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Abstract 

The three-dimensional (3D) imaging and quantitative analysis of bone microvasculature are important to describe 

angiogenesis involvement in bone metastatic processes. Here, we propose an algorithm based on marker controlled 

watershed for the 3D segmentation of vessels and bone in mouse bone imaged with a contrast agent using synchrotron 

radiation micro-computed tomography (SR-µCT). Markers were generated using hysteresis thresholding and 

morphological filters, and the control surface was constructed using the monogenic signal phase asymmetry. The 

accuracy and robustness of the proposed method were evaluated on a series of synthetic volumes generated to mimic 

the vessel, bone and background structures. Different contrast between different structures, as well as different noise 

levels were considered. A series of multi-class synthetic volumes were segmented using the proposed method, and the 

overall segmentation quality was evaluated using the Matthews correlation coefficient (MCC) by comparing to the 

ground truth. Additionally, we evaluated the segmentation of thin structures under various levels of Gaussian noise. 

The simulation study indicated that the algorithm was performant in multi-class segmentation with different contrast, 

noise, and thickness. The algorithm was applied to images of bone from a mouse model of breast cancer bone 

metastasis acquired using SR-µCT. The segmentation quality was evaluated using the Dice coefficient and the MCC 

by comparing to manual segmentation. The proposed method performed better than hysteresis thresholding and 

marker-controlled watershed using the magnitude of the gradient as control surface. Several quantitative parameters 

on bone and vessels were extracted. The bone volume fraction (BV/TV) was significantly lower in the metastatic 

group compared to the healthy group. There was no significant difference on the vessel volume fraction (VV/TV) and 

the vessel thickness (VTh), possibly due to the limited sample size. This demonstrated the effectiveness of the 

algorithm for the study of bone and vessel microstructures in mouse model. 

Keywords: micro-computed tomography, watershed, monogenic signal, bone, vessel, segmentation 

1. Introduction 

Breast cancer is the most frequently diagnosed cancer in women worldwide (Bray et al., 2018). In terms of mortality, 

there are approximately 508,000 deaths annually around the world (Tulotta et al., 2019). The major morbidity and 

mortality are caused by bone metastases, generally leading to osteolytic lesions. Around 70% of breast cancer patients 

develop to the advanced phase where tumors metastasize to bone (Akhtari et al., 2008). Once metastases locate in 

bone, the existing treatments are not able to cure the disease, and the median survival rate is about 24 to 65 months 

(Catarina et al., 2017; Lote et al., 1986; Nutter et al., 2014).  
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Breast cancer bone metastases can not only bring about bone destructions but also facilitate the formation of 

undesirable vascularization (Nyangoga et al., 2011). To investigate and have a better understanding of the pathology, 

the three-dimensional (3D) imaging and analysis of bone and vasculatures are necessary. 

3D X-ray microcomputed tomography (µCT) is a tool of choice to image trabecular bone micro-architecture (Kuhn 

et al., 1990) as well as cortical bone and its Haversian network (Bousson et al., 2004; Cooper et al., 2003). In the study 

of assessing the effects of estrogen deficiency on bone, 3D X-ray µCT was used to image and analyze the rat bone 

structures (Sharma et al., 2018). Nevertheless, the protocol did not image the blood vessel to assess its alterations 

caused by the estrogen deficiency. In addition, 3D X-ray µCT can be used to visualize the vascular architecture with 

contrast agent (Moore et al., 2003; Zhang et al., 2005). However, these studies require to decalcify the bone. Therefore, 

µCT is only used to image and analyze either bone microstructure or vascular architecture separately, and these studies 

do not permit a complete analysis of the relationships between the bone and vasculature. 

Synchrotron radiation µCT (SR-µCT) has significant advantage of acquiring high spatial resolution images with a 

high signal-to-noise ratio, compared to the standard µCT, due to the high photon flux of the synchrotron source 

(Salomé et al., 1999). SR-µCT has been applied to the quantitative analysis of human trabecular bone up to the 

micrometer scale (Larrue et al., 2011; Peyrin et al., 1998). In addition, SR-µCT coupled with the use of a contrast 

agent permitted to visualize simultaneously the 3D bone microstructures and vascular networks in mouse (Schneider 

et al., 2009) or rat (Prisby et al., 2011). Simultaneous visualizations of the calcified bone microstructure and blood 

vessels were also demonstrated using phase contrast synchrotron radiation computed tomography (SR-PCT) without 

any contrast agent in mice model (Núñez et al., 2017). However, in this study, the field of view was limited due to the 

small pixel size used, and vessels were segmented by hand due to the relatively weak phase contrast in the vessels 

limiting the applications of the protocol to large data sets.  

