δx
u ,

(1− ξ) δx y+ + (u δt− (1− ξ) δx) y− otherwise.
3



Since, by definition of yσ, we have GK,σ = u yσ, we get

yσ =


y+ if ν ≤ 1− ξ,

ȳσ :=
1− ξ
ν

y+ + (1− 1− ξ
ν

) y− otherwise.

Using (2), we get:

ȳσ = y− −
1

ν
(y− − y). (3)

Seen as a function of ν, for ν ∈ (0, 1], ȳσ increases, from −∞ (ν tending to zero) to y for ν = 1. In addition,
thanks to (2), ν = 1−ξ implies ȳσ = y+. The behaviour of ȳσ(ν) as a function of ν thus shows the equivalence
between the two conditions ν ≤ (1− ξ) and ȳσ(ν) ≤ y+, and the expression of yσ may be recast as yσ = y+

if ȳσ ≤ y+ and ȳσ otherwise, or just simply yσ = max(y+, ȳσ), so that yσ can be chosen as the projection of
y+ on the interval [ȳσ,+∞[.

Moreover, in the case where y is a local maximum (i.e. (y − y−) (y+ − y) < 0 or y− = y = y+), the
definition of the reconstructed function ŷ is not possible; the upwind choice yσ = y seems reasonable, and
it is in fact the only one which ensures a discrete maximum principle, as we will see later. For this latter
reason, the value yσ is finally chosen as the projection of y+ on the interval [ȳσ, y] and is obtained by the
following two-step computation:

(i) choose y+ as tentative value for yσ,

(ii) define

Iσ = [ y − 1− ν
ν

(y− − y), y]

as admissible interval and project the tentative value y+ over Iσ.

It is straightforward to check that the same conclusion may be drawn in the case where the unknown is
increasing (i.e. y− ≤ y ≤ y+ with y− < y+). We have thus recast, in the present specific case, the Lagrange-
projection algorithm as a downwind scheme with a suitable limitation, corresponding to the case where the
reconstructed front is beyond the edge σ. This scheme is known to preserve the discrete maximum principle,
and to transport the Heaviside function exactly (and therefore, by an easy extension, any step function) in
the following sense: at each time, the discrete solution in a cell corresponds to the mean value of the exact
solution [5].

2.2. An algorithm preserving the step functions for the 1D transport

Let us then consider the problem
∂ty + u(x, t) ∂xy = 0, (4)

where the velocity u is now possibly variable in space and time. The objective of this section is to derive a
scheme that will both preserve the maximum principle and transport the step functions exactly, following
the ideas of Section 2.1.

The scheme. - For the solution of Equation (4), a derivation of the scheme based on the (exact) transport
of a reconstructed function for the unknown y is not straightforward, since the velocity is not constant and
thus the transport would necessitate a reconstruction of the velocity itself. Since we showed in the previous
section that, in the constant velocity case,the recontruction leads to downwind limited scheme, we propose
to follow this idea: we thus write a finite volume scheme as a downwind limited scheme as in Section 2.1,
and then tunethe limitation in order to obtain a non-diffusive approximation of step functions, in the sense
that the transition from one plateau to the another one is captured in only one cell.

The discrete form of the transport equation satisfied by y is obtained by a discretization of the equation
∂ty + ∂x(u y) − ∂x(u) y = 0, with a finite volume approximation of the divergence operators. Using the
notations of Section 2.1 and denoting by uσ and uσ′ an approximation of the velocity over the time interval
[tn, tn+1] and at the faces σ and σ′ respectively, this equation reads for the cell K:

|K|
δt

(yn+1 − y) + uσ (yσ − y)− uσ′ (yσ′ − y) = 0,
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or, equivalently:
yn+1 = y − sign(uσ) ν (yσ − y) + sign(uσ′) ν′ (yσ′ − y), (5)

with

ν =
δt |uσ|
|K|

, ν′ =
δt |uσ′ |
|K|

. (6)

To design the limitation process, we consider a specific case. We suppose that uσ ≥ 0, uσ′ ≥ 0 and, in all
the cells at the left (resp. right) side of K, the unknown is equal to y− > 0 (resp. is equal to 0), with
y− ≥ y ≥ 0 (note that the left-hand side of Equation (5) vanishes when the unknown is constant, so the
present construction trivially extends to y+ 6= 0); in this case, we expect the scheme to allow yn+1 to take
the value y− (just) before limitation, as occurs in the constant velocity case. In addition, we suppose that
the scheme imposes yσ′ = y− (and we will check a posteriori that it is indeed the case) and that it is a
downwind limited scheme, i.e. that yσ = 0 if the limitation is not active. Equation (5) yields:

yn+1 = y − ν (yσ − y) + ν′ (y− − y),

so that we have, at the point where limitation becomes active,

y− = y − ν (ȳσ − y) + ν′ (y− − y),

i.e.

ȳσ = y +
1− ν′

ν
(y − y−).

By the same arguments as in the previous section (monotonicity of ȳσ with respect to the time step, and
ȳσ tends to −∞ when the time step tends to zero), this result suggest that yσ may be obtained by the
projection of y+ = 0 over the interval

Iσ = [y − 1− ν′

ν
(y− − y), y].

This computation suggests the following choice for the values yσ and y′σ in the finite volume scheme (5):

for τ ∈ E, yτ is the projection of the downwind value ydw onto Iτ =
[
yuw−

1− νop

ντ
(yop−yuw), yuw

]
, (7)

where yuw is the value in the cell Kuw upwind to τ , ντ (resp.νop) is the CFL number defined by Equation
(6) associated to the face τ (resp. to the face σop opposite to τ in Kuw) and yop is the value of the unknown
in the cell separated from Kuw by σop (see Figure 3). Since yσ is obtained by projection of ydw onto an
interval containing yuw, we observe that yτ is a convex combination of ydw and yuw. Note also that, when
(yop − yuw) (yuw − ydw) ≤ 0 (i.e. when yuw is a local extremum), the projection of ydw onto Iτ is yuw (so, as
usual in this case, the scheme boils down to the upwind scheme). Returning to the example used to build
the scheme, since the unknown is supposed to be equal to y− in the (at least two) cells located on the left
side of σ′, the computation (7) for σ′ yields Iσ′ =

[
yuw, yuw

]
, so that yσ′ = yuw = y−, which we assumed

the scheme would yield, and which is thus confirmed a posteriori; by construction, the scheme thus captures
such a discontinuity in only one cell.

x

yop
yuw

ydw
Kuw

σσop

Figure 3. Computation of yσ for the configuration above (uσ ≥ 0, uσ′ ≥ 0).
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Checking the discrete maximum principle. - We begin with the following elementary lemma.

