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In this paper, we study, in the semiclassical sense, the global approximate controllability in small time of the quantum density and quantum momentum of the 1-D semiclassical cubic Schrödinger equation with two controls between two states with positive quantum densities. We first control the asymptotic expansions of the zeroth and first order of the physical observables via Agrachev-Sarychev's method. Then we conclude the proof through techniques of semiclassical approximation of the nonlinear Schrödinger equation.

Introduction

The purpose of this paper is to investigate the global approximate controllability of the physical observables of the following one-dimensional cubic Schrödinger equation in the semiclassical regime (1.1)

   i ∂ t ψ = - 2 2 ∂ 2 x ψ + F + (|ψ | 2 -1) ψ , (t, x) ∈ R + × T ,
ψ | t=0 = ψ 0 = a 0 (x; ) exp (iS(x)/ ) , where ψ denotes the wave function in quantum mechanics so that T |ψ (t, x)| 2 dx = 1, denotes the Planck constant, and T := R/2πZ. The function ψ is complex-valued while the functions S(x) and F are real-valued. The potential V def = F + (|ψ | 2 -1) is composed by two parts: (|ψ | 2 -1) corresponds to the Gross-Pitaevskii equations, and F denotes a background charge that can be controlled in semiconductor applications. In control theory, typically for the case = 1, the term F ψ is called bilinear control.

We assume that, for some positive integer k, S(x) ∈ H k+3 , a 0 (x; ) = a 0 0 (x) + a 0 1 (x) + R(x; ) with a 0 0 (x) ∈ H k+2 , a 0 0 (x) > 0, a 0 1 (x) ∈ H k and lim

→0 + R(x; ) H k = 0. (1.2)
For (1.1), the well-known Madelung transform (see [START_REF] Madelung | Quantentheorie in hydrodynamischer form[END_REF]) introduces two real variables ρ (t, x) and S (t, x) such that ψ = ρ exp iS / . Then we can equivalently rewrite (1.1) as

(1.3)            ∂ t ρ + ∂ x ρ u = 0 (t, x) ∈ R + × T , ∂ t ρ u + ∂ x ρ (u ) 2 + 1 2 ∂ x (ρ ) 2 + ∂ x F ρ = 2 2 ρ ∂ 2 x ρ ρ x , ρ | t=0 = |a 0 (x, )| 2 , u | t=0 = ∂ x S(x), 1 with (1.4) u (t, x) def = ∂ x S (t, x).
The right-hand side of the second equation of (1.3) is called the quantum pressure. Formally, by taking → 0 in (1.3), we obtain the following compressible Euler equation in R + × T for quantities (ρ 0 , u 0 ) with an additional force η 0 (t, x):

(1.5)    ∂ t ρ 0 + ∂ x (u 0 ρ 0 ) = 0, ∂ t u 0 + u 0 ∂ x u 0 + ∂ x ρ 0 = η 0 , (ρ 0 , u 0 )| t=0 = (|a 0 0 | 2 , ∂ x S)
, where (1.6) η

0 def = -∂ x F 0 ,
and where the quantities ρ 0 , u 0 , F 0 correspond to the leading order of ρ , u , F under WKB sense. We refer to Section 2.1, especially to Equation (2.2)-(2.4) for details of this expansion and even for the related higher order expansions.

Since u 0 is the derivative of some function S 0 on the torus T, it satisfies T u 0 dx = 0. For this purpose, we denote by H s 0 the codimension one subspace of H s such that its elements satisfy T f dx = 0. Corresponding to the Newtonian mechanics, we call ρ and ρ u the quantum density and quantum momentum respectively. In the whole space case and if there is no superfluid at infinity and f (0) > 0, Grenier [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF] solved the limit problem before the formation of singularity in the limit system with initial data in Sobolev spaces. The main idea in [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF] is to use the symmetrizer of the limit system (1.5) to get H s energy estimates which are uniform in ε for a singularly perturbed system. Nevertheless this method does not work for the semiclassical limit of Schrödinger-Poisson equations, as the resulting limit system is not a symmetric hyperbolic one. The third author of this manuscript [START_REF] Zhang | Wigner measure and the semiclassical limit of Schrödinger-Poisson equations[END_REF] used the Wigner measure approach to study the semiclassical limit of Schrödinger-Poisson equation (see [START_REF] Zhang | Semiclassical limit of nonlinear Schrödinger equation[END_REF] for more general nonlinearity). The assumption that f (0) > 0 in [START_REF] Zhang | Semiclassical limit of nonlinear Schrödinger equation[END_REF] was removed by Alazard and Carles in [START_REF] Alazard | Supercritical geometric optics for nonlinear Schrödinger equations[END_REF]. With superfluid at infinity to pass over an obstacle, the corresponding problem was solved by Lin and Zhang in [START_REF] Lin | Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain[END_REF].

The goal of this paper is to find control F (1.7) F (t, x) = F 0 (t, x) + F 1 (t, x) with F i (t, x) ∈ C([0, T ]; E), where (1.8) E def = span{sin x, cos x} is a two-dimensional control space such that we are able to get the approximate controllability of the physical observables ρ and u . More precisely, our main result states as follows.

Theorem 1.1. Let k ≥ 3, T > 0 and ε > 0.

Let (ρ f 0 , u f 0 ) ∈ H k × H k 0 and (ρ f 1 , u f 1 ) ∈ H k-2 × H k-2 0 , which satisfy T ρ f 0 dx = T |a 0 0 | 2 dx, T ρ f 1 dx = T
2Re(ā 0 0 a 0 1 ) dx and ρ f 0 > 0.

There exist (ρ 0 , û0 ) r a H k-2 = 0, lim

∈ H k+2 × H k+2 0 , (ρ 1 , û1 ) ∈ H k × H k 0 which satisfy T ρ0 dx = T ρ f 0 dx, T ρ1 dx = T ρ f 1 dx and ρ0 > 0, (ρ 0 , û0 ) -(ρ f 0 , u f 0 ) H k ×H k ≤ ε, (ρ 1 , û1 ) -(ρ f 1 , u f 1 ) H k-2 ×H k-2 <
→0 +
r S H k-1 = 0, lim

→0 + s H k-2 = 0.
Remark 1.1. The proof of Theorem 1.1 can in fact ensure the same result for nonlinear Schrödinger equations with more general nonlinearity: f (|ψ | 2 )ψ which satisfies f (0) > 0.

Remark 1.2. Let N ≥ 2. Using the same approach, we are able to find control

F (t, x) = N i=0 i F i (t, x) with F i ∈ C([0, T ]; E), i = 1, • • • , N,
so that we can get the approximate controllability of the physical observables up to order N.

Remark 1.3. Along the same line to the proof of Theorem 1.1, we can work out the same type of result in any space dimension, i.e. on T d for any d ∈ N\{0}, with controls be restricted to some finite dimensional space

(1.9)

E := span{sin( l • x), cos( l • x); l ∈ K d }.
An example is

(1.10) K d := {(l 1 , ..., l d ); l j = 0 or ± 1},
which also has been used by Duca and Nersesyan [START_REF] Duca | Bilinear control and growth of sobolev norms for the nonlinear Schrödinger equation[END_REF] for the study of approximate controllability between any pairs of eigenstates of NLS in T d .

Remark 1.4. The study of the controllability of the Schrödinger equation corresponds to the case that = 1 in (1.1) has been attracted by many authors. Let us mention, in particular, the survey paper [START_REF] Laurent | Internal control of the Schrödinger equation[END_REF] by Laurent and the references therein, [START_REF] Lebeau | Contrôle de l'équation de Schrödinger[END_REF] by Lebeau for internal controllability of the multidimensional Schrödinger equation using microlocal analysis. The local exact controllability of the one dimensional bilinear Schrödinger equation was first proved by Beauchard [4] using a Nash-Moser iteration process, and then simplified by Beauchard-Laurent in [START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF]. Finally, in [START_REF] Sarychev | Controllability of the cubic Schroedinger equation via a low-dimensional source term[END_REF] Sarychev also studied the approximate controllability of NLS in 1D and 2D torus based on Agrachev-Sarychev method, and again relying on this method Duca and Nersesyan [START_REF] Duca | Bilinear control and growth of sobolev norms for the nonlinear Schrödinger equation[END_REF] have studied the approximate controllability between any pairs of eigenstates of NLS in T d .

2. Sketch of the proof 2.1. Semiclassical approximation in the general setting. Let us recall from [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF] that instead of looking, as usual, for solutions ψ to (1.1) of the form

ψ (t, x) = a (t, x) exp (iS(t, x)/ )
with S(t, x) independent of and a (t, x) a real-valued function, we can look for solutions ψ of (1.1) with the form:

ψ (t, x) =a (t, x) exp iS (t, x)/ with a (t, x) =a 0 (t, x) + a 1 (t, x) + r a (t, x, ) S (t, x) =S 0 (t, x) + S 1 (t, x) + r S (t, x), (2.1) 
where a is a complex-valued function. By inserting (2.1) into (1.1), we obtain

(2.2)          ∂ t S + 1 2 ∂ x S 2 + F + |a | 2 -1 = 0, ∂ t a + ∂ x S ∂ x a + 1 2 a ∂ 2 x S = i 2 ∂ 2 x a , S | t=0 = S(x), a | t=0 = a 0 (x; ). Let us define η j (t, x) def = -∂ x F j (t, x) ∈ E. Since F j ∈ E we can determine F j from η j by F j (t, x) = - x 0 η j (t, x)dx + (1/2π) 2π 0 (2π -s)η j (s)ds.
In view of (1.5), by comparing the coefficients of j on both sides of (2.2), at least formally, we are able to obtain equations for the coefficients of the expansions in (2.1). The 0 order equation reads as

(2.3)        ∂ t S 0 + 1 2 (∂ x S 0 ) 2 + |a 0 | 2 -1 = -F 0 (t, x), ∂ t a 0 + ∂ x S 0 ∂ x a 0 + 1 2 a 0 ∂ 2 x S 0 = 0, S 0 | t=0 = S(x), a 0 | t=0 = a 0 0 (x). Let us denote ρ 0 def = |a 0 | 2 and u 0 def = ∂ x S 0 .
We recover the compressible Euler system (1.5). However, (2.3) is not equivalent to (1.5) though it is derived from the previous one. In fact, let us denote a 0 as a r 0 + ia i 0 , then (2.3) can be reformulated as the following real-valued equation:

(2.4)

