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1. Introduction 1.1. Setting of the problem. We consider the modified Korteweg-de Vries equation:

(mKdV) u t + (u xx + u 3 ) x = 0, (t, x) ∈ R × R, u(0, x) = u 0 (x), x ∈ R,
for u 0 ∈ H 2 (R).

(mKdV) appears as a good approximation of some physical problems as ferromagnetic vortices [START_REF] Wexler | Contour dynamics, waves, and solitons in the quantum hall effect[END_REF], fluid mechanics [START_REF] Helal | A Chebyshev spectral method for solving Korteweg-de Vries equation with hydrodynamical application[END_REF], electrodynamics [START_REF] Perelman | A modified korteweg-de vries equation in electrodynamics[END_REF], plasma physics [START_REF] Schamel | A modified korteweg-de vries equation for ion acoustic wavess due to resonant electrons[END_REF][START_REF] Cheemaa | Study of the dynamical nonlinear modified korteweg-de vries equation arising in plasma physics and its analytical wave solutions[END_REF], etc.

The Cauchy problem for (mKdV) is locally well-posed in H s for s > -1 2 [START_REF] Harrop-Griffiths | Sharp well-posedness for the cubic NLS and mKdV in H s (R)[END_REF]. For s > 1 4 , the Cauchy problem is globally well-posed [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF]. In this paper, we will use only basic results about the Cauchy problem: the fact that it is globally well-posed in H 1 or H 2 .

Note that the set of solutions of (mKdV) is stable under space or time translations or under reflexions with respect to the x-axis.

We have following conservation laws for a solution u(t) of (mKdV):

(1. Note that (mKdV) has actually infinitely many conservation laws, because it is integrable, like the original Korteweg-de Vries equation (KdV), which has quadratic nonlinearity [START_REF] Miura | Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion[END_REF][START_REF] Ablowitz | The inverse scattering transform-Fourier analysis for nonlinear problems[END_REF]. It is also a special case of the generalized Korteweg-de Vries equation (gKdV) [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF].

(gKdV) belongs to the family of nonlinear (focusing) dispersive equations. Other examples of equations belonging to this family are the nonlinear Schrödinger equation (NLS) [START_REF]Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF]Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] and the nonlinear Klein-Gordon equation (KG) [START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF][START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF]. They share a common property: they all admit special solutions called solitons, a bump that translates with a constant velocity without deformation. However, (mKdV) enjoys a specific feature: it admits another class of special solutions called breathers, which we will describe below. We will consider here both specific solutions of (mKdV) together: solitons and breathers.

For c > 0, κ ∈ {-1, 1} and x 0 ∈ R, a soliton parametrized by c, κ and x 0 is a solution of (mKdV) that corresponds to a bump of constant shape that translates with a constant velocity c without deformation, that is initially centered in x 0 and that has for sign κ. In other words, it is a solution of the form: R c,κ (t, x; x 0 ) := κQ c (xctx 0 ), (1.4) where Q c is the profile function that depends only on one variable and that is positive and pair. Q c ∈ H 1 (R) should solve the following elliptic equation:

Q ′′ c -cQ c + Q 3 c = 0. (1.5)
It is possible to show that (1.5) has a unique solution in H 1 , up to translations and reflexion with respect to the x-axis. One can show that Q c has the following expression:

Q c (x) := 2c cosh 2 ( √ cx) 1 2 
. (1.6) We denote Q := Q 1 the basic ground state. When κ = -1, the soliton is sometimes called an antisoliton. The soliton R c,κ (x 0 ) travels with velocity c to the right, the position of its center at a time t is x 0 + ct. It is exponentially localized, depending on c and x 0 + ct (the position of the bound depends on x 0 + ct, the amplitude and the exponential decay rate depend on c):

(1.7) |R c,κ (t, x; x 0 )| ≤ √ 2c exp - √ c |x -x 0 -ct| .
Analoguous bounds are valid for any derivative (with the same decay rate but different amplitude). This motivates the terminology "shape parameter" for c. Solitons, in particular their stability, have been extensively studied: regarding orbital stability (in H 1 ), we refer to Cazenave, Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] and Weinstein [START_REF]Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] for (NLS) and Weinstein [START_REF]Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF], Bona-Souganidis-Strauss [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] and Martel-Merle [START_REF] Martel | Instability of solitons for the critical generalized Korteweg-de Vries equation[END_REF] for (mKdV), see also Grillakis-Shatah-Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry. II[END_REF] for a result in an abstract setting. Asymptotic stability (in H 1 ) of (mKdV) solitons was shown by Martel-Merle [START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF][START_REF]Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF][START_REF] Martel | Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF] and refined by Germain-Pusateri-Rousset [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF].

For α, β > 0 and x 1 , x 2 ∈ R, a breather parametrized by α, β, x 1 , x 2 is a solution of (mKdV) that has the following expression:

(1.8)

B α,β (t, x; x 1 , x 2 ) := 2 √ 2∂ x arctan β α sin(αy 1 ) cosh(βy 2 ) , where y 1 := x + δt + x 1 , y 2 := x + γt + x 2 , δ := α 2 -3β 2 and γ := 3α 2β 2 . The breather B α,β (x 1 , x 2 ) travels with velocity -γ; the position of its center at a time t is -x 2γt. It is exponentially localized, depending on α, β and -x 2γt (the position of the bound depends on -x 2γt, the coefficient depends on α and β, and the exponential decay rate depends on β):

(1.9) B α,β (t, x; x 1 , x 2 ) ≤ C(α, β) exp (-β |x + x 2 + γt|) ,
Analogous bounds are valid for any derivative (with the same decay rate but different amplitude). This motivates the terminology "shape" and "frequency" parameters for β and α, respectively. One doesn't talk of "antibreathers", because if we replace x 1 by x 1 + π α , then a breather is transformed in its opposite.

Similarly to (1.5), it is known that a breather B = B α,β satisfies the following elliptic equation on R:

(1.10)

B xxxx + 5BB 2 x + 5B 2 B xx + 3 2 B 5 -2 β 2 -α 2 B xx + B 3 + α 2 + β 2 2 B = 0.
Note that in [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF] a similar form of elliptic equation (with a fourth order derivative) is obtained for a soliton R c,κ from (1.5). This allows us to consider solitons and breathers at the same level of regularity, which is the key of the proof made in this article.

This object was first introduced by Wadati [START_REF] Wadati | The modified korteweg-de vries equation[END_REF], and it was used by Kenig, Ponce and Vega in [START_REF]On the ill-posedness of some canonical dispersive equations[END_REF] for the ill-posedness for (mKdV) for rough data. Their properties, in particular their stability, are well studied by Alejo, Muñoz and co-authors [START_REF]Nonlinear stability of MKdV breathers[END_REF][START_REF] Alejo | On the nonlinear stability of mKdV breathers[END_REF][START_REF] Alejo | On the variational structure of breather solutions I: Sine-Gordon equation[END_REF][START_REF]On the variational structure of breather solutions II: Periodic mKdV equation[END_REF][START_REF]Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers[END_REF]. We know that a breather is orbitally stable in H 2 [START_REF]Nonlinear stability of MKdV breathers[END_REF]. Afterwards, H 1 orbital stability was proved via Bäcklund transformation [START_REF]Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers[END_REF], and also H 1 asymptotic stability, for breathers moving to the right. Asymptotic stability of breathers in full generality is still an open problem.

When α → 0, B α,β tends to a double-pole solution of (mKdV): it is a couple soliton-antisoliton that move with a constant velocity and that have a repulsive logarithmic interaction [START_REF] Wadati | Multiple-pole solutions of the modified korteweg-de vries equation[END_REF]. However, this limit, which is somehow at a boundary between solitons and breathers, is expected to be unstable [START_REF] Gorria | Discrete conservation laws and the convergence of long time simulations of the mkdv equation[END_REF]. We do not consider this object in this paper.

Solitons and breathers are important objects to study because of their stability properties and also because of the soliton-breather resolution. The latter is an important result about the long time dynamics of (mKdV), which asserts that any generic solution can be approached by a sum of solitons and breathers when t → +∞. It is established for initial conditions in a weighted Sobolev space in [START_REF] Chen | Soliton resolution for the focusing modified KdV equation[END_REF] (see also Schuur [38]) by inverse scattering method; see also [START_REF] Schuur | Asymptotic analysis of soliton problems[END_REF] for the soliton resolution for (KdV).

Given a set of basic objects (solitons and breathers), we consider a solution that tends to this sum when t → +∞, called multi-breather. In [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF], we have shown existence, regularity and uniqueness of multi-breathers of (mKdV). There is also a formula for multi-breathers of (mKdV) obtained by Wadati [START_REF] Wadati | Multiple-pole solutions of the modified korteweg-de vries equation[END_REF], which was derived as a consequence of the integrability of (mKdV)); but is it not well suited for our purpose.

Martel, Merle and Tsai [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] proved that a sum of (decoupled and ordered) solitons is orbitally stable in H 1 for (mKdV), and actually asymptotically stable (in the region x ⩾ δt for δ > 0 small). Le Coz [START_REF] Coz | Stability of the multi-solitons of the modified Korteweg-de Vries equation[END_REF] has established stability of (mKdV) N-solitons in H N by modifying the approach used by Maddocks and Sachs [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF] for (KdV).

Inspired by [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF], similar asymptotic stability results where obtained for sums of (decoupled) solitons for various nonlinear dispersive equations: we refer to El Dika [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation[END_REF] for the Benjamin-Bona-Mahony equation (BBM), Kenig and Martel [START_REF] Kenig | Asymptotic stability of solitons for the Benjamin-Ono equation[END_REF] for the Benjamin-Ono equation (BO), El Dika-Molinet [START_REF] Dika | Stability of multipeakons[END_REF] for the Camassa-Holm multipeakon, and Côte-Muñoz-Pilod-Simpson [START_REF] Côte | Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons[END_REF] for the Zakharov-Kuznetsov (ZK) equation.

Because breathers have an H 2 structure, we prove orbital stability in H 2 in this paper for a sum of solitons and breathers. One of the difficulties is to obtain H 2 stability results for solitons too, i.e. to study solitons at a H 2 level. 1.2. Main results. We prove in this article that given any sum of solitons and breathers with distinct velocities and such that all these velocities except possibly one are positive, a solution u of (mKdV) that is initially close to this sum in H 2 stays close to this sum for any time of a considered time interval up to space translations for solitons or space and phase translations for breathers. This is orbital stability. Let us make the definition of orbital stability more precise.

