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Abstract

In a context of natural resources depletion, weather-dependent renewable energy sources play an increasingly important role in
the energy mix. Yet, high shares of renewables can jeopardise the safe operation of power grid due to their variable nature. To
address this challenge, it is essential to know the future amount of energy produced to balance production and consumption.
This paper aims at investigating photovoltaic generation short-term forecasting and particularly spatio-temporal approaches.
These approaches permit to exploit the spatial dependency of weather variables to provide valuable information regarding cloud
movements. Thus, it is possible for a power producer to take advantage of dense PV plants networks by considering spatially
distributed units as remote sensors. For low-density network, satellite-derived information observed in the vicinity of the power
unit location offers an interesting alternative. To reduce the computational burden induced by this data source, feature-selection
approaches are implemented. Usually, a correlation score is used to measure the dependence between lagged satellite-based
time-series with the target feature (i.e. power production observations). However, this approach tends to provide redundant
information (i.e. highly correlated pixels). To address this issue, we implement a minimal-Redundance Maximal-Relevance
framework. Performance comparisons with state-of-the-art approaches are also performed.

Nomenclature

t Launching time of the forecast
h Forecasting horizon
x Power unit of interest
It Irradiance-based quantity
ICS
t Irradiance observed under clear-sky conditions

Pt Photovoltaic production
Pc Installed capacity
St Satellite-derived surface irradiance
Ns Number of satellite-derived surface irradiance features
N Number of paired observations
fRF Random forest regression model used to infer the statis-

tical relationship between inputs and output
A Normalised PV production observed at time t+ h
B Normalised satellite-derived surface irradiance at a grid

point at time t
pA,B Joint probability distribution of A and B
pA Marginal probability distribution of A
.̂ Forecast quantity
. Normalised quantity

1 Introduction

Photovoltaic (PV) technology is one keystone of the global
energy shift initiated to reduce anthropogenic greenhouse gases

emissions; in Europe, on-grid PV plant installations increased
from nearly 9 GW in 2018 up to 19 GW in 2019 [1]. This
capacity growth is expected to continue over the next years due
to costs reduction [2].

PV generation is characterised by a high variability and a
limited predictability under non-clear sky conditions resulting
from its dependence over weather. This results to several chal-
lenges for the secure and economic operation of the power
systems especially in cases with high PV penetration. Weather
variability impacts also economic profitability of renewable
energy (RES). In a market-oriented environment, operators
that sell energy have to pay financial penalties proportional to
unplanned production fluctuations to the transmission system
operator.

To support RES integration within the power grid, accu-
rate forecasting tools are required. Unlike wind production
forecasting, which dates back to the 1980s [3], research on
PV production forecasting is a more recent field of research.
Nevertheless, the state of the art has developed rapidly in
recent years; in this regard [4, 5] provide fairly complete liter-
ature reviews. The main source of information for short-term
(i.e. from 15-min up to 6-h ahead) PV production forecast-
ing (PVPF) models are past production measurements. Recent
studies highlight that forecasts of the upcoming production
(i.e. for several hours-ahead) benefit from spatio-temporal (ST)
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approaches. This family of model takes advantage of spatial
dependencies that exist between weather state at the farm of
interest and its surrounding so as to derive information regard-
ing cloud motions. Reference [6] proposes a ST model based
on geographically distributed PV units while [7] considered
satellite-derived surface irradiance (SDSI). ST approaches can
be easily applied by actors like aggegators that manage a port-
folio of geographically distributed PV plants (e.g. a virtual
power plant) and for which they dispose their production data.
In the cases of very distant plants (spatial correlations are very
small or nonexistent), or areas with low power units density
(low ability to capture spatial effects through measurements,
although the distance permits to detect correlations), geosta-
tionary satellite-based information offers more flexibility in
the sense that it can fill the gap of sensors by covering large
areas. Moreover, due to constant innovations in the satellite
imagery field, satellite information is now delivered with high
reliability and at sub-hourly frequencies (i.e. every 15 minutes
and practically without delays in delivery), which promotes an
operational use.