The simultaneous imaging of bone and vessel is often followed by performing segmentation to separate bone and 

vessel compartments. The bone and vessel structures of mice, simultaneously imaged using SR-µCT with a contrast 

agent, have been segmented automatically using the global thresholding (Schneider et al., 2009). Previously, in our 

group, 3D region growing has been proposed to segment rat bone vascularization (Langer et al., 2010; Prisby et al., 

2011) in SR-µCT images associated to a contrast agent. Hysteresis thresholding is a particular case of region growing 

with two thresholds. Specifically, voxels having greater intensities than the high threshold value are considered as the 

seeds of vessels, and regions grow from these seeds to include neighbors only if their intensities are between the high 

and low threshold values. 

The aim of this work is to transfer the previous protocol to mice in order to make more models of pathologies 

available. However, this transition is not straightforward. Firstly, as opposed to in rat bone, vessels may appear to be 

in contact with the bone surface in mice, precluding the correct segmentation of bone and vessels using the previously 

proposed hysteresis thresholding based protocol, at 3.5 µm resolution.  

To address these challenges, we proposed to use the marker-controlled watershed algorithm (Beucher and Meyer, 

1990) in conjunction with the monogenic signal phase asymmetry to segment and quantify the bone microstructure 

and vascular network in SR-µCT images of mice. The proposed method was not only assessed on synthetic volumes, 

but also validated on experimental dataset by comparing to the manual segmentation. Segmentation using the proposed 

method was quantitatively compared to the hysteresis thresholding based method and gradient based marker-

controlled watershed. To quantitatively analyze vessels and bone in the healthy and metastatic groups, several 

parameters were extracted to characterize bone microstructures and vasculatures.  

2. Methods 

2.1 Image segmentation 

In this study, the aim of the segmentation method is to classify voxels into three classes: bone, vessels and background.  

The watershed algorithm can be used to separate vessels appearing to be touching the bone surface, without the need 

for post-segmentation merging of regions. The classical watershed transform is often used to segment an image into 

multiple objects by detecting the “catchment basins” and “ridge lines”. In this method, the “flooding” begins from the 

regional minimums on the “control surface”, which is treated as a topographic map and can be the magnitude of 

gradient. The ridge lines present in the image will then separate catchment basins when the different sources of water 

are merging. However, in most cases, there are many undesired regional minimums due to noise or natural variations, 



   
 

   
 

which lead to over-segmentation (Bhabatosh, 2011), requiring a posteriori merging of the segments. One way to avoid 

this problem is the marker-controlled watershed method, which initializes the watershed from the already identified 

markers (Beucher and Meyer, 1990). The method saves running time by reducing the number of iterations and prevents 

results from over-segmentation by simplifying the merging of the regions.  

The proposed protocol was based on the marker-controlled watershed algorithm. In this work, we generated the 

markers of the different classes by using hysteresis thresholding and morphological filters, and constructed the control 

surface from the calculation of the monogenic signal phase asymmetry of the original image. 

2.1.1 Markers generation  

An important step of the marker-controlled watershed algorithm is to generate the marker image. To achieve coverage 

of all connected components in each class and minimize the false positives, the markers can be created using some 

feature detection methods or by hand (Wang and Vallotton, 2010). In this study, the marker generation procedure is 

introduced by using an example of mouse bone in SR-μCT image, as shown in Fig. 1. The markers of the three classes 

are generated using the hysteresis thresholding and morphological filters. The background and vessel markers are 

given by the cyan and magenta arrows, respectively. The initial segmentation is obtained using the hysteresis 

thresholding with two thresholds. The selections of the low and high threshold of hysteresis thresholding depend on 

the gray level distributions in the SR-μCT image. In this study, hysteresis thresholds were determined manually 

according to the testing results. We applied the same parameters on all samples, since all images had a similar gray 

level distribution. Then, the initial segmentation is followed by one iteration of morphological thinning to reduce the 

false-positive rate. The procedure to obtain bone marker is given by the yellow arrows. The whole foreground structure, 

containing both bone and vessel, is first segmented using hysteresis thresholding. Then, the dilated vessel markers are 

subtracted to obtain the initial bone markers. Since the aim of morphological dilation was to remove "halo" structures 

caused by subtraction, a small size of 3 voxels (10.5µm) of ball structuring element was enough in this study. Lastly, 

the isolated small particles are removed using morphological opening, and minimizing false positives is achieved by 

using morphological thinning. The final marker image is generated by adding the background markers, vessel markers, 

and bone markers, in cyan, magenta, and yellow, respectively. 