             ∂ t a r 0 + u 0 ∂ x a r 0 + 1 2 a r 0 ∂ x u 0 = 0, ∂ t a i 0 + u 0 ∂ x a i 0 + 1 2 a i 0 ∂ x u 0 = 0, ∂ t u 0 + u 0 ∂ x u 0 + ∂ x ρ 0 = η 0 (t, x), (a r 0 , a i 0 , u 0 )| t=0 = (Re(a 0 0 ), Im(a 0 0 ), ∂ x S).
For 1 order of (2.2), we get the following equation for (a 1 , S 1 ):

(2.5)

     ∂ t S 1 + ∂ x S 0 ∂ x S 1 + 2Re (a 0 ā1 ) = -F 1 (t, x), ∂ t a 1 + ∂ x S 0 ∂ x a 1 + ∂ x S 1 ∂ x a 0 + 1 2 a 0 ∂ 2 x S 1 + a 1 ∂ 2 x S 0 = i 2 ∂ 2 x a 0 , S 1 | t=0 = 0, a 1 | t=0 = a 0 1 (x).
Again by defining a

1 def = a r 1 + ia i 1 and u 1 def = ∂ x S 1 we reformulate (2.5) as (2.6)              ∂ t a r 1 + u 0 ∂ x a r 1 + u 1 ∂ x a r 0 + 1 2 a r 0 ∂ x u 1 + a r 1 ∂ x u 0 = - 1 2 ∂ 2 x a i 0 , ∂ t a i 1 + u 0 ∂ x a i 1 + u 1 ∂ x a i 0 + 1 2 a i 0 ∂ x u 1 + a i 1 ∂ x u 0 = 1 2 ∂ 2 x a r 0 , ∂ t u 1 + u 0 ∂ x u 1 + u 1 ∂ x u 0 + 2∂ x a r 0 a r 1 + a i 0 a i 1 = η 1 (t, x), (a r 1 , a i 1 , u 1 )| t=0 = (Re(a 0 1
), Im(a 0 1 ), 0). 2.2. On the control of physical observables. Following the idea of [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF], for any time T > 0, it sounds interesting to let the final state at time T to approximate to ā exp(i S/ ) with the help of some extra force as control, where ā and S are target functions. Nevertheless, we are not able to control both a r 0 and a i 0 simultaneously. Indeed it is easy to observe from the zeroth-order approximate system (2.4) that if Im(a 0 0 ) = 0, we find that a i 0 is always zero in the future.

On the other hand, it is of physical importance and is natural to consider the controllability of the physical observables ρ and u . Hence, first we are going to control the compressible Euler system (1.5) through the control η 0 . As for the first order approximation, we observe from (2.6) that

∂ t (ā 0 a 1 ) + u 0 ∂ x (ā 0 a 1 ) + u 1 ā0 ∂ x a 0 + 1 2 ρ 0 ∂ x u 1 + ā0 a 1 ∂ x u 0 = i 2 ā0 ∂ 2 x a 0 .
Taking the real part of the above equation and defining ρ 1 def = 2Re(ā 0 a 1 ) give rise to (2.7)

∂ t ρ 1 + ∂ x (u 0 ρ 1 + u 1 ρ 0 ) = i 2 ∂ x (ā 0 ∂ x a 0 -a 0 ∂ x ā0 ) .
This leads to the following control system:

(2.8)

∂ t ρ 1 + ∂ x (u 0 ρ 1 + u 1 ρ 0 ) = i 2 ∂ x (ā 0 ∂ x a 0 -a 0 ∂ x ā0 ) ∂ t u 1 + ∂ x (u 0 u 1 ) + ∂ x ρ 1 = η 1 .
As we mentioned before the compressible Euler system (1.5) is not equivalent to the zerothorder approximate system (2.4). Hence in order to determine the right-hand side of the first equation of (2.8), let us define (2.9)

A def = i 2 (ā 0 ∂ x a 0 -a 0 ∂ x ā0 ) .
Then it follows from (2.4) that

∂ t A + u 0 ∂ x A + 2∂ x u 0 A = 0, A(0) = A 0 def = a i 0 (0)∂ x a r 0 (0) -a r 0 ∂ x a i 0 (0).
(2.10)

Once (ρ 0 , u 0 ) is determined from (1.5), we can solve for a r 0 , a i 0 via (2.4). Similarly, with (ρ 1 , u 1 ) being determined, we can solve for a r 1 , a i 1 via (2.6). Along the same line, we can control the physical observables of any k-th order, and then solve for a r k , a i k . For a concise presentation, we shall not pursue in this direction here.

Then the proof of Theorem 1.1 will be split in two parts: the controllability of the asymptotic expansions of the physical quantities, and then the justification of the semiclassical approximation to the system (1.1).

By combining the systems (1.5), (2.8) and (2.10), we obtain the following real valued controlled system in [0, T ] × T for the first two terms in the asymptotic expansions of physical quantities:

(2.11)

           ∂ t ρ 0 + ∂ x (u 0 ρ 0 ) = 0, ∂ t u 0 + u 0 ∂ x u 0 + ∂ x ρ 0 = η 0 , ∂ t A + u 0 ∂ x A + 2∂ x u 0 A = 0, ∂ t ρ 1 + ∂ x (u 0 ρ 1 + u 1 ρ 0 ) = ∂ x A, ∂ t u 1 + ∂ x (u 0 u 1 ) + ∂ x ρ 1 = η 1 . Let ρ def = ρ 0 ρ 1 and u def = u 0 u 1 . Given initial state ρ(0) = g def = g 0 g 1 and u(0) = v def = v 0 v 1 ,
A 0 and the state at time T that ρ(T 

) = g def = g 0 g 1 and u(T ) = v def = v 0 v 1 ,
ρ(0) = g, u(0) = v and (u 0 , u 1 , ρ 0 , ρ 1 )(T ) is closed to (v 0 , v1 , ĝ0 , ĝ1 ).
Let us remark here that we will not control the quantity A, though it will be used to control the next order terms.

2.3.

Approximate controllability of the physical observables. Therefore, we are going to control the limit system (2.11) for ( u, ρ, A). It is a complex system with cascade structure: (ρ 0 , u 0 ) → A → (ρ 1 , u 1 ).

• Firstly, (ρ 0 , u 0 ) is governed by the Saint-Venant equation with finite dimensional distributed control η that acts on the "velocity" part u 0 . Hence, it is rather natural to expect controllability properties of this part. Actually, in [START_REF] Nersisyan | Controllability of the 3D compressible Euler system[END_REF] Nersisyan has considered the approximate controllability of the 3D compressible Euler equations which is similar to this Saint-Venant equation, and we mimic his approach on the controllability of this part. We comment here, as we shall see later on in Section 4, thanks to the "transport" natur of the equation on ρ 0 , during the whole controlling process the value of ρ 0 is always sufficiently close to some given trajectory that is strictly positive. • Next, A verifies a transport equation that is influenced by the value of u 0 . However, there is no direct control mechanism on this quantity: therefore it is indirectly controlled by η 0 . Moreover, we observe from the preceding section that the quantities ρ 0 , ρ 1 and A all come from a . Hence it is reasonable to expect that they will share certain similarities.

As it is actually directly shown in Equation (2.11) that they all satisfy "transport" type equations. Consequently, similar to ρ 0 , the value of A is always sufficiently close to some given trajectory. Finally, we remark here that we are not going to control A to some given final state Ã. Indeed, by looking at (2.4) for (a r 0 , a i 0 ), we observe that both terms satisfy the same equation, as a consequence, we are not able to control both items. If we further look at the definition of ρ 0 and A, it becomes reasonable that we control ρ 0 as the "density" part of a 0 and "lose the control" of the "rotation" part A. But instead we will control the trajectory of A(t) by making it to stay close to a given one. The value of A(t) will be used to control (ρ 1 , u 1 ).

• Finally, (ρ 1 , u 1 ) is a coupled systems with finite dimensional controlling terms that is also influenced by the value of (ρ 0 , u 0 , A). The main feature on the controllability of this part, different from well-posedness issue which is interested in the uniqueness and existence issues, is that the value of (ρ 0 , u 0 , A) also plays a significant role in the controlling process. Therefore, it should be regarded as a bilinear system and the influence of the control term η 0 should not be ignored. This is actually one of the main novelties on the controllability part of this paper. Similar to ρ 0 and A, the value of ρ 1 is also kept close to a constructed trajectory. The main result lists as follows, while the detailed proof of which will be presented in Section 4.

Theorem 2.1. Let k ≥ 3, T > 0, g ∈ H k+2 × H k , v ∈ H k+2 0 × H k 0 , g ∈ H k × H k-2 v ∈ H k 0 × H k-2 0 and A 0 ∈ H k+1 , which satisfy T g 0 dx = T g 0 dx = α 0 , T g 1 dx = T g 1 dx = α 1 and g 0 , g 0 ≥ c 0 > 0.
Then for any ε > 0, there exist controls η 0 , η 1 ∈ C ∞ ([0, T ]; E) such that the solution (u 0 , u 1 , ρ 0 , ρ 1 , A)(t) to the system (2.11) satisfies the initial condition (2.12) and

(u 0 , u 1 , ρ 0 , ρ 1 )(T ) -(v 0 , v1 , ĝ0 , ĝ1 ) H k ×H k-2 ×H k ×H k-2 ≤ ε.
Remark 2.1. One can observe that we have assumed the value of density g 0 , ĝ0 being strictly positive in order to use the general well-posedness theory on symmetrizable hyperbolic systems.

As we shall see later on, the constructed approximate solutions ρ l 0 (t), l ∈ {0, 1, ..., N } is always close to the first constructed solution ρ N 0 (t) which is strictly positive. It will be interesting and also challenging to consider about the case that g 0 , ĝ0 are not strictly positive, for example admit finite many points such that g 0 (x) equal to zero.

We remark that the main idea of the proof of Theorem 2.1 is directly motivated by [START_REF] Nersisyan | Controllability of 3D incompressible Euler equations by a finite-dimensional external force[END_REF][START_REF] Nersisyan | Controllability of the 3D compressible Euler system[END_REF] on the controllability of the incompressible and compressible Euler system using the Agrachev-Sarychev method, though we are dealing with a coupled system that is more complicated. This approach originates from [START_REF] Agrachev | Navier-Stokes equations: controllability by means of low modes forcing[END_REF][START_REF] Agrachev | Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing[END_REF] by Agrachev-Sarychev for the controllability of 2D Navier-Stokes and 2D Euler equations with finite-dimensional external control, and is further investigated on many other models, such as [START_REF] Sarychev | Controllability of the cubic Schroedinger equation via a low-dimensional source term[END_REF][START_REF] Shirikyan | Approximate controllability of three-dimensional Navier-Stokes equations[END_REF] and among others. Shirikyan [START_REF] Shirikyan | Control theory for the Burgers equation: Agrachev-Sarychev approach[END_REF] wrote an instructive introduction on the application of this method upon the viscous Burgers equation. We refer to Section 4 on the detailed proof of Theorem 2.1, where we will also comment on each step how we get inspired from this method.