In the literature, one finds several approaches to deal with
satellite-based information. One of the most widespread meth-
ods consists in extrapolating clouds displacement thanks to
motion extraction techniques developed in the image pro-
cessing field. Thus, a block-matching method applied to two
successive images permits to identify positions of similar
cloud structures and then to derive the displacement vectors.
Cloud Motion Vectors (CMV) are then used to translate the
most recent map by assuming that cloud structure remains
unchanged over time [8]. CMV-based methods reveal interest-
ing forecasting performances up to 2 hours ahead. Forecasting
performances can be extended to further horizons by consider-
ing wind velocity computed by numerical weather prediction
(NWP) models as displacement vectors. The main drawback
of CMV approaches lies in their ineffectiveness in the case of
local clouds formation [9]. More recent studies resort to statis-
tical or deep learning approaches. For instance, [10] proposes
a straightforward modelling chain, where a satellite image is
flattened and fed to a support vector regression model which
provides a forecast of PV production. In [11], the authors
propose a deep neural network architecture, which extracts rel-
evant features from three consecutive satellite images (thanks
to the use of a convolutional neural network), which are then
combined with meteorological data and fed into an artificial
neural network to derive irradiance forecasts. To cope with the
dimensional burden induced by satellite data set, it is a common
practice to resort to simpler approaches: one can consider a set
of well-chosen pixels fed to the forecasting model. To do so, a
maximal relevance feature selection (MRFS) scheme is usually
implemented: a correlation scores analysis performed between
time-lagged satellite-derived information and PV production is
used to select pixels having the highest scores. [9, 12] use the
Pearson correlation score while [13, 14] consider the Mutual
Information (MI) criterion for its ability to identify non-linear
relationships.

In this paper, we focus on the question of how to perform an
optimal pixel selection for feeding the PVPF model. It is fun-
damental to decrease the dimensionality of the problem, and
thus in line with the principle of parsimony in forecasting while
it opens the way to consider more easily additional sources
of information (e.g. alternative sources of satellite images).
In addition, these investigations are easy to replicate and do
not require additional information such as NWPs. The present
paper proposes the following original contributions:

• First, we observe that the MRFS scheme tends to select
satellite pixels aggregated in some spatial regions. There-
fore, selected features carry redundant information. To
address this issue, we apply the minimal-redundancy-
maximal-relevance (mRMR) incremental selection frame-
work, introduced by [15]. This approach permits the selec-
tion of spatially distributed features.

• Then, the selected pixels are embedded in a PVPF model
and confronted with traditional features selection processes
based on Pearson correlation and MI.

The paper is organised as follows. First, Section 2 intro-
duces the observational data used as case study. Then, Section 3
describes the methodology proposed to assess the features
selection while Section 4 discusses the outcomes. Finally,
Section 5 draws the conclusions of this study.

2 Case Study

We investigate a data set composed of PV production and SDSI
observations. Both data sets have a temporal resolution of 15
minutes. The forecasting models are trained over the year 2015,
while the year 2016 is used for out-of-sample testing purposes.

2.1 PV Power Production

The PV production measurements are provided by the Com-
pagnie Nationale du Rhône which is France’s leading producer
of exclusively renewable energy. This data set is composed of 9
non-tracking grid-connected systems, with a capacity ranging
from 1.2 up to 12 MWp. These 9 PV plants are located in the
Rhône valley and especially along the Rhône River.

2.2 Satellite-Derived Surface Irradiance

We considered satellite images obtained from the HelioClim-3
database with the HelioSat-2 method [16]. Helioclim-3 images
provide an estimation of the ground horizontal irradiance with
a spatial resolution of 0.0625◦ × 0.0625◦. Pixels constituting
satellite-based images are converted into a set of time-series.

3 Methodology

3.1 Data Stationarity

By nature, irradiance-based quantities are non-stationary (i.e.
the statistical properties of the time-series change over time)
due to astronomical and meteorological phenomena. A com-
mon way to make PV production process easier to analyse,
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consists in normalising the irradiance-based quantity, It, with a
clear sky model output ICS

t (equation (1)). This is a model esti-
mating irradiance with clear sky conditions, here, the MacClear
model [17] is used.

Īt =
It

ICS
t

(1)

3.2 The PV Production Forecasting Model

The core of the forecasting approach developed in this paper
is a random forest (RF) regression model [18]. We turn to
this model because it is widely used in the RES forecasting
domain and it tends to be considered as an advanced PVPF
model. Furthermore, it has the ability to draw non-linear rela-
tionship between input and output features. It is an ensemble
learning method composed of multiple regression trees grown
in parallel. This combination of trees associated with bootstrap
aggregating (i.e. bagging) approaches permits to overcome
over-fitting and lack of accuracy issues which are inherent to
tree models.