Lemma 2.1. Let a, b and c be three real numbers, with a ≤ b ≤ c. Let

m = (1− α− β) b+ αa+ βc,

with 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Then m ∈ [a, c].

Proof. Note that m is not a convex combination of a, b and c, since 1−α−β may become negative. However,

m =

{
(1− β) a+ βc, if b = a

(1− α) c+ αa, if b = c,

so that in both cases, m is a convex combination of a and c. Since b ∈ [a, c] and since m depends linearly on
b, it follows that m ∈ [a, c] for any b ∈ [a, c]. �

Remark 2.2 (Lemma 2.1 and TVD criterium). The purpose of this lemma is to be applied with m = yn+1,
b = y and either a = y− and c = y+ or a = y+ and c = y−. Once this substitution done, it may look
as the usual criterium which implies that the scheme is TVD [10], namely the fact that yn+1 is a convex
combination of y−, y and y+. However, the range of variation of the coefficients α and β is here larger (and
this is crucial for the scheme under consideration), since their sum is only required to be lower than 2, and
the coefficient of b (or y) may consequently be negative.

We now check that the scheme (7) satisfies a local maximum principle, in the following sense.

Lemma 2.1 (Discrete local maximum principle). With the notations of the beginning of the section, let us
suppose that the face CFL numbers ν and ν′ defined by Equation (6) are such that ν ≤ 1 and ν′ ≤ 1; let us
suppose in addition that, if uσ ≤ 0 and uσ′ ≥ 0 ( i.e. the flow is entering the cell K through its two faces),
ν + ν′ ≤ 1. Then

yn+1 ∈ [min(y−, y, y+),max(y−, y, y+)].

Proof. Let us first suppose that y is not a local extremum, and let us consider all the possible configurations
according to the sign of uσ and uσ′ :

- Case 1: uσ ≥ 0 and uσ′ ≥ 0 – The scheme reads

yn+1 = y − ν (yσ − y) + ν′ (yσ′ − y)

By (7), there exists α ∈ [0, 1] such that yσ − y = α
1− ν′

ν
(y− y−). Moreover, recall that, owing to (7),

yσ′ is a convex combination of y− and y; therefore there exists α′ ∈ [0, 1] such that

yσ′ − y = α′ (y− − y).

we thus get

yn+1 =
(

1−
(
(1− ν′)α+ ν′ α′

))
y +

(
(1− ν′)α+ ν′ α′

)
y−.

The quantity (1− ν′)α+ ν′ α′
)

is a convex combination of α and α′ and thus lies in the interval [0, 1];

yn+1 is thus a convex combination of y and y−.

- Case 2: uσ ≤ 0 and uσ′ ≤ 0 – Similar arguments yield that yn+1 is a convex combination of y and y+.

- Case 3: uσ ≤ 0 and uσ′ ≥ 0 – The scheme reads

yn+1 = y + ν (yσ − y) + ν′ (yσ′ − y)

and, again owing to (7), there exists α ∈ [0, 1] and α′ ∈ [0, 1] such that

yσ − y = α (y+ − y), y′σ − y = α′ (y− − y).
6



We thus get
yn+1 =

(
1− αν − α′ ν′

)
y + αν y+ + α′ ν′ y−

and, by assumption, we have ν + ν′ ≤ 1, so yn+1 is a convex combination of y−, y and y+.

- Case 4: uσ ≥ 0 and uσ′ ≤ 0 – The scheme reads

yn+1 = y − ν (yσ − y)− ν′ (yσ′ − y)

and there exists α ∈ [0, 1] and α′ ∈ [0, 1] such that

yσ − y = α
1− ν′

ν
(y − y−), y′σ − y = α′

1− ν
ν′

(y − y+).

We thus get

yn+1 =
(
1− α (1− ν′)− α′ (1− ν)

)
y + α (1− ν′) y− + α′ (1− ν) y+,

and, thanks to Lemma 2.1, yn+1 is a convex combination of y− and y+.

Let us now turn to the case where y is a local extremum. The only difference with the ”monotone case” is
that Lemma 2.1 no longer applies. However, this lemma is invoked only in Case 4, where the flow leaves K
through its two faces, so K is the upwind cell for σ and σ′ ; we are thus in the case where the upwind value
is an extremum, and yσ = yσ′ = y, which yields yn+1 = y. �

Remark 2.3 (On the limitation ν + ν′ ≤ 1). To deal with Case 3, we could invoke Lemma 2.1, so the
limitation ν + ν′ ≤ 1 is useful only in the pathological case where the flow enters the cell through its two
faces, and the solution has a local extremum in this cell. Unfortunately, this can really happen: for instance,
if the solution is 0 except in the considered cell, where its takes the value 1, we have yn+1 = 1− ν − ν′, and,
if ν + ν′ > 1, the solution becomes negative.

2.3. Reconstruction-based algorithms for the 1D transport

The Lagrange-projection scheme presented in Section 2.1 is a reconstruction-based algorithm, with a step
function for the reconstruction profile. The reconstruction step may be performed with another monotone
function than the step function. For instance, the so-called THINC-M scheme presented in [4] performs a
reconstruction by a hyperbolic tangent function; the practical computations for this scheme are given, for
the sake of completeness, in Section A of the appendix. Let us show that the class of schemes obtained with
these various reconstructions still satisfy the maximum principle.

With the same notations as in the previous section, let σ ∈ E, and Kuw be the upwind cell. Let us suppose
that Kuw is not a local extrema, i.e. that (yuw − ydw) (yop − yuw) > 0 and let ỹ be a monotone real-valued
function satisfying the following assumptions:

lim
sgn(uσ)x→−∞

ỹ(x) = yop, lim
sgn(uσ)x→+∞

ỹ(x) = ydw,

∫
Kuw

ỹ(x) dx = |Kuw| yuw.