Let us also point out that this method emphasizing geometric control only leads to approximate controllability properties, while exact controllability can be only made on finite dimensional sets. It is natural to ask whether some local controllability result may further lead to global exact controllability. When dealing with boundary control or localized internal control problems, the exact controllability of the related models can be obtained using other methods notably the "return method" and "Carleman estimates", see for example, [START_REF] Coron | Control and nonlinearity[END_REF][START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF][START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF][START_REF] Xiang | Small-time local stabilization of the two dimensional incompressible Navier-Stokes equations[END_REF] on Navier-Stokes equations, and [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF][START_REF] Coron | Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF][START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF][START_REF] Glass | On the controllability of the 1-D isentropic Euler equation[END_REF] on Euler equations and similar Saint-Venant equations. However, there are two major difficulties that prevent us from getting local exact controllability of (2.11) using finite dimensional distributed controls. The first difficulty is related to the fact that we are only controlling four of the five components of the state. The other difficulty is more systemic: it is reasonable to consider the moment theory for the linearized system of this nonlinear problem; however, so far, this method has not been adapted for first order quasi-linear hyperbolic systems. Indeed, a loss of derivative issue appears when we attempt to apply fixed point theorems, see [START_REF] Coron | Control and nonlinearity[END_REF]Chapter 4.2] for a simplified model that presents the same difficulty. Therefore, it is required to prove exact (partial) controllability of the linearized systems around a class of time-varying trajectories, see for example in [8, Lemma 17] the author has used this strategy to overcome the loss of derivative issue for Saint-Venant equation with boundary control, for which the proof relies on the fact that there are enough controllable linear systems close to the non linear control system (thanks to characteristic lines) to get the local controllability of the nonlinear control system by a suitable fixed point method. However, whether this idea can be adapted to distributed controlled systems by using the moment theory, it still remains open.

Finally, in view of the recent progresses in stabilization problems, see for instance [START_REF] Coron | Stabilization of the linearized water tank system[END_REF][START_REF] Hayat | PI controllers for the general Saint-Venant equations[END_REF][START_REF] Krieger | Boundary stabilization of focusing NLKG near unstable equilibria: radial case[END_REF], it also sounds interesting to have a look at the related stabilization problems.

2.4. Semiclassical limits. Armed with Theorem 2.1, we shall conclude the proof of Theorem 1.1 by

Theorem 2.2. Let k > 5/2, T > 0. Suppose that (ρ 0 , u 0 ) ∈ C([0, T ]; H k )
is the solution of (1.5) determined by Theorem 2.1, then under the assumptions of Theorem 1.1, for small enough, (1.1) has a solution of the form (2.1) on the interval [0, T ], which satisfies

ψ = a exp i S = a 0 + a 1 + r a exp i S 0 + S 1 + r S ,
with a and u are uniformly bounded in C([0, T ]; H k ) as → 0 + (a 0 , S 0 ) the solution of (2.3), and a 0 , u 0 ∈ C([0, T ]; H k+2 ), (a 1 , S 1 ) the solution of (2.5), and

a 1 , u 1 ∈ C([0, T ]; H k ), lim →0 + r a C([0,T ];H k-2 ) = 0, lim →0 + r S C([0,T ];H k-1 ) = 0.

The well-posedness and continuous dependence of the limit systems

This section is devoted to the study of the controlled system (2.11). In what follows, we shall always use the convention that f

= (f 1 , • • • , f n ) ∈ X means that each component, f i ,
belongs to the space X, and we designate f

X def = n i=1 f i X . Given ζ = ζ 0 ζ 1 , ξ = ξ 0 ξ 1 and η = η 0 η 1 , we consider (3.1)                ∂ t ρ 0 + ∂ x (u 0 + ζ 0 )ρ 0 = 0, ∂ t u 0 + u 0 + ξ 0 )∂ x u 0 + ξ 0 ) + ∂ x ρ 0 = η 0 , ∂ t A + u 0 + ζ 0 ∂ x A + 2∂ x u 0 + ζ 0 A = 0 in [0, T ] × T, ∂ t ρ 1 + ∂ x u 0 + ζ 0 ρ 1 + u 1 + ζ 1 ρ 0 = ∂ x A, ∂ t u 1 + u 0 + ξ 0 )∂ x (u 1 + ξ 1 ) + (u 1 + ξ 1 ) ∂ x u 0 + ξ 0 ) + ∂ x ρ 1 = η 1 , ρ(0) = (g 0 , g 1 ), A(0) = A 0 and u(0) = (v 0 , v 1 ),
where ρ = (ρ 0 , ρ 1 ) and u = (u 0 , u 1 ).

Let

U def = (v 0 , v 1 , g 0 , g 1 , A 0 , ξ 0 , ξ 1 , ζ 0 , ζ 1 , η 0 , η 1 )
, and

X k (T ) def = {U ∈ H k 0 × H k-2 0 × H k × H k-2 × H k-1 × L 2 T (H k+1 0 ) × L 2 T (H k-1 0 ) × L 2 T (H k+1 0 ) × L 2 T (H k-1 0 ) × L 2 T (H k 0 ) × L 2 T (H k-2 0 ); g 0 > 0 in T}; Y k (T ) def = {(u 0 , u 1 , ρ 0 , ρ 1 , A) ∈ C([0, T ]; H k 0 ) × C([0, T ]; H k-2 0 ) × C([0, T ]; H k ) × C([0, T ]; H k-2 ) × C([0, T ]; H k-1 ); ρ 0 > 0 in [0, T ] × T}.
Let us remark here that, concerning U , the natural convention should have been (g 0 , v 0 , A 0 , g 1 , v 1 , ξ 0 , ξ 1 , ζ 0 , ζ 1 , η 0 , η 1 ). In this paper we choose a different order to simplify some notations for the presentation, for example we will denote (v 0 , v 1 ) by v. The same remark holds for the use of (u 0 , u 1 , ρ 0 , ρ 1 , A).

The main results state as follows:

Theorem 3.1. Let k ≥ 3. Given U ∈ X k (T ) the system (3.1) has a unique solution ( u, ρ, A) in Y k (T 0 ) for some T 0 ∈ (0, T ]. Furthermore, if for some U 1 ∈ X k (T ), the system (3.1) has a solution ( u 1 , ρ 1 , A) ∈ Y k (T )
, then there exists δ and C > 0 which depend only on U 1

X k (T )
and the uniform lower bound of ρ 0 such that

(i) if U 2 ∈ X k (T ) satisfies (3.2) U 1 -U 2 X k (T ) ≤ δ, then (3.1) has a unique solution ( u 2 , ρ 2 , A 2 ) ∈ Y k (T ). (ii) We define R(U ) to be the solution of (3.1). If U 2 satisfies (3.2), then R U 1 -R U 2 Y k-1 (T ) ≤ C U 1 -U 2 X k-1 (T ) . (iii) The operator R : X k (T ) → Y k (T ) is continuous at U 1 . Theorem 3.2. Let k ≥ 3. If (ξ n 0 , ζ n 0 ) and (ξ n 1 , ζ n 1 ) are bounded sequences in L 2 T (H k+3 ) and L 2
T (H k+1 ) respectively, which satisfy, as n → +∞,

t 0 ζ n 0 (s)χ n 0 (s)ds → 0 in H k , t 0 ζ n 0 (s) χn 0 (s)ds → 0 in H k-1 , t 0 ζ n 1 (s)χ n 1 (s)ds → 0 in H k-2 ,
for any t and for any uniformly equicontinuous sequences

χ n = (χ n 0 , χn 0 , χ n 1 ) : [0, T ] → H k × H k-1 × H k-2 . Let U n = ( v, g, A 0 , ξ n , 0, η), V n = ( v, g, A 0 , ξ n , ζ n , η) ∈ X k+2 (T ).
Suppose that corresponding to U n , the equation (3.1) have solutions in Y k+2 (T ) being uniformly bounded in Y k (T ). Then, for n sufficiently large the equation (3.1) corresponding to V n have solutions which is also uniformly bounded in Y k+2 (T ) and, as n → +∞,

R U n -R V n → 0 in Y k (T ).
The same property holds if instead of U n we assume the existence of solutions for V n .

The rest part of this section is devoted to the proofs of the two preceding theorems.

Proof of Theorems 3.1 and 3.2. We split the proof of Theorems 3.1 and 3.2 into the following steps:

• Step 1. Given (ζ 0 , ξ 0 ) ∈ L 2 T (H k+1 0 ) and f ∈ L 2 T (H k 0 ), we consider (3.3)    ∂ t ρ 0 + ∂ x (u 0 + ζ 0 )ρ 0 = 0, ∂ t u 0 + u 0 + ξ 0 )∂ x u 0 + ξ 0 ) + ∂ x ρ 0 = f, ρ 0 (0) = g 0 , u 0 (0) = v 0 . Let k ∈ N \ {0, 1} and let 0 < T ≤ T , Y k 0 ( T ) def = {(ρ 0 , u 0 ) ∈ C([0, T ]; H k ) × C([0, T ]; H k ); ρ 0 > 0 in [0, T ] × T}; X k 0 (T ) def = {U 0 ∈ H k × H k × L 2 T (H k+1 ) × L 2 T (H k+1 ) × L 2 T (H k ); g 0 > 0 in T}. Let U 0 def = (g 0 , v 0 , ζ 0 , ξ 0 , f ).
We define the solution operator

R 0 : X k 0 (T ) → Y k 0 ( T ) so that R 0 (U 0 ) def = (ρ 0 , u 0 ).
The system (3.3) is a symmetric hyperbolic systems with symmetrizer 1 0 0 ρ 0 . Standard hyperbolic theory ( [START_REF] Beirão | Perturbation theorems for linear hyperbolic mixed problems and applications to the compressible Euler equations[END_REF]) ensures that, for every bounded set B of X k 0 (T ) such that, for some c > 0, ρ 0 ≥ c in T for every U 0 ∈ B, there exists T ∈ (0, T ] such that the operator R 0 is well-defined from B into Y k 0 ( T ). Furthermore, we have Theorem 3.3 (Theorem 2.2 of [START_REF] Nersisyan | Controllability of the 3D compressible Euler system[END_REF]). Let k ≥ 3. Let U 1 0 ∈ X k 0 (T ). We suppose that the system

(3.3) has a solution (ρ 1 0 , u 1 0 ) ∈ Y k 0 (T ).
Then there exists δ 0 and C > 0 which depend only on U 1 0 X k 0 and the uniform lower bound of ρ 1 0 such that,

(i) if U 2 0 ∈ X k 0 (T ) satisfies U 1 0 -U 2 0 X k 0 (T ) ≤ δ 0 , then (3.3) has a unique solution (ρ 2 0 , u 2 0 ) ∈ Y k 0 (T ). (ii) R 0 U 1 0 -R 0 U 2 0 Y k-1 0 (T ) ≤ C U 1 0 -U 2 0 X k-1 0 (T ) . (iii) The operator R 0 : X k 0 (T ) → Y k 0 (T )
is well defined and continuous on a neighborhood of U 1 0 . Another important property of R 0 is the following oscillation type lemma.

