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ORBITAL STABILITY OF A SUM OF SOLITONS AND BREATHERS OF THE MODIFIED
KORTEWEG-DE VRIES EQUATION

ALEXANDER SEMENOV

Abstract. In this article, we prove that a sum of solitons and breathers of the modified Korteweg-de
Vries equation (mKdV) is orbitally stable. The orbital stability is shown in H2. More precisely, we
will show that if a solution of (mKdV) is close enough to a sum of solitons and breathers with distinct
velocities at t = 0 in the H2 sense, then it stays close to this sum of solitons and breathers for any
time t ≥ 0 in the H2 sense, up to space translations for solitons or space and phase translations for
breathers, provided the condition that the considered solitons and breathers are sufficiently decoupled
from each other and that the velocities of the considered breathers are all positive, except possibly one.
The constants that appear in this stability result do not depend on translation parameters.

From this, we deduce the orbital stability of any multi-breather of (mKdV), provided the condition
that the velocities of the considered breathers are all positive, except possibly one (the condition about
the decoupling of the considered solitons and breathers between each other is not required in this
setting). The constants that appear in this stability result depend on translation parameters of the
considered solitons and breathers.

1. Introduction

1.1. Setting of the problem. We consider the modified Korteweg-de Vries equation:

(mKdV)

{
ut + (uxx + u3)x = 0, (t, x) ∈ R × R,

u(0, x) = u0(x), x ∈ R,

for u0 ∈ H2(R).
(mKdV) appears as a good approximation of some physical problems as ferromagnetic vortices

[44], fluid mechanics [22], electrodynamics [36], plasma physics [37, 9], etc.
The Cauchy problem for (mKdV) is locally well-posed in Hs for s > − 1

2 [21]. For s > 1
4 , the

Cauchy problem is globally well-posed [12]. In this paper, we will use only basic results about the
Cauchy problem: the fact that it is globally well-posed in H1 or H2.

Note that the set of solutions of (mKdV) is stable under space or time translations or under
reflexions with respect to the x-axis.

We have following conservation laws for a solution u(t) of (mKdV):

(1.1) M[u](t) :=
1
2

∫
u2(t, x)dx,

(1.2) E[u](t) :=
1
2

∫
u2

x(t, x)dx − 1
4

∫
u4(t, x)dx,

(1.3) F[u](t) :=
1
2

∫
u2

xx(t, x)dx − 5
2

∫
u2(t, x)u2

x(t, x)dx +
1
4

∫
u6(t, x)dx.

Note that (mKdV) has actually infinitely many conservation laws, because it is integrable, like
the original Korteweg-de Vries equation (KdV), which has quadratic nonlinearity [35, 1]. It is also a
special case of the generalized Korteweg-de Vries equation (gKdV) [28].

(gKdV) belongs to the family of nonlinear (focusing) dispersive equations. Other examples of
equations belonging to this family are the nonlinear Schrödinger equation (NLS) [32, 43, 42] and
the nonlinear Klein-Gordon equation (KG) [13, 14]. They share a common property: they all admit
special solutions called solitons, a bump that translates with a constant velocity without deforma-
tion. However, (mKdV) enjoys a specific feature: it admits another class of special solutions called
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2 ALEXANDER SEMENOV

breathers, which we will describe below. We will consider here both specific solutions of (mKdV)
together: solitons and breathers.

For c > 0, κ ∈ {−1, 1} and x0 ∈ R, a soliton parametrized by c, κ and x0 is a solution of (mKdV)
that corresponds to a bump of constant shape that translates with a constant velocity c without
deformation, that is initially centered in x0 and that has for sign κ. In other words, it is a solution
of the form:

Rc,κ(t, x; x0) := κQc(x − ct − x0),(1.4)

where Qc is the profile function that depends only on one variable and that is positive and pair.
Qc ∈ H1(R) should solve the following elliptic equation:

Q′′
c − cQc + Q3

c = 0.(1.5)

It is possible to show that (1.5) has a unique solution in H1, up to translations and reflexion with
respect to the x-axis. One can show that Qc has the following expression:

Qc(x) :=

(
2c

cosh2(
√

cx)

) 1
2

.(1.6)

We denote Q := Q1 the basic ground state.
When κ = −1, the soliton is sometimes called an antisoliton.
The soliton Rc,κ(x0) travels with velocity c to the right, the position of its center at a time t is

x0 + ct. It is exponentially localized, depending on c and x0 + ct (the position of the bound depends
on x0 + ct, the amplitude and the exponential decay rate depend on c):

(1.7) |Rc,κ(t, x; x0)| ≤
√

2c exp
(
−
√

c |x − x0 − ct|
)

.

Analoguous bounds are valid for any derivative (with the same decay rate but different amplitude).
This motivates the terminology “shape parameter” for c.

Solitons, in particular their stability, have been extensively studied: regarding orbital stability
(in H1), we refer to Cazenave, Lions [8] and Weinstein [43, 42] for (NLS) and Weinstein [43], Bona-
Souganidis-Strauss [7] and Martel-Merle [30] for (mKdV), see also Grillakis-Shatah-Strauss [20] for
a result in an abstract setting. Asymptotic stability (in H1) of (mKdV) solitons was shown by Martel-
Merle [29, 33, 31] and refined by Germain-Pusateri-Rousset [18].

For α, β > 0 and x1, x2 ∈ R, a breather parametrized by α, β, x1, x2 is a solution of (mKdV) that
has the following expression:

(1.8) Bα,β(t, x; x1, x2) := 2
√

2∂x

[
arctan

(
β

α

sin(αy1)

cosh(βy2)

)]
,

where y1 := x + δt + x1, y2 := x + γt + x2, δ := α2 − 3β2 and γ := 3α2 − β2.
The breather Bα,β(x1, x2) travels with velocity −γ; the position of its center at a time t is −x2 − γt.

It is exponentially localized, depending on α, β and −x2 − γt (the position of the bound depends
on −x2 − γt, the coefficient depends on α and β, and the exponential decay rate depends on β):

(1.9)
∣∣Bα,β(t, x; x1, x2)

∣∣ ≤ C(α, β) exp (−β |x + x2 + γt|) ,

Analogous bounds are valid for any derivative (with the same decay rate but different amplitude).
This motivates the terminology “shape” and “frequency” parameters for β and α, respectively.

One doesn’t talk of “antibreathers”, because if we replace x1 by x1 +
π
α , then a breather is trans-

formed in its opposite.
Similarly to (1.5), it is known that a breather B = Bα,β satisfies the following elliptic equation on

R:

(1.10) Bxxxx + 5BB2
x + 5B2Bxx +

3
2

B5 − 2
(

β2 − α2) (Bxx + B3)+ (α2 + β2)2
B = 0.

Note that in [39] a similar form of elliptic equation (with a fourth order derivative) is obtained
for a soliton Rc,κ from (1.5). This allows us to consider solitons and breathers at the same level of
regularity, which is the key of the proof made in this article.

This object was first introduced by Wadati [40], and it was used by Kenig, Ponce and Vega in
[25] for the ill-posedness for (mKdV) for rough data. Their properties, in particular their stability,
are well studied by Alejo, Muñoz and co-authors [3, 2, 5, 6, 4]. We know that a breather is orbitally
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stable in H2 [3]. Afterwards, H1 orbital stability was proved via Bäcklund transformation [4], and
also H1 asymptotic stability, for breathers moving to the right. Asymptotic stability of breathers in
full generality is still an open problem.

When α → 0, Bα,β tends to a double-pole solution of (mKdV): it is a couple soliton-antisoliton that
move with a constant velocity and that have a repulsive logarithmic interaction [41]. However, this
limit, which is somehow at a boundary between solitons and breathers, is expected to be unstable
[19]. We do not consider this object in this paper.

Solitons and breathers are important objects to study because of their stability properties and
also because of the soliton-breather resolution. The latter is an important result about the long time
dynamics of (mKdV), which asserts that any generic solution can be approached by a sum of solitons
and breathers when t → +∞. It is established for initial conditions in a weighted Sobolev space in
[10] (see also Schuur [38]) by inverse scattering method; see also [38] for the soliton resolution for
(KdV).

Given a set of basic objects (solitons and breathers), we consider a solution that tends to this sum
when t → +∞, called multi-breather. In [39], we have shown existence, regularity and uniqueness
of multi-breathers of (mKdV). There is also a formula for multi-breathers of (mKdV) obtained by
Wadati [41], which was derived as a consequence of the integrability of (mKdV)); but is it not well
suited for our purpose.

Martel, Merle and Tsai [34] proved that a sum of (decoupled and ordered) solitons is orbitally
stable in H1 for (mKdV), and actually asymptotically stable (in the region x ⩾ δt for δ > 0 small).
Le Coz [26] has established stability of (mKdV) N-solitons in HN by modifying the approach used
by Maddocks and Sachs [27] for (KdV).

Inspired by [34], similar asymptotic stability results where obtained for sums of (decoupled)
solitons for various nonlinear dispersive equations: we refer to El Dika [16] for the Benjamin-
Bona-Mahony equation (BBM), Kenig and Martel [23] for the Benjamin-Ono equation (BO), El
Dika-Molinet [17] for the Camassa-Holm multipeakon, and Côte-Muñoz-Pilod-Simpson [15] for
the Zakharov-Kuznetsov (ZK) equation.

Because breathers have an H2 structure, we prove orbital stability in H2 in this paper for a sum
of solitons and breathers. One of the difficulties is to obtain H2 stability results for solitons too, i.e.
to study solitons at a H2 level.

1.2. Main results. We prove in this article that given any sum of solitons and breathers with distinct
velocities and such that all these velocities except possibly one are positive, a solution u of (mKdV)
that is initially close to this sum in H2 stays close to this sum for any time of a considered time
interval up to space translations for solitons or space and phase translations for breathers. This is
orbital stability. Let us make the definition of orbital stability more precise.

Let L ∈ N. We consider a set of L solitons: given c0
l > 0, κl ∈ {−1, 1} and x0

0,l ∈ R for 1 ≤ l ≤ L,
we set, for 1 ≤ l ≤ L,

(1.11) Rl(t, x) := Rc0
l ,κl

(t, x; x0
0,l).

Let K ∈ N. We consider a set of K breathers: given αk > 0, βk > 0 and x0
1,k, x0

2,k ∈ R for 1 ≤ k ≤ K,
we set, for 1 ≤ k ≤ K,

(1.12) Bk(t, x) := Bαk ,βk(t, x; x0
1,k, x0

2,k).

We now define important parameters for each of the objects of the problem. For 1 ≤ l ≤ L, the
velocity of the lth soliton is

(1.13) vs
l := c0

l ,

and for 1 ≤ k ≤ K, the velocity of the kth breather is

(1.14) vb
k := β2

k − 3α2
k .

For 1 ≤ l ≤ L, the center of the lth soliton is

(1.15) xs
l (t) := x0

0,l + vs
l t,

and for 1 ≤ k ≤ K, the center of the kth breather is

(1.16) xb
k(t) := −x0

2,k + vb
kt.
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We set J := K + L the total number of objects in the problem. We assume that J ≥ 2, because for
J = 1 the proof is already done in [3] when the only object is a breather, and in [43] when the only
object is a soliton.

We assume that the velocities of our objects are all distinct, this will imply that our objects are
far from each other when time is large, which is essential for our analysis. More precisely,

(1.17) ∀k ̸= k′, vb
k ̸= vb

k′ , ∀l ̸= l′, vs
l ̸= vs

l′ , ∀k, l, vb
k ̸= vs

l .