 

Fig. 1. The generation procedures of the marker images for the marker-controlled watershed. 

2.1.2 Control surface generation 
The other essential step of marker-controlled watershed algorithm is the generation of a control surface from the 

original image. Classically, the magnitude of the gradient is used as the control surface, which is related to intensity 

changes in the original image (Bhabatosh, 2011). However, in our case, the contrast at the interfaces between bone 



   
 

   
 

and vessels is relatively weak compared to the bone-background and the vessel-background interfaces, leading to 

weaker gradient magnitude at these edges. To alleviate this problem, we proposed the local phase asymmetry of the 

3D monogenic signal as the control surface to improve the edge detection at the low contrast interfaces. The phase 

asymmetry measurement can be used to quantify whether the signal is locally edge like or line like. Since we aim to 

detect the interfaces between different structures, we use this property to select only the edge like structures for the 

control surface. 

The 3D monogenic signal can be seen as the isotropic and multidimensional extension of the 1-D analytic signal 

(Felsberg and Sommer, 2001), and can be defined by the combination of the original signal and its three Riesz 

transform components (Chenouard and Unser, 2012): 

𝑓𝑚(𝒙) = (𝑓(𝒙), 𝑅1𝑓(𝒙), 𝑅2𝑓(𝒙), 𝑅3𝑓(𝒙))                                                                       (1) 

     𝑹𝑓(𝒙) = (𝑅1𝑓(𝒙), 𝑅2𝑓(𝒙), 𝑅3𝑓(𝒙))                                                                                 (2) 

where 𝑓(𝒙) denotes the original 3D image, and 𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈  ℝ3 is the spatial coordinate. 𝑹 stands for the Riesz 

transform, and its operator component 𝑅𝛼: ℝ3 ⟼ ℝ is characterized by its frequency response:              

ℱ[𝑅𝛼𝑓](𝝎) =  −𝑗
𝜔𝛼

‖𝝎‖
𝑓(𝝎), 𝛼 = 1, … ,3                                                                         (3) 

where, ℱ represents the Fourier transform operator, 𝑗 is the imaginary unit, 𝝎 = (𝜔1, 𝜔2, 𝜔3) ∈  ℝ3 is the angular 

frequency variable conjugate to 𝒙. 𝛼 gives the 3D direction of the Riesz transformed components, corresponding to 

the directions of the basis vectors. In addition, structure features must be selected with an appropriate scale using a 

band-pass filter, for example a Log-Gabor filter with a shape parameter to govern the bandwidth of the passband, since 

structure in an image is generally scale dependent (Bridge, 2017). Thus, the 3D monogenic signal 𝑓𝑚𝑔(𝒙)  is 

constructed as: 

𝑓𝑚𝑔(𝒙) = (𝑓(𝒙) ∗ 𝑔(𝒙), 𝑅1𝑓(𝒙) ∗ 𝑔(𝒙), 𝑅2𝑓(𝒙) ∗ 𝑔(𝒙), 𝑅3𝑓(𝒙) ∗ 𝑔(𝒙))                (4) 

where 𝑔(𝒙) stands for Log-Gabor filter in spatial domain, and ∗ represents the 3D convolution operation. The 3D 

monogenic signal can also be constructed as the combination of its even and odd components (Rajpoot et al., 2009): 

𝑓𝑚𝑔(𝒙) = 𝑓𝑚𝑔𝑒(𝒙) + 𝑗 · 𝑓𝑚𝑔𝑜(𝒙)                                                                             (5) 

where the even component is  

𝑓𝑚𝑔𝑒(𝒙) = 𝑓(𝒙) ∗ 𝑔(𝒙)                                                                                                        (6) 

and the odd component is 

𝑓𝑚𝑔𝑜(𝒙) = (∑ |𝑅𝛼𝑓(𝒙) ∗ 𝑔(𝒙)|23
𝛼=1 )1/2.                                                                           (7) 

To detect edges in the original image, the multiscale phase asymmetry is measured by (Bridge, 2017):                           

𝐴(𝒙) = ∑
⌊|𝑓𝑚𝑔𝑜,𝜆𝑖

(𝒙)|−|𝑓𝑚𝑔𝑒,𝜆𝑖
(𝒙)|−𝑇⌋

√(𝑓𝑚𝑔𝑜,𝜆𝑖
(𝒙))2+(𝑓𝑚𝑔𝑒,𝜆𝑖

(𝒙))2+𝜖
𝑖                                                                             (8) 

where ⌊.⌋ denotes an operator replacing negative values with zero, and {𝜆𝑖} are a set of center-wavelengths (𝜆𝑖=2𝜋 𝜔𝑖⁄ ) 

of the Log-Gabor filters to define the scales. 𝑇 is a threshold to suppress noise, 𝜖 is small number to avoid division by 

zero. In this study, we set multiscale values of 𝜆𝑖 = 6,7,8, 𝑇 = 0.18 and 𝜖 = 0.001.  