Then, the flux from Kuw through the face σ is evaluated by

GKuw,σ =
1

δt
sgn(uσ)

∫ xσ

xσ−uσ δt
ỹ(x) dx,

where xσ stands for the coordinate of the face σ. In the other case, i.e. if Kuw is a local extremum, GKuw,σ

is computed by the standard first-order upwind scheme.

For the sake of simplicity and without loss of generality, assume that Kuw =]0, 1[ and xσ = 1, which
implies uσ ≥ 0, since Kuw is the upwind cell with respect to σ. Then,

GKuw,σ =
1

δt

∫ 1

1−ν
y(x) dx,

7



so that the edge value yσ defined by GKuw,σ = |uσ| yσ reads

yσ =
1

ν

∫ 1

1−ν
ỹ(x) dx. (8)

Let us suppose that Kuw is not a local extremum and that yop ≤ yuw ≤ ydw. Then we have:

yσ − yuw =
1

ν

∫ 1

1−ν
(ỹ(x)− yuw) dx;

remarking that ∫
Kuw

(ỹ(x)− yuw) dx = 0,

we get

yσ − yuw = −1

ν

∫ 1−ν

0

(ỹ(x)− yuw) dx.

Since ỹ is a monotone function, ỹ(x) ≥ yop for x ∈ Kuw and therefore

yσ − yuw ≤
1− ν
ν

(yuw − yop).

In addition, since ỹ is a non-decreasing function, its mean value of (1 − ν, 1) with ν ≤ 1 cannot be lower
than its mean value over (0, 1), so that, owing to (8), yσ ≥ yuw; moreover, since ỹ(x) ≤ ydw for x ∈ (0, 1),
we finally get y ∈ [yuw, ydw]. By similar arguments in the case yop ≥ yuw ≥ ydw and since yσ = yuw if Kuw

is a local extremum, we obtain that yσ is a convex combination of yuw and ydw and satisfies

yσ ∈ Iσ = [yuw, yuw +
1− ν
ν

(yuw − yop)].

By the same arguments as in the previous section, if the face CFL numbers are all lower than 1, the scheme
satisfies a local maximum principle in the sense that yn+1

uw is a convex combination of yop, yuw and ydw.

2.4. A MUSCL scheme

With the notations of Section 2.2, a MUSCL scheme may be obtained by the following choice for the
interpolation of the unknown at the face, for σ ∈ E located at xσ:

(i) first, let ỹσ be an affine interpolate between yuw and ydw at xσ,

(ii) then obtain yσ as the projection of ỹσ onto Iσ

with Iσ = I(yuw + (yop − yuw), yuw), and, for a, b ∈ R, I(a, b) =

{
[a, b] if a ≤ b,
[b, a] otherwise.

(9)

We recall that yuw and ydw are the value taken by the unknown in the cell upwind to σ and downwind to σ,
respectively, and yop is the value of the unknown in the opposite cell to σ with respect to the upwind cell.

As for the anti-diffusive scheme, since yσ is obtained by projection of a convex combination of yuw and
ydw onto an interval containing yuw, yσ is a convex combination of ydw and yuw. As usual, also, when
(yop − yuw) (yuw − ydw) ≤ 0 (i.e. when yuw is a local extremum), the projection of ydw onto Iσ is yuw (so, as
usual in this case, the scheme boils down to the upwind scheme).

8



3. Alternate directions algorithms

The alternate direction algorithm that we now present may be implemented for for d = 2 or 3; it is based
on the use, in each direction, of one of the one-dimensional scheme presented in the previous section. We
denote by M a structured mesh, i.e. a set of rectangles or cuboids (the cells), themeselves denoted by K.
For K ∈M, let E(1)(K), E(2)(K) and E(3)(K) be the faces of K perpendicular to the first, second and third
axis of coordinates, respectively, and let E(K) = ∪1≤i≤dE

(i)(K). Let us present the algorithm for d = 3.
Assuming that we perform first the transport in the first direction, then the second one and finally the
third one, let us denote by y, y(1), y(2) and yn+1 the unknown at the beginning of the step, after the first
transport step, after the second transport step and at the end of the time-step, respectively. We choose the
conservative version of the algorithm given in the introduction; hence, setting y(0) = y and we use a discrete
analogue of the following relation, for i = 1, . . . , d.

1

δt
(y(i) − y(i−1)) + div(y(i−1)u(i))− y div(u(i)) = 0, (10)

with u(i) = (0, . . . , ui, . . . )
t. Summing over the steps, the last term in this relation vanishes since div(u) = 0,

and so the scheme is indeed written in conservative form. We show in this section that, in addition, we can
hope (or enforce) a maximum principle for this scheme.

Adding the transport steps (10) for i = 1, . . . , d, setting yn+1 = y(3) and y(0) = yn, and discretizing the
divergence terms yields (for d = 2, 3):

for K ∈M, yn+1
K = ynK +

δt

|K|

d∑
i=1

[ ∑
σ∈E(i)(K)

|σ|
(
ynK − y(i)

σ

)
uK,σ

]
, (11)

where uK,σ stands for the normal velocity through the face σ outward the cell K and the face approximations

y
(i)
σ are given by one of the one-dimensional schemes presented in Section 2.

For K ∈ M, we denote by N(K) the set containing K itself and the (four if d = 2 or six if d = 3 and K
has no face on the boundary) cells sharing a face with K, and define N2(K) as N2(K) = ∪L∈N(K)N(L) and
N3(K) as N3(K) = ∪L∈N2(K)N(L). For A = {ai, 1 ≤ i ≤ m} ⊂ R, conv{a1, . . . , am} stands for the convex
hull of A (i.e. the interval [min1≤i≤m ai, max1≤i≤mai]). We are now in position to state the following result.

Lemma 3.1. We suppose that the one-dimensional scheme is such that, for K ∈M and σ ∈ E(K), σ = K|L,

if uK,σ ≤ 0, yσ ∈ conv{yK , yL},

∃ασ ∈ [0,Γ] such that yσ − yK = ασ (yK − yMK,σ
) otherwise,

(12)

with MK,σ the opposite cell to L (with respect to K) and Γ a non-negative real number. Let us suppose that
the following set of CFL-like conditions holds:

δt

|K|

( ∑
σ∈E(K)

|σ| u−K,σ + Γ
∑

σ∈E(K)

|σ| u+
K,σ

)
≤ 1,

δt

|K|
(1 + Γ)

∑
σ∈E(K)

|σ| u+
K,σ ≤ 1. (13)

Then, for K ∈M, the values (yn+1
K )K∈M defined by (11) satisfy yn+1

K ∈ conv{yL, L ∈ Nd(K)}.