Let L ∈ N. We consider a set of L solitons: given

c 0 l > 0, κ l ∈ {-1, 1} and x 0 0,l ∈ R for 1 ≤ l ≤ L, we set, for 1 ≤ l ≤ L, (1.11) R l (t, x) := R c 0 l ,κ l (t, x; x 0 0,l ). Let K ∈ N. We consider a set of K breathers: given α k > 0, β k > 0 and x 0 1,k , x 0 2,k ∈ R for 1 ≤ k ≤ K, we set, for 1 ≤ k ≤ K, (1.12) B k (t, x) := B α k ,β k (t, x; x 0 1,k , x 0 2,k
). We now define important parameters for each of the objects of the problem. For 1 ≤ l ≤ L, the velocity of the lth soliton is (1.13) v s l := c 0 l , and for 1 ≤ k ≤ K, the velocity of the kth breather is

(1.14) v b k := β 2 k -3α 2 k . For 1 ≤ l ≤ L, the center of the lth soliton is (1.15)
x s l (t) := x 0 0,l + v s l t, and for 1 ≤ k ≤ K, the center of the kth breather is

(1.16) x b k (t) := -x 0 2,k + v b k t.
We set J := K + L the total number of objects in the problem. We assume that J ≥ 2, because for J = 1 the proof is already done in [START_REF]Nonlinear stability of MKdV breathers[END_REF] when the only object is a breather, and in [START_REF]Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] when the only object is a soliton.

We assume that the velocities of our objects are all distinct, this will imply that our objects are far from each other when time is large, which is essential for our analysis. More precisely, (1.17) ∀k

̸ = k ′ , v b k ̸ = v b k ′ , ∀l ̸ = l ′ , v s l ̸ = v s l ′ , ∀k, l, v b k ̸ = v s l .
This allows us to define an increasing function (1.18) v : {1, ..., J} → {v b k , 1 ≤ k ≤ K} ∪ {v s l , 1 ≤ l ≤ L}. The set {v 1 , ..., v J } is thus the set of all the possible velocities of our objects. We have

(1.19) v 1 < v 2 < ... < v J .
We define, for 1 ≤ j ≤ J, P j as the object (R l or B k ) that corresponds to the velocity v j , i.e. if v j = v s l , we set P j := R l , and if v j = v b k , we set P j := B k . So, P 1 , ..., P J are the considered objects that are ordered by increasing velocity.

We denote x j (t) the position (the center of mass) of P j (t). More precisely, if P j = R l , we set x j (t) := x s l (t); and if

P j = B k , we set x j (t) := x b k (t). We set (1.20) R := L ∑ l=1 R l , B := K ∑ k=1 B k , P := R + B = J ∑ j=1 P j .
We need both notations: indexation by k and l, and indexation by j, and we keep these notations to avoid ambiguity.

The main result that we will prove in this article is the following: a sum of decoupled solitons and breathers, with v 2 > 0 (that is, all travel to the right, but at most one can be static or travel to the left), is orbitally stable. The precise statement is as follows.

Theorem 1.1. Given a set of solitons and breathers (1.11), (1.12) whose velocities (1.13) and (1.14) satisfy (1.17), and whose positions are set by (1.15) and (1.16), we define the corresponding sum P in (1.20), and we define P j , v j , x j a reindexation of the given set of solitons and breathers such that (1.19). We assume that

(1.21) v 2 > 0.
Then there exists A 0 , θ 0 , D 0 , a 0 > 0, constants (depending on c 0 l , α k , β k , but not on x 0 0,l , x 0 1,k or x 0 2,k ), such that the following is true. Let D ≥ D 0 and 0 ≤ a ≤ a 0 such that (1.22) ∥u(0) -P(0)∥ H 2 ≤ a, and x j (0) > x j-1 (0) + 2D, for all j = 2, . . . , J, for a solution u ∈ C(R, H 2 (R)) of (mKdV).

Then, there exist x 0,l (t), x 1,k (t), x 2,k (t) defined for any t ≥ 0 such that

(1.23) ∀t ≥ 0, u(t) - L ∑ l=1 R c 0 l ,κ l (t, •; x 0,l (t)) - K ∑ k=1 B α k ,β k (t, •; x 1,k (t), x 2,k (t)) H 2 ≤ A 0 a + e -θ 0 D , with (1.24) ∀t ≥ 0, L ∑ l=1 x ′ 0,l (t) + K ∑ k=1 |x ′ 1,k (t)| + |x ′ 2,k (t)| ≤ CA 0 a + e -θ 0 D ,
for some constant C > 0.

Remark 1.2. Let us stress on the fact that the constant A 0 do not depend on the translation parameters of the considered objects.

We also deduce a consequence from Theorem 1.1 for multi-breathers.

Recall that multi-breathers were defined and contructed in [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF], and their uniqueness was proved there when v 2 > 0. They can be also obtained from the formula from [START_REF] Wadati | Multiple-pole solutions of the modified korteweg-de vries equation[END_REF] obtained by inverse scattering method by Wadati. Let p be a multi-breather associated to P (in the setting v 2 > 0, we know that p is also unique). To emphasize the dependence of p with respect to the parameters, we will write

(1.25) p(t, x) =: p(t, x; α k , β k , x 0 1,k , x 0 2,k , κ l , c 0 l , x 0 0,l ).
The same way, to emphasize the dependence of P with respect to the parameters, we will write (1.26) P(t, x) =: P(t, x; α k , β k , x 0 1,k , x 0 2,k , κ l , c 0 l , x 0 0,l ). Theorem 1.1 can be recast as orbital stability of a multi-breather:

Theorem 1.3. Let α k , β k , x 0 1,k , x 0 2,k , κ l , c 0 l ,
x 0 0,l and p the multi-breather associated to these parameters with notations as in (1.25) given by [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF]Theorem 1.2]. We assume that (1.17) holds and v 2 > 0. There exists η 0 > 0 small enough, C 0 > 0 large enough such that the following is true for 0 < η < η 0 .

Let u(t) be a solution of (mKdV), such that

u(0) -p(0; α k , β k , x 0 1,k , x 0 2,k , c 0 l , x 0 0,l ) H 2 ≤ η. (1.27)
Then there exist C 1 functions x 0,l (t), x 1,k (t), x 2,k (t) defined for any t ≥ 0 such that

(1.28) ∀t ≥ 0, u(t) -p t; α k , β k , x 1,k (t), x 2,k (t), c 0 l , x 0,l (t) H 2 ≤ C 0 η, with (1.24) that is satisfied. Remark 1.4.
Let us stress on the fact the C 0 do depend on the translation parameters of the considered solitons and breathers, i.e. on x 0 0,l , x 0 1,k and x 0 2,k . More precisely, it depends on the time we need to wait until the collisions between the considered solitons and breathers are over. This is a fundamental difference between Theorem 1.3 and Theorem 1.1. In fact, in Theorem 1.1, we avoid collisions and this is the reason why we get a more uniform result. It is reasonnable to expect that Theorem 1.3 can be improved so that C 0 do not depend on translation parameters.

In this paper, we adapt the arguments given by Martel, Merle and Tsai [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] to the context of breathers. To do so, it is needed to understand the variational structure of breathers, in the same manner as Weinstein did in [START_REF]Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] for (NLS) and (mKdV) solitons. Such results have been obtained by Alejo and Muñoz in [START_REF]Nonlinear stability of MKdV breathers[END_REF]. When a soliton is a critical point of a Lyapunov functional at the H 1 level, whose Hessian is coercive up to two orthogonal conditions, a breather is a critical point of a Lyapunov functional at the H 2 level, whose Hessian is coercive up to three orthogonal conditions. One important issue that we address is to understand the variational structure of a soliton at the H 2 level. We do this by modifying the Lyapunov functional from [START_REF]Nonlinear stability of MKdV breathers[END_REF], and we will also adapt it for a sum of solitons and breathers. We need to make assumptions on the velocities of our breathers (recall that the velocity of a soliton is always positive), because several arguments are based on monotonicity properties, which hold only on the right. 1.3. Organisation of the proof. The proof of Theorem 1.1 is based on two results: a modulation lemma and a bootstrap proposition. We give a detailed outline of both results in Section 2, and give in Section 3 the proof of the heart of the argument (Proposition 2.6), where we complete the bootstrap via a (finite) induction argument on the an improved bound localized on the last j objects.

In Section 4, we prove Theorem 1.3 as a quick consequence of Theorem 1.1.
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Reduction of the proof to an induction

For the proof, we assume the assumption of the Theorem 1.1 true (i.e. we assume (1.22) true) for a solution u(t) and a choice of translation parameters, and the goal is to find the suitable constants A, θ, D 0 , a 0 (that do not depend on u nor on translation parameters) so that the Theorem 1.1 holds.

2.1. Some useful notations. We set some useful constants for this paper. We define the worst exponential decay rate:

(2.1)

β := min{β k , 1 ≤ k ≤ K} ∪ { √ c l , 1 ≤ l ≤ L},
and the worst distance between two consecutive velocities:

(2.2) τ := min{v j+1v j , 1 ≤ j ≤ J -1}. For any j = 2, ..., J, we have that

(2.3) ∀t ∈ I, x j (t) -x j-1 (t) ≥ x j (0) -x j-1 (0) + τt.
We introduce general parameters, for j = 1, ..., J, (a j , b j ).

If P j = B k is a breather, we set (a j , b j ) := (α k , β k ). If P j = R l is a soliton, we set (a j , b j ) := (0, c 0 l ). 2.
2. Modulation lemma. We will first state a standard modulation lemma, which can be proved similarly as the modulation lemma in [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF]. We need it because we will construct translations of our objects so that they are near to u and some orthogonality conditions are satisfied. These orthogonality conditions will allow us to use coercivity of some quadratic forms in the following of the proof.