Theorem 3.4 (Theorem 2.3 of [24]). Let k ≥ 3. Let ξ n 0 , ζ n 0 be bounded sequences in L 2 T (H k+3 ) and ζ n 0 satisfy t 0 ζ n 0 (s)χ n 0 (s)ds → 0 in H k as n → +∞,
for any t ∈ [0, T ] and for any uniformly equicontinuous sequence

χ n 0 : [0, T ] → H k . Let U n 0 = (ρ 0 , v 0 , ξ n 0 , ζ n 0 , η 0 ) ∈ X k+2 0 (T ), V n 0 = (ρ 0 , v 0 , ξ n 0 , 0, η 0 ) ∈ X k+2 0 (T ).
Suppose that corresponding to U n 0 , the equation 

R 0 U n 0 -R 0 V n 0 → 0 in Y k 0 (T ) as n → +∞.
• Step 2. We investigate the linear transport equation

(3.4) ∂ t A + u A + ζ A ∂ x A + 2∂ x u A + ζ A A = 0, A(0) = A 0 . Let U A def = (A 0 , u A , ζ A ), and 
X k A (T ) def = H k-1 × L 2 T (H k ) × L 2 T (H k ) and Y k A (T ) = C([0, T ]; H k-1 ).
We define the solution operator

R A : X k A (T ) → Y k A (T ) with R A (U A ) = A.
Theorem 3.5. Let l ≥ 3. For any U A ∈ X l A (T ), (3.4) has a unique solution A in Y l A (T ). Moreover, for every bounded subset B of X l A (T ) there exists C > 0 so that

R A U 1 A -R A U 2 A Y l-1 A (T ) ≤ C U 1 A -U 2 A X l-1 A (T ), ∀U 1 A ∈ B, ∀U 2 A ∈ B. Furthermore, let k ≥ 3, let ζ n A be a bounded sequences in L 2 T (H k+2 ) such that (3.5) t 0 ζ n A (s)χ n A (s)ds → 0 in H k-1 as n → +∞,
for any t ∈ [0, T ] and for any uniformly equicontinuous sequence

χ n A : [0, T ] → H k-1 . Let U n A = (A 0 , u A , ζ n A ) ∈ X k+2 A (T ), we denote V A = (A 0 , u A , 0)
. Then, we have

(3.6) R A U n A -R A V A → 0 in Y k A (T ).
Proof of Theorem 3.5. The first part of Theorem 3.5 follows from the explicit value of R A which can be obtained by using the characteristics method.

Let us present the proof of (3.6). Let us denote

A n def = R A U n A , A def = R A V A and δ n A def = A n -A. Since ζ n A is a bounded sequences in L 2
T (H k+2 ), and U n A is uniformly bounded in X k+2 A (T ), we deduce from standard theory of transport equation that (3.4) has a unique solution A n which is uniformly bounded in C([0, T ]; H k+1 ). The equation (3.4) implies that ∂ t A n which is uniformly bounded in C([0, T ]; H k ). This together with Aubin-Lions Lemma ensures that

(3.7) A n is equicontinuous in C([0, T ]; H s ) ∀ s < k + 1.
We know that there exists

f A ∈ C([0, T ]; H k ) such that as n → +∞, δ n A → f A uniformly in C([0, T ]; H k ).
Then one has

∂ t δ n A + u A ∂ x δ n A + 2∂ x u A δ n A + ζ n A ∂ x A n + 2∂ x ζ n A A n = 0.
By performing H k-1 energy estimate to the above equation, we obtain 1 2

d dt δ n A (t) 2 H k-1 = -(u A ∂ x δ n A , δ n A ) H k-1 -2 (∂ x u A δ n A , δ n A ) H k-1 -(ζ n A ∂ x A n , δ n A ) H k-1 -2 (∂ x ζ n A A n , δ n A ) H k-1 . (3.8) 
By applying Moser type inequality, we find

(u A ∂ x δ n A , δ n A ) H k-1 ≤ ≤k-1 u A ∂ +1 x δ n A , ∂ x δ n A L 2 + ∂ x (u A ∂ x δ n A ) -u A ∂ +1 x δ n A , ∂ x δ n A L 2 ≤C ∂ x u A L ∞ δ n A H k-1 + ∂ x δ n A L ∞ u A H k-1 δ n A H k-1 ≤C u A H k-1 δ n A 2 H k-1
, where in the last inequality, we used an integration by parts the assumption that k ≥ 3 so that H k-2 → L ∞ .

Since H k-1 is an algebra (note that k ≥ 2), we have

(∂ x u A δ n A , δ n A ) H k-1 ≤ C u A H k δ n A 2 H k-1 .
Finally, by using integration by parts, we have

-(ζ n A ∂ x A n , δ n A ) H k-1 -2 (∂ x ζ n A A n , δ n A ) H k-1 = -(ζ n A ∂ x A n , δ n A ) H k-1 + 2 (ζ n A A n , ∂ x δ n A ) H k-1 . We focus on the estimate of (ζ n A ∂ x A n , δ n A ) H k-1
with the other one being similar. Since

ζ n A ∂ x A n is uniformly bounded in L 2
T (H k-1 ) and that δ n A converges uniformly to f A in C([0, T ]; H k ) sense, we have that for any t ∈ [0, T ], as n → +∞, (3.9)

t 0 (ζ n A ∂ x A n , δ n A ) H k-1 dt - t 0 (ζ n A ∂ x A n , f A ) H k-1 dt → 0.
For any δ > 0 we can find a step function

f m in H k such that f m (s) -f A (s) H k ≤ δ, ∀s ∈ [0, T ]. Hence, as n → +∞, (3.10) 
| t 0 (ζ n A ∂ x A n , f A ) H k-1 dt - t 0 (ζ n A ∂ x A n , f m ) H k-1 dt| ≤ Cδ
with C independent of δ and n. As f m (t) is a piecewise constant function in H k , for instance assume that the discontinuous points are {t 1 , t 2 , ..., t M }, we can immediately conclude from the assumption, Equation (3.5), that

t 1 0 (ζ n A ∂ x A n , f m ) H k-1 dt = t 1 0 ζ n A ∂ x A n dt, f m (0) H k-1 → 0,
as n → +∞, which further implies that when n tends to +∞,

t 0 (ζ n A ∂ x A n , f m ) H k-1 dt → 0, thus (3.11) t 0 (ζ n A ∂ x A n , δ n A ) H k-1 dt → 0.
Therefore, (3.12) 1 2

d dt δ n A (t) 2 H k-1 ≤ C u A H k δ n A 2 H k-1 + h n (t), with h n (t) ≥ 0 satisfying (3.13) T 0 h n (s)ds → 0. Now let us present the following lemma, Lemma 3.1. Let 0 ≤ f, g ∈ C[0, T ] so that (3.14) d dt f (t) ≤ g(t)f (t) + h(t) ∀ t ∈ [0, T ].
Then one has • Step 3. We investigate the linear hyperbolic system:

(3.15) f (t) ≤ f (0)
(3.17)

   ∂ t ρ 1 + ∂ x u 0 + ζ 0 ρ 1 + u 1 + ζ 1 ρ 0 = f, ∂ t u 1 + u 0 + ξ 0 )∂ x (u 1 + ξ 1 ) + (u 1 + ξ 1 ) ∂ x u 0 + ξ 0 ) + ∂ x ρ 1 = η 1 , ρ 1 (0) = g 1 , u 1 (0) = v 1 .
Let us denote

U 1 def = (g 1 , v 1 , ξ 1 , ζ 1 , f, η 1 , ρ 0 , u 0 , ξ 0 , ζ 0 ) and R 1 U 1 def = (ρ 1 , u 1 ), and 
X k 1 (T ) def = {U 1 ∈ H k-2 × H k-2 0 × L 2 T (H k-1 0 ) × L 2 T (H k-1 0 ) × L 2 T (H k-2 0 ) × L 2 T (H k-2 0 ) × L 2 T (H k-1 ) × L 2 T (H k-1 0 ) × L 2 T (H k-1 0 ) × L 2 T (H k-1 0 ); ρ 0 > 0 in T}, Y k 1 (T ) def = C([0, T ]; H k-2 ) × C([0, T ]; H k-2 0 
).

Due to (3.17) is a linear symmetric hyperbolic system, similar well-posedness theorem as Theorem 3.3 holds for R 1 U 1 . Moreover, there holds ζ n 0 (s)χ n 0 (s)ds and

t 0 ζ n 1 (s)χ n 0 (s)ds → 0 in H k-2
for any t ∈ [0, T ] and for any uniformly equicontinuous sequence

χ n 0 : [0, T ] → H k-2 . Let U n 1 = (g 1 , v 1 , ξ 1 , 0, f, η 1 , ρ 0 , u 0 , ξ 0 , 0) ∈ X k+2 1 (T ), V n 1 = (g 1 , v 1 , ξ 1 , ζ n 1 , f, η 1 , ρ 0 , u 0 , ξ 0 , ζ n 0 ) ∈ X k+2 1 (T ).
Suppose that corresponding to U n 1 , the equation (3.17) have solutions in Y k+2 1 (T ) being uniformly bounded in Y k 1 (T ). Then, for n sufficiently large the equation (3.17) corresponding V n

1 have solutions in Y k+2 1 (T ), moreover, there holds Then there holds

R 1 U n 1 -R 1 V n 1 → 0 in Y k 1 (T )
as n → +∞. By summarizing the above steps, we conclude the proof of Theorems 3.1 and 3.2.