Remark 3.2. Note that, if the velocity field is divergence-free (at the discrete level), i.e.∑
σ∈E(K)

|σ| uK,σ = 0,

the second assumption in (13) is implied by the first one.
9



Proof. Two-dimensional case – We first prove this lemma in the two-dimensional case. We have shown

in Section 2.3 that, for K ∈ M, y
(1)
K is a convex combination of the left and right cells to K. We recall the

expression of the scheme, omitting the superscript n for the unknowns at time tn:

for K ∈M, yn+1
K = yK +

δt

|K|

[ ∑
σ∈E(1)(K)

|σ|
(
yK − yσ

)
uK,σ +

∑
σ∈E(2)(K)

|σ| (yK − y(1)
σ ) uK,σ

]
.

Let us denote by T (2) the last term and write

T (2) =
∑

σ∈E(2)(K)

|σ| (yK − y(1)
σ ) uK,σ =

∑
σ∈E(2)(K)

|σ|
(
y(1)
σ − yK

)
u−K,σ + T (2),+,

with
T (2),+ =

∑
σ∈E(2)(K)

|σ|
(
yK − y(1)

σ

)
u+
K,σ.

This latter term equivalently reads:

T (2),+ =
∑

σ∈E(2)(K)

|σ|
(
yK − y(1)

K

)
u+
K,σ +

∑
σ∈E(2)(K)

|σ|
(
y

(1)
K − y

(1)
σ

)
u+
K,σ.

By assumption (12), there exists ασ ∈ [0,Γ] and MK,σ ∈ N(K) such that y
(1)
K − y

(1)
σ = ασ (y

(1)
MK,σ

− y(1)
K ).

We thus get

T (2),+ =
∑

σ∈E(2)(K)

|σ|
(
yK − y(1)

K

)
u+
K,σ +

∑
σ∈E(2)(K)

|σ| ασ
(
y

(1)
MK,σ

− y(1)
K

)
u+
K,σ

=
[ ∑
σ∈E(2)(K)

|σ| (1 + ασ) u+
K,σ

] (
yK − y(1)

K

)
+

∑
σ∈E(2)(K)

|σ| ασ
(
y

(1)
MK,σ

− yK
)
u+
K,σ.

=
|K|
δt

ν
(2),+
K

(
yK − y(1)

K

)
+

∑
σ∈E(2)(K)

|σ| ασ
(
y

(1)
MK,σ

− yK
)
u+
K,σ,

with

ν
(2),+
K =

δt

|K|
∑

σ∈E(2)(K)

|σ| (1 + ασ) u+
K,σ.

By the second assumption in (13), we have ν
(2),+
K ≤ 1.

Finally, the scheme yields

yK − y(1)
K = − δt

|K|
∑

σ∈E(1)(K)

|σ|
(
yK − yσ

)
uK,σ.

and we may thus recast T (2),+ as

T (2),+ = −ν(2),+
K

∑
σ∈E(1)(K)

|σ|
(
yK − yσ

)
uK,σ +

∑
σ∈E(2)(K)

|σ| ασ
(
y

(1)
K,σ − yK

)
u+
K,σ, (14)

Gathering the terms, we get

yn+1
K = yK +

δt

|K|

(
(1− ν(2),+

K )
∑

σ∈E(1)(K)

|σ|
(
yK − yσ

)
uK,σ

+
∑

σ∈E(2)(K)

|σ|
(
y(1)
σ − yK

)
u−K,σ +

∑
σ∈E(2)(K)

|σ| ασ
(
y

(1)
K,σ − yK

)
u+
K,σ

)
.
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Using once again the assumption (12) on the one-dimensional scheme, we obtain, still with the coefficients
ασ ∈ [0,Γ] and the cell MK,σ adjacent to K,

yn+1
K = yK +

δt

|K|

(
(1− ν(2),+

K )
∑

σ∈E(1)(K)

|σ|
(
yσ − yK

)
u−K,σ

+ (1− ν(2),+
K )

∑
σ∈E(1)(K)

|σ| ασ
(
yMK,σ

− yK
)
u+
K,σ

+
∑

σ∈E(2)(K)

|σ|
(
y(1)
σ − yK

)
u−K,σ +

∑
σ∈E(2)(K)

|σ| ασ
(
y

(1)
MK,σ

− yK
)
u+
K,σ

)
.

Thanks to the properties of the one-dimensional scheme, y
(1)
MK,σ

∈ conv{yL, L ∈ N2(K)} and so does y
(1)
σ ,

and yσ ∈ conv{yL, L ∈ N(K)}. We thus obtain that yn+1
K ∈ conv{yL, L ∈ N2(K)} if the coefficient of yK

is non-negative, i.e.

δt

|K|

(
(1− ν(2),+

K )
∑

σ∈E(1)(K)

|σ| u−K,σ + (1− ν(2),+
K )

∑
σ∈E(1)(K)

|σ| ασ u+
K,σ

+
∑

σ∈E(2)(K)

|σ| u−K,σ +
∑

σ∈E(2)(K)

|σ| ασ u+
K,σ

)
≤ 1,

which is a consequence of the first assumption in (13).

Three-dimensional case – The scheme now reads:

for K ∈M, yn+1
K = yK +

δt

|K|

[ ∑
σ∈E(1)(K)

|σ|
(
yK − yσ

)
uK,σ

+
∑

σ∈E(2)(K)

|σ| (yK − y(1)
σ ) uK,σ +

∑
σ∈E(3)(K)

|σ| (yK − y(2)
σ ) uK,σ

]
. (15)

We denote by T3 the last summation in the brackets of the RHS, and again distiguish in the sum the upwind
and downwind faces of K:

T3 =
∑

σ∈E(3)(K)

|σ| (y(2)
σ − yK) u−K,σ + T+

3 , with T+
3 =

∑
σ∈E(3)(K)

|σ| (yK − y(2)
σ ) u+

K,σ.