Lemma 2.1. Let A ′ > 0, θ > 0, t ′ > 0 and y 1,k (t), y 2,k (t), y 3,l (t), y 0,l (t) defined for t ∈ [0, t ′ ] (with y 3,l (t) > 0) such that ∀t ∈ [0, t ′ ], y 3,l (t) -c 0 l ≤ min{ τ 8 } ∪ { c 0 p 4 , 1 ≤ p ≤ L}.
If D 0 is large enough and a 0 is small enough (dependently on A ′ ), there exists a constant C 2 > 1 such that the following holds. Let u(t) be a solution of (mKdV) such that for any t ∈ [0, t ′ ],

(2.4)

u(t) - L ∑ l=1 κ l Q y 3,l (t) (• + y 0,l (t) -c 0 l t) - K ∑ k=1 B α k ,β k (t, •; y 1,k (t), y 2,k (t)) H 2 ≤ A ′ a + e -θD , (2.5) u(0) - L ∑ l=1 κ l Q y 3,l (0) (• + y 0,l (0)) - K ∑ k=1 B α k ,β k (0, •; y 1,k (0), y 2,k (0)) H 2 ≤ a,
and if we set y j (t) := -y 0,l (t) + v s l t if P j = R l , and y j (t

) := -y 2,k (t) + v b k t if P j = B k , we have, for any 2 ≤ j ≤ J, (2.6) ∀t ∈ [0, t ′ ], y j (t) -y j-1 (t) ≥ D, then, there exists C 1 functions z 1,k (t), z 2,k (t), z 3,l (t), z 0,l (t) defined for t ∈ [0, t ′ ] (with z 3,l (t) > 0), such that if we set (2.7) ε(t) := u(t) -P(t)
, where

(2.8) R l (t, x) := κ l Q z 3,l (t) (• + z 0,l (t) -c 0 l t) f or 1 ≤ l ≤ L, (2.9) B k (t, x) := B α k ,β k (t, x; z 1,k (t), z 2,k (t)) f or 1 ≤ k ≤ K,
(2.10)

P j := R l i f P j = R l , P j := B k i f P j = B k , (2.11) R := L ∑ l=1 R l , B := K ∑ k=1 B k , P := R + B = J ∑ j=1 P j , then, for t ∈ [0, t ′ ], for l = 1, ..., L, for k = 1, ..., K, (2.12) R l (t)ε(t) = ∂ x R l (t)ε(t) = ∂ x 1 B k (t)ε(t) = ∂ x 2 B k (t)ε(t) = 0.
Moreover, for t ∈ [0, t ′ ], we have

(2.13) ∥ε(t)∥ H 2 + |z 1,k (t) -y 1,k (t)| + |z 2,k (t) -y 2,k (t)| +|z 3,l (t) -y 3,l (t)| + |z 0,l (t) -y 0,l (t)| ≤ C 2 A ′ a + e -θD , and 
(2.14) ∥ε(0)∥ H 2 + |z 1,k (0) -y 1,k (0)| + |z 2,k (0) -y 2,k (0)| + |z 3,l (0) -y 3,l (0)| + |z 0,l (0) -y 0,l (0)| ≤ C 2 a,
and

for any t ∈ [0, t ′ ], (z 1,k (t), z 2,k (t), z 3,l (t), z 0,l (t)) ∈ R 2K+2L is unique such that (2.12) is satisfied and (z 1,k (t), z 2,k (t), z 3,l (t), z 0,l (t)) is in a suitable neighbourhood of (y 1,k (t), y 2,k (t), y 3,l (t), y 0,l (t)) that depends only on A ′ a + e -θD . We set, for t ∈ [0, t ′ ], z j (t) := z s l (t) := -z 0,l (t) + v s l t if P j = R l , and z j (t) := z b k (t) := -z 2,k (t) + v b k t if P j = B k .
For D 0 large enough and a 0 small enough, if we assume that

(2.15) ∀t ∈ [0, t ′ ], z j (t) -z j-1 (t) ≥ D, (note that (2.15) is a consequence of ∀t ∈ [0, t ′ ], y j (t) -y j-1 (t) ≥ 2D if a 0 is small enough and D 0 is large enough), then for any t ∈ [0, t ′ ], we have that for k = 1, ..., K, (2.16) |z ′ 1,k (t)| + |z ′ 2,k (t)| ≤ C 2 e -β 2 |x-z b k (t)| ε 2 1/2 + C 2 e -βD 8 , for l = 1, ..., L, (2.17) |z ′ 3,l (t)| + |z ′ 0,l (t)| ≤ C 2 e -β 2 |x-z s l (t)| ε 2 1/2 + C 2 e -βD 8 .
Remark 2.2. We will also use generalized notations for y 1,k (t), y 2,k (t) and other object-specific notations, in the lemma above. For j = 1, ..., J, either if P j = R l is a soliton, we denote

y * 1,j (t) := y 3,l (t), z * 1,j (t) := z 3,l (t), y * 2,j (t) := y 0,l (t), z * 2,j (t) := z 0,l (t), (2.18) or if P j = B k is a breather, we denote y * 1,j (t) := y 1,k (t), z * 1,j (t) := z 1,k (t), y * 2,j (t) := y 2,k (t), z * 2,j (t) := z 2,k (t). (2.19)
Proof. See [39, Lemma 2.8], for the proof of a similar result. We also refer to [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF][START_REF]Nonlinear stability of MKdV breathers[END_REF][START_REF] Chow | Methods of bifurcation theory[END_REF]. □ 2.3. Bootstrap. Given Lemma 2.1, we reduce the proof of Theorem 1.1 to the following bootstrap proposition (we will use the notations given in Section 1.2; in particular the position x j (t) of P j (t) is defined there):

Proposition 2.3. There exists A ≥ C 2 and θ > 0 such that, if D 0 is large enough and a 0 is small enough such that

(2.20) C 2 a ≤ A a + e -θD ≤ min{ τ 8 } ∪ { c 0 p 4 , 1 ≤ p ≤ L},
for t * > 0, we assume that there exist

C 1 functions x 1,k (t), x 2,k (t), c l (t), x 0,l (t) ∈ R (with c l (t) > 0) defined for t ∈ [0, t * ] such that, if we denote (2.21) ∀t ∈ [0, t * ], ε(t) := u(t) - L ∑ l=1 R l (t) - K ∑ k=1 B k (t),
where u is a solution of (mKdV),

(2.22) ∀t ∈ [0, t * ], R l (t) := κ l Q c l (t) (• + x 0,l (t) -c 0 l t) for 1 ≤ l ≤ L, and 
(2.23) ∀t ∈ [0, t * ], B k (t) := B α k ,β k (t, •; x 1,k (t), x 2,k (t)), for 1 ≤ k ≤ K, P j := R l if P j = R l and P j := B k if P j = B k , and x s l (t) := -x 0,l (t) + v s l t, x b k (t) := -x 2,k (t) + v b k t, x j (t) := x s l (t) if P j = R l , and x j (t) := x b k (t) if P j = B k , and if we assume that (2.24) ∀1 ≤ j ≤ J -1, x j+1 (0) -x j (0) ≥ 2D, (2.25) ∀t ∈ [0, t * ], ∥ε(t)∥ H 2 ≤ A a + e -θD , ∥ε(0)∥ H 2 ≤ C 2 a, (2.26) ∀t ∈ [0, t * ], |c l (t) -c 0 l | ≤ A a + e -θD , |c l (0) -c 0 l | ≤ C 2 a, (2.27) L ∑ l=1 |x 0,l (0) + x 0 0,l | + K ∑ k=1 |x 1,k (0) -x 0 1,k | + |x 2,k (0) -x 0 2,k | ≤ Ca, (2.28) ∀t ∈ [0, t * ], L ∑ l=1 |c ′ l (t)| + |x ′ 0,l (t)| + K ∑ k=1 |x ′ 1,k (t)| + |x ′ 2,k (t)| ≤ CA(a + e -θD ),
where C > 0 is a large enough constant, and

(2.29) ∀t ∈ [0, t * ], B k1 (t)ε(t) = B k2 (t)ε(t) = R l (t)ε(t) = R l x (t)ε(t) = 0, then (2.30) ∀t ∈ [0, t * ], ∥ε(t)∥ H 2 ≤ A 2 a + e -θD , (2.31) ∀t ∈ [0, t * ], |c l (t) -c 0 l | ≤ A 2 a + e -θD .
Remark 2.4. We will use generalized notations for x 1,k (t), x 2,k (t), c l (t) and x 0,l (t).

For j = 1, ..., J, either if P j = R l is a soliton, we denote

x * 1,j (t) := c l (t), x * 2,j (t) := x 0,l (t), (2.32) or if P j = B k is a breather, we denote x * 1,j (t) := x 1,k (t), x * 2,j := x 2,k (t). (2.33)
We denote

P(t) := J ∑ j=1 P j (t) = K ∑ k=1 B k (t) + L ∑ l=1 R l (t). (2.34)
Remark 2.5. We note that, for any j = 1, ..., J -1, (2.24) and (2.27), assuming that a 0 is chosen small enough and D 0 is chosen large enough, imply that

x j+1 (0) -x j (0) ≥ D. (2.35)
From definitions of x j (t), of τ and (2.28), assuming that a 0 is chosen small enough and D 0 is chosen large enough, we deduce that for any t ∈ [0, t * ],

∀1 ≤ j ≤ J -1, x j+1 ′ (t) -x j ′ (t) ≥ τ 2 , (2.36) and (2.37) ∀2 ≤ j ≤ J, v 2 2 ≤ x j ′ (t) ≤ 2v J .
From (2.35) and (2.36), we may deduce that for any t ∈ [0, t * ],

∀1 ≤ j ≤ J, x j+1 (t) -x j (t) ≥ D + τ 2 t. (2.38)
The proof of this proposition will be the goal of the following. The proof of Theorem 1.1 then follows from a continuity argument.

Proof of Theorem 1.1 assuming Proposition 2.3. We take A, θ, D 0 , a 0 that work for Proposition 2.3, we will show that they will also work for Theorem 1.1. We take D ≥ D 0 and 0 ≤ a ≤ a 0 and we assume that (1.22) is true for a solution u of (mKdV). This implies (2.24).