P̂
x

t+h|t = fRF

(
P

x

t−1H:t,S
1:Ns

t−1H:t

)
(2)

The generic forecasting model, represented by equation (2),
is fed with normalised past PV production observations at
the site of interest, P

x

t−1H:t and normalised SDSI features
S

1:Ns

t−1H:t. Past observations (i.e. from time t− 1H up time t) of
both variables are included so as to take into account their evo-
lution over time. Given the high dimensionality of SDSI (e.g. a
map centred over the PV farm with a radius of 50km produces
about 230 features while for 150km the features increase to
1870), raw satellite information can hardly be integrated within
advanced PVPF models without experiencing high computa-
tional costs. Therefore, a pre-selection step is required so as to
keep only the Ns most informative features.

3.3 Feature Selection Framework

Feature selection frameworks described hereinbelow aim at
finding subsets of SDSI features providing relevant information
regarding future PV production. To do so, we confront SDSI
features observed at time t with PV production measured at
time t+ h for each PV unit and for each forecasting horizon.
The feature selection is performed via the learning set.

3.3.1 Maximal Relevance Feature Selection: In the literature it
is a common practice to implement a MRFS scheme to deter-
mine the Ns features having the highest dependence with the
PV production observations. Here, we focus on MRFS frame-
works based either on the Pearson correlation score or on the
MI criterion (defined at equation (3)). Pearson coefficient mea-
sures the linear correlation between two sets of data, while the
MI permits to identify non-linear relationships.

I(A,B) =
∑
a∈A

∑
b∈B

pA,B(a, b) log

(
pA,B(a, b)

pA(a)pB(b)

)
(3)

In the Figure 1 we depict a part of a satellite image around
a PV plant (grey dot). The radius corresponds to 50 km. With
the black dots we indicate the pixels selected through the fea-
ture selection algorithms. Left graph of Figure 1 highlights that
MRFS tends to select features which are very close spatially.
Thus, such an approach selects geographically close variables
carrying redundant information, while making the forecasting
model "blind" in some spatial direction (e.g. in this case, no
information is provided regarding easterly cloud distribution).

Fig. 1 MRFS-MI and mRMR score-based maps obtained con-
sidering a 1-hour forecasting horizon. Black dots stand for the
position of the 10 most informative features while the grey dot
represents the site location.

3.3.2 Minimal-Redudant Maximal-Relevance Feature Selec-
tion: To tackle with the drawback of the MI-based approach
described above, we implement the mRMR incremental selec-
tion framework proposed in [15]. To the authors knowledge,
this method, which has been initially applied in the bioinfor-
matics field, has never been tested within the PVPF domain.

The mRMR approach finds the most relevant and least
redundant feature subset through an iterative process based on
MI. To do so, we adopt a forward selection scheme which
incrementally selects Ns features by identifying variables
which possess high MI with the target variable (i.e. maxi-
mal dependency), while having a low correlation with already
selected features (i.e. low redundancy).

The right graph of Figure 1 shows that the mRMR approach
applied with SDSI features manages to identify grid points
that are geographically distributed around the PV plant. Thus,
this approach provides the PVPF model with sparse informa-
tion which makes it more fitted to identify various weather
dynamics. Of course the ultimate evaluation of the differences
between the two approaches will be made upon the prediction
performance of the model for each case.

4 Evaluation Results

4.1 Reference Model

To judge the performances improvement resulting from the ST
approaches, we consider the RF model fed with only temporal-
based inputs as our baseline model. This model is defined by
equation (4):
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P̂
x

t+h|t = fRF

(
P

x

t−1H:t

)
(4)

4.2 Evaluation Metrics

To assess the forecasting performances of the different
approaches under consideration, it is necessary to define some
metrics to quantify differences between observations and fore-
cast values. With a view to enable inter-comparison with other
studies, we turn to widely used metrics, namely the normalised
Root Mean Square Error (nRMSE) and the normalised Mean
Absolute Error (nMAE), which are respectively described by
equations (5) and (6). Scores are computed individually for the
nine PV farms. Then, for ease of understanding and to place
ourselves in a context of production aggregation, the scores are
averaged. Nighttime data are discarded inasmuch as they do not
offer relevant information.