The control of the limit systems

The goal of this section is to present the proof of Theorem 2.1. Before going into the detailed proof, here we heuristically outline the main ideas.

1) In Section 4.1, we construct a sequence of finite dimensional spaces

E 0 ⊂ E 1 ⊂ E 2 ⊂ ... ⊂ E n ...
whose union is dense in H s (T). 2) Thanks to the preceding step, for ∀ε > 0, for any given initial data ( v, g)

∈ H k+2 0 × H k × H k+2 0 × H k , A 0 ∈ H k+1 , and final state ( v, g) ∈ H k+2 0 × H k × H k+2 0 × H k satisfying the conservation of mass, there exists E N -valued control η (N ) such that the solution ( u (N ) , ρ (N ) , A (N ) ) def = R v, g, A 0 , 0, 0, η (N ) ∈ Y k+2 (T ), verifies that in the H k 0 × H k-2 × H k 0 × H k-2 space ( u (N ) (T ), ρ (N ) (T )) -( v, g) < ε.
Section 4.2, more precisely, Theorem 4.1, is devoted to this step. 3) Next, as the most important step of the proof, in Section 4.3 we show that there exists E N -1 -valued control η (N -1) such that the solution

( u (N -1) , ρ (N -1) , A (N -1) ) def = R v, g, A 0 , 0, 0, η (N -1) ∈ Y k+2 (T ), ( u (N ) (T ), ρ (N ) (T )) -( u (N -1) (T ), ρ (N -1) (T )) < ε, ρ (N ) -ρ (N -1) C([0,T ];H k ×H k-2 )
< ε, then we can further find E N -2 -valued control η (N -2) ... E 0 -valued control η (0) to approximate the first constructed trajectory ( u (N ) , ρ (N ) , A (N ) ). In the terminology of Agrachev-Sarychev method, this procedure is called "extension" or "saturation", see for instance [ 

∈ E N -1 such that v, g, A 0 , µ n , 0, ¯ η is uniformly bounded in X k+2 (T ), R v, g, A 0 , µ n , 0, ¯ η is uniformly bounded in Y k+2 (T ), R v, g, A 0 , µ n , 0, ¯ η -R v, g, A 0 , 0, 0, η (N )
Y k (T ) → 0 as n → +∞. Then in Section 4.3.4 we show that thanks to Theorem 3.2,

R v, g, A 0 , µ n , µ n , ¯ η is uniformly bounded in Y k+2 (T ), R v, g, A 0 , µ n , µ n , ¯ η -R v, g, A 0 , µ n , µ n , ¯ η Y k (T ) → 0 as n → +∞.
Next, in Section 4.3.5 we approximate µ n by smooth (in time) functions µ m n . Finally, in Section 4.3.6 we construct the required η (N -1) . 4) Let us emphasize here that during the whole precess ρ is close to ρ (N ) in H k , thus in C(T) and being uniformly away from 0, while u is not necessarily always close to u (N ) though u(T ) is close to u (N ) (T ) in H k sense.

4.1.

Introduce the controlling space. We define

E 0 def = E = span{sin x, cos x}, E n def
= span sin x, cos x, sin 2x, cos 2x, ..., sin(n + 1)x, cos(n + 1)x ,

E n def = E n × E n . (4.1) It is obvious that E n ⊂ C ∞ (T) and Lemma 4.1. E ∞ def = ∞ k=0 E k is dense in H s 0 (T) × H s 0 (T), ∀s > 0.
Moreover, one has the following "Lie bracket" type argument.

Lemma 4.2. Let n ∈ N. For any ψ ∈ E n+1 , there exists φ, ϕ 1 , ...ϕ p ∈ E n such that

ψ = φ - p i=1 ϕ i ∂ x ϕ i . (4.2)
Proof. Notice that E n+1 = E n ⊕ span{± sin(n + 2)x, ± cos(n + 2)x}. It suffices to prove (4.2) with ψ = ± sin(n + 2)x or ± cos(n + 2)x. In the case when n + 2 = 2m, we have

+ sin 2mx = - 2 m cos mx∂ x cos mx, -sin 2mx = - 2 m sin mx∂ x sin mx, + cos 2mx = - 1 m (sin mx -cos mx)∂ x (sin mx -cos mx), -cos 2mx = - 1 m (sin mx + cos mx)∂ x (sin mx + cos mx).
While when n + 2 = 2m + 1, we observe that sin(m + 1)x ± sin mx)∂ x (sin(m + 1)x ± sin mx 

= m + 1 2 sin(2m + 2)x + m 2 sin(2m)x ± (m +
+ m + 1 2 sin(2m + 2)x - m 2 sin 2mx - 1 2 cos x = -(sin(m + 1)x -cos mx)∂ x (sin(m + 1)x -cos mx) -cos(m + 1)x∂ x cos(m + 1)x + - m 2 sin 2mx - 1 2 cos x .
This shows that (4.2) holds for ψ = ± cos(2m + 1)x. This ends the proof of the lemma.

4.2. Controllability of (2.11) with (E N )-valued controls. The main result states as follows:

Theorem 4.1. Let T > 0, v, v ∈ H k+1 0 × H k-1 0 , g, g ∈ H k+1 × H k-1 and A 0 ∈ H k , which satisfy (4.3) T g 0 dx = T g 0 dx = α 0 , T g 1 dx = T g 1 dx = α 1 and g 0 , g 0 ≥ c 0 > 0.
Then for any ε > 0, there exists an some N ∈ N * , some E N -valued control η (N ) , and some

Â(T ) ∈ H k such that (4.4) ( v, g, Â(T )) -R T v, g, A 0 , 0, 0, η (N ) Z k ≤ ε,
where

Z k def = H k 0 × H k-2 0 × H k × H k-2 × H k-1 .
We remark here that in this theorem we are dealing with the case that initial and final values belong to X k+1 (T to get approximation in Z k sense. Eventually, in order to prove Theorem 2.1 it suffices to let the initial and final states in the more regular space X k+2 (T ).

In what follows, we always denote this solution by

( u (N ) , ρ (N ) , A (N ) ) def = R v, g, A 0 , 0, 0, η (N ) .
Proof. Let us define

(4.5) ρ = ρ 0 ρ 1 def = T -1 t g + (T -t) g and u = u 0 u 1 def = T -1 (t v + (T -t)v) .
Then due to (4.5), we have

T ∂ t ρ 0 dx = 0 so that we can solve ξ 0 ∈ C ∞ ([0, T ]; H k+1 0 (T)) from the equation (4.6) ∂ x (ρ 0 ξ 0 ) = -∂ t ρ 0 -∂ x (ρ 0 u 0 ) .
Indeed, since 1/ρ 0 is a solution of ∂ x (ρ 0 f ) = 0, we are able to find a solution ξ 0 ∈ H k+1 0 (T) of (4.6). With such ξ 0 , we can solve for A ∈ C ∞ ([0, T ]; H k (T)) via

∂ t A + u 0 + ξ 0 ∂ x A + 2∂ x u 0 + ξ 0 A = 0 in [0, T ] × T, A(0) = A 0 .
Let us remark here that the function Â(T ) stated in the theorem is exactly the solution A(T ).

Again due to (4.5), we have

T ∂ t ρ 1 dx = 0 so that we can solve ξ 1 ∈ C ∞ ([0, T ]; H k-1 0 (T)) from the equation ∂ x (ξ 1 ρ 0 ) = ∂ x A -∂ t ρ 1 + ∂ x u 0 + ξ 0 ρ 1 + u 1 ρ 0 .
We now define

η 0 def = ∂ t u 0 + u 0 + ξ 0 )∂ x u 0 + ξ 0 ) + ∂ x ρ 0 ∈ C ∞ ([0, T ]; H k 0 ), η 1 def = ∂ t u 1 + u 0 + ξ 0 )∂ x (u 1 + ξ 1 ) + (u 1 + ξ 1 ) ∂ x u 0 + ξ 0 ) + ∂ x ρ 1 ∈ C ∞ ([0, T ]; H k-2 0 ). Let us take ξ δ = ξ δ 0 ξ δ 1 ∈ C ∞ ([0, T ]; H k+1 0 × H k-1 0 ) so that ξ δ (0, x) = ξ δ (T, x) = 0 and lim δ→0 ξ δ -ξ L 2 T (H k+1 ×H k-1 ) = 0. It is easy to observe that R T v, g, A 0 , ξ δ , ξ δ , η = R T v, g, A 0 , 0, 0, η -∂ t ξ δ .
Then in view of Theorem 3.1, we deduce that

lim δ→0 ( v, g, A(T )) -R T v, g, A 0 , 0, 0, η -∂ t ξ δ Z k = lim δ→0 R T v, g, A 0 , ξ, ξ, η -R T v, g, A 0 , ξ δ , ξ δ , η Z k = 0. On the other hand, due to E ∞ is dense in H k 0 × H k-2 0
, we have lim

N →+∞ P E N η -∂ t ξ δ -η -∂ t ξ δ L 2 T (H k ×H k-2 ) = 0,
which together with Theorem 3.1 ensures (4.4) with η (N ) def = P E N η -∂ t ξ δ . This completes the proof of the theorem.

Reduction of dimension of control space. The aim of this section is to look for

η (N -1) ∈ E N -1 so that ( v, g, Â(T )) -R T v, g, A 0 , 0, 0, η (N -1)
Z k ≤ ε. Let us start by stating the following lemma which is also called "convexification" by Agrachev-Sarychev [START_REF] Agrachev | Navier-Stokes equations: controllability by means of low modes forcing[END_REF]Section 5.3]. The main novelty for this lemma is on the treatment of (ζ 0 , ζ 1 ) involving both nonlinear terms ξ i 0 ∂ x ξ i 0 and bilinear terms ∂ x (ξ i 0 ξ i 1 ).

Lemma 4.3. Let n ∈ N. For any ζ = ζ 0 ζ 1 ∈ E n+1 , there exists η, ξ 1 , ..., ξ m ∈ E n such that ζ 0 = η 0 - m i=1 ξ i 0 ∂ x ξ i 0 and ζ 1 = η 1 - m i=1 ∂ x (ξ i 0 ξ i 1 ). (4.7)
Proof. Since we can extend the length (m) of the sequence, we only need to prove the cases when η = (η 0 , 0) or η = (0, η1 ), Furthermore, we can assume that η0 , η1 = ± sin(n + 2)x or ± cos(n + 2)x.