We assume that a 0 is small enough and

D 0 is large enough such that A a + e -θD ≤ min{ τ 8 } ∪ { c 0 p 4 , 1 ≤ p ≤ L}. Because A C 2 > 1, by continuity, there exists t 1 > 0 such that (2.39) ∀t ∈ [0, t 1 ], ∥u(t) -P(t)∥ H 2 ≤ A C 2 a + e -θD .
Of course, we have that

(2.40) ∀t ∈ [0, t 1 ], x j (t) -x j-1 (t) ≥ 2D + τt.
We apply Lemma 2.1 on [0, t 1 ] with A ′ = A C 2 . We take D 0 larger and a 0 smaller if needed. So, there exist

C 1 functions x 1,k (t), x 2,k (t), c l (t), x 0,l (t) ∈ R with c l (t) > 0 defined for t ∈ [0, t 1 ], such that if we set (2.41) ε(t) := u(t) -P(t),
with the same notations as usual, we have that

(2.42) ∀t ∈ [0, t 1 ], ∥ε(t)∥ H 2 ≤ A a + e -θD , ∥ε(0)∥ H 2 ≤ C 2 a, (2.43) ∀t ∈ [0, t 1 ], |c l (t) -c 0 l | ≤ A a + e -θD , |c l (0) -c 0 l | ≤ C 2 a, (2.44) L ∑ l=1 |x 0,l (0) + x 0 0,l | + K ∑ k=1 |x 1,k (0) -x 0 1,k | + |x 2,k (0) -x 0 2,k | ≤ Ca, (2.45) ∀t ∈ [0, t 1 ], L ∑ l=1 |c ′ l (t)| + |x ′ 0,l (t)| + K ∑ k=1 |x ′ 1,k (t)| + |x ′ 2,k (t)| ≤ CA(a + e -θD ),
if θ > 0 is chosen small enough, and

(2.46) ∀t ∈ [0, t 1 ], B k1 (t)ε(t) = B k2 (t)ε(t) = R l (t)ε(t) = R l x (t)ε(t) = 0.
Remember In order to make the definition above licit, we need to point out the following fact: by uniqueness in Lemma 2.1, we find that if we have two extensions on I 2 and I 3 , then we find that those extensions coincide on I 2 ∩ I 3 (we remind that [0, t 1 ] ⊂ I 2 ∩ I 3 ). This is why, if we have suitable extensions on I 2 and I 3 , then we have a suitable extension on I 2 ∪ I 3 . And, the supremum I * is simply the union of all the possible extensions I ′ and the implicit functions may be extended on I * . When (2.24), (2.25), (2.26), (2.27), (2.28) and (2.29) are true for x 1,k (t), x 2,k (t), c l (t), x 0,l (t) with I = [0, t 2 ] ⊂ I * (where t 2 ≥ t 1 ), we may extend these implicit functions a bit further (in a random way, that we denote y 1,k (t), y 2,k (t), y 3,l (t) and y 0,l (t), and we denote y j their positions) and have (2.24), (2.25), (2.26), (2.27), (2.28) and (2.29) that are still satisfied, but on the extended interval. The extended interval will be an interval of the form [0, t ′ 2 ], where t ′ 2 > t 2 . We do it in the following way. First, we apply Proposition 2.3 on I, and that makes (2.25) and (2.26) a bit improved on I and become (2.30) and (2.31) on I. And so, (2.25) and (2.26) are satisfied on an extension of I. After application of Lemma 2.1 with A ′ = A (where the notation A ′ is from Lemma 2.1), that we may apply thanks to (2.38) (more precisely, from Remark 2.5, (2.38) is satisfied on I, from what for any 1 ≤ j ≤ J -1, y j+1 (t)y j (t) ≥ D is true on an extension of I) we see that (2.29) can be also extended (after modification of the implicit functions on the extension of I: we now denote them x 1,k (t), x 2,k (t), x 3,l (t) and x 0,l (t), as they coincide with implicit functions given at the beginning of this paragraph on I from uniqueness in Lemma 2.1). Note that after this modification, it is needed to reconsider all the previous sentences of this paragraph, in order to take a smaller extension if needed and have (2.25) and (2.26) satisfied. Because of Remark 2.5, (2.38) is satisfied on I, this is why for any 1 ≤ j ≤ J -1, x j+1 (t)x j (t) ≥ D is satisfied on an extension of I (eventually smaller, but of the form [0, t ′ 2 ] as specified at the beginning of the paragraph). This is why, we may apply consequences (2.16) and (2.17) of Lemma 2.1 and obtain that (2.28) is also satisfied on this extension of I. Thus, we may find an extension [0, t We deduce that the interval I * is necesseraly an open subset of R + . Let us prove that I * is also a closed subset of R + . This will allow us to conclude that

I * = R + . If I * is not closed, then it is [0, t 2 )
, where t 2 > 0. Let (T n ) be a sequence of points of I * that converges to t 2 . Then, (x 1,k (T n )), (x 2,k (T n )), (c l (T n )) and (x 0,l (T n )) are Cauchy sequences because of (2.28). Thus, they converge and x 1,k (t), x 2,k (t), c l (t) and x 0,l (t) may be extended continuously in t = t 2 . By continuity, it is clear that (2.25), (2.26), (2.29) and (2.38) are still satisfied in t = t 2 . This is why, we may apply Lemma 2.1 on [0, t 2 ]. From uniqueness in Lemma 2.1, we find that x 1,k (t), x 2,k (t), c l (t) and x 0,l (t) are C 1 on [0, t 2 ]. Thus, (2.28) is also satisfied in t = t 2 . That contradicts the maximality of I * . Thus, I * is closed in R + .

So, we deduce that we have C 1 functions x 1,k (t), x 2,k (t), c l (t), x 0,l (t) defined for any t ≥ 0 such that,

(2.47) ∀t ≥ 0, ∥ε(t)∥ H 2 ≤ A a + e -θD , (2.48) ∀t ≥ 0, |c l (t) -c 0 l | ≤ A a + e -θD , (2.49) ∀t ≥ 0, L ∑ l=1 |c ′ l (t)| + |x ′ 0,l (t)| + K ∑ k=1 |x ′ 1,k (t)| + |x ′ 2,k (t)| ≤ CA(a + e -θD ),
where C > 0 is a large enough constant, and

(2.50) ∀t ≥ 0, B k1 (t)ε(t) = B k2 (t)ε(t) = R l (t)ε(t) = R l x (t)ε(t) = 0.
And we set (2.51)

w(t) := u(t) - L ∑ l=1 κ l Q c 0 l (• + x 0,l (t) -c 0 l t) - K ∑ k=1 B α k ,β k (t, •; x 1,k (t), x 2,k (t)).
We need to bound w to finish the proof. For t ≥ 0, we use triangular inequality and we bound the norm between two ground states centered at a same point,

∥w(t)∥ H 2 ≤ ∥ε(t)∥ H 2 + L ∑ l=1 Q c l (t) -Q c 0 l H 2 ≤ ∥ε(t)∥ H 2 + C L ∑ l=1 |c l (t) -c 0 l | ≤ CA a + e -θD , (2.52)
and this is exactly what we wanted to prove. Moreover (1.24) is a straightforward consequence of (2.49).

□

Hence, we are left to prove Proposition 2.3.

2.4.

Proof by induction. We will prove Proposition 2.3 by induction. More precisely, we want to find A > C 2 , θ, D 0 , a 0 so that the Proposition 2.3 holds for any t * > 0.

We assume that there exists functions x 1,k (t), x 2,k (t), c l (t), x 0,l (t) ∈ R defined for t ∈ [0, t * ] such that, with notations of Proposition 2.3, We define the average between positions of two consecutive objects. For j = 3, ..., J, we set

(2.53) ∀t ∈ [0, t * ], ∥ε(t)∥ H 2 ≤ A(a + e -θD ), ∥ε(0)∥ H 2 ≤ C 2 a, (2.54) ∀t ∈ [0, t * ], |c l (t) -c 0 l | ≤ A(a + e -θD ) ≤ min τ 8 ∪ c 0 p 4 , 0 ≤ p ≤ L , |c l (0) -c 0 l | ≤ C 2 a, (2.55) ∀t ∈ [0, t * ], L ∑ l=1 |c ′ l (t)| + |x ′ 0,l (t)| + K ∑ k=1 |x ′ 1,k (t)| + |x ′ 2,k (t)| ≤ CA(a + e -θD ), (2.56) ∀t ∈ [0, t * ], B k1 (t)ε(t) = B k2 (t)ε(t) = R l (t)ε(t) = R l x (t)ε(t) = 0,
(2.57) ∀t ∈ [0, t * ], m j (t) := x j-1 (t) + x j (t) 2 ,
and we set

(2.58) ∀t ∈ [0, t * ], m 2 (t) := x 1 (0) + x 2 (0) 2 + t 0 max x 1 ′ (s) + x 2 ′ (s) 2 , x 2 ′ (s) 2 ds.
With these definitions, we make sure that for any j = 2, ..., J, m ′ j (t) > 0, even if v 1 < 0. By (2.36), for j ≥ 3,

(2.59) ∀t ∈ [0, t * ], x j ′ (t) -m ′ j (t) ≥ τ 4 , m ′ j (t) -x j-1 ′ (t) ≥ τ 4 ,
and for j = 2, we have

(2.60) ∀t ∈ [0, t * ], m ′ 2 (t) = max x 1 ′ (t) + x 2 ′ (t) 2 , x 2 ′ (t) 2 ,
and so,

(2.61) ∀t ∈ [0, t * ], m ′ 2 (t) -x 1 ′ (t) ≥ τ 4 , x 2 ′ (t) -m ′ 2 (t) ≥ min v 2 4 , τ 4 . 
This is why, we set

(2.62) ζ := min v 2 4 , τ 4 , 
a constant that depends only on problem data, and so for any j ≥ 2,

(2.63) ∀t ∈ [0, t * ], x j ′ (t) -m ′ j (t) ≥ ζ, m ′ j (t) -x j-1 ′ (t) ≥ ζ.
The latter implies that ∀j ≥ 2, ∀t ∈ [0, t * ], x j-1 (t) < m j (t) < x j (t), and we may deduce by integration and by (2.38) and (2.63) that

x j (t) -m j (t) = x j (0) -m j (0) + t 0 x j ′ (s) -m ′ j (s) ds = x j (0) -x j-1 (0) 2 + t 0 x j ′ (s) -m ′ j (s) ds ≥ D 2 + ζt, (2.64)
and similarly, (2.65)

m j (t) -x j-1 (t) ≥ D 2 + ζt.
We have that (the m j are chosen for that) for any j ≥ 2,

(2.66) ∀t ∈ [0, t * ], 2v J ≥ x J ′ (t) ≥ m ′ j (t) ≥ v 2 4 ≥ ζ.
We will reason by induction in order to improve (2.53) and (2.54). For this, we introduce a cut-off function.

Let σ > 0 be a constant small enough for which the conditions will be fixed in the following of the proof.

We denote:

( 

+∞ Ψ = 1, lim -∞ Ψ = 0, for all x ∈ R Ψ(-x) + Ψ(x) = 1, Ψ ′ (x) > 0, |Ψ ′′ (x)| ≤ √ σ 2 |Ψ ′ (x)|, |Ψ ′′′ (x)| ≤ √ σ 2 |Ψ ′′ (x)|, |Ψ ′ (x)| ≤ √ σ 2 Ψ and |Ψ ′ (x)| ≤ √ σ 2 (1 -Ψ).
We define cut-off functions filtering P j and all the objects faster than P j : for j = 2, ..., J, (2.70) Φ j (t, x) := Ψ(xm j (t)).

We have:

(2.71) Φ j t = -m ′ j Φ j x . We may extend this definition to j = 1 and j = J + 1 in the following way: Φ 1 := 1 and Φ J+1 := 0.