This allows us to define an increasing function

(1.18) v : {1, ..., J} → {vb
k, 1 ≤ k ≤ K} ∪ {vs

l , 1 ≤ l ≤ L}.

The set {v1, ..., vJ} is thus the set of all the possible velocities of our objects. We have

(1.19) v1 < v2 < ... < vJ .

We define, for 1 ≤ j ≤ J, Pj as the object (Rl or Bk) that corresponds to the velocity vj, i.e. if
vj = vs

l , we set Pj := Rl , and if vj = vb
k, we set Pj := Bk. So, P1, ..., PJ are the considered objects that

are ordered by increasing velocity.
We denote xj(t) the position (the center of mass) of Pj(t). More precisely, if Pj = Rl , we set

xj(t) := xs
l (t); and if Pj = Bk, we set xj(t) := xb

k(t).
We set

(1.20) R :=
L

∑
l=1

Rl , B :=
K

∑
k=1

Bk, P := R + B =
J

∑
j=1

Pj.

We need both notations: indexation by k and l, and indexation by j, and we keep these notations
to avoid ambiguity.

The main result that we will prove in this article is the following: a sum of decoupled solitons
and breathers, with v2 > 0 (that is, all travel to the right, but at most one can be static or travel to
the left), is orbitally stable. The precise statement is as follows.

Theorem 1.1. Given a set of solitons and breathers (1.11), (1.12) whose velocities (1.13) and (1.14) satisfy
(1.17), and whose positions are set by (1.15) and (1.16), we define the corresponding sum P in (1.20), and we
define Pj, vj, xj a reindexation of the given set of solitons and breathers such that (1.19). We assume that

(1.21) v2 > 0.

Then there exists A0, θ0, D0, a0 > 0, constants (depending on c0
l , αk, βk, but not on x0

0,l , x0
1,k or x0

2,k), such
that the following is true. Let D ≥ D0 and 0 ≤ a ≤ a0 such that

(1.22) ∥u(0)− P(0)∥H2 ≤ a, and xj(0) > xj−1(0) + 2D, for all j = 2, . . . , J,

for a solution u ∈ C(R, H2(R)) of (mKdV).
Then, there exist x0,l(t), x1,k(t), x2,k(t) defined for any t ≥ 0 such that

(1.23) ∀t ≥ 0,

∥∥∥∥∥u(t)−
L

∑
l=1

Rc0
l ,κl

(t, ·; x0,l(t))−
K

∑
k=1

Bαk ,βk(t, ·; x1,k(t), x2,k(t))

∥∥∥∥∥
H2

≤ A0

(
a + e−θ0D

)
,

with

(1.24) ∀t ≥ 0,
L

∑
l=1

∣∣x′0,l(t)
∣∣+ K

∑
k=1

(
|x′1,k(t)|+ |x′2,k(t)|

)
≤ CA0

(
a + e−θ0D

)
,

for some constant C > 0.

Remark 1.2. Let us stress on the fact that the constant A0 do not depend on the translation parameters
of the considered objects.

We also deduce a consequence from Theorem 1.1 for multi-breathers.
Recall that multi-breathers were defined and contructed in [39], and their uniqueness was proved

there when v2 > 0. They can be also obtained from the formula from [41] obtained by inverse
scattering method by Wadati. Let p be a multi-breather associated to P (in the setting v2 > 0, we
know that p is also unique). To emphasize the dependence of p with respect to the parameters, we
will write

(1.25) p(t, x) =: p(t, x; αk, βk, x0
1,k, x0

2,k, κl , c0
l , x0

0,l).
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The same way, to emphasize the dependence of P with respect to the parameters, we will write

(1.26) P(t, x) =: P(t, x; αk, βk, x0
1,k, x0

2,k, κl , c0
l , x0

0,l).

Theorem 1.1 can be recast as orbital stability of a multi-breather:

Theorem 1.3. Let αk, βk, x0
1,k, x0

2,k, κl , c0
l , x0

0,l and p the multi-breather associated to these parameters with
notations as in (1.25) given by [39, Theorem 1.2]. We assume that (1.17) holds and v2 > 0. There exists
η0 > 0 small enough, C0 > 0 large enough such that the following is true for 0 < η < η0.

Let u(t) be a solution of (mKdV), such that∥∥u(0)− p(0; αk, βk, x0
1,k, x0

2,k, c0
l , x0

0,l)
∥∥

H2 ≤ η.(1.27)

Then there exist C1 functions x0,l(t), x1,k(t), x2,k(t) defined for any t ≥ 0 such that

(1.28) ∀t ≥ 0,
∥∥u(t)− p

(
t; αk, βk, x1,k(t), x2,k(t), c0

l , x0,l(t)
)∥∥

H2 ≤ C0η,

with (1.24) that is satisfied.

Remark 1.4. Let us stress on the fact the C0 do depend on the translation parameters of the considered
solitons and breathers, i.e. on x0

0,l , x0
1,k and x0

2,k. More precisely, it depends on the time we need to
wait until the collisions between the considered solitons and breathers are over. This is a fundamen-
tal difference between Theorem 1.3 and Theorem 1.1. In fact, in Theorem 1.1, we avoid collisions
and this is the reason why we get a more uniform result. It is reasonnable to expect that Theorem
1.3 can be improved so that C0 do not depend on translation parameters.

In this paper, we adapt the arguments given by Martel, Merle and Tsai [34] to the context of
breathers. To do so, it is needed to understand the variational structure of breathers, in the same
manner as Weinstein did in [43] for (NLS) and (mKdV) solitons. Such results have been obtained
by Alejo and Muñoz in [3]. When a soliton is a critical point of a Lyapunov functional at the H1

level, whose Hessian is coercive up to two orthogonal conditions, a breather is a critical point of a
Lyapunov functional at the H2 level, whose Hessian is coercive up to three orthogonal conditions.
One important issue that we address is to understand the variational structure of a soliton at the
H2 level. We do this by modifying the Lyapunov functional from [3], and we will also adapt it for
a sum of solitons and breathers. We need to make assumptions on the velocities of our breathers
(recall that the velocity of a soliton is always positive), because several arguments are based on
monotonicity properties, which hold only on the right.

1.3. Organisation of the proof. The proof of Theorem 1.1 is based on two results: a modulation
lemma and a bootstrap proposition. We give a detailed outline of both results in Section 2, and
give in Section 3 the proof of the heart of the argument (Proposition 2.6), where we complete the
bootstrap via a (finite) induction argument on the an improved bound localized on the last j objects.

In Section 4, we prove Theorem 1.3 as a quick consequence of Theorem 1.1.

1.4. Acknowledgments. The author would like to thank his supervisor Raphaël Côte for suggesting
the idea of the work, for fruitful discussions and his useful advice.

The author would also like to thank Guillaume Ferriere for his useful remarks and suggestions.

2. Reduction of the proof to an induction

For the proof, we assume the assumption of the Theorem 1.1 true (i.e. we assume (1.22) true) for
a solution u(t) and a choice of translation parameters, and the goal is to find the suitable constants
A, θ, D0, a0 (that do not depend on u nor on translation parameters) so that the Theorem 1.1 holds.

2.1. Some useful notations. We set some useful constants for this paper. We define the worst
exponential decay rate:

(2.1) β := min{βk, 1 ≤ k ≤ K} ∪ {
√

cl , 1 ≤ l ≤ L},

and the worst distance between two consecutive velocities:

(2.2) τ := min{vj+1 − vj, 1 ≤ j ≤ J − 1}.

For any j = 2, ..., J, we have that

(2.3) ∀t ∈ I, xj(t)− xj−1(t) ≥ xj(0)− xj−1(0) + τt.
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We introduce general parameters, for j = 1, ..., J, (aj, bj). If Pj = Bk is a breather, we set (aj, bj) :=

(αk, βk). If Pj = Rl is a soliton, we set (aj, bj) := (0,
√

c0
l ).

2.2. Modulation lemma. We will first state a standard modulation lemma, which can be proved
similarly as the modulation lemma in [39]. We need it because we will construct translations of our
objects so that they are near to u and some orthogonality conditions are satisfied. These orthog-
onality conditions will allow us to use coercivity of some quadratic forms in the following of the
proof.

Lemma 2.1. Let A′ > 0, θ > 0, t′ > 0 and y1,k(t), y2,k(t), y3,l(t), y0,l(t) defined for t ∈ [0, t′] (with

y3,l(t) > 0) such that ∀t ∈ [0, t′],
∣∣y3,l(t)− c0

l

∣∣ ≤ min{ τ
8} ∪ { c0

p
4 , 1 ≤ p ≤ L}. If D0 is large enough and

a0 is small enough (dependently on A′), there exists a constant C2 > 1 such that the following holds. Let u(t)
be a solution of (mKdV) such that for any t ∈ [0, t′],

(2.4)

∥∥∥∥∥u(t)−
L

∑
l=1

κlQy3,l(t)(·+ y0,l(t)− c0
l t)−

K

∑
k=1

Bαk ,βk(t, ·; y1,k(t), y2,k(t))

∥∥∥∥∥
H2

≤ A′
(

a + e−θD
)

,

(2.5)

∥∥∥∥∥u(0)−
L

∑
l=1

κlQy3,l(0)(·+ y0,l(0))−
K

∑
k=1

Bαk ,βk(0, ·; y1,k(0), y2,k(0))

∥∥∥∥∥
H2

≤ a,

and if we set yj(t) := −y0,l(t) + vs
l t if Pj = Rl , and yj(t) := −y2,k(t) + vb

kt if Pj = Bk, we have, for any
2 ≤ j ≤ J,

(2.6) ∀t ∈ [0, t′], yj(t)− yj−1(t) ≥ D,

then, there exists C1 functions z1,k(t), z2,k(t), z3,l(t), z0,l(t) defined for t ∈ [0, t′] (with z3,l(t) > 0), such
that if we set

(2.7) ε(t) := u(t)− P̃(t),

where

(2.8) R̃l(t, x) := κlQz3,l(t)(·+ z0,l(t)− c0
l t) f or 1 ≤ l ≤ L,

(2.9) B̃k(t, x) := Bαk ,βk(t, x; z1,k(t), z2,k(t)) f or 1 ≤ k ≤ K,

(2.10) P̃j := R̃l i f Pj = Rl , P̃j := B̃k i f Pj = Bk,

(2.11) R̃ :=
L

∑
l=1

R̃l , B̃ :=
K

∑
k=1

B̃k, P̃ := R̃ + B̃ =
J

∑
j=1

P̃j,

then, for t ∈ [0, t′], for l = 1, ..., L, for k = 1, ..., K,

(2.12)
∫

R̃l(t)ε(t) =
∫

∂xR̃l(t)ε(t) =
∫

∂x1 B̃k(t)ε(t) =
∫

∂x2 B̃k(t)ε(t) = 0.

Moreover, for t ∈ [0, t′], we have

(2.13)
∥ε(t)∥H2 + |z1,k(t)− y1,k(t)|+ |z2,k(t)− y2,k(t)|

+|z3,l(t)− y3,l(t)|+ |z0,l(t)− y0,l(t)| ≤ C2A′
(

a + e−θD
)

,

and

(2.14) ∥ε(0)∥H2 + |z1,k(0)− y1,k(0)|+ |z2,k(0)− y2,k(0)|+ |z3,l(0)− y3,l(0)|+ |z0,l(0)− y0,l(0)| ≤ C2a,

and for any t ∈ [0, t′], (z1,k(t), z2,k(t), z3,l(t), z0,l(t)) ∈ R2K+2L is unique such that (2.12) is satisfied and
(z1,k(t), z2,k(t), z3,l(t), z0,l(t)) is in a suitable neighbourhood of (y1,k(t), y2,k(t), y3,l(t), y0,l(t)) that depends
only on A′ (a + e−θD).