2.2 Segmentation evaluation 

To evaluate segmentation quality, the Dice coefficient and Matthews correlation coefficient (MCC) were measured 

by comparing to manual segmentation or ground truth.  

2.2.1 Dice coefficient 
The Dice coefficient (also known as Dice similarity coefficient (DSC) and F1 score) is a statistic parameter to assess 

spatial overlapping between the segmentation and ground truth (Zou et al., 2004). Its expression is given by: 

https://en.wikipedia.org/wiki/Statistic


   
 

   
 

𝐷𝑆𝐶 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
                                                                                                           (9) 

where |𝐴| and |𝐵| are the cardinalities of the two sets A and B, representing respectively the segmentation and ground 

truth (Aaron et al., 2020). 

2.2.2 Matthews correlation coefficient 
The MCC (Matthews, 1975) is widely used as a measure of quality of classifications to indicate how well observations 

(ground truth) and predictions (segmentation) agree. MCC = 1 indicates a perfect classification, MCC = 0 indicates 

no better than random prediction, and MCC = −1 indicates a total misclassification (Matthews, 1975). In its original 

form, MCC applies to measure the quality of two-class classifications. However, a multi-class MCC has been proposed 

(Gorodkin, 2004): 

      𝑀𝐶𝐶 =
∑ 𝐶𝑘𝑘𝐶𝑙𝑚−𝐶𝑘𝑙𝐶𝑚𝑘

𝑁
𝑘,𝑙,𝑚=1

√∑ (∑ 𝐶𝑘𝑙
𝑁
𝑙=1 )(∑ 𝐶𝑘′𝑙′

𝑁
𝑙′=1
𝑘′≠𝑘

)𝑁
𝑘=1 √∑ (∑ 𝐶𝑙𝑘

𝑁
𝑙=1 )(∑ 𝐶𝑙′𝑘′

𝑁
𝑙′=1
𝑘′≠𝑘

)𝑁
𝑘=1

                                                   (10) 

where 𝑖𝑗-th entry 𝐶𝑖𝑗 is the number of elements of observation class 𝑖 assigned to class 𝑗 (Jurman and Furlanello, 2010): 

𝐶𝑖𝑗 = |{𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠 = 𝑖 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠 = 𝑗}| 

For instance, in a 3D image, 𝐶𝑘𝑘 indicates how many voxels are correctly segmented in class 𝑘. 

2.3 Numerical simulations 

In order to examine the accuracy and robustness of the proposed method, as well as its generalization to other 

applications, four kinds of 3D synthetic models were created to simulate real datasets (Fig. 2). Each volume was an 8 

bits 3D image with 256×256×150 voxels. The size of synthetic phantom was determined by striking a balance between 

the size of real bone in SR-μCT images and computational cost. The gray levels of compartments in synthetic 

phantoms were set based on the real SR-μCT images. For instance, vessel and background were set at 255 and 0 in 

phantoms respectively, due to the contrasted vessel (bright) and background (dark) in the real SR-μCT images. As for 

the gray level of bone, it was set at different values between 0 and 255 to mimic the various contrast. The virtual 

phantoms were created based on geometrical cylinders and hourglass solids assigned 0, 128, and 255 greyscale values 

in their initial instances (Fig. 2). Additionally, in Model-1, Model-2, and Model-3, the diameters of the widest and 

narrowest hourglass solids were set to 34 and 1 voxels, respectively. In Model-4, the narrowest gap between the bright 

and gray structures were set to 1 voxel. 

 

Fig. 2. Three orthogonal slices in the 3D synthetic models: (a) Model-1 represents vessel structure and bone 

porosity with various thickness, which are embedded in the bone. (b) Model-2 simulates that vessels are in contact 

with the bone surface and the background at the same time. (c) Model-3 represents an isolated structure (bone or 

vessel) in the real-world dataset. (d) Model-4 simulates a vessel passing through a canal (porosity) with varying 

diameter. 

Specifically, Model-1 was designed to simulate 3D vessel structure (gray level 255) and bone porosity (background, 

gray level 0) with various thicknesses, surrounded by bone structure (gray level 128), as shown in Fig. 2 (a). Model-

https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Binary_classification


   
 

   
 

2 mimicked that vessels (gray level 255) were in contact with bone surface (gray level 128) and background (gray 

level 0) at the same time, as shown in Fig. 2 (b). Model-3 was designed to simulate an isolated structure in the real-

world dataset, as shown in Fig. 2 (c). Model-4 described a situation that a vessel (gray level 255) was passing through 

a varying bone porosity (gray level 0), as shown in Fig. 2 (d). The bright cylinder in the center simulated vessel, and 

the surrounding structure was the synthetic bone (gray level 128). 