In order to prove Proposition 2.3 by induction, we will find an increasing sequence (Z j ) j=1,...,J+1 such that Z 1 := 2 and Z J+1 := +∞ and such that we will be able to prove the following proposition for any j = 1, ..., J. The goal is to obtain inequalities of Proposition 2.3 with better constants. So, in order to achieve this, we do the following induction: we suppose that localized inequalities around P j+1 , ..., P J are obtained with strongly improved constants (constants divided by Z j+1 ), and we deduce from them localized inequalities around P j , ..., P J with improved constants, but a little bit less improved than earlier (constants divided by Z j ). We will also assume the bootstrap assumption. This induction is sufficient, because it starts from an assumption on an empty set of objects and ends with a conclusion with inequalities localized around all the objects, i.e. global (not localized at all). Proposition 2.6. Assuming that

(2.72) ∀t ∈ [0, t * ], ε 2 + ε 2 x + ε 2 xx Φ j+1 ≤ A Z j+1 2 a 2 + e -2θD ,
and for any j ′ ≥ j + 1 such that P j ′ = R l is a soliton,

(2.73) ∀t ∈ [0, t * ], |c l (t) -c l (0)| ≤ A Z j+1 2 a 2 + e -2θD ,
and for any j ′ ≥ j + 1 such that P j ′ is a breather,

(2.74) ∀t ∈ [0, t * ], P j ′ ε(t) -P j ′ ε(0) ≤ A Z j+1 2 a 2 + e -2θD , and 
(2.75) ∀t ∈ [0, t * ], P j ′ xx + P j ′ 3 ε(t) - P j ′ xx + P j ′ 3 ε(0) ≤ A Z j+1 2 a 2 + e -2θD ,
we have that

(2.76) ∀t ∈ [0, t * ], ε 2 + ε 2 x + ε 2 xx Φ j ≤ A Z j 2 a 2 + e -2θD ,
and if P j = R l is a soliton,

(2.77) ∀t ∈ [0, t * ], |c l (t) -c l (0)| ≤ A Z j 2 a 2 + e -2θD ,
and if P j is a breather,

(2.78) ∀t ∈ [0, t * ], P j ε(t) -P j ε(0) ≤ A Z j 2 a 2 + e -2θD , and 
(2.79) ∀t ∈ [0, t * ], P j xx + P j 3 ε(t) - P j xx + P j 3 ε(0) ≤ A Z j 2 a 2 + e -2θD .
Remark 2.7. For j = 1, ..., J, we may denote by P j the following assertion: (2.76), (2.77), (2.78) and (2.79). The Proposition 2.6 may be reformulated in the following way: There exists an increasing sequence (Z j ) j=1,...,J+1 with Z 1 = 2 and Z J+1 = +∞, A large enough and θ > 0 such that for D 0 large enough and for a 0 small enough, we have the following: for any j = 1, ..., J, because of the elliptic equation verified by P j , which, in the case when P j = B k is a breather is the following:

(
(2.82)

B k xxxx + 5 B k B k 2 x + 5 B k 2 B k xx + 3 2 B k 5 -2 β 2 k -α 2 k B k xx + B k 3 + α 2 k + β 2 k 2 B k = 0.
But the inequality (2.81) is also true in the case when P j = R l is a soliton, because we have even better in this case. There are two elliptic equations [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF]:

(2.83) R l xxxx + 5 R l R l 2 x + 5 R l 2 R l xx + 3 2 R l 5 -2c l (t) R l xx + R l 3 + c l (t) 2 R l = 0, and 
(2.84) R l xx + R l 3 -c l (t) R l = 0, which implies that (2.56) implies (2.85) R l xx + R l 3 ε = 0, and 
(2.86) R l xxxx + 5 R l R l 2 x + 5 R l 2 R l xx + 3 2 R l 5 ε = 0,
which implies of course the inequality (2.81).

The proof of Proposition 2.6 will be the goal of the Section 3. The proof of Proposition 2.3 follows from it.

Proof of Proposition 2.3 assuming Proposition 2.6. We perform the induction in the decreasing order: j = J, J -1, ..., 2, 1. P J+1 is empty, and Proposition 2.6 gives the (decreasing) induction step. Hence, P 1 , . . . , P J are true. Due to P 1 :

(2.87) ∀t ∈ [0, t * ], ∥ε(t)∥ H 2 ≤ A 2 a + e -θD .
For l = 1, ..., L, we have from P 1 that for any t ∈ [0, t * ],

|c l (t) -c 0 l | ≤ |c l (t) -c l (0)| + |c l (0) -c 0 l | ≤ A 2 2 a 2 + e -2θD + C 2 a ≤ A 2 2
a + e -θD + C 2 a + e -θD . (2.88) If we take A large enough with respect to C 2 , and a 0 smaller and D 0 larger if needed with respect to A and θ, then

(2.89) A 2 2 a + e -θD + C 2 ≤ A 2 ,
and that concludes the proof of Proposition 2.3. □

Hence, we are left to prove Proposition 2.6. We will write the proof for a fixed j ∈ {1, ..., J}. We assume P j+1 with a set of constants Z 1 , ..., Z J+1 , A, θ, D 0 , a 0 . We will establish some conditions for these constants during the proof.

Orbital stability of a sum of solitons and breathers in H 2 (R)

In this Section, we prove Proposition 2.6. We assume P j+1 and we prove P j .

3.1. Almost decay of conservation laws at the right. We localize around the most right objects, starting from and including the j-th. We set:

(3.1) M j (t) := 1 2 u 2 (t)Φ j (t) =: M j [u](t), (3.2) E j (t) := 1 2 u 2 x - 1 4 u 4 Φ j (t) =: E j [u](t), (3.3) F j (t) := 1 2 u 2 xx - 5 2 u 2 u 2 x + 1 4 u 6 Φ j (t) =: F j [u](t). Lemma 3.1. Let 0 < ω 1 , ω 2 < 1. If 0 < σ < ζ, 0 < θ < √ σ
16 , D 0 is large enough and a 0 is small enough (depending on A, θ, ω 1 and ω 2 ), then for any t ∈ [0, t * ],

(3.4) M j (t) -M j (0) ≤ Ce -2θD , (3.5) E j (t) + ω 1 M j (t) -E j (0) + ω 1 M j (0) ≤ Ce -2θD , (3.6) F j (t) + ω 2 M j (t) -F j (0) + ω 2 M j (0) ≤ Ce -2θD .
Remark 3.2. If j = 1, we have = 0 at the place of ≤ Ce -2θD , we will need it in the following of the proof.

Proof. If j = 1, we have exact conservation laws, so this Lemma is obvious. We assume that j ≥ 2 for the following of this proof. From Appendix and minoration of m

′ j , d dt M j (t) = - 3 2 u 2 x + 3 4 u 4 Φ jx + 1 2 u 2 Φ jxxx + 1 2 u 2 Φ jt = - 3 2 u 2 x + 3 4 u 4 Φ jx + 1 2 u 2 Φ jxxx - 1 2 m ′ j u 2 Φ jx ≤ - 3 2 u 2 x + 3 4 u 4 - 1 2 σu 2 Φ jx + 1 2 u 2 Φ jxxx . (3.7)
Now, we use that Φ jxxx ≤ σ 4 Φ jx , and we obtain that

(3.8) 2 d dt M j (t) ≤ - -3u 2 x + 3σ 4 u 2 - 3 2 u 4 Φ jx .
Now, from Appendix, we know that for r > 0, if t, x satisfy x j-1 (t) + r < x < x j (t)r, then P(t, x) ≤ Ce -βr . And so, for t, x such that x j-1 (t) + r < x < x j (t)r, by Sobolev embedding,

|u(t, x)| ≤ P(t, x) + C∥ε(t)∥ H 2 ≤ Ce -βr + CA a + e -θD . (3.9)
From that, we can deduce that for r large enough, a 0 small enough and D 0 large enough, for x ∈ [ x j-1 (t) + r, x j (t)r], we can obtain that |u(t, x)| is bounded by any chosen constant. Here, we will use that to bound 3 2 u 2 by σ 4 . For t, x such that x < x j-1 (t) + r or x > x j (t)r:

Φ jx (t, x) ≤ C exp - √ σ 2 x -m j (t) ≤ C exp - √ σ 2 D 2 + ζt -r ≤ C exp - √ σζ 2 t exp - √ σ 4 D exp √ σ 2 r , (3.10)
and so, if we choose D 0 large enough (more precisely, D 0 ≥ 4r), we obtain for x / ∈ [ x j-1 (t) + r, x j (t)r]:

(3.11) Φ jx (t, x) ≤ C exp - √ σζ 2 t exp - √ σ 8 D .
Because u 4 is bounded by a constant for any time (that depends only on problem data), we deduce that:

d dt M j (t) ≤ - 3 2 u 2 x + σ 4 u 2 Φ jx (t) + C exp - √ σζ 2 t exp - √ σ 8 D ≤ C exp - √ σζ 2 t exp - √ σ 8 D . (3.12)
We deduce what we want to prove by integration. For the second inequality, the argument is similar. We start by using Appendix:

d dt E j (t) = - 1 2 u xx + u 3 2 -u 2 xx + 3u 2 u 2 x Φ jx + 1 2 u 2 x Φ jxxx -m ′ j 1 2 u 2 x - 1 4 u 4 Φ jx ≤ - 1 2 u xx + u 3 2 + u 2 xx -3u 2 u 2 x + σ 2 u 2 x - v J 2 u 4 Φ jx + 1 2 u 2 x Φ jxxx , (3.13)
and again, because Φ jxxx ≤ σ 4 Φ jx , we obtain that

(3.14) 2 d dt E j (t) ≤ - u xx + u 3 2 + 2u 2 xx -6u 2 u 2 x + 3σ 4 u 2 x -v J u 4 Φ jx ,
and by doing a similar argument as for the mass, but to bound 6u 2 by σ 4 and to bound v J u 2 by ω 3 > 0, a constant as small as we need, we obtain

d dt E j (t) ≤ - 1 2 u xx + u 3 2 + u 2 xx + σ 4 u 2 x - ω 3 2 u 2 Φ jx + C exp - √ σζ 2 t exp - √ σ 8 D ≤ ω 3 2 u 2 Φ jx + C exp - √ σζ 2 t exp - √ σ 8 D , (3.15)
and so, if we choose ω 3 such that

ω 3 2 ≤ ω 1 σ 4 , d dt E j (t) + ω 1 M j (t) ≤ ω 3 2 u 2 Φ jx + C exp - √ σζ 2 t exp - √ σ 8 D - ω 1 σ 4 u 2 Φ jx ≤ C exp - √ σζ 2 t exp - √ σ 8 D , (3.16) 
and we deduce what we want to prove by integration.