We set, for t ∈ [0, t′], zj(t) := zs
l (t) := −z0,l(t) + vs

l t if Pj = Rl , and zj(t) := zb
k(t) := −z2,k(t) + vb

kt if
Pj = Bk.

For D0 large enough and a0 small enough, if we assume that

(2.15) ∀t ∈ [0, t′], zj(t)− zj−1(t) ≥ D,
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(note that (2.15) is a consequence of ∀t ∈ [0, t′], yj(t)− yj−1(t) ≥ 2D if a0 is small enough and D0 is large
enough), then for any t ∈ [0, t′], we have that

for k = 1, ..., K,

(2.16) |z′1,k(t)|+ |z′2,k(t)| ≤ C2

(∫
e−

β
2 |x−zb

k(t)|ε2
)1/2

+ C2e−
βD
8 ,

for l = 1, ..., L,

(2.17) |z′3,l(t)|+ |z′0,l(t)| ≤ C2

(∫
e−

β
2 |x−zs

l (t)|ε2
)1/2

+ C2e−
βD
8 .

Remark 2.2. We will also use generalized notations for y1,k(t), y2,k(t) and other object-specific nota-
tions, in the lemma above.

For j = 1, ..., J, either if Pj = Rl is a soliton, we denote

y∗1,j(t) := y3,l(t), z∗1,j(t) := z3,l(t), y∗2,j(t) := y0,l(t), z∗2,j(t) := z0,l(t),(2.18)

or if Pj = Bk is a breather, we denote

y∗1,j(t) := y1,k(t), z∗1,j(t) := z1,k(t), y∗2,j(t) := y2,k(t), z∗2,j(t) := z2,k(t).(2.19)

Proof. See [39, Lemma 2.8], for the proof of a similar result. We also refer to [34, 3, 11]. □

2.3. Bootstrap. Given Lemma 2.1, we reduce the proof of Theorem 1.1 to the following bootstrap
proposition (we will use the notations given in Section 1.2; in particular the position xj(t) of Pj(t) is
defined there):

Proposition 2.3. There exists A ≥ C2 and θ > 0 such that, if D0 is large enough and a0 is small enough
such that

(2.20) C2a ≤ A
(

a + e−θD
)
≤ min{τ

8
} ∪ {

c0
p

4
, 1 ≤ p ≤ L},

for t∗ > 0, we assume that there exist C1 functions x1,k(t), x2,k(t), cl(t), x0,l(t) ∈ R (with cl(t) > 0) defined
for t ∈ [0, t∗] such that, if we denote

(2.21) ∀t ∈ [0, t∗], ε(t) := u(t)−
L

∑
l=1

R̃l(t)−
K

∑
k=1

B̃k(t),

where u is a solution of (mKdV),

(2.22) ∀t ∈ [0, t∗], R̃l(t) := κlQcl(t)(·+ x0,l(t)− c0
l t) for 1 ≤ l ≤ L,

and

(2.23) ∀t ∈ [0, t∗], B̃k(t) := Bαk ,βk(t, ·; x1,k(t), x2,k(t)), for 1 ≤ k ≤ K,

P̃j := R̃l if Pj = Rl and P̃j := B̃k if Pj = Bk, and x̃s
l (t) := −x0,l(t) + vs

l t, x̃b
k(t) := −x2,k(t) + vb

kt,

x̃j(t) := x̃s
l (t) if Pj = Rl , and x̃j(t) := x̃b

k(t) if Pj = Bk,
and if we assume that

(2.24) ∀1 ≤ j ≤ J − 1, xj+1(0)− xj(0) ≥ 2D,

(2.25) ∀t ∈ [0, t∗], ∥ε(t)∥H2 ≤ A
(

a + e−θD
)

, ∥ε(0)∥H2 ≤ C2a,

(2.26) ∀t ∈ [0, t∗], |cl(t)− c0
l | ≤ A

(
a + e−θD

)
, |cl(0)− c0

l | ≤ C2a,

(2.27)
L

∑
l=1

|x0,l(0) + x0
0,l |+

K

∑
k=1

(
|x1,k(0)− x0

1,k|+ |x2,k(0)− x0
2,k|
)
≤ Ca,

(2.28) ∀t ∈ [0, t∗],
L

∑
l=1

(
|c′l(t)|+ |x′0,l(t)|

)
+

K

∑
k=1

(
|x′1,k(t)|+ |x′2,k(t)|

)
≤ CA(a + e−θD),
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where C > 0 is a large enough constant, and

(2.29) ∀t ∈ [0, t∗],
∫

B̃k1(t)ε(t) =
∫

B̃k2(t)ε(t) =
∫

R̃l(t)ε(t) =
∫

R̃l x(t)ε(t) = 0,

then

(2.30) ∀t ∈ [0, t∗], ∥ε(t)∥H2 ≤ A
2

(
a + e−θD

)
,

(2.31) ∀t ∈ [0, t∗], |cl(t)− c0
l | ≤

A
2

(
a + e−θD

)
.

Remark 2.4. We will use generalized notations for x1,k(t), x2,k(t), cl(t) and x0,l(t).
For j = 1, ..., J, either if Pj = Rl is a soliton, we denote

x∗1,j(t) := cl(t), x∗2,j(t) := x0,l(t),(2.32)

or if Pj = Bk is a breather, we denote

x∗1,j(t) := x1,k(t), x∗2,j := x2,k(t).(2.33)

We denote

P̃(t) :=
J

∑
j=1

P̃j(t) =
K

∑
k=1

B̃k(t) +
L

∑
l=1

R̃l(t).(2.34)

Remark 2.5. We note that, for any j = 1, ..., J − 1, (2.24) and (2.27), assuming that a0 is chosen small
enough and D0 is chosen large enough, imply that

x̃j+1(0)− x̃j(0) ≥ D.(2.35)

From definitions of x̃j(t), of τ and (2.28), assuming that a0 is chosen small enough and D0 is
chosen large enough, we deduce that for any t ∈ [0, t∗],

∀1 ≤ j ≤ J − 1, x̃j+1
′(t)− x̃j

′(t) ≥ τ

2
,(2.36)

and

(2.37) ∀2 ≤ j ≤ J,
v2

2
≤ x̃j

′(t) ≤ 2vJ .

From (2.35) and (2.36), we may deduce that for any t ∈ [0, t∗],

∀1 ≤ j ≤ J, x̃j+1(t)− x̃j(t) ≥ D +
τ

2
t.(2.38)

The proof of this proposition will be the goal of the following. The proof of Theorem 1.1 then
follows from a continuity argument.

Proof of Theorem 1.1 assuming Proposition 2.3. We take A, θ, D0, a0 that work for Proposition 2.3, we
will show that they will also work for Theorem 1.1. We take D ≥ D0 and 0 ≤ a ≤ a0 and we assume
that (1.22) is true for a solution u of (mKdV). This implies (2.24).

We assume that a0 is small enough and D0 is large enough such that A
(
a + e−θD) ≤ min{ τ

8} ∪
{ c0

p
4 , 1 ≤ p ≤ L}.
Because A

C2
> 1, by continuity, there exists t1 > 0 such that

(2.39) ∀t ∈ [0, t1], ∥u(t)− P(t)∥H2 ≤
A
C2

(
a + e−θD

)
.

Of course, we have that

(2.40) ∀t ∈ [0, t1], xj(t)− xj−1(t) ≥ 2D + τt.

We apply Lemma 2.1 on [0, t1] with A′ = A
C2

. We take D0 larger and a0 smaller if needed. So,
there exist C1 functions x1,k(t), x2,k(t), cl(t), x0,l(t) ∈ R with cl(t) > 0 defined for t ∈ [0, t1], such that
if we set

(2.41) ε(t) := u(t)− P̃(t),
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with the same notations as usual, we have that

(2.42) ∀t ∈ [0, t1], ∥ε(t)∥H2 ≤ A
(

a + e−θD
)

, ∥ε(0)∥H2 ≤ C2a,

(2.43) ∀t ∈ [0, t1], |cl(t)− c0
l | ≤ A

(
a + e−θD

)
, |cl(0)− c0

l | ≤ C2a,

(2.44)
L

∑
l=1

|x0,l(0) + x0
0,l |+

K

∑
k=1

(
|x1,k(0)− x0

1,k|+ |x2,k(0)− x0
2,k|
)
≤ Ca,

(2.45) ∀t ∈ [0, t1],
L

∑
l=1

(
|c′l(t)|+ |x′0,l(t)|

)
+

K

∑
k=1

(
|x′1,k(t)|+ |x′2,k(t)|

)
≤ CA(a + e−θD),

if θ > 0 is chosen small enough, and

(2.46) ∀t ∈ [0, t1],
∫

B̃k1(t)ε(t) =
∫

B̃k2(t)ε(t) =
∫

R̃l(t)ε(t) =
∫

R̃l x(t)ε(t) = 0.

Remember that (2.38) for any t ∈ [0, t1] is a consequence of what is written above.
Let I∗ ⊂ R+ be the supremum of intervals I′ ⊃ [0, t1] for inclusion in the set of intervals of R+

such that the C1 functions x1,k(t), x2,k(t), cl(t), x0,l(t) may be extended on I′ and such that (2.24),
(2.25), (2.26), (2.27), (2.28) and (2.29) are still satisfied for any t ∈ I′.

In order to make the definition above licit, we need to point out the following fact: by uniqueness
in Lemma 2.1, we find that if we have two extensions on I2 and I3, then we find that those extensions
coincide on I2 ∩ I3 (we remind that [0, t1] ⊂ I2 ∩ I3). This is why, if we have suitable extensions on
I2 and I3, then we have a suitable extension on I2 ∪ I3. And, the supremum I∗ is simply the union
of all the possible extensions I′ and the implicit functions may be extended on I∗.

When (2.24), (2.25), (2.26), (2.27), (2.28) and (2.29) are true for x1,k(t), x2,k(t), cl(t), x0,l(t) with
I = [0, t2] ⊂ I∗ (where t2 ≥ t1), we may extend these implicit functions a bit further (in a random
way, that we denote y1,k(t), y2,k(t), y3,l(t) and y0,l(t), and we denote yj their positions) and have
(2.24), (2.25), (2.26), (2.27), (2.28) and (2.29) that are still satisfied, but on the extended interval. The
extended interval will be an interval of the form [0, t′2], where t′2 > t2. We do it in the following way.
First, we apply Proposition 2.3 on I, and that makes (2.25) and (2.26) a bit improved on I and become
(2.30) and (2.31) on I. And so, (2.25) and (2.26) are satisfied on an extension of I. After application
of Lemma 2.1 with A′ = A (where the notation A′ is from Lemma 2.1), that we may apply thanks
to (2.38) (more precisely, from Remark 2.5, (2.38) is satisfied on I, from what for any 1 ≤ j ≤ J − 1,
ỹj+1(t) − ỹj(t) ≥ D is true on an extension of I) we see that (2.29) can be also extended (after
modification of the implicit functions on the extension of I: we now denote them x1,k(t), x2,k(t),
x3,l(t) and x0,l(t), as they coincide with implicit functions given at the beginning of this paragraph
on I from uniqueness in Lemma 2.1). Note that after this modification, it is needed to reconsider
all the previous sentences of this paragraph, in order to take a smaller extension if needed and
have (2.25) and (2.26) satisfied. Because of Remark 2.5, (2.38) is satisfied on I, this is why for any
1 ≤ j ≤ J − 1, x̃j+1(t)− x̃j(t) ≥ D is satisfied on an extension of I (eventually smaller, but of the
form [0, t′2] as specified at the beginning of the paragraph). This is why, we may apply consequences
(2.16) and (2.17) of Lemma 2.1 and obtain that (2.28) is also satisfied on this extension of I. Thus,
we may find an extension [0, t′2] (with t′2 > t2) of I and extensions of x1,k(t), x2,k(t), cl(t), x0,l(t) on
this extension such that (2.24) (2.25), (2.26), (2.27) (2.28) and (2.29) are satisfied.