The case when η = (η 0 , 0) is a direct consequence of Lemma 4.2, We can take η 1 , ξ i 1 = 0. Let us turn to the case when η = (0, η1 ) with η1 = ± sin(n + 2)x or ± cos(n + 2)x. Indeed it follows from Lemma 4.2 that there exist of

η 1+ , η 1-, ϕ i 1+ , ϕ i 1-∈ E n such that +ζ 1 = η 1+ - p i=1 ϕ i 1+ ∂ x ϕ i 1+ , -ζ 1 = η 1-- p i=1 ϕ i 1-∂ x ϕ i 1-, which implies 0 = (η 1+ + η 1-) - p i=1 ϕ i 1+ ∂ x ϕ i 1+ - p i=1 ϕ i 1-∂ x ϕ i 1-, ζ 1 = η 1+ - p i=1 ∂ x ϕ i 1+ • 1 2 ϕ i 1+ - p i=1 ∂ x ϕ i 1-• 0 .
Then (4.7) is proved by taking

m def = 2p, η 0 def = η 1+ + η 1-, η 1 def = η 1+ , ξ i 0 def = ϕ i 1+ , when i ∈ {1, ..., p}, ξ i 0 def = ϕ i-k 1-, when i ∈ {p + 1, ..., 2p}, ξ i 1 def = 1 2 ϕ i 1+ , when i ∈ {1, ..., p}, ξ i 1 def = 0, when i ∈ {p + 1, ..., 2p}.
This completes the proof of Lemma 4.3.

With the above key lemma, we are going to prove the following proposition. In fact this proposition together with Theorem 4.1 immediately lead to Theorem 2.1.

Proposition 4.1. Let T > 0, m ∈ N, and ( v, g, A 0 ) belong to H k+2 0 ×H k 0 ×H k+2 ×H k ×H k+1 and η 1 ∈ C ∞ ([0, T ]; E m+1 ). For any ε > 0, there exists η ∈ C ∞ ([0, T ]; E m ) such that, (4.8) R T v, g, A 0 , 0, 0, η -R T v, g, A 0 , 0, 0, η 1 Z k ≤ ε.
The rest part of this section is devoted to the proof of Proposition 4.1. Since η 1 ∈ C ∞ ([0, T ]; E 1 ) can be approximated by simple functions (piecewise constant with respect to time),

η m 1 → η 1 in L ∞ T (E 1
) as m → +∞, it suffices to consider simple functions. Furthermore, thanks to a simple iteration argument and the continuity of R (Theorem 3.1 (iii)), it suffices to consider the case when η 1 is independent of the time.

From now on we assume that η

1 (t) ≡ η 1 ∈ E 1 . Let us denote (4.9) ( u, ρ, A) def 
= R v, g, A 0 , 0, 0, η 1 ∈ Y k+2 (T ).
4.3.1. Well-chosen ξ j i . We want to use Lemma 4.3 in order to reduce the control of η 1 ∈ E 1 by the control of η 0 ∈ E.

• Use of Lemma 4.3 Thanks to Lemma 4.3, there exists ¯ η, ξ j ∈ E, j ∈ {1, ..., m} such that

(η 1 ) 0 = η0 - 1 m m j=1 ξ j 0 ∂ x ξ j 0 , (4.10) 
(η 1 ) 1 = η1 - 1 m m j=1 ∂ x (ξ j 0 ξ j 1 ). (4.11)
However, equation (4.10) does not mean that

u 0 ∂ x u 0 -(η 1 ) 0 = 1 m m j=1 (u 0 + ξ j 0 )∂ x (u 0 + ξ j 0 ) -η0 ,
because of linear terms ξ j 0 ∂ x u 0 and u 0 ∂ x ξ j 0 .

• Adding the adjoint terms

The way to fix such a linear error is to add the opposite quadratic terms, which is motivated by a simple formula

(a + b) 2 + (a -b) 2 = 2(a 2 + b 2 ).
More precisely, let (4.12)

λ def = 1 2m and ξ j+m def = -ξ j for j = 1, 2, • • • , m.
Then it is easy to observe that

u 0 ∂ x u 0 -(η 1 ) 0 = 2m j=1 λ u 0 + ξ j 0 ∂ x u 0 + ξ j 0 -η0 , ∂ x (u 0 u 1 ) -(η 1 ) 1 = 2m j=1 λ∂ x (u 0 + ξ j 0 )(u 1 + ξ j 1 ) -η 1 . (4.13) 
Hence, the following two systems in [0, T ] × T are equivalent:

               ∂ t ρ 0 + ∂ x (u 0 ρ 0 ) = 0, ∂ t u 0 + u 0 ∂ x u 0 + ∂ x ρ 0 = (η 1 ) 0 , ∂ t A + u 0 ∂ x A + 2∂ x u 0 A = 0, ∂ t ρ 1 + ∂ x (u 0 ρ 1 + u 1 ρ 0 ) = ∂ x A, ∂ t u 1 + ∂ x (u 0 u 1 ) + ∂ x ρ 1 = (η 1 ) 1 , ρ(0) = g, A(0) = A 0 and u(0) = v, and (4.14) 
                             ∂ t ρ 0 + ∂ x (u 0 ρ 0 ) = 0, ∂ t u 0 + 2n j=1 λ u 0 + ξ j 0 ∂ x u 0 + ξ j 0 + ∂ x ρ 0 = η0 , ∂ t A + u 0 ∂ x A + 2∂ x u 0 A = 0, ∂ t ρ 1 + ∂ x (u 0 ρ 1 + u 1 ρ 0 ) = ∂ x A, ∂ t u 1 + 2n j=1 λ∂ x (u 0 + ξ j 0 )(u 1 + ξ j 1 ) + ∂ x ρ 1 = η1 , ρ(0) = g, A(0) = A 0 and u(0) = v.
The preceding equivalent 4.3.2. From stationary sequence {ξ j } 2m j=1 to curves {µ n (t)} n . Let us define a periodic function µ i (t) with period 1 as

µ i (t) def = ξ j i if t ∈ j -1 2m , j 2m 
µ i (t) def = -µ i t - 1 2 if t ∈ (1/2, 1] (4.15) 
for i = 0, 1, and for j ∈ {1, ..., m}. Notice that 2m j=1 ξ j i = 0 for i = 0, 1, (4.16)

1 0 µ i (t)dt = 0 for i = 0, 1. (4.17)
For any n ∈ N * , we also define a periodic function with period T /n as (4.18)

µ i,n (t) def = µ i ( nt T ) ∈ L ∞ T (E) for i = 0, 1, which is uniformly bounded in L ∞ T (E). Then we can rewrite Equation (4.14) in [0, T ] × T as (4.19)                ∂ t ρ 0 + ∂ x (u 0 ρ 0 ) = 0, ∂ t u 0 + (u 0 + µ 0,n ) ∂ x (u 0 + µ 0,n ) + ∂ x ρ 0 = η0 + f 0,n , ∂ t A + u 0 ∂ x A + 2∂ x u 0 A = 0 ∂ t ρ 1 + ∂ x (u 0 ρ 1 + u 1 ρ 0 ) = ∂ x A, ∂ t u 1 + ∂ x ((u 0 + µ 0,n )(u 1 + µ 1,n )) + ∂ x ρ 1 = η1 + f 1,n , ρ(0) = g, A(0) = A 0 and u(0) = v, where f 0,n (t) def = 1 2 ∂ x (u 0 + µ 0,n (t)) 2 - 1 2 2m j=1 λ∂ x u 0 + ξ j 0 2 , f 1,n (t) def = ∂ x (u 0 + µ 0,n (t))(u 1 + µ 1,n (t)) - 2m j=1 λ∂ x (u 0 + ξ j 0 )(u 1 + ξ j 1 ) .
Therefore,

(4.20) ( u, ρ, A) = R v, g, A 0 , µ n , 0, ¯ η 0 + f n .
Because u 0 , µ n , ξ j are uniformly bounded in

L ∞ T (H k+2 0 × H k 0 ), we know that f n are uniformly bounded in L ∞ T (H k+1 0 × H k-1 0
).

4.3.3.

Removing the extra source term f n . We can see from (4.19) and (4.20) that the "extra" source term f n does not belong to E. In order to remove f n , a natural idea is to regard it as a perturbation term, and to use the continuity of the mapping R. However, we only know the uniform boundedness of

f n in L ∞ T (H k+1 0 × H k-1 0 
), which is not assumed to be small. In such a case we prove that with the help of a lemma f n can be removed. More precisely, we have the following lemma concerning "relaxation metric" (name according to [START_REF] Agrachev | Navier-Stokes equations: controllability by means of low modes forcing[END_REF]Section 4.1]).

In the next lemma and in the following, for ψ ∈ L 1 ((0, T ); R l ), l ∈ N \ {0}, we define Kψ ∈ W 

K f n C([0,T ];H k+1 0 ×H k-1 0 ) = 0. Proof. We know that u ∈ H k+2 0 × H k 0 , µ n ∈ L ∞ T (E), ξ k ∈ E. •
Step 1. We only prove the above limit for f 0,n , as the same proof holds for f 1,n . More generally, we prove the following lemma. Lemma 4.5. Let ξ j 0 be given. Let µ 0,n be generated by ξ j 0 following (4.15). For any u 0 (t) ∈ L 2

T (H k+2 0 ), we define

f0,n (u 0 ) def = 1 2 ∂ x u 0 (t) + µ 0,n (t) 2 - 1 2 2m j=1 λ∂ x u 0 (t) + ξ j 0 2 .
Then, for any given u 0 (t) ∈ L 2 T (H k+2 0 ), we have

(4.23) lim n→+∞ K f0,n (u 0 ) C([0,T ];H k+1 ×H k-1 ) = 0.
We notice that, by recalling (4.12), (4.15) and (4.16),

K f0,n (u) -K f0,n (v) C([0,T ];H k+1 ) ≤ f0,n (u) -f0,n (v) L 1 T (H k+1 ) ≤ 1 2 u(t) + µ 0,n (t) 2 -v(t) + µ 0,n (t) 2 L 1 T (H k+2 ) + 1 4m 2m j=1 u(t) + ξ j 0 2 -v(t) + ξ j 0 2 L 1 T (H k+2 ) = 1 2 u(t) + µ 0,n (t) + v(t) + µ 0,n (t) u(t) -v(t) L 1 T (H k+2 ) + 1 2 (u(t) + v(t))(u(t) -v(t)) L 1 T (H k+2 ) ≤ u L 2 T (H k+2 ) + v L 2 T (H k+2 ) + µ 0,n L 2 T (H k+2 ) u -v L 2 T (H k+2 ) ≤ u L 2 T (H k+2 ) + v L 2 T (H k+2 ) +C u -v L 2 T (H k+2
) , where C is independent of n. Thus, it suffices to prove (4.23) for simple functions u 0 (t).