Note that the proof for the two-dimensional case implies that y
(2)
σ ∈ N2(K). By a similar computation as

that of the case d = 2, we obtain

T+
3 =

|K|
δt

ν
(3),+
K

(
yK − y(2)

K

)
+

∑
σ∈E(2)(K)

|σ| ασ
(
y

(2)
MK,σ

− yK
)
u+
K,σ,

with

ν
(3),+
K =

δt

|K|
∑

σ∈E(3)(K)

|σ| (1 + ασ) u+
K,σ, ν

(3),+
K ≤ 1.

We now use the second step of the alternate direction scheme, which reads

yK − y(2)
K = − δt

|K|

[ ∑
σ∈E(1)(K)

|σ|
(
yK − yσ

)
uK,σ

∑
σ∈E(2)(K)

|σ|
(
yK − y(1)

σ

)
uK,σ

]
,

11



to obtain that, returning to (15),

for K ∈M, yn+1
K = yK +

δt

|K|

[
(1− ν(3),+

K )
∑

σ∈E(1)(K)

|σ|
(
yK − yσ

)
uK,σ

+ (1− ν(3),+
K )

∑
σ∈E(2)(K)

|σ| (yK − y(1)
σ ) uK,σ

+
∑

σ∈E(3)(K)

|σ| (y(2)
σ − yK) u−K,σ +

∑
σ∈E(2)(K)

|σ| ασ
(
y

(2)
MK,σ

− yK
)
u+
K,σ.

]
.

The end of the proof follow the same aruments as that of the two-dimensional case. �

Lemma 3.1 may be applied to the schemes presented in Section 2 as follows:

- The MUSCL scheme satisfies the assumptions of Lemma 3.1 with Γ = 1.

- Unfortunately, the other algorithms do not. However, we may derive schemes yielding conservative
aternate-directions algorithms enjoying a discrete maximum principle by restricting the admissible
interval for the face value, i.e. projecting it at the end of the process onto an interval of the form

Iσ,Γ = I
(
yuw, yuw + Γ (yuw − yop)

)
.

This limitation may be made less and less restrictive by taking larger and larger values of Γ, at the
price of a restriction of the admissible time step, to respect the constraints (13). Note also that, for
the algorithms of Section 2.3, with the notations of Lemma 3.1, we have

ασ ≤
1− νσ
νσ

, νσ =
|σ| uK,σ δt
|K|

.

A straightforward computation shows that we thus get a relation of the form (14) with

ν
(2),+
K =

∑
σ∈E(2)(K)

βσ, βσ ≤ 1.

The coefficient ν
(2),+
K is then smaller than 1 as soon as the number of outflow faces in the cell K for

the velocity (0, u2)t does not exceed 1, that is, in other words, if the second component of the velocity

does not change of sign in K. Otherwise, ν
(2),+
K may be greater than 1, and the proof fails. However,

if the velocity field is regular, convective fluxes in this case will be low, and under- and over-shoots, if
any, should be of reduced amplitude.

4. Numerical tests

We present in this section a series of numerical tests. Since, for all the proposed schemes, the approx-
imation of the unknown at the face is a convex combination of the unknown in the neighbour cells, the
consistency of the schemes in the Lax-Wendroff sense [12] is clear (see e.g. [6] for a proof on general meshes),
and checking the first-order convergence when the space and time steps tends to zero is of poor interest;
therefore, we focus here on the quality of the solution for a given (and rather coarse) mesh. These tests
consists in transporting a characteristic function of an initially given domain, which is the initial support of
y, denoted by Sy(t) (so y(x, 0) = 1 if x ∈ Sy(0) and y(x, 0) = 0 otherwise), and we discuss three specific
issues: the preservation of the bounds for y, the scheme diffusion and the eventual spurious numerical shape
deformations of Sy(t).

In the four following sections, we systematically compare four schemes which differ by the underlying
one-dimensional discretization, i.e. the scheme used for the one-dimensional transport steps: the standard
first-order upwind and MUSCL approximations, the THINC scheme and the anti-diffusive scheme. For the

12



THINC scheme, we always choose β = 2 for the reconstruction function. We first address the transport of
a square and a circle characteristic function at a constant skew-to-the-mesh velocity (Section 4.1) and by
a uniform rotation (Section 4.2). These two flows enjoy the property that the sub-step velocities (ux, 0)t

and (0, uy)t are divergence-free, so the maximum principle is ensured at each step of the alternate-directions
algorithm. This is no more the case in the third test (Section 4.3), and the maximum principle preservation
issue is addressed here. We conclude this study by a a test inspired from [14], where the Sy(t) undergoes
large changes (4.4); we assess here the effects of the generalization of the mesh: use of a non-uniform grid
and of non-conforming local mesh refinement. The anti-diffusive schemes considered in this paper are not
designed to transport regular functions; we briefly report such a test in the appendix (Section B), and indeed
observe a poor behaviour.

We also mention that a one-dimensional computation has been performed with the anti-diffusive scheme,
with Sy(0) = (−0.5, 0.5) and u = x. We obtained the expected results: the scheme captures the discontinuity
in a single cell (i.e. the unknown y takes a value different from 1 and 0 in only a cell for the two present
discontinuities, travelling to the left and to the right respectively), and results are close to the analytical
solution. Note that, in contrats to what happens with a constant velocity (see [5]), the scheme cannot
compute the solution exactly because of the interpolation of the velocity; more precisely speaking, writing
u ∂xy = ∂x(u y)− ∂x(u) y, with a suitable evaluation of u, we may hape the flux u y to be computed exactly
(by construction of the scheme), but it is impossible for the production term ∂x(u) y. Indeed, with an
interpolation of u at the faces, the evaluation of the mean value of ∂x(u) over a cell K is exact, but

1

|K|

∫
K

∂x(u) y dx 6=
( 1

|K|

∫
K

∂x(u) dx
) ( 1

|K|

∫
K

y dx
)

if y is not constant over K.

Computations are run with the open-source CALIF3S software developed at IRSN [3].

4.1. Transport by a constant skew-to-the-mesh velocity

We begin this study by considering the transport by a constant velocity field:

u =

[
1
1

]
.