nRMSE(h) =

√√√√ 1

N

N∑
t=1

(
P̂ x

t+h|t − P x
t+h

P x
c

)2

(5)

nMAE(h) =
1

N

N∑
t=1

∣∣∣∣∣ P̂ x
t+h|t − P x

t+h

P x
c

∣∣∣∣∣ (6)

To compare the forecasting performances of models inves-
tigated in this paper with respect to the reference model, the
comparison skill score defined at equation (7) is used. A pos-
itive (negative) skill score means that the model has better
(worse) forecasting performances than the reference model.

SSModel(h) =
ScoreRef (h)− ScoreModel(h)

ScoreRef (h)
× 100% (7)

4.3 Performances Assessment

A sensibility analysis, performed over the number of SDSI fea-
tures (Ns ∈ [[5, 50]]) reveals that Peason-based, MI-based and
mRMR-based selections perform better when considering the
first 10 features with highest dependence scores. Beyond these
values, the increase of features does not improve forecasting
performances. In addition, similar investigation regarding the
influence of the SDSI feature selection processes has been per-
formed with an auto-regressive (AR) model. ARIMA models
are a family of linear models that is well suited for short-term
predictions and ST approaches [19]. It turns out that AR model
fed with SDSI features is less parsimonious than the RF-based
approach, while its performances are significantly lower. Due
to page restrictions, details of these analysis are omitted.

Figure 2 represents forecasting performances of RF models
fed with the best set of SDSI features provided by each feature
selection process. First, we observe that the feature selection
approaches have very little influence on forecasting horizons
lower than 1 hour. As for MRFS schemes, the RF forecasting
model fed with MI-based selected features slightly outperforms
its counterpart, trained with features selected with the Pearson

correlation score, for leading times higher than 2 hours. On the
other hand, best forecasting performances are achieved by the
mRMR selection scheme, both in terms of nRMSE and nMAE,
for horizons higher than 1 hour ahead.

Fig. 2 Influence of the SDSI features selection process over the
forecasting performance of the RF model.

As the nRMSE and nMAE differences are very low between
the considered models, we implement the Diebold-Mariano
(DM) test to judge the statistical significance of the differences.

The DM test compares the predictive accuracy of two fore-
cast models. The time loss differential between the two fore-
casts is denoted by d12,t = |e1,t| − |e2,t| with ei,t being the
forecast error. The two forecasts have equal accuracy if the
expectation of the loss differential is zero (that constitutes the
null hypothesis:H0 : E(d12,t) = 0,∀t). Under the null hypoth-
esis, the DM test follows the standard normal distribution
(equation (8)) [20]. We suppose a significance level of 5%. As
a result, DM statistics that fall outside the range defined by the
2.5% and 97.5% quantiles of the normal distribution (i.e. -1.96
and +1.96) enable the rejection of the null hypothesis.

DM12 =
d12
σ̂d12

∼ N (0, 1) (8)

Figure 3 highlights that for horizons between 45’ and 2
hours, forecasts issued by the Pearson-based and the MI-based
forecasting models are not statistically different. On the other
hand, the difference between the forecasts delivered by the
mRMR-based model and the MI-based approach are significant
for horizons higher than 1 hour.

5 Conclusion and Perspectives

In this paper, a new features selection framework is applied
to satellite-derived information in the context of PVPF. The
proposed approach permits to select a subset of low-correlated
variables, which ensure spatially distributed pixels around the
power unit. Then, a performance comparison performed with
two other features-selection schemes revealed that: (1) the
selection scheme has little importance for very-short term hori-
zons, (2) for higher horizons mRMR-based model outperforms
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Fig. 3 DM statistic between the three SDSI feature selection
frameworks studied for different forecast horizons. The red dot-
ted lines stand for the borders delimiting the validation and
rejection of the null hypothesis.

forecasting approaches based on the Pearson correlation coef-
ficient and the MI criterion. The resulting features selection
with the mRMR appoach is compatible with what is intuitively
expected as result, that is to select pixels that are geographi-
cal distributed around the PV plant. Present works have been
performed with irradiance-based information but future works
should apply the proposed method to infra-red satellite images
so as to improve forecast accuracy of the early morning.
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