To investigate the impact on the segmentation of different contrast levels between bone and vessels in the acquired 

images, a series of volumes were generated by varying the relative contrast of bone. Volumes were generated where 

the part representing bone was set to a value in the range 48 to 208, in increments of 10 gray levels (thus 17 volumes 

per model). For Model-3, an additional volume was generated where the structure was set to gray value 255. 

For the purpose of mimicking the partial volume effect, which is a reduction of gray level in small object and 

interface between two classes, the phantom images were downscaled and re-upscaled by a factor 4 with the bilinear 

resampling method. The synthetic phantoms without partial volume effects were used as reference images (ground 

truth).  

In addition, to explore the impact of noise, different levels of Gaussian noise were added to each volume. The noise 

level was defined by the standard deviation of Gaussian noise. Noise was added with levels in a range of 10 to 70 with 

increments of 10, producing 63 instances of Model-1, Model-2, and Model-4, and 70 instances of Model-3. 

2.4 Application to experimental data 

2.4.1 Sample preparation 
To validate the proposed algorithm on experimental data, we selected two groups of healthy and metastatic mice bone 

(10 samples per group) from a project investigating the effects of anti-angiogenic drugs (vatalanib: 100 mg/kg orally 

daily; bevacizumab: 5 mg/kg intraperitoneally twice a week) on metastasis formation. Specifically, 8 week-old female 

Balb/c nude mice were injected with luciferase-expressing human B02 breast cancer tumor cells (Fradet et al., 2011), 

then the preventive treatments were performed. In this model, animals usually develop bone metastases 18 days after 

the injection of tumor cell (Bachelier et al., 2014). Thus, the mice were sacrificed on 22 days after the injection. Next, 

all mice were injected with a contrast agent (barium sulfate) for the vascular imaging. Afterwards, mice tibiae were 

dissected, included in PMMA and kept for SR-µCT imaging. The protocol (DR2015-18) was studied by the ethics 

committee (CNREEA C2EA-55), and approved by the Minister of Higher Education, Research and Innovation 

(Ministère français de lʼEnseignement supérieur, de la Recherche et de lʼInnovation, approval number: 

2015121515281004). All experiments were carried out in accordance with the approved protocol. 

2.4.2 Image acquisition 
To image the bone microstructure and vasculature simultaneously in 3D, we used contrast-agent SR-μCT. Imaging 

experiments were performed at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, on the ID19 

beamline. The schematic of the SR-μCT imaging setup is shown as Fig. 3. A 2048×2048 pixel CCD-based detector 

with effective pixel size of 3.5 µm was used to record images at evenly spaced angles of view over a 360° rotation. 

The exposure time and X-ray energy were set to 0.15 s and 26 keV, respectively. The acquisition of 2000 radiographs 

of one sample lasted approximately 8 minutes. After the image acquisition, 3D 32 bits images of 2000×2000×1200 

voxels were reconstructed using a filtered back projection algorithm yielding a cylindrical field of view (FOV) of 7 

mm diameter. The processing involved corrections to take into account beam inhomogeneity, response of the detector 

and decrease of current during acquisition. Then, the bit depth of reconstructed images were reduced to 8 bits from 32 

bits. Finally, the proposed algorithm was applied in the whole SR-μCT images to segment bone and vessels. 



   
 

   
 

 

Fig. 3. Schematic of the SR-μCT imaging setup. 26 keV X-rays illuminated a sample mounted on a 3D rotation 

stage. A CCD-based detector was used for recording images through optics and microscope system. 

2.4.3 Quantitative parameters 
To quantitatively analyze the differences between the healthy group and metastatic group, some anatomical parameters 

were extracted from the data. The total volume (TV) of the sample was defined as the volume inside the outer contour 

of the bone. TV, bone volume (BV) and vessel volume (VV) were measured by counting voxels in the corresponding 

compartments. In order to compare the volume based fractions in the healthy and metastatic group, the normalized 

ratios BV/TV and VV/TV were calculated. In addition, the local vessel thickness was measured as the diameter of the 

largest sphere fitting in the vessel at any point of its length (Hildebrand and Rüegsegger, 1997; Langer et al., 2010), 

and its average VTh was reported. 