For the third inequality, the argument is similar. We start by using Appendix: and again, because

d dt F j (t) = - 3 2 u 2 xxx + 9u 2 xx u 2 + 15u 2 x uu xx + 9 16 u 8 + 1 4 u 4 x + 3 2 u xx u 5 - 45 4 u 4 u 2 x Φ jx + 5 u 2 u x u xx Φ jxx + 1 2 u 2 xx Φ jxxx -m ′ j 1 2 u 2 xx - 5 2 u 2 u 2 x + 1 4 u 6 Φ jx ≤ - 3 2 u 2 xxx -9u 2 xx u 2 -15u 2 x uu xx - 9 16 u 8 - 1 4 u 4 x - 3 2 u xx u 5 + 45 4 u 4 u 2 x + σ 2 u 2 xx -5v J u 2 u 2 x + σ 4 u 6 Φ jx + 5 u 2 u x u xx Φ jxx + 1 2 u 2 xx Φ jxxx , (3.
Φ jxx ≤ √ σ 2 Φ jx and Φ jxxx ≤ σ 4 Φ jx , we obtain that 2 d dt F j (t) ≤ - 3u 2 xxx -18 + 5 2 √ σ u 2 xx u 2 -30u 2 x uu xx - 9 8 u 8 - 1 2 u 4 x -3u xx u 5 + 45 2 u 4 u 2 x + 3σ 4 u 2 xx -10v J + 5 2 √ σ u 2 u 2 x + σ 2 u 6 Φ jx , (3.18) 
and by doing a similar argument as for the mass, but to bound 18 + 5 2 √ σ u 2 by σ 4 , to bound 30uu xx by ω 4 , to bound 9 8 u 6 by ω 5 , to bound 1 2 u 2

x by ω 4 , to bound 3u xx u 3 by ω 5 and to bound 10v J + 5 2 √ σ u 2 by ω 4 , where ω 3 , ω 4 > 0 are constants that we can choose as small as we want. And we obtain

d dt F j (t) ≤ - 3 2 u 2 xxx + 45 4 u 4 u 2 x + σ 4 u 6 + σ 4 u 2 xx -Cω 4 u 2 x -Cω 5 u 2 Φ jx + C exp - √ σζ 2 t exp - √ σ 8 D ≤ Cω 4 u 2 x Φ jx + Cω 5 u 2 Φ jx + C exp - √ σζ 2 t exp - √ σ 8 D , (3.19) 
and so, if we choose ω 4 , ω 5 such that

Cω 4 ≤ ω 1 3 2 and Cω 5 ≤ ω 1 σ 4 , (3.20) d dt F j (t) + ω 2 M j (t) ≤ C exp - √ σζ 2 t exp - √ σ 8 D ,
and we deduce what we want to prove by integration. □ 3.2. Quadratic approximation for conservation laws at the right. We can write the following Taylor expansions with u = P + ε for any t ∈ [0, t * ]:

(3.21) M j (t) -M j [ P](t) -PεΦ j - 1 2 ε 2 Φ j = 0, (3.22) 
E j (t) -E j [ P](t) - P x ε x -P 3 ε Φ j - 1 2 ε 2 x - 3 2 P 2 ε 2 Φ j ≤ CA a + e -θD ε 2 Φ j , F j (t) -F j [ P](t) - P xx ε xx -5 P P 2 x ε -5 P 2 P x ε x + 3 2 P 5 ε Φ j (3.23) 
- 1 2 ε 2 xx - 5 2 P 2 x ε 2 -10 P P x εε x - 5 2 P 2 ε 2 x + 15 4 P 4 ε 2 Φ j ≤ CA a + e -θD ε 2 + ε 2 x Φ j .
Now, we want to simplify each term of the Taylor expansion.

3.2.1. Constant terms of the Taylor expansion. We obtain the following lemma dealing with variations of the constant parts of each Taylor expansion of conservation laws at the right. We reduce each variation to the variation of each conservation law of P j . Note that if P j is a breather, the variation of any conservation law of P j is 0. But, if P j = R l , we may express in the following way

M[ R l ], E[ R l ]
and F[ R l ] with respect to Q, the ground state of parameter c = 1 (the basic ground state):

(3.24) M[ R l ](t) = c l (t) 1/2 M[Q], (3.25 
) E[ R l ](t) = c l (t) 3/2 E[Q], (3.26) 
F[ R l ](t) = c l (t) 5/2 F[Q]. Lemma 3.3. If σ < 4β 2 , θ < min β 4 , √ σ 8 , then for any t ∈ [0, t * ], (3.27 
) M j [ P](t) -M j [ P](0) -M[ P j ](t) -M[ P j ](0) ≤ Ce -2θD + C A Z j+1 2 a 2 + e -2θD , (3.28) 
E j [ P](t) -E j [ P](0) -E[ P j ](t) -E[ P j ](0) ≤ Ce -2θD + C A Z j+1 2 a 2 + e -2θD , (3.29) 
F j [ P](t) -F j [ P](0) -F[ P j ](t) -F[ P j ](0) ≤ Ce -2θD + C A Z j+1 2 a 2 + e -2θD .
Remark 3.4. In the case when P j is a breather, we have that

(3.30) M[ P j ](t) -M[ P j ](0) = E[ P j ](t) -E[ P j ](0) = F[ P j ](t) -F[ P j ](0) = 0.
It is not true in the case when P j is a soliton.

Proof. When we develop using P = ∑ J i=1 P i , we obtain terms with P i P j with i ̸ = j and the other terms that have all the same index. For the first type of terms, it is enough to bound P i P j for i ̸ = j:

(3.31)

P i P j ≤ Ce -βD 2 .
Now, we look on the terms with the same index, for example P i 2 Φ j . We will distinguish several cases. If i < j,

P i 2 Φ j ≤ C e -2β|x-x i (t)| e √ σ 2 (x-mj(t)) dx = C x i (t) -∞ e (2β+ √ σ/2)x-2β x i (t)- √ σ 2 m j (t) dx + C +∞ x i (t)
e (-2β+

√ σ/2)x+2β x i (t)- √ σ 2 m j (t) dx ≤ C √ σ e √ σ 2 ( x i (t)-m j (t)) ≤ Ce - √ σD 4 . (3.32)
For the same reason and properties of Ψ, for i ≥ j,

(3.33) P i 2 1 -Φ j ≤ Ce - √ σD 4 .
For i > j, we may use P i ; and for i = j, we cannot. So, if for i ≥ j + 1, P i = R l is a soliton, we have by the mean-value theorem, using (2.73),

M[ P i ](t) -M[ P i ](0) = c l (t) 1/2 -c l (0) 1/2 |M[Q]| ≤ C |c l (t) -c l (0)| ≤ C A Z j+1 2 a 2 + e -2θD , (3.34) 
and, by the same way, we may obtain, (3.35)

E[ P i ](t) -E[ P i ](0) ≤ C A Z j+1 2 a 2 + e -2θD , and (3.36) 
F[ P i ](t) -F[ P i ](0) ≤ C A Z j+1 2 a 2 + e -2θD . □ 3.2.2.
Linear terms of the Taylor expansion. We denote: 

(3.37) m[X] := Xε, (3.38) m j [X] := XεΦ j , (3.39) e[X] := X x ε x -X 3 ε = - X xx + X 3 ε, (3.40) e j [X] := X x ε x -X 3 ε Φ j , (3.41) f [X] := X xx ε xx -5XX 2 x ε -5X 2 X x ε x + 3 2 X 5 ε = X xxxx + 5XX 2 x + 5X 2 X xx + 3 2 X 5 ε, (3.42) f j [X] := X xx ε xx -5XX 2 x ε -5X 2 X x ε x + 3 2 X 5 ε Φ j . Lemma 3.5. If σ < β 2 ,
f j [ P](t) -f j [ P](0) -f [ P j ](t) -f [ P j ](0) ≤ Ce -2θD + C A Z j+1 2 a 2 + e -2θD .
Proof. We develop using P = ∑ J i=1 P i . We obtain terms with P i P j with i ̸ = j and the other terms that have all the same index. Knowing that ε bounded for D 0 large enough and a 0 small enough (with respect to A), we obtain the same bounds in the same way as for the constant part. Now, if, for i ≥ j + 1, P i is a soliton, then we have simply:

m[ P i ] = e[ P i ] = f [ P i ] = 0.
If, for i ≥ j + 1, P i is a breather, we have a bound for the variation of these quantities by P i . □ 3.2.3. Quadratic part of the Taylor expansion. We set: 

(3.46) M j [X] := 1 2 ε 2 Φ j , (3.47) E j [X] := 1 2 ε 2 x - 3 2 X 2 ε 2 Φ j , (3.48) F j [X] := 1 2 ε 2 xx - 5 2 X 2 x ε 2 -10XX x εε x - 5 2 X 2 ε 2 x + 15 4 X 4 ε 2 Φ j ,
F j [ P](t) -F j [ P j ](t) ≤ Ce -2θD + C A Z j+1 2 a 2 + e -2θD .
Proof. We develop using P = ∑ J i=1 P i . For terms with P i , with i > j, we use the induction assumption for ε. For terms with P i , with i < j, we do as in the previous sections. □

Note that (3.49) is useless, because M j [ P](t) -M j [ P j ](t) = 0 since M j [X] do not depend on X, but we write it in order to argue in the same way for the three conserved quantities.

+ c 0 l 5/2   1 + 1 2 c l (t) -c 0 l c 0 l - 1 8 c l (t) -c 0 l c 0 l 2   M[Q] (3.60) = c 0 l 5/2 (F[Q] + 2E[Q] + M[Q]) + c l (t) -c 0 l c 0 l 3/2 5 2 F[Q] + 3E[Q] + 1 2 M[Q] + c l (t) -c 0 l 2 c 0 l 1/2 15 8 F[Q] + 3 4 E[Q] - 1 8 M[Q] . Now, we use the fact that M[Q] = 2, E[Q] = -2 3 and F[Q] = 2 5
, and we obtain that the Taylor expression of order 2 is in fact: 

ε 2 + ε 2 x + ε 2 xx Φ j ≤ CQ(t) + C ε P j 2 + Ce -2θD .
Proof. We notice that

ε 2 + ε 2 x + ε 2 xx Φ j is ∥ε Φ j ∥ 2
H 2 modulo some terms that can be bounded by

C √ σ ε 2 + ε 2 x + ε 2 xx Φ j . (3.66)
This is why we will bound ∥ε Φ j ∥ 2 H 2 . We can bound it by the canonical quadratic form associated to P j and evaluated in ε Φ j , if ε Φ j satisfies quite well the orthogonality conditions, which is the case (see Sections 5.4 and (372) in [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF]).