We deduce that the interval I∗ is necesseraly an open subset of R+. Let us prove that I∗ is also a
closed subset of R+. This will allow us to conclude that I∗ = R+.

If I∗ is not closed, then it is [0, t2), where t2 > 0. Let (Tn) be a sequence of points of I∗ that
converges to t2. Then, (x1,k(Tn)), (x2,k(Tn)), (cl(Tn)) and (x0,l(Tn)) are Cauchy sequences because
of (2.28). Thus, they converge and x1,k(t), x2,k(t), cl(t) and x0,l(t) may be extended continuously in
t = t2. By continuity, it is clear that (2.25), (2.26), (2.29) and (2.38) are still satisfied in t = t2. This
is why, we may apply Lemma 2.1 on [0, t2]. From uniqueness in Lemma 2.1, we find that x1,k(t),
x2,k(t), cl(t) and x0,l(t) are C1 on [0, t2]. Thus, (2.28) is also satisfied in t = t2. That contradicts the
maximality of I∗. Thus, I∗ is closed in R+.
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So, we deduce that we have C1 functions x1,k(t), x2,k(t), cl(t), x0,l(t) defined for any t ≥ 0 such
that,

(2.47) ∀t ≥ 0, ∥ε(t)∥H2 ≤ A
(

a + e−θD
)

,

(2.48) ∀t ≥ 0, |cl(t)− c0
l | ≤ A

(
a + e−θD

)
,

(2.49) ∀t ≥ 0,
L

∑
l=1

(
|c′l(t)|+ |x′0,l(t)|

)
+

K

∑
k=1

(
|x′1,k(t)|+ |x′2,k(t)|

)
≤ CA(a + e−θD),

where C > 0 is a large enough constant, and

(2.50) ∀t ≥ 0,
∫

B̃k1(t)ε(t) =
∫

B̃k2(t)ε(t) =
∫

R̃l(t)ε(t) =
∫

R̃l x(t)ε(t) = 0.

And we set

(2.51) w(t) := u(t)−
L

∑
l=1

κlQc0
l
(·+ x0,l(t)− c0

l t)−
K

∑
k=1

Bαk ,βk(t, ·; x1,k(t), x2,k(t)).

We need to bound w to finish the proof. For t ≥ 0, we use triangular inequality and we bound
the norm between two ground states centered at a same point,

∥w(t)∥H2 ≤ ∥ε(t)∥H2 +
L

∑
l=1

∥∥∥Qcl(t) − Qc0
l

∥∥∥
H2

≤ ∥ε(t)∥H2 + C
L

∑
l=1

|cl(t)− c0
l |

≤ CA
(

a + e−θD
)

,(2.52)

and this is exactly what we wanted to prove. Moreover (1.24) is a straightforward consequence of
(2.49). □

Hence, we are left to prove Proposition 2.3.

2.4. Proof by induction. We will prove Proposition 2.3 by induction. More precisely, we want to
find A > C2, θ, D0, a0 so that the Proposition 2.3 holds for any t∗ > 0.

We assume that there exists functions x1,k(t), x2,k(t), cl(t), x0,l(t) ∈ R defined for t ∈ [0, t∗] such
that, with notations of Proposition 2.3,

(2.53) ∀t ∈ [0, t∗], ∥ε(t)∥H2 ≤ A(a + e−θD), ∥ε(0)∥H2 ≤ C2a,

(2.54)

∀t ∈ [0, t∗], |cl(t)− c0
l | ≤ A(a + e−θD) ≤ min

{τ

8

}
∪
{

c0
p

4
, 0 ≤ p ≤ L

}
, |cl(0)− c0

l | ≤ C2a,

(2.55) ∀t ∈ [0, t∗],
L

∑
l=1

(
|c′l(t)|+ |x′0,l(t)|

)
+

K

∑
k=1

(
|x′1,k(t)|+ |x′2,k(t)|

)
≤ CA(a + e−θD),

(2.56) ∀t ∈ [0, t∗],
∫

B̃k1(t)ε(t) =
∫

B̃k2(t)ε(t) =
∫

R̃l(t)ε(t) =
∫

R̃l x(t)ε(t) = 0,

as well as (2.27) and (2.24).
As in Remark 2.5, we deduce that (2.36), (2.37) and (2.38) are satisfied.
And the goal is to improve inequalities (2.53) and (2.54).
We define the average between positions of two consecutive objects. For j = 3, ..., J, we set

(2.57) ∀t ∈ [0, t∗], mj(t) :=
x̃j−1(t) + x̃j(t)

2
,

and we set

(2.58) ∀t ∈ [0, t∗], m2(t) :=
x̃1(0) + x̃2(0)

2
+
∫ t

0
max

(
x̃1

′(s) + x̃2
′(s)

2
,

x̃2
′(s)
2

)
ds.
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With these definitions, we make sure that for any j = 2, ..., J, m′
j(t) > 0, even if v1 < 0.

By (2.36), for j ≥ 3,

(2.59) ∀t ∈ [0, t∗], x̃j
′(t)− m′

j(t) ≥
τ

4
, m′

j(t)− x̃j−1
′(t) ≥ τ

4
,

and for j = 2, we have

(2.60) ∀t ∈ [0, t∗], m′
2(t) = max

(
x̃1

′(t) + x̃2
′(t)

2
,

x̃2
′(t)
2

)
,

and so,

(2.61) ∀t ∈ [0, t∗], m′
2(t)− x̃1

′(t) ≥ τ

4
, x̃2

′(t)− m′
2(t) ≥ min

(v2

4
,

τ

4

)
.

This is why, we set

(2.62) ζ := min
(v2

4
,

τ

4

)
,

a constant that depends only on problem data, and so for any j ≥ 2,

(2.63) ∀t ∈ [0, t∗], x̃j
′(t)− m′

j(t) ≥ ζ, m′
j(t)− x̃j−1

′(t) ≥ ζ.

The latter implies that ∀j ≥ 2, ∀t ∈ [0, t∗], x̃j−1(t) < mj(t) < x̃j(t), and we may deduce by
integration and by (2.38) and (2.63) that

x̃j(t)− mj(t) = x̃j(0)− mj(0) +
∫ t

0

(
x̃j

′(s)− m′
j(s)
)

ds

=
x̃j(0)− x̃j−1(0)

2
+
∫ t

0

(
x̃j

′(s)− m′
j(s)
)

ds

≥ D
2
+ ζt,(2.64)

and similarly,

(2.65) mj(t)− x̃j−1(t) ≥
D
2
+ ζt.

We have that (the mj are chosen for that) for any j ≥ 2,

(2.66) ∀t ∈ [0, t∗], 2vJ ≥ x̃J
′(t) ≥ m′

j(t) ≥
v2

4
≥ ζ.

We will reason by induction in order to improve (2.53) and (2.54). For this, we introduce a cut-off
function.

Let σ > 0 be a constant small enough for which the conditions will be fixed in the following of
the proof.

We denote:

(2.67) Ψ(x) :=
2
π

arctan
(
exp

(√
σx/2

))
.

By direct calculations,

(2.68) Ψ′(x) =
√

σ

2π cosh
(√

σx/2
) ,

and so,

(2.69) |Ψ′(x)| ≤ C exp
(
−
√

σ|x|/2
)

.

We have the following properties: lim+∞ Ψ = 1, lim−∞ Ψ = 0, for all x ∈ R Ψ(−x) + Ψ(x) = 1,
Ψ′(x) > 0, |Ψ′′(x)| ≤

√
σ

2 |Ψ′(x)|, |Ψ′′′(x)| ≤
√

σ
2 |Ψ′′(x)|, |Ψ′(x)| ≤

√
σ

2 Ψ and |Ψ′(x)| ≤
√

σ
2 (1 − Ψ).

We define cut-off functions filtering Pj and all the objects faster than Pj: for j = 2, ..., J,

(2.70) Φj(t, x) := Ψ(x − mj(t)).

We have:

(2.71)
(
Φj
)

t = −m′
j
(
Φj
)

x .

We may extend this definition to j = 1 and j = J + 1 in the following way: Φ1 := 1 and ΦJ+1 := 0.
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In order to prove Proposition 2.3 by induction, we will find an increasing sequence (Zj)j=1,...,J+1
such that Z1 := 2 and ZJ+1 := +∞ and such that we will be able to prove the following proposition
for any j = 1, ..., J. The goal is to obtain inequalities of Proposition 2.3 with better constants. So,
in order to achieve this, we do the following induction: we suppose that localized inequalities
around Pj+1, ..., PJ are obtained with strongly improved constants (constants divided by Zj+1), and
we deduce from them localized inequalities around Pj, ..., PJ with improved constants, but a little bit
less improved than earlier (constants divided by Zj). We will also assume the bootstrap assumption.
This induction is sufficient, because it starts from an assumption on an empty set of objects and ends
with a conclusion with inequalities localized around all the objects, i.e. global (not localized at all).

Proposition 2.6. Assuming that

(2.72) ∀t ∈ [0, t∗],
∫ (

ε2 + ε2
x + ε2

xx
)

Φj+1 ≤
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

and for any j′ ≥ j + 1 such that Pj′ = Rl is a soliton,

(2.73) ∀t ∈ [0, t∗], |cl(t)− cl(0)| ≤
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

and for any j′ ≥ j + 1 such that Pj′ is a breather,

(2.74) ∀t ∈ [0, t∗],
∣∣∣∣∫ P̃j′ε(t)−

∫
P̃j′ε(0)

∣∣∣∣ ≤ ( A
Zj+1

)2 (
a2 + e−2θD

)
,

and

(2.75) ∀t ∈ [0, t∗],
∣∣∣∣∫ [P̃j′ xx + P̃j′

3]
ε(t)−

∫ [
P̃j′ xx + P̃j′

3]
ε(0)

∣∣∣∣ ≤ ( A
Zj+1

)2 (
a2 + e−2θD

)
,

we have that

(2.76) ∀t ∈ [0, t∗],
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤
(

A
Zj

)2 (
a2 + e−2θD

)
,

and if Pj = Rl is a soliton,

(2.77) ∀t ∈ [0, t∗], |cl(t)− cl(0)| ≤
(

A
Zj

)2 (
a2 + e−2θD

)
,

and if Pj is a breather,

(2.78) ∀t ∈ [0, t∗],
∣∣∣∣∫ P̃jε(t)−

∫
P̃jε(0)

∣∣∣∣ ≤ ( A
Zj

)2 (
a2 + e−2θD

)
,

and

(2.79) ∀t ∈ [0, t∗],
∣∣∣∣∫ [P̃jxx + P̃j

3
]

ε(t)−
∫ [

P̃jxx + P̃j
3
]

ε(0)
∣∣∣∣ ≤ ( A

Zj

)2 (
a2 + e−2θD

)
.