The reason why we introduce f0,n is that in f 0,n the functions ξ k 0 depend on u 0 (t).

• Step 2. Since u 0 , µ 0 (t), ξ j 0 are chosen from a finite set, we know that K f0,n (t) is included in a bounded finite dimensional set. Therefore, for all t, Kf 0,n (t) is relatively compact. On the other hand, as f0,n is uniformly bounded in C([0, T ]; H k+1 ), we know that {K f0,n } is equicontinuous on [0, T ]. Hence, by Arzelà-Ascoli theorem we only need to prove that • Step 3. It further suffices to prove (4.24) for time-independent u 0 . The general case (when u 0 (t) is timely piecewise constant) can be proved by applying the same approach. Let us therefore suppose that u 0 is a constant function in E: u 0 (t, x) = ϕ(x) for some ϕ ∈ E. We define the quadratic structure by

B(y) def = 1 2 ∂ x y 2 . Thus f0,n (t) = B(u 0 + µ 0,n ) - 2m j=1 λB(u 0 + ξ j 0 ).
The T /n-periodicity of µ 0,n tells us that (u 0 + µ 0,n ) is periodic with period T /n, which to be combined with the fact that B(u 0 + ξ j 0 ) is stationary with respect to time, implies that f0,n (t + T n ) = f0,n (t).

Moreover, thanks to the construction of µ 0,n , we also have that

T /n 0 f0,n (t)dt = T /n 0 B u 0 + µ 0,n (t) - 2m k=1 λB u 0 + ξ k 0 dt = 1 2 ∂ x T /n 0 u 0 + µ 0,n (t) 2 -λ 2m k=1 u 0 + ξ k 0 2 dt = 1 2 ∂ x T /n 0 µ 0,n (t) 2 -λ 2m k=1 ξ k 0 2 dt = 1 2 ∂ x T 2nm 2m k=1 ξ k 0 2 -λ T n 2m k=1 ξ k 0 2 = 0.
It is known that f0,n is uniformly bounded in L ∞ (H k+1 ). Thus, for every t ∈ [0, T ],

K f0,n (t) H k+1 0 ≤ C T n ,
which completes the proof of Lemma 4.5.

Let us define (4.25)

w i,n def = u i -Kf i,n ,
for i = 0, 1. Then (4. [START_REF] Laurent | Internal control of the Schrödinger equation[END_REF]) can be equivalently written as (4.26)

                 ∂ t ρ 0 + ∂ x (w 0,n + Kf 0,n )ρ 0 = 0, ∂ t w 0,n + 1 2 ∂ x w 0,n + µ 0,n + Kf 0,n 2 + ∂ x ρ 0 = η0 , ∂ t A + w 0,n + Kf 0,n ∂ x A + 2∂ x w 0,n + Kf 0,n A = 0, ∂ t ρ 1 + ∂ x w 0,n + Kf 0,n ρ 1 + w 1,n + Kf 1,n ρ 0 = ∂ x A, ∂ t w 1,n + ∂ x (w 0,n + µ 0,n + Kf 0,n )(w 1,n + µ 1,n + Kf 1,n ) + ∂ x ρ 1 = η1 , ρ(0) = g, A(0) = A 0 and u(0) = v, which means that ( w n , ρ, A) = R v, g, A 0 , µ n + K f n , K f n , ¯ η .
Equations (4.9), (4.22) and (4.25) tell us that ( w n , ρ, A) ∈ Y k+1 (T ). It further reduces to the following problem:

(4.27)

                 ∂ t ρ0,n + ∂ x w0,n ρ0,n = 0, ∂ t w0,n + 1 2 ∂ x w0,n + µ 0,n 2 + ∂ x ρ0,n = η0 , ∂ t Ān + w0,n ∂ x Ān + 2∂ x w0,n Ān = 0, ∂ t ρ1,n + ∂ x ( w0,n ρ1,n + w1,n ρ0,n ) = ∂ x Ān , ∂ t w1,n + ∂ x ( w0,n + µ 0,n )( w1,n + µ 1,n ) + ∂ x ρ1,n = η1 , ¯ ρ(0) = g, Ān (0) = A 0 and ¯ u(0) = v, which means ( ¯ w n , ¯ ρ n , Ān ) = R v, g, A 0 , µ n , 0, ¯ η .
We know from Theorem 3.1, Lemma 4.5 and the fact that both ( w n , ρ, A) Y k+1 (T ) and v, g, A 0 , µ

n + K f n , K f n , ¯ η X k (T ) are uniformly bounded, that R v, g, A 0 , µ n , 0, ¯ η Y k (T )
is uniformly bounded for large n and that ρ 0,n (x) are uniformly away from 0. Since the norm of v, g, A 0 , µ n , 0, ¯ η X k+2 (T ) is uniformly bounded, thanks to the blow up criteria we know that ( ¯ w n , ¯ ρ n , Ān ) are uniformly bounded in Y k+2 (T ) for large n. Because for n large enough ( w n , ρ, A) Y k+1 (T ) , ( ¯

w n , ¯ ρ n , Ān ) Y k+1 (T ) , K f n C([0,T ];H k+1 0 ×H k-1 0 )
and v, g, A 0 , µ n , 0, ¯ η X k+1 (T ) are uniformly bounded, and ρ 0,n are uniformly away from 0, we have Lipschitz property in lower regularity spaces, namely in X k (T ) and Y k (T ) space, 

( ¯ w n , ¯ ρ n , Ān ) -( w n , ρ, A) Y k (T ) ≤ C v, g, A 0 , µ n + K f n , K f n , ¯ η -v, g, A 0 , µ n , 0, ¯ η X k (T ) , which 
lim n→+∞ t 0 0 µ 0,n (t)χ 0,n (t) dt H k = 0, lim n→+∞ t 0 0 µ 0,n (t) χn (t) dt H k-1 = 0, lim n→+∞ t 0 0 µ 1,n (t)χ 1,n (t) dt H k-2 = 0.
Proof. The proof is straightforward, thanks to the fact that µ n behave like an oscillation. Indeed,

t 0 0 µ 0,n χ 0,n (t)dt = t 0 0 µ 0 ( nt T )(t)χ 0,n (t)dt = T n nt 0 T 0 µ 0 (t)χ 0,n ( tT n )dt = [ nt 0 T ]-1 i=0 T n i+1 i µ 0 (t)χ 0,n ( tT n )dt + T n nt 0 T [ nt 0 T ] µ 0 (t)χ 0,n ( tT n )dt. Since χ n (t) ∈ C([0, T ]; H k ×H k-2 ) is equi-continuous, and µ 0 (t) is in L ∞ T (E) (hence uniformly bounded in L ∞ T (H s ), ∀s > 0), we know that nt 0 T [ nt 0 T ] µ 0 (t)χ 0,n ( tT n )dt
is uniformly bounded in H k for t 0 ∈ [0, T ] and for n. On the other hand, we know from the construction of µ 0 (t) that

i+1 i µ 0 (t)χ 0,n ( tT n )dt = i+1/2 i µ 0 (t)χ 0,n ( tT n )dt + i+1 i+1/2 -µ 0 (t - 1 2 )χ 0,n ( tT n )dt = i+1/2 i µ 0 (t) χ 0,n ( tT n ) -χ 0,n ( tT n + T 2n ) dt. Since χ n : [0, T ] → H k × H k-2
is uniformly equicontinuous, for any δ > 0 there exists M such that when n > M we have

χ 0,n ( tT n ) -χ 0,n ( tT n + T 2n ) H k < δ. Hence µ 0 (t) χ 0,n ( tT n ) -χ 0,n ( tT n + T 2n ) H k < δ, ∀0 < t < n.
Therefore,

[ nt 0 T ]-1 i=0 T n i+1 i µ 0 (t)χ 0,n ( tT n )dt < [ nt 0 T ] T n δ 2 < T δ.
The same proof shows that

lim n→+∞ t 0 0 µ 0,n χn (0, t) dt H k-1 = 0.
The same proof also holds for µ 1 .

Following Theorem 3.2, we compare (4.27) to the following equation in

[0, T ] × T , (4.29) 
                     ∂ t ρ0,n + ∂ x ( w0,n + µ 0,n )ρ 0,n = 0, ∂ t w0,n + 1 2 ∂ x ( w0,n + µ 0,n ) 2 + ∂ x ρ0,n = η0 , ∂ t Ãn + ( w0,n + µ 0,n )∂ x Ãn + 2∂ x ( w0,n + µ 0,n ) Ãn = 0 ∂ t ρ1,n + ∂ x ( w0,n + µ 0,n )ρ 1,n + ( w1,n + µ 1,n )ρ 0,n = ∂ x Ãn , ∂ t w1,n + ∂ x ( w0,n + µ 0,n )( w1,n + µ 1,n ) + ∂ x ρ1,n = η1 , ˜ ρ n (0) = g, Ãn (0) = A 0 and ˜ u n (0) = v.
As ( ¯ w n , ¯ ρ n , Ān ) are uniformly bounded in Y k+2 (T ), thanks to Theorem 3.2 and the blow up criteria, we know that

lim n→+∞ ( ¯ w n , ¯ ρ n , Ān ) -( ˜ w n , ˜ ρ n , Ãn ) Y k (T ) = 0, ( ˜ w n , ˜ ρ n , Ãn ) = R v, g, A 0 , µ n , µ n , ¯ η is uniformly bounded in Y k+2 (T ) for large n.
Remark 4.1. We observe that the L ∞ T (H s × H s-2 ) norm of µ n (with s > 0) and the source term ¯ η only depend on η 1 . This point probably could be used to reduce the regularity of the initial state. However, this is not the main purpose of this paper. 

m n ∈ C ∞ ([0, T ]; E) with µ m n (0) = µ m n (T ) = 0 and lim m→∞ µ m n -µ n L 2 T (H k+3 0 ×H k+1 0 ) = 0. Let ( ˜ w m n , ˜ ρ m n , Ãm n ) def = R v, g, A 0 , µ m n , µ m n , ¯ η ∈ Y k+2 ( 
T ). Then, for any n, thanks to the continuity property of R stated in Theorem 3.1, we have 

lim m→∞ ( ˜ w m n , ˜ ρ m n , Ãm n ) -( ˜ w n , ˜ ρ n , Ãn ) Y k+2 (T ) = 0.