2.4.4 Statistical analysis 
Statistical tests were performed on measured BV/TV, VV/TV and VTh, in the healthy and metastatic groups, 

separately. Lilliefors test was used to verify the normal distributions of parameters in each group. In a case of normal 

distribution, ANOVA F-test was used to test if there was a significant difference between the two groups. We 

considered the difference statistically significant at p-value< 0.05 level. 

3. Results 

In this section, we first examine the proposed method of phase asymmetry based marker-controlled watershed on the 

3D synthetic volumes. Then we apply the proposed method to the real SR-µCT dataset of mouse bone, and extract the 

quantitative parameters to characterize bone and vessel structures. 

3.1 Assessment of the method on synthetic data 

We first report two examples of the segmentation of Model-1 obtained with various contrast and additive Gaussian 

noise levels, as shown in Fig. 4, 2D slices from the 3D volumes. Qualitatively, the generated markers and control 

surface under a relatively low contrast and high noise level were less robust as Fig. 4 (g), leading to a worse watershed 

segmentation as Fig. 4 (h). 

Specifically, to explore the impact of image contrast and the level of noise on segmentation, we generated 189 

synthetic volumes for three-class models (Model-1, Model-2 and Model-4) and 70 volumes for a two-class model 

(Model-3), as explained above. Multi-class structures of each synthetic volume were segmented using the proposed 

method. In Fig. 5 we show 9 examples of segmentation for each model, obtained under various contrast and noise 

levels. The panels delineate a representative volume of interest (VOI) for each phantom, obtained at contrast levels of 

48, 128 and 208 (or 255) and at noise levels of 10, 30 and 70. Where the algorithm failed to yield a segmentation 

where the structure was recognizable, which happened only at rather extreme noise levels, we report “no result”. 

Qualitatively, the quality of segmentation decreased with the increase of noise level and the decrease of contrast.  

 



   
 

   
 

 

Fig. 4. Segmentation of synthetic volumes. (a)(e) Noise-free phantoms. (b)(f) Noisy phantoms. (c)(g) Markers 

overlapping on control surface image. (d)(h) Multi-class segmentation using the proposed method. All images are 

2D slices from the 3D volumes. 

 

Fig. 5. Impact of image contrast and noise level on segmentation. (a) model-1, (b) model-2, (c) model-3, (d) model-

4. The 9 examples of segmentation of VOI from each model were obtained using the proposed method. The original 

synthetic volumes are with contrast of 48, 128 and 208 (or 255), as well as noise levels of 10, 30 and 70. All images 

are 2D slices from the 3D volumes. 



   
 

   
 

Quantitatively, the MCC value for each multi-class segmentation was calculated according to equation (10) as 

shown in Fig. 6, which illustrates the relationships between MCC and noise levels, separated according to phantom 

type and contrast. MCC values were plotted over a range of noise levels at each contrast, excluding extremely low 

values obtained from the failed segmentation as before (“no result”, Fig. 5). For example, in Fig. 6 (a), when the noise 

level is higher than 30, with a bone contrast between 48 and 208, the segmentation algorithm seems to reach its limit. 

This noise level is extreme compared to the noise in the experimental data, however. In summary, for three-class 

models of Fig. 6 (a), (b) and (d), in a fixed noise level, the highest MCC values were obtained at contrasts of 128 and 

148. This indicates that the proposed protocol works best when the intermediary class has gray levels close to half of 

the maximum gray level. This can serve as a guideline for optimizing the imaging conditions. For the two-class model 

of Fig. 6 (c), MCC reaches the highest value at the highest contrast of 255, as expected.  

 

Fig. 6. Relationship between MCC and noise levels. (a) model-1, (b) model-2, (c) model-3, (d) model-4. Contrast 

range from 48 to 208 (or 255), and noise levels range from 10 to 70. 

Fig. 7 illustrates the capability of thin structure segmentation under a various levels of Gaussian noise. For the 

purpose of quantifying the thin structure segmentation, we measured 3D local thickness of structure. Specifically, we 

selected the hourglass structure from the VOI of ground truth as a foreground to generate a new binary volume, and 

measured its 3D local thickness map. Secondly, the 3D local thickness map was masked with hourglass structure 

segmentation of Fig. 7 (a-d), and results are shown as Fig. 7 (e-h). As expected, the segmentation quality of thin 

structure is continuously degraded with increasing noise as the disconnection of structure visible. Lastly, the numbers 

of voxels at different thicknesses, from the Fig. 7 (e-h), were plotted in the Fig. 7 (i). In a thickness range of 3 to 9 

voxels (thin structure), it indicates that thin structure can be well segmented at noise levels of less than 20, using the 

proposed method. For the segmentation of thick structure (thickness of 10 voxels or more), noise levels have little 

effects on the number of voxels at each thickness. The thick structures can be well segmented even at the noise level 

of 60 using the proposed method. 