Remark 2.7. For j = 1, ..., J, we may denote by Pj the following assertion: (2.76), (2.77), (2.78) and
(2.79). The Proposition 2.6 may be reformulated in the following way:

There exists an increasing sequence (Zj)j=1,...,J+1 with Z1 = 2 and ZJ+1 = +∞, A large enough
and θ > 0 such that for D0 large enough and for a0 small enough, we have the following: for any
j = 1, ..., J,

(2.80) Pj+1 =⇒ Pj.

Remark 2.8. Note that the inequalities (2.78) and (2.79) imply the following inequality for any t ∈
[0, t∗] in the case when Pj is a breather:∣∣∣∣∫ [P̃jxxxx + 5P̃jP̃j

2
x + 5P̃j

2
P̃jxx +

3
2

P̃j
5
]

ε(t)

−
∫ [

P̃jxxxx + 5P̃jP̃j
2
x + 5P̃j

2
P̃jxx +

3
2

P̃j
5
]

ε(0)
∣∣∣∣ ≤ C

(
A
Zj

)2 (
a2 + e−2θD

)
,(2.81)
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because of the elliptic equation verified by P̃j, which, in the case when P̃j = B̃k is a breather is the
following:

(2.82) B̃kxxxx + 5B̃kB̃k
2
x + 5B̃k

2
B̃kxx +

3
2

B̃k
5 − 2

(
β2

k − α2
k
) (

B̃kxx + B̃k
3
)
+
(
α2

k + β2
k
)2

B̃k = 0.

But the inequality (2.81) is also true in the case when P̃j = R̃l is a soliton, because we have even
better in this case. There are two elliptic equations [39]:

(2.83) R̃l xxxx + 5R̃l R̃l
2
x + 5R̃l

2
R̃l xx +

3
2

R̃l
5 − 2cl(t)

(
R̃l xx + R̃l

3
)
+ cl(t)2R̃l = 0,

and

(2.84)
(

R̃l xx + R̃l
3
)
− cl(t)R̃l = 0,

which implies that (2.56) implies

(2.85)
∫ (

R̃l xx + R̃l
3
)

ε = 0,

and

(2.86)
∫ (

R̃l xxxx + 5R̃l R̃l
2
x + 5R̃l

2
R̃l xx +

3
2

R̃l
5
)

ε = 0,

which implies of course the inequality (2.81).

The proof of Proposition 2.6 will be the goal of the Section 3. The proof of Proposition 2.3 follows
from it.

Proof of Proposition 2.3 assuming Proposition 2.6. We perform the induction in the decreasing order:
j = J, J − 1, ..., 2, 1. PJ+1 is empty, and Proposition 2.6 gives the (decreasing) induction step. Hence,
P1, . . . ,PJ are true. Due to P1:

(2.87) ∀t ∈ [0, t∗], ∥ε(t)∥H2 ≤ A
2

(
a + e−θD

)
.

For l = 1, ..., L, we have from P1 that for any t ∈ [0, t∗],

|cl(t)− c0
l | ≤ |cl(t)− cl(0)|+ |cl(0)− c0

l |

≤
(

A
2

)2 (
a2 + e−2θD

)
+ C2a

≤
[(

A
2

)2 (
a + e−θD

)
+ C2

] (
a + e−θD

)
.(2.88)

If we take A large enough with respect to C2, and a0 smaller and D0 larger if needed with respect
to A and θ, then

(2.89)
(

A
2

)2 (
a + e−θD

)
+ C2 ≤ A

2
,

and that concludes the proof of Proposition 2.3.
□

Hence, we are left to prove Proposition 2.6. We will write the proof for a fixed j ∈ {1, ..., J}. We
assume Pj+1 with a set of constants Z1, ..., ZJ+1, A, θ, D0, a0. We will establish some conditions for
these constants during the proof.

3. Orbital stability of a sum of solitons and breathers in H2(R)

In this Section, we prove Proposition 2.6. We assume Pj+1 and we prove Pj.
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3.1. Almost decay of conservation laws at the right. We localize around the most right objects,
starting from and including the j-th. We set:

(3.1) Mj(t) :=
1
2

∫
u2(t)Φj(t) =: Mj[u](t),

(3.2) Ej(t) :=
∫ [1

2
u2

x −
1
4

u4
]

Φj(t) =: Ej[u](t),

(3.3) Fj(t) :=
∫ [1

2
u2

xx −
5
2

u2u2
x +

1
4

u6
]

Φj(t) =: Fj[u](t).

Lemma 3.1. Let 0 < ω1, ω2 < 1. If 0 < σ < ζ, 0 < θ <
√

σ
16 , D0 is large enough and a0 is small enough

(depending on A, θ, ω1 and ω2), then for any t ∈ [0, t∗],

(3.4) Mj(t)− Mj(0) ≤ Ce−2θD,

(3.5)
(
Ej(t) + ω1Mj(t)

)
−
(
Ej(0) + ω1Mj(0)

)
≤ Ce−2θD,

(3.6)
(

Fj(t) + ω2Mj(t)
)
−
(

Fj(0) + ω2Mj(0)
)
≤ Ce−2θD.

Remark 3.2. If j = 1, we have = 0 at the place of ≤ Ce−2θD, we will need it in the following of the
proof.

Proof. If j = 1, we have exact conservation laws, so this Lemma is obvious. We assume that j ≥ 2
for the following of this proof. From Appendix and minoration of m′

j,

d
dt

Mj(t) =
∫ [

−3
2

u2
x +

3
4

u4
]

Φjx +
1
2

∫
u2Φjxxx +

1
2

∫
u2Φjt

=
∫ [

−3
2

u2
x +

3
4

u4
]

Φjx +
1
2

∫
u2Φjxxx −

1
2

m′
j

∫
u2Φjx

≤
∫ [

−3
2

u2
x +

3
4

u4 − 1
2

σu2
]

Φjx +
1
2

∫
u2Φjxxx.(3.7)

Now, we use that
∣∣Φjxxx

∣∣ ≤ σ
4 Φjx, and we obtain that

(3.8) 2
d
dt

Mj(t) ≤ −
∫ [

−3u2
x +

3σ

4
u2 − 3

2
u4
]

Φjx.

Now, from Appendix, we know that for r > 0, if t, x satisfy x̃j−1(t) + r < x < x̃j(t) − r, then∣∣∣P̃(t, x)
∣∣∣ ≤ Ce−βr. And so, for t, x such that x̃j−1(t) + r < x < x̃j(t)− r, by Sobolev embedding,

|u(t, x)| ≤
∣∣∣P̃(t, x)

∣∣∣+ C∥ε(t)∥H2

≤ Ce−βr + CA
(

a + e−θD
)

.(3.9)

From that, we can deduce that for r large enough, a0 small enough and D0 large enough, for
x ∈ [x̃j−1(t) + r, x̃j(t)− r], we can obtain that |u(t, x)| is bounded by any chosen constant. Here, we
will use that to bound 3

2 u2 by σ
4 .

For t, x such that x < x̃j−1(t) + r or x > x̃j(t)− r:∣∣Φjx(t, x)
∣∣ ≤ C exp

(
−
√

σ

2

∣∣x − mj(t)
∣∣)

≤ C exp
(
−
√

σ

2

(
D
2
+ ζt − r

))
≤ C exp

(
−
√

σζ

2
t
)

exp
(
−
√

σ

4
D
)

exp
(√

σ

2
r
)

,(3.10)
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and so, if we choose D0 large enough (more precisely, D0 ≥ 4r), we obtain for x /∈ [x̃j−1(t) +
r, x̃j(t)− r]:

(3.11)
∣∣Φjx(t, x)

∣∣ ≤ C exp
(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

.

Because
∫

u4 is bounded by a constant for any time (that depends only on problem data), we
deduce that:

d
dt

Mj(t) ≤ −
∫ (3

2
u2

x +
σ

4
u2
)

Φjx(t) + C exp
(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

≤ C exp
(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

.(3.12)

We deduce what we want to prove by integration.
For the second inequality, the argument is similar. We start by using Appendix:

d
dt

Ej(t) =
∫ [

−1
2
(
uxx + u3)2 − u2

xx + 3u2u2
x

]
Φjx +

1
2

∫
u2

xΦjxxx − m′
j

∫ [1
2

u2
x −

1
4

u4
]

Φjx

≤ −
∫ [1

2
(
uxx + u3)2

+ u2
xx − 3u2u2

x +
σ

2
u2

x −
vJ

2
u4
]

Φjx +
1
2

∫
u2

xΦjxxx,(3.13)

and again, because
∣∣Φjxxx

∣∣ ≤ σ
4 Φjx, we obtain that

(3.14) 2
d
dt

Ej(t) ≤ −
∫ [(

uxx + u3)2
+ 2u2

xx − 6u2u2
x +

3σ

4
u2

x − vJu4
]

Φjx,

and by doing a similar argument as for the mass, but to bound 6u2 by σ
4 and to bound vJu2 by

ω3 > 0, a constant as small as we need, we obtain
d
dt

Ej(t) ≤ −
∫ [1

2
(
uxx + u3)2

+ u2
xx +

σ

4
u2

x −
ω3

2
u2
]

Φjx + C exp
(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

≤ ω3

2

∫
u2Φjx + C exp

(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

,(3.15)

and so, if we choose ω3 such that ω3
2 ≤ ω1

σ
4 ,

d
dt
(
Ej(t) + ω1Mj(t)

)
≤ ω3

2

∫
u2Φjx + C exp

(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)
− ω1σ

4

∫
u2Φjx

≤ C exp
(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

,(3.16)

and we deduce what we want to prove by integration.
For the third inequality, the argument is similar. We start by using Appendix:

d
dt

Fj(t) =
∫ (

−3
2

u2
xxx + 9u2

xxu2 + 15u2
xuuxx +

9
16

u8 +
1
4

u4
x +

3
2

uxxu5 − 45
4

u4u2
x

)
Φjx

+ 5
∫

u2uxuxxΦjxx +
1
2

∫
u2

xxΦjxxx − m′
j

∫ [1
2

u2
xx −

5
2

u2u2
x +

1
4

u6
]

Φjx

≤ −
∫ (3

2
u2

xxx − 9u2
xxu2 − 15u2

xuuxx −
9
16

u8 − 1
4

u4
x −

3
2

uxxu5 +
45
4

u4u2
x +

σ

2
u2

xx

−5vJu2u2
x +

σ

4
u6
)

Φjx + 5
∫

u2uxuxxΦjxx +
1
2

∫
u2

xxΦjxxx,(3.17)

and again, because
∣∣Φjxx

∣∣ ≤ √
σ

2 Φjx and
∣∣Φjxxx

∣∣ ≤ σ
4 Φjx, we obtain that

2
d
dt

Fj(t) ≤ −
∫ (

3u2
xxx −

(
18 +

5
2
√

σ

)
u2

xxu2 − 30u2
xuuxx −

9
8

u8 − 1
2

u4
x − 3uxxu5

+
45
2

u4u2
x +

3σ

4
u2

xx −
(

10vJ +
5
2
√

σ

)
u2u2

x +
σ

2
u6
)

Φjx,(3.18)
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and by doing a similar argument as for the mass, but to bound
(
18 + 5