So, we obtain that, if P j is a breather, the canonical quadratic form is Q(t) modulo (3.66), and we have

(3.67) ε 2 + ε 2 x + ε 2 xx Φ j ≤ CQ(t) + C ε Φ j P j 2 + C √ σ ε 2 + ε 2 x + ε 2 xx Φ j ,
which means that if σ is small enough, (3.68)

ε 2 + ε 2 x + ε 2 xx Φ j ≤ CQ(t) + C ε Φ j P j 2 ,
and we check that ε Φ j P j is ε P j modulo Ce -θD . So, (3.69)

ε 2 + ε 2 x + ε 2 xx Φ j ≤ CQ(t) + C ε P j 2 + Ce -2θD . If P j = R l is a soliton, the canonical quadratic form is, modulo C √ σ ε 2 + ε 2 x + ε 2 xx Φ j , (3.70) Q 0 (t) := F j [ R l ](t) + 2c l (t)E j [ R l ](t) + c l (t) 2 M j [ R l ](t).
This is why, for the same reasons as above, we have

(3.71) ε 2 + ε 2 x + ε 2 xx Φ j ≤ CQ 0 (t).
This is why, we need to be able to bound |Q 0 (t) -Q(t)|. We have

(3.72) Q 0 (t) -Q(t) = 2 c l (t) -c 0 l E j [ R l ](t) + 2c 0 l c l (t) -c 0 l M j [ R l ](t) + c l (t) -c 0 l 2 M j [ R l ](t),
and so, because M j and E j are quadratic in ε, we have that

(3.73) |Q 0 (t) -Q(t)| ≤ CA a + e -θD ε 2 + ε 2 x Φ j ,
and so, if we take a 0 small enough and D 0 large enough, we obtain , and that D 0 is large enough and a 0 is small enough (depending on A, θ), so that all the previous lemmas are verified.

(3.74) ε 2 + ε 2 x + ε 2 xx Φ j ≤ CQ(t). □ 3.
3.5.1. Case when P j is a soliton. Proof of (2.76). By Lemma 3.1 and the fact that b 2 ja 2 j > 0 for j ≥ 2 (which is a direct consequence of v 2 > 0), we have that, if j ≥ 2, for any t ∈ [0, t * ], 

(3.75) H j (t) -H j (0) ≤ Ce -2θD . ( 3 
Q(t) = Q(t) -Q(0) -H j (t) -H j (0) + H j (t) -H j (0) + Q(0) (3.76) ≤ Ce -2θD + C A Z j+1 2 a 2 + e -2θD + C∥ε(0)∥ 2 H 2 (3.77) ≤ C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD . (3.78)
And so, by (3.65) and (3.78), we have for any t ∈ [0, t * ],

ε 2 + ε 2 x + ε 2 xx Φ j ≤ CQ(t) + C ε P j 2 + Ce -2θD (3.79) ≤ C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD + C ε P j 2 . (3.80)
Because of (2.56) and P j is a soliton, we have that (3.81) ε P j = 0.

So, the proof of (2.76) is completed for a suitable constant Z j that will be precised later.

Proof of ( 

M j (0) -M j (t) = M j [ P](0) -M j [ P](t) + PεΦ j (0) -PεΦ j (t) + 1 2 ε 2 Φ j (0) - 1 2 ε 2 Φ j (t) (3.82) = c l (0) 1/2 -c l (t) 1/2 M[Q] + O a 2 + e -2θD + O A Z j+1 2 a 2 + e -2θD
E j (0) -E j (t) = c l (0) 3/2 -c l (t) 3/2 E[Q] + O a 2 + e -2θD + O A Z j+1 2 a 2 + e -2θD .
For η = 1 2 , 3 2 , because we know that c l (t) is not too far from c l (0) (and the both are not too far from c 0 l , by (2.54)), we can write for any t ∈ [0, t * ]:

(3.84) c l (t) η = (c l (0)) η 1 + η c l (t) -c l (0) c l (0) + O (c l (t) -c l (0)) 2 ,
and so for any t ∈ [0, t * ],

(3.85) c l (t) η -c l (0) η = ηc l (0) η-1 (c l (t) -c l (0)) + O (c l (t) -c l (0)) 2 ,
and if a 0 is small enough and D 0 is large enough, we have by (2.26), for any t ∈ [0, t * ]:

(3.86) O (c l (t) -c l (0)) 2 ≤ 1 2 ηc l (0) η-1 |c l (t) -c l (0)| . Thus, for any t ∈ [0, t * ], (3.87 
) 2ηc l (0) η-1 |c l (t) -c l (0)| ≥ |c l (t) η -c l (0) η | ≥ ηc l (0) η-1 2 |c l (t) -c l (0)| , where c l (0) η-1 is between min{ c 0 p 2 , 1 ≤ p ≤ L} η-1 and max 2c 0 p , 1 ≤ p ≤ L η-1
by (2.54), and so is bounded above and below by a constant that depends only on the shape parameters of the solitons. In order to bound |c l (t)c l (0)| for a given t ∈ [0, t * ], we will distinguish two cases. Case when c l (t)c l (0) ≥ 0. From (3.82) and (3.87) for η = 1 2 , we can say that

|c l (t) -c l (0)| ≤ C c l (t) 1/2 -c l (0) 1/2 (3.88) ≤ C M j (t) -M j (0) M[Q] + C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD . Now, M[Q] > 0 and from Lemma 3.1, (3.89) |c l (t) -c l (0)| ≤ C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD .
Thus, (2.77) is established for a suitable constant Z j that will be precised later. Case when c l (t)c l (0) ≤ 0. From (3.83) and (3.87) for η = 3 2 , we can say that

|c l (t) -c l (0)| ≤ C c l (0) 3/2 -c l (t) 3/2 (3.90) ≤ C E j (0) -E j (t) E[Q] + C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD .
Now, E[Q] < 0 and from Lemma 3.1, (3.82) and (3.87) for η = 1 2 ,

|c l (t) -c l (0)| ≤ Cω 1 M j (0) -M j (t) + C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD (3.91) ≤ Cω 1 c l (0) 1/2 -c l (t) 1/2 + C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD ≤ Cω 1 |c l (t) -c l (0)| + C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD ,
and so, by taking ω 1 small enough, we may deduce the desired inequality:

(3.92) |c l (t) -c l (0)| ≤ C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD .
Thus, (2.77) is established for a suitable constant Z j that will be precised later.

3.5.2. Case when P j is a breather. Preliminaries. By the same argument as in the case when P j is a soliton, we establish (3.80). However, we are not able to prove (2.76) immediately, because P j ε is not necessarily equal to 0 in the case when P j is a breather. From Lemma 3.5, (3.21), Lemma 3.3 and Remark 3.4, we have that for any t ∈ [0, t * ],

P j ε(t) -P j ε(0) = M j (t) -M j (0) - 1 2 ε 2 Φ j (t) + 1 2 ε 2 Φ j (0) + O e -2θD + O A Z j+1 2 a 2 + e -2θD . (3.93)
then we use (3.4) and (2.53) for ε(0), we have that for any t ∈ [0, t * ], 

P j ε(t) -P j ε(0) ≤ - 1 2 ε 2 Φ j (t) + 1 2 ε 2 Φ j (0) + O e -2θD + O A Z j+1 2 a 2 + e -2θD ≤ C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD . ( 3 
∈ [0, t * ], a 2 j + b 2 j 2 P j ε(0) -P j ε(t) = 2 b 2 j -a 2 j e[ P j ](t) -e[ P j ](0) + f [ P j ](t) -f [ P j ](0) = 2 b 2 j -a 2 j E j (t) -E j (0) -E j (t) + E j (0) + F j (t) -F j (0) -F j (t) + F j (0) + O e -2θD + O A Z j+1 2 a 2 + e -2θD . (3.95) Recall that if j ≥ 2, b 2 j -a 2 j > 0.
This is why, from Lemma 3.1 and (2.53) for ε(0), we have that, if j ≥ 2, for any t ∈ [0, t * ]: M j (0) -M j (t) = M j [ P](0) -M j [ P](t) + PεΦ j (0) -PεΦ j (t) + Proof of Theorem 1.3. Let A 0 > 0, θ 0 > 0, D 0 > 0 and a 0 > 0 from Theorem 1.1 (these constants do only depend on the shape/frequency parameters of our objects and not on their initial positions). Let η 0 > η > 0 with η 0 < a 0 2C 1 and C 1 defined in the following. Let a < a 0 and D > D 0 such that A 0 a + e -θ 0 D < 4A 0 C 1 η and a = 2C 1 η. We may take D even larger so that T * = 0 where T * is defined in [39, Let τ > 0 be the minimal difference between two velocities. Let p be the multi-breather associated to α k , β k , x 0 1,k , x 0 2,k , c 0 l , x 0 0,l by [39, Theorem 1.2] with notations as in (1.25) and P the corresponding sum with notations as in (1.26). We may choose T ⩾ 0 large enough such that (4.1) ∀t ≥ T, ∥p(t) -P(t)∥ H 2 ≤ a/2, which is possible from [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF], and such that (4.2) ∀j ≥ 2, x j (T)x j-1 (T) > 2D, which is possible because the distance between two objects is increasing with a speed that is at least τ.

P j ε(0) -P j ε(t) ≤ -2 b 2 j -a 2 j E j (t) -F j (t) a 2 j + b 2 j 2 + C a 2 + e -2θD + C A Z j+1 2 a 2 + e -2θD
By [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] we know that we have continuous dependence of the solution of (mKdV) with respect to the initial data. And so, there exists C 1 > 0 (that depends on T) such that if ∥u(0)p(0)∥ H 2 ≤ η and η 0 is small enough, then (4.3) ∀t ∈ [0, T], ∥u(t)p(t)∥ H 2 ≤ C 1 η.

Therefore, by triangular inequality, This means that the assumptions of Theorem 1.1 are all satisfied in T instead of 0. And so, this means that there exists x 0,l (t), x 1,k (t), x 2,k (t) defined for any t ≥ T such that (4.5) ∀t ≥ T, u(t) -P(t; α k , β k , x 1,k (t), x 2,k (t), κ l , c 0 l , x 0,l (t)) H 2 ≤ A 0 (a + e -θ 0 D ) < 4A 0 C 1 η.
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  )

  .94) Now, from (2.82), Lemma 3.5, (3.21), Lemma 3.3, Remark 3.4 and (2.25), we have for any t

+ 2 b 2 j -a 2 j ω 1 + ω 2 a 2 j + b 2 j 2 M

 222 j (0) -M j (t) . (3.96) (3.96) is also true if j = 1 because of Remark 3.2. And, from (3.21), Lemma 3.3, Remark 3.4, Lemma 3.5 and (2.53) for ε(0), we have for any t ∈ [0, t * ],

4. A consequence of Theorem 1 . 1 :

 11 orbital stability of a multi-breatherWe assume the Theorem 1.1 proved, let us prove Theorem 1.3.