The computational domain is the unit square Ω = (0, 1) × (0, 1), and the final time is T = 0.6. We use a
uniform 100 × 100 mesh and the time step is δt = 1/400. As noted in the introduction of the section, the
convective field for each transport step is divergence-free, so the alternate-directions algorithm preserves the
maximum principle at each step (which is indeed observed).

Transport of the characteristic function of a square – We first consider the following initial condition:

y = 1 if x ∈ (0.1, 0.3)× (0.1, 0.3), y = 0 otherwise.

Results at t = 0.6 are given on Figure 4. Here, and throughout this numerical study, the blue and red
colors correspond to y = 0 and y = 1, respectively; in addition, as in most of the following figures, we plot
the solution only over a subdomain Ωp of Ω including the support of y. The first-order upwind scheme is
over-diffusive while the anti-diffusive scheme yields the exact solution. This latter behaviour is explained by
the fact that the initial condition is exactly represented (because the boundary of the zone where y = 1 at
t = 0 matches the cells edges), the final solution may also be exactly represented by the discretization (for
the same reasons) and, by construction, the one-dimensional scheme performs an exact transport in these
conditions. The jump of the solution slightly spreads with the THINC scheme, and the MUSCL scheme
(which is not dedicated to the transport of step functions) is more diffusive. A complementary study, not
presented here, shows that, with the THINC scheme, the discontinuity approximatively spreads over 2, 4
and 6 cells when the value of the parameter β governing the stiffness of the reconstuction takes the values
2, 1.5 and 1.25 respectively; for large values of β, one recovers the anti-diffusive scheme.
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Figure 4. Translation of the characteristic function of a square – Results obtained at
t = 0.6 with the alternate-directions algorithm based on the upwind scheme (top-left), the
MUSCL scheme (top-right), the THINC scheme (bottom-left) and the anti-diffusive scheme
(bottom-right). Only the top-left part of the computational domain is shown.

Transport of the characteristic function of a circle – We now consider the following initial condition:

y = 1 if
[
(x1 − 0.2)2 + (x2 − 0.2)2

]1/2 ≤ 0.125, y = 0 otherwise.

Results at t = 0.6 are given on Figure 5. Except of course the first-order upwind scheme, the other ones
exhibit a compressive behaviour, which generate ”angles” in the boundary of the support of y (note however
that the scheme is initialized by taking in each cell the value at the mass-center, and not the average value,
which already alters, to some extent, the regularity of the shape of the support). As a counterpart, one may
expect that, at least with the THINC and the anti-diffusive scheme, the diffusion does not amplify with
time, which is favourable for the long-term behaviour of the solution (see Figure 8 and the related discussion
below). This property of the anti-diffusive scheme is more precisely characterized for the constant velocity
one-dimensional transport in [5]: when starting from a smooth initial condition, the schemes first yields a
solution exhibiting plateaus, with three cells in each plateau; then this solution is transported exactly.
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Figure 5. Translation of the characteristic function of a circle – Results obtained at t = 0.6
with the alternate-directions algorithm based on the upwind scheme (top-left), the MUSCL
scheme (top-right), the THINC scheme (bottom-left) and the anti-diffusive scheme (bottom-
right). Only the top-left part of the computational domain is shown.

4.2. Uniform rotation

We now consider a velocity field associated to a uniform rotation at an angular velocity equal to 1:

u =

[
x2

−x1

]
.

Once again, the velocity fields u(1) = (x2, 0)t and u(2) = (0,−x1)t are both divergence-free (in fact, they
correspond to a free-shear flow), and each transport step preserves the solution bounds. The computational
domain is Ω = (−1, 1) × (−1, 1), and the final time is 2π, so the final exact solution is equal to the initial
condition. We use a uniform 200 × 200 mesh, and the time step is equal to δt = 1/400. We consider two
initial conditions, the characteristic function of a square (�) and of a circle (◦):

(�) y = 1 if x ∈ (−0.2, 0.2)× (0.45, 0.85), y = 0 otherwise,

(◦) y = 1 if
[
(x1 − 0.25)2 + (x2 − 0.75)2

]1/2 ≤ 0.2, y = 0 otherwise.
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Figure 6. Rotation of the characteristic function of a square – Results obtained at t = 2π
with the alternate-directions algorithm based on the upwind scheme (top-left), the MUSCL
scheme (top-right), the THINC scheme (bottom-left) and the anti-diffusive scheme (bottom-
right). Only the top-middle part of the computational domain is shown.

Results at t = 2π (so after a complete rotation) are given on Figures 6 and 7. Once again, we observe a very
low diffusion for the THINC scheme and an absence of diffusion with the anti-diffusive scheme, at the price
of the onset of some irregularities in the shape of Sy(2π), more pronounced for the latter scheme. To assess
the long-time behaviour of the solution, we show on Figure 8 the solution obtained with the THINC scheme
after several complete rotations with the initial condition (◦); we observe that the diffusion is completely
controlled, but the shape Sy(t) is progressively altered.

4.3. Transport by a straining velocity field

We now consider the following velocity field:

u =

[
x1

−x2

]
.

This velocity field corresponds to a stretching in the first direction and a compression in the second one,
and the divergence of the convective field at each transport step is different from zero: div(u1, 0)t = 1,
div(0, u2)t = −1. The alternate-directions algorithm is thus likely to generate under- and over-shoots.

The computational domain is Ω = (0, 1)× (0, 1), and we use a 100× 100 uniform mesh. The time step is
δt = 1/400.
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Figure 7. Rotation of the characteristic function of a circle – Results obtained at t = 2π
with the alternate-directions algorithm based on the upwind scheme (top-left), the MUSCL
scheme (top-right), the THINC scheme (bottom-left) and the anti-diffusive scheme (bottom-
right). Only the top-middle part of the computational domain is shown.

Figure 8. Rotation of the characteristic function of a circle – Results obtained with the
alternate-directions algorithm based on the THINC scheme after one (bottom-left), two
(top-right), four (bottom-left) and eight (bottom-right) rotations. Only the top-middle part
of the computational domain is shown.