   
 

   
 

 

 

Fig. 7. Performance of thin structure segmentation. (a) Noise-free phantom. (b-d) noisy images with noise levels 

of 20, 40 and 60, respectively. (e-h) Thickness maps corresponding to segmentation of (a-d). All images of (a-h) are 

2D slices of 3D volumes. (i) Thickness histogram based on (e-h).  

3.2 Application to SR-μCT mouse data   

3.2.1 Image processing 
Segmentation results of a representative VOI of an original image are shown in Fig. 8. A zoom on a 2D slice from the 

3D original volume is shown as Fig. 8 (a). The red arrow shows the relatively low contrast interface between bone 

and vessel. The control surfaces were generated using two 3D edge detection methods: conventional image gradient 

magnitude in Fig. 8 (b) and phase asymmetry in Fig. 8 (c). The gradient magnitude was computed by using a simple 

finite differences approach with a derivative operator. Conventional gradient was not able to properly resolve the low 

contrast boundary between bone and vessel indicated by the arrow, which was conversely well detected by the phase 



   
 

   
 

asymmetry signal. The selection of scales for phase asymmetry depends on image structures. In our case, phase 

asymmetry with lower scales detects too much edge detail so that useful structures can not be recognized. Conversely, 

the method with higher scales misses too much detail. As it appears in Fig 8 (c), even though there are some spurious 

edges detected in homogeneous areas with the phase asymmetry method, they are always covered by a marker in solid 

areas. Hence they do not influence the marker-controlled watershed segmentation. Qualitatively, the result of 

segmentation using the phase asymmetry based marker-controlled watershed was much improved compared to 

hysteresis thresholding or gradient based watershed segmentation. Hysteresis thresholding requires spatial separation 

between the different compartments. Since this is not the case here, sufficiently low second thresholds cannot be 

selected to correctly segment the compartments, which leaves a small gap between the structures (Fig. 8(g)). For the 

watershed algorithm, the conventional gradient did not yield sufficient signal at bone to vessel interfaces to properly 

separate the two compartments (Fig. 8(b)). 

 

Fig. 8. Representative segmentation examples (VOI) performed with hysteresis thresholds, gradient marker 

controlled watershed, and phase asymmetry marker controlled watershed (the proposed method). (a) Original image. 

(b) Control surface using the image gradient. (c) Control surface using the multiscale phase asymmetry 

measurement. (d) Manual segmentation. (e) Vessels marker (red), bone marker (green) and background marker 

(blue) superimposed on gradient based control surface. (f) Markers superimposed on phase asymmetry based control 

surface. (g) Hysteresis thresholding segmentation. (h) Marker-controlled watershed segmentation based on gradient 

(e). (i) Marker-controlled watershed segmentation based on phase asymmetry (f). All images are 2D slices from the 

3D volumes. 

3.2.2 Segmentation quality evaluation 



   
 

   
 

The segmentation quality was evaluated quantitatively using the Dice coefficient and the MCC by comparing to 

manual segmentation. A representative volume was manually segmented using VGStudio Max (Volume Graphics 

GmbH, Heidelberg, Germany). Dice coefficients corresponding to vessel, bone and background compartments were 

calculated separately, and an overall segmentation quality was also evaluated using multi-class MCC, as shown in the 

TABLE 1. Especially, there were substantial improvements at the overall segmentation (MCC = 0.94) using the 

proposed phase asymmetry based marker-controlled watershed, comparing to the hysteresis thresholding (MCC = 0.77) 

as well as gradient based marker-controlled watershed (MCC = 0.88). 

TABLE 1. Evaluation of segmentation quality 

Evaluation Dice 

(Vessel) 

Dice 

(Bone) 

  Dice 

(Background) 

   MCC 

(Overall) 

Hysteresis thresholding 0.84 0.81 0.85 0.77 
Gradient + watershed 0.92 0.91 0.93 0.88 

Phase asymmetry + watershed 0.97 0.92 0.97 0.94 

3.2.3 Statistical analysis 
To compare the healthy sample with the metastatic sample qualitatively, 3D volume renderings of segmentation using 

the proposed method are shown as Fig. 9. The metastatic sample in Fig. 9 (d) shows evident large bone lesions, 

compared to the healthy sample in Fig. 9 (a). In addition, the vessels in the metastatic sample are more numerous and 

thicker than those in the healthy sample, as evidenced in the comparison between Fig 9 (e) and (b). This may indicate 

an increased and abnormal vascularization due to the bone metastases, as expected. The plots of BV/TV, VV/TV and 