  Theorem 1.2]. Let θ 1 associated to shape/frequency parameters α k , β k , κ l , c l 0 by [39, Theorem 1.2]. Let A 2 associated to D by [39, Theorem 1.2].

(4. 4 )

 4 ∥u(T) -P(T)∥ H 2 ≤ a = 2C 1 η.

  that (2.38) for any t ∈ [0, t 1 ] is a consequence of what is written above. Let I * ⊂ R + be the supremum of intervals I ′ ⊃ [0, t 1 ] for inclusion in the set of intervals of R + such that the C 1 functions x 1,k (t), x 2,k (t), c l (t), x 0,l (t) may be extended on I ′ and such that (2.24), (2.25), (2.26), (2.27), (2.28) and (2.29) are still satisfied for any t ∈ I ′ .

  ′ 2 ] (with t ′ 2 > t 2 ) of I and extensions of x 1,k (t), x 2,k (t), c l (t), x 0,l(t) on this extension such that (2.24) (2.25), (2.26), (2.27) (2.28) and (2.29) are satisfied.

  2.80) P j+1 =⇒ P j .

	Remark 2.8. Note that the inequalities (2.78) and (2.79) imply the following inequality for any t ∈
	[0, t * ] in the case when P j is a breather:							
			P j xxxx + 5 P j P j	2 x + 5 P j	2 P j xx +	3 2	P j	5	ε(t)
	(2.81)	-	P j xxxx + 5 P j P j	2 x + 5 P j	2 P j xx +	3 2	P j	5	ε(0) ≤ C	A Z j	2	a 2 + e -2θD ,

  θ < min β 4 , , if D 0 is large enough and a 0 is small enough, then for any t ∈ [0, t * ],(3.43) m j [ P](t)m j [ P](0)m[ P j ](t)m[ P j ](0) ≤ Ce -2θD + C

		√			
		σ			
		8 A Z j+1	2	a 2 + e -2θD ,
	(3.44)	e j [ P](t) -e j [ P](0) -e[ P j ](t) -e[ P j ](0) ≤ Ce -2θD + C	A Z j+1	2	a 2 + e -2θD ,
	(3.45)				

  and M j (t) := M j [ P](t), ...

			√		
	Lemma 3.6. If σ < β 2 , θ <	σ 8 , if D 0 is large enough and a 0 is small enough, then for any t ∈ [0, t * ],
	(3.49)	M j [ P](t) -M j [ P j ](t) ≤ Ce -2θD + C	A Z j+1	2	a 2 + e -2θD ,
	(3.50)	E j [ P](t) -E j [ P j ](t) ≤ Ce -2θD + C	A Z j+1	2	a 2 + e -2θD ,
	(3.51)				

  If P j is a breather, we have, by the elliptic equation verified by a breather, that L(t) = 0. If P j is a soliton, we have, by (2.56), (2.85) and (2.86), that L(t) = 0 (we have simply m[ P j ] = e[ P j ] = f [ P j ] = 0).□ If σ is small enough (with respect to constants that depend only on problem data), is large enough and a 0 is small enough, then for any t ∈ [0, t * ],

	Thus,							
	(3.62)	K(t) -	16 15	c 0 l	5/2 ≤ C	A Z j+1	2	a 2 + e -2θD ,
	and so,							
	(3.63)	|K(t) -K(0)| ≤ C	A Z j+1	2	a 2 + e -2θD .
	Simplification of L(t) -L(0):						
	3.4. Coercivity.							
	Lemma 3.8. θ < min (3.64)	β 4	,	√ 8 σ	,
	if D 0 (3.65)							

  [START_REF] Alejo | On the variational structure of breather solutions I: Sine-Gordon equation[END_REF]. Proof of P j . Now, we are left to prove P j . More precisely, if P j is a soliton, we will prove (2.76) and (2.77); if P j is a breather, we will prove (2.76), (2.78) and (2.79). We will distinguish several cases. We assume that σ ≤ min ζ, β 2 , θ ≤ min β 4 ,

	√
	σ
	16

  2.77). From (3.21), (3.24), (3.27), (3.43), (2.56) and (3.80), we have for any t ∈ [0, t

* ]:

  .

	Similarly, from (3.22), (3.25), (3.28), (3.44), (2.85) and (3.80), by taking a 0 smaller and D 0 larger with respect to A if needed, we have for any t ∈ [0, t * ]:
	(3.83)

  + e -2θD + P j ε(0) -P j ε(t) -M j (t).(3.97) And so, if we choose ω 1 and ω 2 small enough with respect to the problem constants, we obtain for any t ∈ [0, t * ]:P j ε(0) -P j ε(t) ≤ -2 b 2 ja 2 j ω 1 + ω 2 M j (t) -2 b 2 ja 2 j E j (t) -F j (t) Because M j (t) + E j (t) + F j (t) ≤ ε 2 + ε 2 x + ε 2 xx Φ j , we deduce that for any t ∈ [0, t * ],(3.99)P j ε(0) -P j ε(t) ≤ C ε 2 + ε 2 x + ε 2 xx Φ j + C a 2 + e -2θD + C + e -2θD .And so, by putting (3.94) and (3.99) together, we have that for any t ∈ [0, t * ]: (3.100)P j ε(0) -P j ε(t) ≤ C ε 2 + ε 2 x + ε 2 xx Φ j + C a 2 + e -2θD + CProof of (2.76). From (2.53), (3.100), we deduce for any t ∈ [0, t * ]:P j ε(t) ≤ P j ε(0) -P j ε(t) + P j ε(0) ≤ C ε 2 + ε 2 x + ε 2 xx Φ j + C a + e -2θD + C CA 2 a 2 + e -2θD + C a + e -2θD . (3.101)And so, if a 0 is small enough and D 0 is large enough, for any t ∈ [0, t * ], + e -2θD + C a 2 + e -2θD . This is why, from (3.80), for any t ∈ [0, t * ],(3.103) ε 2 + ε 2 x + ε 2 xx Φ j ≤ C a 2 + e -2θD + C + e -2θD , and (2.76) is established for a suitable constant Z j that will be precised later. Proof of (2.78). From (3.103) and (3.100), for any t ∈ [0, t * ]: + e -2θD + C a 2 + e -2θD . Thus, (2.78) is established for a suitable constant Z j that will be precised later. Proof of (2.79). From Lemma 3.5, (3.22), Lemma 3.3, Remark 3.4, (3.100) and (3.103), for any t ∈ [0, t * ], e[ P j ](t)e[ P j ](0) = E j (t) -E j (0) -E j (t) + E j (0) Now, from Lemma 3.1, for any t ∈ [0, t * ], (3.106) e[ P j ](t)e[ P j ](0) ≤ ω 1 M j (0) -M j (t) + O a 2 + e -2θD + O A Z j+1 2 a 2 + e -2θD. And from (3.97) and (3.104), for any t ∈ [0, t * ], (3.107) e[ P j ](t)e[ P j ](0) ≤ C A Z j+1 2 a 2 + e -2θD + C a 2 + e -2θD . To bound above e[ P j ](0)e[ P j ](t), we do as in (3.95), (3.96), (3.97), (3.98) and (3.99), but with the energy instead of the mass, and after using (3.103), we obtain for any t ∈ [0, t * ], + e -2θD + C a 2 + e -2θD . Thus, (2.79) is established for a suitable constant Z j that will be precised later. 3.6. Choice of suitable A and Z j . The induction holds if And, if C > 1, the induction holds. The proof of Proposition 2.6 is now complete.

	= O a 2 + e -2θD + O + C a 2 + e -2θD + C 2 A Z j+1 e[ P j ](t) -e[ P j ](0) ≤ C 2 A Z j+1 a 2 (3.109) a 2 a 2 j + b 2 j A Z j+1 2 a 2 + e -2θD . 2 (3.98) (3.108) C 1 + A Z j+1 2 ≤ 2 A Z j . We can set (3.110) A := √ 2 (2C) J 2 , and for 1 ≤ j ≤ J, j-1 Z j+1 A Z j+1 a 2 A 2 2 a 2 + e -2θD . (3.111) Z j := 2 (2C) 2 .
			A Z j+1	2	a 2 + e -2θD
	≤ (3.102) a 2 (3.104) P j ε(t) 2 ≤ C 2 A Z j+1 2 a 2 A Z j+1 P j ε(0) -P j ε(t) ≤ C 2 A Z j+1 a 2 + O e -2θD + O 2 A Z j+1 a 2 + e -2θD			
	(3.105)	= E j (t) -E j (0) + O a 2 + e -2θD + O	A Z j+1	2	a 2 + e -2θD	.
			1 2	ε 2 Φ j (0) -	1 2	ε 2 Φ j (t)
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We have the following:

√ σ 8 , if D 0 is large enough and a 0 is small enough, then for any t ∈ [0, t * ],

Proof 

Now, from the bootstrap assumption (2.25), we see that if we take D 0 large enough and a 0 small enough, then we can bound A a + e -θD

Now, we will simplify K(t) -K(0) and L(t) -L(0). Simplification of K(t) -K(0):

, this is why we want to do a Taylor expansion for each power function. We recall that by (2.54), for D 0 large enough and a 0 small enough (with respect

. This is why we may approximate K(t) by a Taylor expansion of order 2:

Now, we see that the assumptions of [39, Theorem 1.2, Remark 1.3] are all satisfied in any t ≥ T instead of 0 for the sum P(α k , β k , x 1,k (t), x 2,k (t), κ l , c 0 l , x 0,l (t)). Indeed, if we denote x j (t) the position of (4.6) P j (t; α k , β k , x 1,k (t), x 2,k (t), κ l , c 0 l , x 0,l (t)), we know from Remark 2.38 that for any t ≥ T and j ≥ 2, (4.7)

x j (t)x j-1 (t) ≥ D.

By taking T larger if needed, we may insure that e -θ 1 T < C 1 η. Therefore, for any t ≥ T,

And so, by triangular inequality,

The latter proves the Theorem for t ≥ T with C 0 = (4A 0 + A 2 )C 1 . For 0 ≤ t ≤ T, it is enough to use (4.3). □

Appendix: Equations for localized conservation laws Lemma 4.1. Let f be a C 3 function that do not depend on time and u a solution of (mKdV). Then, (4.9) d dt Proof. see the bottom of the page 1115 and the bottom of the page 1116 of [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] and Section 5.5 in [START_REF] Semenov | On the uniqueness of multi-breathers of the modified korteweg-de vries equation[END_REF]. □ Lemma 4.2. Let r > 0. If t, x satisfy x j-1 (t) + r < x < x j (t)r, then (4.12) P(t, x) ≤ Ce -βr .

Proof. immediate consequence of the exponential majoration of each object. □