We consider two initial conditions, the characteristic function of a rectangle (�) and of a circle (◦):
(�) y = 1 if x ∈ (0.05, 0.15)× (0.6, 0.9), y = 0 otherwise,

(◦) y = 1 if
[
(x1 − 0.15)2 + (x2 − 0.8)2

]1/2 ≤ 0.125, y = 0 otherwise.
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Figure 9. Motion of the characteristic function of a rectangle in a straining velocity field
– Results obtained at t = 1.8 with the alternate-directions algorithm based on the upwind
scheme (top left), the MUSCL scheme (top right), the THINC scheme (bottom left) and
the anti-diffusive scheme (bottom right). The blue and red colors correspond to y = 0 and
y = 1, repectively. Only the bottom part of the domain is shown.

Figure 10. Motion of the characteristic function of a circle in a straining velocity field –
Results obtained at t = 1.8 with the alternate-directions algorithm based on the upwind
scheme (top left), the MUSCL scheme (top right), the THINC scheme (bottom left) and
the anti-diffusive scheme (bottom right). The blue and red colors correspond to y = 0 and
y = 1, repectively. Only the bottom part of the domain is shown.

Results at t = 1.8, for the initial condition (�), and t = 1.25, for the initial condition (◦), are given on Figure
9 and Figure 10 respectively. They confirm the diffusive (or anti-diffusive) properties of the discretizations
observed in the previous sections, together with (slight) deformations of the support of y due to their
compressive behaviour. In addition, we observe in the computations that all the schemes except the anti-
diffusive one satisfie a discrete maximum principle. We thus test for this latter discretization the a posteriori
limitation suggested by the analysis of Section 3; results for various values of the parameter Γ are reported on
Figure 11 and 12. The under- and over-shoots are characterized as follows: at each time step, we record the
minimum and maximum value of the solution, and then clip the solution in the [0, 1] interval. Without any
a posteriori limitation, the observed minimum value is −7. 10−5 for the initial condition (�), and −0.0001
for the initial condition (◦); For Γ = 4, these values are reduced to −4. 10−6 and −5. 10−5 respectively, and
no under- or over-shoot is observed for lower values of Γ. Since no significant diffusion is visible on Figures
11 and 12 for Γ = 3 or Γ = 2, it seems that combining the anti-diffusive discretization with an a posteriori
limitation yields a both accurate and stable scheme.

4.4. A test with large topological changes

In this section, we conclude the study by a test inspired by [4]. The computational domain is Ω =
(0, π)× (0, π). The velocity field reads:

u =

[
sin(x1) cos(x2)

− cos(x1) sin(x2)

]
, (16)
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Figure 11. Motion of the characteristic function of a rectangle in a straining velocity field
– Results obtained at t = 1.8 with the alternate-directions algorithm based on the anti-
diffusive scheme and an additional limitation with Γ = 1 (top left), Γ = 2 (top right), Γ = 3
(bottom left) and Γ = 4 (bottom right). The blue and red colors correspond to y = 0 and
y = 1, repectively. Only the bottom part of the domain is shown

Figure 12. Motion of the characteristic function of a circle in a straining velocity field
– Results obtained at t = 1.8 with the alternate-directions algorithm based on the anti-
diffusive scheme and an additional limitation with Γ = 1 (top left), Γ = 2 (top right), Γ = 3
(bottom left) and Γ = 4 (bottom right). The blue and red colors correspond to y = 0 and
y = 1, repectively. Only the bottom part of the domain is shown.

and the initial condition is the characteristic function of a circle:

y = 1 if
[
(x1 −

π

2
)2 + (x2 −

π + 1

5
)2
]1/2 ≤ π

5
, y = 0 otherwise.

We first begin with obtaining a reference solution with a (fine) 512 × 512 mesh and a time-step δt =
π/(4 × 512), up to t = 11.5. Results are sketched on Figure 13, and we observe that, with this initial
condition and this velocity field, the support pf y undergoes large topological changes. Then we turn to
a computation closer to the presented one in [4]: a (coarser) 128 × 128 mesh is chosen, the time-step is
consequently set to the (larger) δt = π/(4× 128) value, the velocity is kept to the value given by Equation
(16) up to the time T/2 and then its sign is changed up to T , so the final solution should be equal to the
initial one. From preliminary computations, we observe that this final state becomes poorly reproduced
when, at the time when the flow is reversed, the thickness of the support of y is lower than the space step;
indeed, in such a case, because of the compressive behaviour of the tested higher-order schemes, the support
of y is fragmented by the discretization. This lead us to choose T/2 = 7.67. Results obtained at t = T with
the different schemes are shown on Figure 14; the anti-diffusive scheme is combined with an a posteriori
limitation with Γ = 2 to ensure the maximum principle. These results confirm the observations of the
previous sections.

We finally complete the study by testing the schemes on more general meshes. Figure 15 shows the results
given by the THINC scheme with a non-uniform mesh, obtained as a grid based on two lists for the first and
second coordinates of the vertical and horizontal faces, respectively. For the first (second) coordinate, this
list is such that the x1-size (x2-size) of the left row (top line) of cells is 0.009 and the x1-size (x2-size) of
the right row (bottom line) of cells is 0.05; in-between, the progression of the real numbers in these lists is
geometrical. This lead to a number of cell equal to 17161, close to the numeber of cells of a 128× 128 mesh
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Figure 13. Characteristic function of a circle in a straining velocity field undergoing large
topological changes – From top-left to bottom-right, initial condition, results obtained at
t = 0, t = 2.3, t = 4.6, t = 6.9, t = 9.2 and t = 11.5 with the alternate-directions algorithm
based on the THINC scheme.

(16384). The time step, governed by the smallest cells, is δt = 0.004. Result show a larger diffusion, due to
the larger size of the largest cells, together with a more regular final shape of the support of y, probably due
to the fact that the solution is better captured at times close to T/2, when the thinnest part of Sy(t) lies in
the refined zone of the mesh.

Finally, we may consider the alternate-directions algorithm as two consecutive transport steps, with
u = (u1, 0)t and u = (0, u2)t respectively, whatever the mesh may be. This gives sense to the use of a locally
refined mesh, obtained from a 50× 50 uniform mesh by dividing by 4 the cells of the top-left quarter of the
computational domain. Results are given on Figure 16; we do not observe any numerical artefact at the
boundary between the refined and non-refined zones.