2
√

σ
)

u2 by σ
4 , to bound

30uuxx by ω4, to bound 9
8 u6 by ω5, to bound 1

2 u2
x by ω4, to bound 3uxxu3 by ω5 and to bound(

10vJ +
5
2
√

σ
)

u2 by ω4, where ω3, ω4 > 0 are constants that we can choose as small as we want.
And we obtain

d
dt

Fj(t) ≤ −
∫ [3

2
u2

xxx +
45
4

u4u2
x +

σ

4
u6 +

σ

4
u2

xx − Cω4u2
x − Cω5u2

]
Φjx

+ C exp
(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

≤ Cω4

∫
u2

xΦjx + Cω5

∫
u2Φjx + C exp

(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

,(3.19)

and so, if we choose ω4, ω5 such that Cω4 ≤ ω1
3
2 and Cω5 ≤ ω1

σ
4 ,

(3.20)
d
dt
(

Fj(t) + ω2Mj(t)
)
≤ C exp

(
−
√

σζ

2
t
)

exp
(
−
√

σ

8
D
)

,

and we deduce what we want to prove by integration. □

3.2. Quadratic approximation for conservation laws at the right. We can write the following Taylor
expansions with u = P̃ + ε for any t ∈ [0, t∗]:

(3.21) Mj(t)− Mj[P̃](t)−
∫

P̃εΦj −
1
2

∫
ε2Φj = 0,

(3.22)
∣∣∣∣Ej(t)− Ej[P̃](t)−

∫ [
P̃xεx − P̃3ε

]
Φj −

∫ [1
2

ε2
x −

3
2

P̃2ε2
]

Φj

∣∣∣∣ ≤ CA
(

a + e−θD
) ∫

ε2Φj,

∣∣∣∣Fj(t)− Fj[P̃](t)−
∫ [

P̃xxεxx − 5P̃P̃2
x ε − 5P̃2P̃xεx +

3
2

P̃5ε

]
Φj

(3.23)

−
∫ [1

2
ε2

xx −
5
2

P̃2
x ε2 − 10P̃P̃xεεx −

5
2

P̃2ε2
x +

15
4

P̃4ε2
]

Φj

∣∣∣∣ ≤ CA
(

a + e−θD
) ∫ (

ε2 + ε2
x
)

Φj.

Now, we want to simplify each term of the Taylor expansion.

3.2.1. Constant terms of the Taylor expansion. We obtain the following lemma dealing with variations
of the constant parts of each Taylor expansion of conservation laws at the right. We reduce each
variation to the variation of each conservation law of P̃j. Note that if Pj is a breather, the variation
of any conservation law of P̃j is 0. But, if Pj = Rl , we may express in the following way M[R̃l ], E[R̃l ]

and F[R̃l ] with respect to Q, the ground state of parameter c = 1 (the basic ground state):

(3.24) M[R̃l ](t) = cl(t)1/2M[Q],

(3.25) E[R̃l ](t) = cl(t)3/2E[Q],

(3.26) F[R̃l ](t) = cl(t)5/2F[Q].

Lemma 3.3. If σ < 4β2, θ < min
(

β
4 ,

√
σ

8

)
, then for any t ∈ [0, t∗],

(3.27)
∣∣∣Mj[P̃](t)− Mj[P̃](0)−

(
M[P̃j](t)− M[P̃j](0)

)∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

(3.28)
∣∣∣Ej[P̃](t)− Ej[P̃](0)−

(
E[P̃j](t)− E[P̃j](0)

)∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

(3.29)
∣∣∣Fj[P̃](t)− Fj[P̃](0)−

(
F[P̃j](t)− F[P̃j](0)

)∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
.
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Remark 3.4. In the case when Pj is a breather, we have that

(3.30) M[P̃j](t)− M[P̃j](0) = E[P̃j](t)− E[P̃j](0) = F[P̃j](t)− F[P̃j](0) = 0.

It is not true in the case when Pj is a soliton.

Proof. When we develop using P̃ = ∑J
i=1 P̃i, we obtain terms with P̃i P̃j with i ̸= j and the other terms

that have all the same index. For the first type of terms, it is enough to bound
∫

P̃i P̃j for i ̸= j:

(3.31)
∣∣∣∣∫ P̃i P̃j

∣∣∣∣ ≤ Ce−
βD
2 .

Now, we look on the terms with the same index, for example
∫

P̃i
2
Φj. We will distinguish several

cases. If i < j,∫
P̃i

2
Φj ≤ C

∫
e−2β|x−x̃i(t)|e

√
σ

2 (x−mj(t))dx

= C
∫ x̃i(t)

−∞
e(2β+

√
σ/2)x−2βx̃i(t)−

√
σ

2 mj(t)dx + C
∫ +∞

x̃i(t)
e(−2β+

√
σ/2)x+2βx̃i(t)−

√
σ

2 mj(t)dx

≤ C√
σ

e
√

σ
2 (x̃i(t)−mj(t))

≤ Ce−
√

σD
4 .(3.32)

For the same reason and properties of Ψ, for i ≥ j,

(3.33)
∫

P̃i
2 (

1 − Φj
)
≤ Ce−

√
σD
4 .

For i > j, we may use Pi; and for i = j, we cannot. So, if for i ≥ j + 1, P̃i = R̃l is a soliton, we
have by the mean-value theorem, using (2.73),∣∣∣M[P̃i](t)− M[P̃i](0)

∣∣∣ = ∣∣∣cl(t)1/2 − cl(0)1/2
∣∣∣ |M[Q]|

≤ C |cl(t)− cl(0)|

≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,(3.34)

and, by the same way, we may obtain,

(3.35)
∣∣∣E[P̃i](t)− E[P̃i](0)

∣∣∣ ≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

and

(3.36)
∣∣∣F[P̃i](t)− F[P̃i](0)

∣∣∣ ≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
.

□

3.2.2. Linear terms of the Taylor expansion. We denote:

(3.37) m[X] :=
∫

Xε,

(3.38) mj[X] :=
∫

XεΦj,

(3.39) e[X] :=
∫ [

Xxεx − X3ε
]
= −

∫ [
Xxx + X3] ε,

(3.40) ej[X] :=
∫ [

Xxεx − X3ε
]

Φj,

(3.41) f [X] :=
∫ [

Xxxεxx − 5XX2
xε − 5X2Xxεx +

3
2

X5ε

]
=
∫ [

Xxxxx + 5XX2
x + 5X2Xxx +

3
2

X5
]

ε,



18 ALEXANDER SEMENOV

(3.42) f j[X] :=
∫ [

Xxxεxx − 5XX2
xε − 5X2Xxεx +

3
2

X5ε

]
Φj.

Lemma 3.5. If σ < β2, θ < min
(

β
4 ,

√
σ

8

)
, if D0 is large enough and a0 is small enough, then for any

t ∈ [0, t∗],

(3.43)
∣∣∣mj[P̃](t)− mj[P̃](0)−

(
m[P̃j](t)− m[P̃j](0)

)∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

(3.44)
∣∣∣ej[P̃](t)− ej[P̃](0)−

(
e[P̃j](t)− e[P̃j](0)

)∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

(3.45)
∣∣∣ f j[P̃](t)− f j[P̃](0)−

(
f [P̃j](t)− f [P̃j](0)

)∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
.

Proof. We develop using P̃ = ∑J
i=1 P̃i. We obtain terms with P̃i P̃j with i ̸= j and the other terms that

have all the same index. Knowing that ε bounded for D0 large enough and a0 small enough (with
respect to A), we obtain the same bounds in the same way as for the constant part.

Now, if, for i ≥ j + 1, P̃i is a soliton, then we have simply: m[P̃i] = e[P̃i] = f [P̃i] = 0.
If, for i ≥ j + 1, P̃i is a breather, we have a bound for the variation of these quantities by Pi. □

3.2.3. Quadratic part of the Taylor expansion. We set:

(3.46) Mj[X] :=
1
2

∫
ε2Φj,

(3.47) Ej[X] :=
∫ [1

2
ε2

x −
3
2

X2ε2
]

Φj,

(3.48) Fj[X] :=
∫ [1

2
ε2

xx −
5
2

X2
xε2 − 10XXxεεx −

5
2

X2ε2
x +

15
4

X4ε2
]

Φj,

and Mj(t) := Mj[P̃](t), ...

Lemma 3.6. If σ < β2, θ <
√

σ
8 , if D0 is large enough and a0 is small enough, then for any t ∈ [0, t∗],

(3.49)
∣∣∣Mj[P̃](t)−Mj[P̃j](t)

∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

(3.50)
∣∣∣Ej[P̃](t)− Ej[P̃j](t)

∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

(3.51)
∣∣∣Fj[P̃](t)−Fj[P̃j](t)

∣∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
.

Proof. We develop using P̃ = ∑J
i=1 P̃i. For terms with P̃i, with i > j, we use the induction assumption

for ε. For terms with P̃i, with i < j, we do as in the previous sections. □

Note that (3.49) is useless, because Mj[P̃](t)−Mj[P̃j](t) = 0 since Mj[X] do not depend on X,
but we write it in order to argue in the same way for the three conserved quantities.
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3.3. Lyapunov functional and simplifications. We introduce the following Lyapunov functional:

(3.52) Hj(t) := Fj(t) + 2
(

b2
j − a2

j

)
Ej(t) +

(
a2

j + b2
j

)2
Mj(t).

We set:

(3.53) K(t) := F[P̃j](t) + 2
(

b2
j − a2

j

)
E[P̃j](t) +

(
a2

j + b2
j

)2
M[P̃j](t),

(3.54) L(t) := f [P̃j](t) + 2
(

b2
j − a2

j

)
e[P̃j](t) +

(
a2

j + b2
j

)2
m[P̃j](t),

(3.55) Q(t) := Fj[P̃j](t) + 2
(

b2
j − a2

j

)
Ej[P̃j](t) +

(
a2

j + b2
j

)2
Mj[P̃j](t).

We have the following:

Lemma 3.7. If σ < β2, θ < min
(

β
4 ,

√
σ

8

)
, if D0 is large enough and a0 is small enough, then for any

t ∈ [0, t∗],

(3.56)
∣∣Hj(t)−Hj(0)− (Q(t)−Q(0))

∣∣ ≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
.

Proof. From (3.21), (3.22), (3.23), Lemmas 3.3, 3.5 and 3.6 we deduce that:
if σ < β2, θ > min

(
β
4 ,

√
σ

8

)
, if D0 is large enough and a0 is small enough, then for any t ∈ [0, t∗],

Hj(t)−Hj(0) = K(t)−K(0) + L(t)−L(0) +Q(t)−Q(0) + O
(

A
(

a + e−θD
) ∫ (

ε2 + ε2
x
)

Φj

)
+ O

(
e−2θD

)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.(3.57)

Now, from the bootstrap assumption (2.25), we see that if we take D0 large enough and a0

small enough, then we can bound A
(
a + e−θD) ∫ (ε2 + ε2

x
)

Φj by
(

A
Zj+1

)2 (
a2 + e−2θD). So, for any

t ∈ [0, t∗],
(3.58)
Hj(t)−Hj(0)

= K(t)−K(0) + L(t)−L(0) +Q(t)−Q(0) + O
(

e−2θD
)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.