VTh in the healthy and the metastatic groups are shown as Fig. 10. Normal distributions of BV/TV, VV/TV and VTh 

in each group were verified using the Lilliefors test (p-value > 0.05). ANOVA F-test (p-value < 0.05) was used to test 

if there is a significant difference between the healthy and the metastatic groups. BV/TV (median: 0.2673) is 

significantly lower in the metastatic group compared to in the healthy group (median: 0.3263) as Fig. 10 (a) (ANOVA 

F-test, p-value = 0.012), which is consistent with the apparent large metastatic lesions visible in Fig. 9 (d). In addition, 

there is no significant difference on parameters VV/TV (p-value = 0.715) and VTh (p-value = 0.469) as Fig. 10 (b)(c), 

possibly due to the limited sample size. 



   
 

   
 

 

Fig. 9. Qualitative comparison between the healthy and metastatic samples. (a)(b)(c) 3D rendering of bone and 

vessels in the healthy group. (d)(e)(f) 3D rendering of bone and vessels in the metastatic group. 

 

Fig. 10. Quantitative comparison between the healthy and metastatic samples. (a) Bone volume fraction. (b) 

Vessel volume fraction. (c) Mean vessel thickness.  

4. Discussion and conclusion 



   
 

   
 

We presented a method to segment bone and vessels using the marker-controlled watershed and the monogenic signal 

phase asymmetry. The marker-controlled watershed was used to address the problem that vessels may appear to be in 

contact with the bone surface in mouse model precluding the correct segmentation of bone and vessels using the 

previously proposed hysteresis thresholding based protocol. In this algorithm, three classes of markers, i.e. bone, 

vessels and background were generated using the hysteresis thresholding and morphological filters, minimizing the 

false positives in the connected components of each class. In addition, we proposed the monogenic signal phase 

asymmetry as the control surface to improve edge detection at the relatively weakly contrasted bone and vessel 

interfaces.  

To examine the accuracy and robustness of the method, as well as its generalization to other applications, we created 

3D synthetic models to simulate a real dataset. Since there may be various contrast ratios between vessels and bone, 

physically came from the different types of contrast agent, X-ray energy, and range for 8 bits resampling in the real 

experiment, it is necessary to investigate the impact of image contrast on segmentation quality. In addition, we 

considered the different noise levels and the segmentation of thin structure. After the multi-class synthetic volumes 

were segmented using the proposed method, the overall segmentation quality was evaluated using the MCC by 

comparing to the ground truth. The results indicated that the proposed protocol could work better at the contrast of 

128 and148 in the three-class model, and at the contrast of 255 in the two-class model. In addition, we studied the 

capability of thin structure segmentation with the proposed method, under various levels of Gaussian noise. The results 

showed that thin structures (thickness of 3 to 9 voxels) could be well segmented at noise levels of less than 20, and 

thick structures (thickness of 10 voxels or more) could be well segmented even at the noise level of 60 using the 

proposed method. In summary, the proposed segmentation method appears to be robust with respect to noise, contrast 

and thin structure segmentation. Thus, it is a good candidate for a more general application of multi-class segmentation. 

We applied the proposed method to the real dataset of mouse bone with breast cancer bone metastases, acquired 

using SR-µCT with contrast agent. The segmentation quality was evaluated using the Dice and the MCC by comparing 

to manual segmentation. The results showed substantial improvements at each single class segmentation (Dice) and 

overall segmentation (MCC) using the proposed method, compared to the hysteresis thresholding based method as 

well as to the gradient based marker-controlled watershed. In addition, for the purpose of quantitative analysis in the 

healthy and metastatic groups, we extracted three parameters (BV/TV, VV/TV and VTh) to characterize bone and 

vessels structures. We found that the BV/TV was significantly lower in the metastatic group compared to in the healthy 

group. Thus, the statistical analysis revealed that bone volume fraction decreased due to the large bone lesions, all in 

line with previous studies. In addition, there was no significant difference between the healthy and metastatic groups 

on parameters of VV/TV and VTh, possibly due to the limited sample size. The application to the real dataset 

demonstrated the utility of the algorithm for the study of bone and vessel microstructures in mouse models. However, 

in this study, the statistical analysis might be limited by a small sample size (10 samples per group), leading to a low 

statistical power and less conclusive results. Further biological study can take this factor into account and provide a 

more statistical basis. The proposed method can be used to gain a better understanding of role of vessels in cancer 

pathology and can help us better describe angiogenesis involvement in bone metastatic processes. 
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