5. Conclusion

We first proposed in this paper an extension of the so-called Lagrange-projection algorithm (or downwind
scheme with an Ultrabee limiter) [1, 5, 15] for the transport equation in one space dimension with a non-
constant velocity; as its constant velocity counterpart, this scheme is designed to capture the discontinuities
separating two plateaus in only one cell, and so is referred to as ”anti-diffusive” throughout this paper. Then
this scheme, together with the so-called THINC scheme [4], is embedded in an alternate-directions algorithm,
to tackle the transport of characteristic functions in two and three space dimensions, on structured grids.
For this problem, we introduce a conservative scheme and show that, possibly up to an additional flux
limitation, this schemes satisfies a discrete maximum principle. Numerical tests show that the alternate-
directions algorithm based on the anti-diffusive and, almost to a similar extent, on the THINC scheme are
indeed able to transport characteristic functions with almost no diffusion. In addition, the THINC-based
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Figure 14. Characteristic function of a circle in a straining velocity field undergoing large
topological changes – Final state obtained with the alternate-directions algorithm based on
the upwind scheme (top left), the MUSCL scheme (top right), the THINC scheme (bottom
left) and the anti-diffusive scheme limited with Γ = 2 (bottom right). Only the bottom part
of the domain is shown.

Figure 15. Characteristic function of a circle in a straining velocity field undergoing large
topological changes – Final state obtained with the alternate-directions algorithm based on
the THINC scheme, with a uniform (left) and non-uniform (right) mesh.

algorithm seems to satisfy the discrete maximum principle (this property is not proven here), while the anti-
diffusive-based algorithm needs the above-mentioned additional flux limitation to satisfy the same property;
however, this latter does not seem to generate any significant additional diffusion.

Both schemes seem thus to be good candidates to transport the phase indicator function in a Volume-Of-
Fluid (VOF) approach, and such a solver is now under development in the CALIF3S software at IRSN [3].
Extension to unstructured grids of the downwind-limited strategy, to minimize the numerical diffusion, is
also underway.
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Figure 16. Characteristic function of a circle in a straining velocity field undergoing large
topological changes – Results obtained at t = 3.07, t = 4.61, t = 6.14 and t = 15.34 (final
state) with the alternate-directions algorithm based on the THINC scheme on a locally
refined (non-conforming) mesh.
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Appendix A. Reconstruction by a hyperbolic tangent

Let σ be a face of the (1D) mesh, y, y+ and y− the value of the unknown in the upwind cell K, the
downwind cell and the neighbour of K on the opposite side of σ, respectively. Up to a change of coordinates,
we may assume that K = (0, 1), and that σ = {1} (note that it means that we have possibly reoriented the
axis and that the velocity at σ is non-negative). We suppose the following reconstruction of y in K:

ỹ(x) = ȳ +
δy

2
tanh

(
β(x− x0)

)
, with ȳ =

1

2
(y+ + y−), δy = y+ − y−,

with x0 to de determined in such a way that ∫ 1

0

ỹ(x) dx = y. (17)

We assume that (y − y−)(y+ − y) > 0 so x0 exists; note however that x0 may lie outside the interval (0, 1)
(for instance, y close to y− yields a very large value for x0). Thanks to the expression of ỹ, we have:∫ 1

0

ỹ(x) dx = ȳ +
δy

2

1

β

[
ln
(

cosh
(
β(x− x0)

))]1
0
.

Condition (17) easily yields
cosh

(
β(1− x0)

)
cosh(βx0)

= exp
(

2β
y − ȳ
δy

)
.

Let us denote by B the right-hand side of this relation. We get:

− sinh(β) tanh
(
β(1− x0)

)
= − 1

B

sinh(β) sinh
(
β(1− x0)

)
cosh(βx0)

Thanks to the fact that the hyperbolic sinus and cosinus are impair and pair functions respectively, and
thanks to the identity cosh(a+ b) = cosh(a) cosh(b) + sinh(a) sinh(b), for (a, b) ∈ R2, we get

− sinh(β) tanh
(
β(1− x0)

)
=

1

B

cosh(βx0)− cosh(β) cosh
(
β(1− x0)

)
cosh(βx0)

=
1

B

(
1− cosh(β)B

)
.

This yields:

tanh
(
β(1− x0)

)
=

1

tanh(β)
− 1

sinh(β) B
. (18)

In some algorithms, the value at σ is defined as the value taken by the reconstruction at x = 1, i.e.

yσ = ỹ(1) = ȳ +
δy

2
tanh

(
β(1− x0)

)
.

so, finally,

yσ = ȳ +
δy

2

( 1

tanh(β)
− 1

sinh(β) B

)
.

However, such a scheme probably does not preserve the maximum principle (to this respect, note in particular
that taking large values of the parameter β makes the reconstructed profile very close to a step, which makes
this choice of yσ very close to the downwind choice). A more reasonable choice (the one performed in this
paper) it to evaluate the flux crossing σ by a characteristic method, which is equivalent to use Equation (5)
with the following choice for yσ:

yσ =
1

ν

∫ 1

1−ν
ỹ(x) dx,

with ν the CFL number defined by (6). Since the primitive function of ỹ is known, using Equation (18) to
compute x0 yields yσ.
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Figure 17. Rotation of the characteristic function of a circle – Results obtained at t = 2π
with the alternate-directions algorithm based on the upwind scheme (top left), the MUSCL
scheme (top right), the THINC scheme (bottom left) and the anti-diffusive scheme (bottom
right). The blue and red colors correspond to y = 0 and y = 1, repectively. Only the
middle-left part of the computational domain is shown.

Appendix B. Transport of a regular function

We consider in this section the same convection field as in Section 4.2, namely a uniform rotation of unity
angular velocity, with a regular initial condition:

y =

∣∣∣∣∣ 0.25− r2 if r ≤ 0.5

0 otherwise
, with r =

[
(x1 − 0.5)2 + (x2 − 0.5)2

]1/2
.

Results at t = 2π (so after half a rotation) are given on Figure 17. As expected, the compressive behaviour of
the anti-diffusive scheme dramatically affects the aspect of the solution. The same phenomenon is observed,
but with a very lower impact, for the THINC scheme. Note that all the schemes tested in this study are
however consistent (in fact, convergent), so the correct solution is progressively retrieved when refining the
space discretization and reducing accordingly the time step (results not shown here).
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