Now, we will simplify K(t)−K(0) and L(t)−L(0).
Simplification of K(t)−K(0):
If P̃j is a breather, then K(t)−K(0) = 0. If P̃j = R̃l is a soliton, then we have

K(t) = F[R̃l ](t) + 2c0
l E[R̃l ](t) +

(
c0

l
)2

M[R̃l ](t)

= cl(t)5/2F[Q] + 2c0
l cl(t)3/2E[Q] +

(
c0

l
)2

cl(t)1/2M[Q].(3.59)

Now, we observe that cl(t) = c0
l +

(
cl(t)− c0

l

)
, this is why we want to do a Taylor expansion for

each power function. We recall that by (2.54), for D0 large enough and a0 small enough (with respect

to Zj+1),
∣∣cl(t)− c0

l

∣∣3 is bounded by C
(

A
Zj+1

)2 (
a2 + e−2θD). This is why we may approximate K(t)

by a Taylor expansion of order 2:

(
c0

l
)5/2

1 +
5
2

cl(t)− c0
l

c0
l

+
15
8

(
cl(t)− c0

l

c0
l

)2
 F[Q]

+2
(
c0

l
)5/2

1 +
3
2

cl(t)− c0
l

c0
l

+
3
8

(
cl(t)− c0

l

c0
l

)2
 E[Q]
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+
(
c0

l
)5/2

1 +
1
2

cl(t)− c0
l

c0
l

− 1
8

(
cl(t)− c0

l

c0
l

)2
M[Q](3.60)

=
(
c0

l
)5/2

(F[Q] + 2E[Q] + M[Q]) +
(
cl(t)− c0

l
) (

c0
l
)3/2

(
5
2

F[Q] + 3E[Q] +
1
2

M[Q]

)
+
(
cl(t)− c0

l
)2 (

c0
l
)1/2

(
15
8

F[Q] +
3
4

E[Q]− 1
8

M[Q]

)
.

Now, we use the fact that M[Q] = 2, E[Q] = − 2
3 and F[Q] = 2

5 , and we obtain that the Taylor
expression of order 2 is in fact:

(3.61)
16
15
(
c0

l
)5/2

+ 0
(
cl(t)− c0

l
) (

c0
l
)3/2

+ 0
(
cl(t)− c0

l
) (

c0
l
)3/2

=
16
15
(
c0

l
)5/2

.

Thus,

(3.62)
∣∣∣∣K(t)− 16

15
(
c0

l
)5/2

∣∣∣∣ ≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
,

and so,

(3.63) |K(t)−K(0)| ≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
.

Simplification of L(t)−L(0):
If P̃j is a breather, we have, by the elliptic equation verified by a breather, that L(t) = 0.
If P̃j is a soliton, we have, by (2.56), (2.85) and (2.86), that L(t) = 0 (we have simply m[P̃j] =

e[P̃j] = f [P̃j] = 0). □

3.4. Coercivity.

Lemma 3.8. If σ is small enough (with respect to constants that depend only on problem data),

θ < min
(

β

4
,
√

σ

8

)
,(3.64)

if D0 is large enough and a0 is small enough, then for any t ∈ [0, t∗],

(3.65)
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤ CQ(t) + C
(∫

εP̃j

)2

+ Ce−2θD.

Proof. We notice that
∫ (

ε2 + ε2
x + ε2

xx
)

Φj is ∥ε
√

Φj∥2
H2 modulo some terms that can be bounded by

C
√

σ
∫ (

ε2 + ε2
x + ε2

xx
)

Φj.(3.66)

This is why we will bound ∥ε
√

Φj∥2
H2 . We can bound it by the canonical quadratic form associated

to P̃j and evaluated in ε
√

Φj, if ε
√

Φj satisfies quite well the orthogonality conditions, which is the
case (see Sections 5.4 and (372) in [39]).

So, we obtain that, if P̃j is a breather, the canonical quadratic form is Q(t) modulo (3.66), and we
have

(3.67)
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤ CQ(t) + C
(∫

ε
√

ΦjP̃j

)2

+ C
√

σ
∫ (

ε2 + ε2
x + ε2

xx
)

Φj,

which means that if σ is small enough,

(3.68)
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤ CQ(t) + C
(∫

ε
√

ΦjP̃j

)2

,

and we check that
∫

ε
√

ΦjP̃j is
∫

εP̃j modulo Ce−θD. So,

(3.69)
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤ CQ(t) + C
(∫

εP̃j

)2

+ Ce−2θD.
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If P̃j = R̃l is a soliton, the canonical quadratic form is, modulo C
√

σ
∫ (

ε2 + ε2
x + ε2

xx
)

Φj,

(3.70) Q0(t) := Fj[R̃l ](t) + 2cl(t)Ej[R̃l ](t) + cl(t)2Mj[R̃l ](t).

This is why, for the same reasons as above, we have

(3.71)
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤ CQ0(t).

This is why, we need to be able to bound |Q0(t)−Q(t)|. We have

(3.72) Q0(t)−Q(t) = 2
(
cl(t)− c0

l
)
Ej[R̃l ](t) + 2c0

l
(
cl(t)− c0

l
)
Mj[R̃l ](t) +

(
cl(t)− c0

l
)2 Mj[R̃l ](t),

and so, because Mj and Ej are quadratic in ε, we have that

(3.73) |Q0(t)−Q(t)| ≤ CA
(

a + e−θD
) ∫ (

ε2 + ε2
x
)

Φj,

and so, if we take a0 small enough and D0 large enough, we obtain

(3.74)
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤ CQ(t).

□

3.5. Proof of Pj. Now, we are left to prove Pj. More precisely, if Pj is a soliton, we will prove (2.76)
and (2.77); if Pj is a breather, we will prove (2.76), (2.78) and (2.79). We will distinguish several

cases. We assume that σ ≤ min
(
ζ, β2), θ ≤ min

(
β
4 ,

√
σ

16

)
, and that D0 is large enough and a0 is

small enough (depending on A, θ), so that all the previous lemmas are verified.

3.5.1. Case when Pj is a soliton.
Proof of (2.76). By Lemma 3.1 and the fact that b2

j − a2
j > 0 for j ≥ 2 (which is a direct consequence

of v2 > 0), we have that, if j ≥ 2, for any t ∈ [0, t∗],

(3.75) Hj(t)−Hj(0) ≤ Ce−2θD.

(3.75) is also true for j = 1, because of Remark 3.2.
We have, by (3.56), (3.75), the definition of Q(0) and (2.53) for ε(0), for any t ∈ [0, t∗],

Q(t) =
[
Q(t)−Q(0)−

(
Hj(t)−Hj(0)

)]
+
[
Hj(t)−Hj(0)

]
+Q(0)(3.76)

≤ Ce−2θD + C
(

A
Zj+1

)2 (
a2 + e−2θD

)
+ C∥ε(0)∥2

H2(3.77)

≤ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.(3.78)

And so, by (3.65) and (3.78), we have for any t ∈ [0, t∗],∫ (
ε2 + ε2

x + ε2
xx
)

Φj ≤ CQ(t) + C
(∫

εP̃j

)2

+ Ce−2θD(3.79)

≤ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
+ C

(∫
εP̃j

)2

.(3.80)

Because of (2.56) and P̃j is a soliton, we have that

(3.81)
∫

εP̃j = 0.

So, the proof of (2.76) is completed for a suitable constant Zj that will be precised later.
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Proof of (2.77). From (3.21), (3.24), (3.27), (3.43), (2.56) and (3.80), we have for any t ∈ [0, t∗]:

Mj(0)− Mj(t) = Mj[P̃](0)− Mj[P̃](t) +
∫

P̃εΦj(0)−
∫

P̃εΦj(t) +
1
2

∫
ε2Φj(0)−

1
2

∫
ε2Φj(t)

(3.82)

=
(

cl(0)1/2 − cl(t)1/2
)

M[Q] + O
((

a2 + e−2θD
))

+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.

Similarly, from (3.22), (3.25), (3.28), (3.44), (2.85) and (3.80), by taking a0 smaller and D0 larger
with respect to A if needed, we have for any t ∈ [0, t∗]:
(3.83)

Ej(0)− Ej(t) =
(

cl(0)3/2 − cl(t)3/2
)

E[Q] + O
((

a2 + e−2θD
))

+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.

For η = 1
2 , 3

2 , because we know that cl(t) is not too far from cl(0) (and the both are not too far
from c0

l , by (2.54)), we can write for any t ∈ [0, t∗]:

(3.84) cl(t)η = (cl(0))
η
(

1 + η
cl(t)− cl(0)

cl(0)
+ O

(
(cl(t)− cl(0))

2
))

,

and so for any t ∈ [0, t∗],

(3.85) cl(t)η − cl(0)η = ηcl(0)η−1 (cl(t)− cl(0)) + O
(
(cl(t)− cl(0))

2
)

,

and if a0 is small enough and D0 is large enough, we have by (2.26), for any t ∈ [0, t∗]:

(3.86)
∣∣∣O ((cl(t)− cl(0))

2
)∣∣∣ ≤ 1

2
ηcl(0)η−1 |cl(t)− cl(0)| .

Thus, for any t ∈ [0, t∗],

(3.87) 2ηcl(0)η−1 |cl(t)− cl(0)| ≥ |cl(t)η − cl(0)η | ≥ ηcl(0)η−1

2
|cl(t)− cl(0)| ,

where cl(0)η−1 is between min{ c0
p

2 , 1 ≤ p ≤ L}η−1 and max
{

2c0
p, 1 ≤ p ≤ L

}η−1
by (2.54), and so is

bounded above and below by a constant that depends only on the shape parameters of the solitons.
In order to bound |cl(t)− cl(0)| for a given t ∈ [0, t∗], we will distinguish two cases.
Case when cl(t)− cl(0) ≥ 0. From (3.82) and (3.87) for η = 1

2 , we can say that

|cl(t)− cl(0)| ≤ C
(

cl(t)1/2 − cl(0)1/2
)

(3.88)

≤ C
Mj(t)− Mj(0)

M[Q]
+ C

(
a2 + e−2θD

)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.

Now, M[Q] > 0 and from Lemma 3.1,

(3.89) |cl(t)− cl(0)| ≤ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.

Thus, (2.77) is established for a suitable constant Zj that will be precised later.
Case when cl(t)− cl(0) ≤ 0. From (3.83) and (3.87) for η = 3

2 , we can say that

|cl(t)− cl(0)| ≤ C
(

cl(0)3/2 − cl(t)3/2
)

(3.90)

≤ C
Ej(0)− Ej(t)

E[Q]
+ C

(
a2 + e−2θD

)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.

Now, E[Q] < 0 and from Lemma 3.1, (3.82) and (3.87) for η = 1
2 ,

|cl(t)− cl(0)| ≤ Cω1
(

Mj(0)− Mj(t)
)
+ C

(
a2 + e−2θD

)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
(3.91)

≤ Cω1

(
cl(0)1/2 − cl(t)1/2

)
+ C

(
a2 + e−2θD

)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
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≤ Cω1 |cl(t)− cl(0)|+ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
,

and so, by taking ω1 small enough, we may deduce the desired inequality:

(3.92) |cl(t)− cl(0)| ≤ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.

Thus, (2.77) is established for a suitable constant Zj that will be precised later.