Semiclassical limit of the controlled system

In the end, this section is devoted to the proof of Theorem 2.2.

Proof of Theorem 2.2. The main idea of the proof basically follows from [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF], which we outline as the following three steps:

• Step 1. There exists T 0 > 0 such that (1.1)-(1.2) have solutions which are uniformly bounded for a in C([0, T 0 ]; H k ) and for S in C([0, T 0 ]; H k+1 ). At first we study the system of u and (a r, , a i, ):

(5.1)

             ∂ t a r, + u ∂ x a r, + 1 2 a r, ∂ x u = - 2 ∂ 2 x a i, , ∂ t a i, u ∂ x a i, + 1 2 a i, ∂ x u = 2 ∂ 2
x a r, , ∂ t u + u ∂ x u + 2a r, ∂ x a r, + 2a i, ∂ x a i, = -η (t, x), (a r, , a i, , u )| t=0 = Re(a 0 ( )), Im(a 0 ( )), ∂ x S .

This system can be written in the form We observe that this system shares the following properties.

(i) The maps w → A(w) and w → H(w) are linear.

(ii) The left hand side of (5.2) is symmetrizable with diagonal matrix A 0 := diag(1, 1, 1/4).

(iii) H(w ) has an Hamiltonian structure.

(iv) f (t, x) is uniformly bounded in C([0, T ]; H k+4 ). Therefore, for α ≤ k classical energy estimates lead to ∂ t (A 0 ∂ α x w , ∂ α x w ) =2 (A 0 H(∂ α x w ), ∂ α x w ) -2(A 0 ∂ α x (A(w )∂ x w ), ∂ α x w ) + 2(A 0 ∂ α x f , ∂ α x w ).

(5.5)

Thanks to the special structure of H(w ), an integration by parts gives (A 0 H(∂ α x w ), ∂ α x w ) = 0. Moreover, since ∂ k x f (t, x) are uniformly bounded on [0, T ] × T and using the fact that A 0 is a symmetrizer for (5.2), classical estimates on the right hand side of (5.5) • Step 2. For small enough, the solutions (a , S ) are uniformly bounded in C([0, T ]; H k × H k+1 ). Moreover, (a , S ) tends to (a 0 , S 0 ) in C([0, T ]; H k × H k+1 ) as → 0 + . It is known from the assumption of Theorem 2.2 that (1.5) admits a solution (ρ 0 , u 0 ) in C([0, T ]; H k ). At first, by denoting w T (t) := a r 0 (t), a i 0 (t), u 0 (t) we prove that the zeroth order limit system (2.4), ∂ t w + A(w)∂ x w = f 0 , (5.6) w(0) = (a r 0 , a i 0 , u 0 )| t=0 = (Re(a 0 0 ), Im(a 0 0 ), ∂ x S), (5.7) has a solution w 0 ∈ C([0, T ]; H k+2 ). Indeed, suppose that the maximal solution is on the interval [0, s) with s < T , then ρ 0 , u 0 are bounded in C([0, s]; H k+2 ). We know from (2.4) that a 0 belongs to C([0, s]; H k+1 ), which is in contradiction of the definition of s.

Let us define v = w -w 0 . Then comparing (5.6) and (5.2) we get

∂ t v + A(v ) + A(w 0 ) ∂ x v + A(v )∂ x w 0 = H(w 0 ) + H(v ) + f 1 , (5.8) 
v (0) = Re(a 0 ( )) -Re(a 0 0 ), Im(a 0 ( )) -Im(a 0 0 ), 0 , (5.9) As w 0 belongs to C([0, T ]; H k+2 ), we get that

| ( H(∂ α x w), ∂ α x v ) |≤ C w 0 H k+2 v H k ,
∀α ≤ k, which together with similar energy estimates as in the previous step lead to

∂ t α≤k (A 0 ∂ α x v , ∂ α x v ) ≤ C v h 2 H k ( v h C 1 +1) + C v H k + C v h H k .
Since v (0) H k tends to 0 as tends to 0, we are able to find positive 0 such that

v C([0,T ];H k ) ≤ C + C v (0) H k ≤ C , ∀0 < < 0 .

  ε, and controls F in C ∞ ([0, T ]; E) such that, the solution of equation (1.1) satisfiesψ (T ) = â0 + â1 + r a exp i Ŝ0 + Ŝ1 + r S = â0 e i Ŝ1 + s exp i Ŝ0 , with |â 0 (x)| 2 = ρ0 (x), 2Re( ā0 â1 ) = ρ1 (x), ∂ x Ŝ0 (x) = û0 (x), ∂ x Ŝ1 (x) = û1 (x), lim →0 +

( 3 . 3 )

 33 have solutions in Y k+2 0 (T ) being uniformly bounded in Y k 0 (T ). Then, for n sufficiently large the equation (3.3) corresponding V n 0 have solutions in Y k+2 0 (T ), moreover, there holds

Theorem 3 . 6 . 2 T (H k+1 0 ) and ζ n 0 , ζ n 1 satisfy t 0

 36200 Let ζ n 0 , ζ n 1 be bounded sequences in L

K,

  f0,n (t) = 0, in H k+1 0 for any t ∈ [0, T ].

4. 3 . 5 .

 35 Approximation of µ n by smooth (with respect to time) functions. In this step we approximate µ n by smooth µ m n such that their values at the end points are 0. Let us take µ

4 . 3 . 6 .

 436 Consequently, we are able to select a sequence {m(n)} N such that lim n→+∞ w n , ˜ ρ n , Ãn ) Y k+2 (T ) = 0 as n → +∞. Extension technique. By taking w = A 0 and u m(n) n (0) = v.Hence, as n tends to +∞,( w m(n) n , ρ m(n) n , A m(n) n ) def = R v, g, A 0 , 0, 0, ¯ η + ∂ t µ m(n) n ∈ Y k+2 (T ), ( w m(n) n , ρ m(n) n , A m(n) n )(T ) = ( ˜ w m(n) n , ˜ ρ m n , Ãm(n) n )(T ) → ( u, ρ, A)(T ) in Z k .

(5. 2 )

 2 ∂ t w + A(w )∂ x w = H(w ) + f , (t, x) = f 0 (t, x) + f 1 (t, x)

  e

			t 0 g(t ) dt +	t	h(t ) dt +	t	g(t )e	t t g(s) ds	t	h(s) ds dt .
					0		0		0
	By inserting equations (3.12)-(3.13) into Lemma 3.1 we get (3.6).
	Proof of Lemma 3.1. We first get, by integrating (3.14) over [0, t], that
							t		t
	(3.16)		f (t) ≤ f (0) +	g(t )f (t ) dt +	h(t ) dt ,
							0		0
	from which, we infer						
	d dt							0	t	g(t )f (t ) dt +	0	t	h(t ) dt ,
	so that there holds						
	d dt	e -t 0 g(t ) dt	0	t	g(t )f (t ) dt ≤ g(t)e -t 0 g(t ) dt f (0) +

t 0 g(t )f (t ) dt = g(t)f (t) ≤ g(t) f (0) + t 0 h(t ) dt .

Integrating the above inequality over [0, t] gives rise to

t 0 g(t )f (t ) dt ≤ t 0 g(t )e

t t g(s) ds f (0) + t 0 h(s) ds dt Inserting the above inequality into (3.16) and using the fact that t 0 g(t )e t t g(s) ds dt = e t 0 g(t ) dt -1 leads to (3.15).

  Continuity property: on the use of Theorem 3.2. At first we prove the following lemma.

	, together with Lemma 4.4, implies that
	(4.28)	lim n→+∞	( ¯ w n , ¯ ρ n , Ān ) -( w n , ρ, A) Y k (T ) = 0.
	Finally, (4.22), (4.25) and (4.28) imply that
		lim n→+∞	( ¯ w n , ¯ ρ n , Ān ) -( u, ρ, A) Y k (T ) = 0.
	4.3.4.		

Lemma 4.6. For any t 0 > 0, any uniformly equicontinuous function χ n (t) ∈ C([0, T ]; H k × H k-2 ), and any uniformly equicontinuous function χn (t) ∈ C([0, T ]; H k-1 ), we have

  which C > 0 is a constant independent of ∈ (0, 1]. As the initial data are uniformly bounded in H k (see (1.2)), by Gronwall's lemma we get the existence of T 0 such that a , u are uniformly bounded in C([0, T 0 ]; H k ).Next, we solve equation (2.2) via (5.1) and u = ∂ x S . Then it suffices to prove that T S (t) are uniformly bounded on [0, T 0 ]. We know from (2.2) that

				lead to
	∂ t	(A 0 ∂ α x w , ∂ α x w ) ≤ C w h	C 1 w h 2 H k +C w h	H k ,
	α≤k			
	∂ t S + (u ) Since 1 2 T f (t) = 0 and		

2 + f (t, x) + |a | 2 -1 = 0. T 1 2 (u ) 2 + |a | 2 -1 are

uniformly bounded, this concludes the proof.
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Therefore, the solutions (a h , u h ) converge uniformly to (a 0 , u 0 ) in C([0, T ]; H k × H k ) as → 0 + . Meanwhile we know that S h (resp. S 0 ) satisfies (2.2) (resp. (2.3)), thus direct calculations as above show that

We deduce from (5.8) and the last equation of (5.1) that

The limit system of (5.10)-(5.11) reads

(5.12) ṽ(0) = (Re(a 0 1 ), Im(a 0 1 ), 0), (5.13) which is exactly the first order system (2.6). Let us denote the solution of this linear system by v 1 = (a r 1 , a i 1 , u 1 ). Thanks to (5.10), ṽ are uniformly bounded in C([0, T ];

Then by plugging this bound into (5.10)-(5.11), we obtain the uniform boundedness of ∂ t ṽ in C([0, T ]; H k-2 ) ⊂ L ∞ ([0, T ]; H k-2 ). Therefore, up to a subsequence, ṽ converges to some function v in C([0, T ]; H k-2 ). By taking the limit, we find that v solves the equation (5.12)-(5.13). Hence v coincidence with v 1 . To this end, we deduce from

More precisely, we get the first order expansion of ψ :

and complete the proof of Theorem 2.2. Email address: zp@amss.ac.cn