3.5.2. Case when Pj is a breather.
Preliminaries. By the same argument as in the case when Pj is a soliton, we establish (3.80). However,
we are not able to prove (2.76) immediately, because

∫
P̃jε is not necessarily equal to 0 in the case

when P̃j is a breather.
From Lemma 3.5, (3.21), Lemma 3.3 and Remark 3.4, we have that for any t ∈ [0, t∗],

∫
P̃jε(t)−

∫
P̃jε(0) = Mj(t)− Mj(0)−

1
2

∫
ε2Φj(t) +

1
2

∫
ε2Φj(0)

+ O
(

e−2θD
)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.(3.93)

then we use (3.4) and (2.53) for ε(0), we have that for any t ∈ [0, t∗],∫
P̃jε(t)−

∫
P̃jε(0) ≤ −1

2

∫
ε2Φj(t) +

1
2

∫
ε2Φj(0) + O

(
e−2θD

)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))

≤ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.(3.94)

Now, from (2.82), Lemma 3.5, (3.21), Lemma 3.3, Remark 3.4 and (2.25), we have for any t ∈ [0, t∗],((
a2

j + b2
j

)2
)(∫

P̃jε(0)−
∫

P̃jε(t)
)
= 2

(
b2

j − a2
j

) (
e[P̃j](t)− e[P̃j](0)

)
+
(

f [P̃j](t)− f [P̃j](0)
)

= 2
(

b2
j − a2

j

) (
Ej(t)− Ej(0)− Ej(t) + Ej(0)

)
+
(

Fj(t)− Fj(0)−Fj(t) +Fj(0)
)

+ O
(

e−2θD
)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.(3.95)

Recall that if j ≥ 2, b2
j − a2

j > 0. This is why, from Lemma 3.1 and (2.53) for ε(0), we have that, if
j ≥ 2, for any t ∈ [0, t∗]:

∫
P̃jε(0)−

∫
P̃jε(t) ≤

−2
(

b2
j − a2

j

)
Ej(t)−Fj(t)(

a2
j + b2

j

)2

+ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)

+
2
(

b2
j − a2

j

)
ω1 + ω2(

a2
j + b2

j

)2

(
Mj(0)− Mj(t)

)
.(3.96)

(3.96) is also true if j = 1 because of Remark 3.2.
And, from (3.21), Lemma 3.3, Remark 3.4, Lemma 3.5 and (2.53) for ε(0), we have for any t ∈

[0, t∗],

Mj(0)− Mj(t) = Mj[P̃](0)− Mj[P̃](t) +
∫

P̃εΦj(0)−
∫

P̃εΦj(t) +
1
2

∫
ε2Φj(0)−

1
2

∫
ε2Φj(t)
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= O
(

a2 + e−2θD
)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
+
∫

P̃jε(0)−
∫

P̃jε(t)−Mj(t).(3.97)

And so, if we choose ω1 and ω2 small enough with respect to the problem constants, we obtain
for any t ∈ [0, t∗]:

∫
P̃jε(0)−

∫
P̃jε(t) ≤

−
(

2
(

b2
j − a2

j

)
ω1 + ω2

)
Mj(t)− 2

(
b2

j − a2
j

)
Ej(t)−Fj(t)(

a2
j + b2

j

)2

+ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.(3.98)

Because
∣∣Mj(t)

∣∣+ ∣∣Ej(t)
∣∣+ ∣∣Fj(t)

∣∣ ≤ ∫ (ε2 + ε2
x + ε2

xx
)

Φj, we deduce that for any t ∈ [0, t∗],

(3.99)
∫

P̃jε(0)−
∫

P̃jε(t) ≤ C
∫ (

ε2 + ε2
x + ε2

xx
)

Φj + C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.

And so, by putting (3.94) and (3.99) together, we have that for any t ∈ [0, t∗]:
(3.100)∣∣∣∣∫ P̃jε(0)−

∫
P̃jε(t)

∣∣∣∣ ≤ C
∫ (

ε2 + ε2
x + ε2

xx
)

Φj + C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
.

Proof of (2.76). From (2.53), (3.100), we deduce for any t ∈ [0, t∗]:∣∣∣∣∫ P̃jε(t)
∣∣∣∣ ≤ ∣∣∣∣∫ P̃jε(0)−

∫
P̃jε(t)

∣∣∣∣+ ∣∣∣∣∫ P̃jε(0)
∣∣∣∣

≤ C
∫ (

ε2 + ε2
x + ε2

xx
)

Φj + C
(

a + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
≤ CA2

(
a2 + e−2θD

)
+ C

(
a + e−2θD

)
.(3.101)

And so, if a0 is small enough and D0 is large enough, for any t ∈ [0, t∗],

(3.102)
(∫

P̃jε(t)
)2

≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
+ C

(
a2 + e−2θD

)
.

This is why, from (3.80), for any t ∈ [0, t∗],

(3.103)
∫ (

ε2 + ε2
x + ε2

xx
)

Φj ≤ C
(

a2 + e−2θD
)
+ C

(
A

Zj+1

)2 (
a2 + e−2θD

)
,

and (2.76) is established for a suitable constant Zj that will be precised later.
Proof of (2.78). From (3.103) and (3.100), for any t ∈ [0, t∗]:

(3.104)
∣∣∣∣∫ P̃jε(0)−

∫
P̃jε(t)

∣∣∣∣ ≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
+ C

(
a2 + e−2θD

)
.

Thus, (2.78) is established for a suitable constant Zj that will be precised later.
Proof of (2.79). From Lemma 3.5, (3.22), Lemma 3.3, Remark 3.4, (3.100) and (3.103), for any t ∈ [0, t∗],

e[P̃j](t)− e[P̃j](0) = Ej(t)− Ej(0)− Ej(t) + Ej(0)

+ O
(

e−2θD
)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))

= Ej(t)− Ej(0) + O
(

a2 + e−2θD
)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.(3.105)

Now, from Lemma 3.1, for any t ∈ [0, t∗],

(3.106) e[P̃j](t)− e[P̃j](0) ≤ ω1
(

Mj(0)− Mj(t)
)
+ O

(
a2 + e−2θD

)
+ O

((
A

Zj+1

)2 (
a2 + e−2θD

))
.
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And from (3.97) and (3.104), for any t ∈ [0, t∗],

(3.107) e[P̃j](t)− e[P̃j](0) ≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
+ C

(
a2 + e−2θD

)
.

To bound above e[P̃j](0)− e[P̃j](t), we do as in (3.95), (3.96), (3.97), (3.98) and (3.99), but with the
energy instead of the mass, and after using (3.103), we obtain for any t ∈ [0, t∗],

(3.108)
∣∣∣e[P̃j](t)− e[P̃j](0)

∣∣∣ ≤ C
(

A
Zj+1

)2 (
a2 + e−2θD

)
+ C

(
a2 + e−2θD

)
.

Thus, (2.79) is established for a suitable constant Zj that will be precised later.

3.6. Choice of suitable A and Zj. The induction holds if

(3.109) C

(
1 +

(
A

Zj+1

)2
)

≤
(

A
Zj

)2

.

We can set

(3.110) A :=
√

2 (2C)
J
2 ,

and for 1 ≤ j ≤ J,

(3.111) Zj := 2 (2C)
j−1

2 .

And, if C > 1, the induction holds.
The proof of Proposition 2.6 is now complete.

4. A consequence of Theorem 1.1: orbital stability of a multi-breather

We assume the Theorem 1.1 proved, let us prove Theorem 1.3.

Proof of Theorem 1.3. Let A0 > 0, θ0 > 0, D0 > 0 and a0 > 0 from Theorem 1.1 (these constants do
only depend on the shape/frequency parameters of our objects and not on their initial positions).
Let η0 > η > 0 with η0 < a0

2C1
and C1 defined in the following. Let a < a0 and D > D0 such that

A0
(
a + e−θ0D) < 4A0C1η and a = 2C1η. We may take D even larger so that T∗ = 0 where T∗ is

defined in [39, Theorem 1.2]. Let θ1 associated to shape/frequency parameters αk, βk, κl , cl
0 by [39,

Theorem 1.2]. Let A2 associated to D by [39, Theorem 1.2].
Let τ > 0 be the minimal difference between two velocities.
Let p be the multi-breather associated to αk, βk, x0

1,k, x0
2,k, c0

l , x0
0,l by [39, Theorem 1.2] with notations

as in (1.25) and P the corresponding sum with notations as in (1.26). We may choose T ⩾ 0 large
enough such that

(4.1) ∀t ≥ T, ∥p(t)− P(t)∥H2 ≤ a/2,

which is possible from [39], and such that

(4.2) ∀j ≥ 2, xj(T)− xj−1(T) > 2D,

which is possible because the distance between two objects is increasing with a speed that is at least
τ.

By [24] we know that we have continuous dependence of the solution of (mKdV) with respect to
the initial data. And so, there exists C1 > 0 (that depends on T) such that if ∥u(0)− p(0)∥H2 ≤ η
and η0 is small enough, then

(4.3) ∀t ∈ [0, T], ∥u(t)− p(t)∥H2 ≤ C1η.

Therefore, by triangular inequality,

(4.4) ∥u(T)− P(T)∥H2 ≤ a = 2C1η.

This means that the assumptions of Theorem 1.1 are all satisfied in T instead of 0. And so, this
means that there exists x0,l(t), x1,k(t), x2,k(t) defined for any t ≥ T such that

(4.5) ∀t ≥ T,
∥∥u(t)− P(t; αk, βk, x1,k(t), x2,k(t), κl , c0

l , x0,l(t))
∥∥

H2 ≤ A0(a + e−θ0D) < 4A0C1η.
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Now, we see that the assumptions of [39, Theorem 1.2, Remark 1.3] are all satisfied in any t ≥ T
instead of 0 for the sum P(αk, βk, x1,k(t), x2,k(t), κl , c0

l , x0,l(t)). Indeed, if we denote x̃j(t) the position
of

(4.6) Pj(t; αk, βk, x1,k(t), x2,k(t), κl , c0
l , x0,l(t)),

we know from Remark 2.38 that for any t ≥ T and j ≥ 2,

(4.7) x̃j(t)− x̃j−1(t) ≥ D.

By taking T larger if needed, we may insure that e−θ1T < C1η.
Therefore, for any t ≥ T,∥∥p(t; αk, βk, x1,k(t), x2,k(t), κl , c0

l , x0,l(t))− P(t; αk, βk, x1,k(t), x2,k(t), κl , c0
l , x0,l(t))

∥∥
H2

≤ A2e−θ1t ≤ A2e−θ1T ≤ A2C1η.

And so, by triangular inequality,

(4.8) ∀t ≥ T,
∥∥u(t)− p(t; αk, βk, x1,k(t), x2,k(t), κl , c0

l , x0,l(t))
∥∥

H2 ≤ (4A0 + A2)C1η.

The latter proves the Theorem for t ≥ T with C0 = (4A0 + A2)C1. For 0 ≤ t ≤ T, it is enough to
use (4.3). □

Appendix: Equations for localized conservation laws

Lemma 4.1. Let f be a C3 function that do not depend on time and u a solution of (mKdV). Then,

(4.9)
d
dt

1
2

∫
u2 f =

∫ [
−3

2
u2

x +
3
4

u4
]

fx +
1
2

∫
u2 fxxx,

(4.10)
d
dt

∫ [1
2

u2
x −

1
4

u4
]

f =
∫ [

−1
2
(
uxx + u3)2 − u2

xx + 3u2u2
x

]
fx +

1
2

∫
u2

x fxxx,

d
dt

∫ [1
2

u2
xx −

5
2

u2u2
x +

1
4

u6
]

f

=
∫ (

−3
2

u2
xxx + 9u2

xxu2 + 15u2
xuuxx +

9
16

u8 +
1
4

u4
x +

3
2

uxxu5 − 45
4

u4u2
x

)
f ′

+ 5
∫

u2uxuxx f ′′ +
1
2

∫
u2

xx f ′′′.(4.11)

Proof. see the bottom of the page 1115 and the bottom of the page 1116 of [28] and Section 5.5 in
[39]. □

Lemma 4.2. Let r > 0. If t, x satisfy x̃j−1(t) + r < x < x̃j(t)− r, then

(4.12)
∣∣∣P̃(t, x)

∣∣∣ ≤ Ce−βr.

Proof. immediate consequence of the exponential majoration of each object. □
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