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Abstract 22 

Metrafenone (MF), as a new type of benzophenone fungicide, has been widely 23 

used in agriculture and is persistent in the environment. Understanding its 24 

photochemical fate is essential for the comprehensive evaluation of its ecological risk. 25 

In the present work, we reported a detailed study on the photochemical transformation 26 

of MF in aqueous solution under irradiation (at λ > 290 nm using a high pressure 27 

mercury lamp). MF was relatively photo-reactive showing a low polychromatic 28 

quantum yield of photolysis (1.06×10
-4

) counterbalanced by a significant light 29 

absorption above 290 nm. A series of photoproducts were identified by high 30 

resolution mass spectrometry (HR-MS) analysis, and three different pathways, 31 

including oxidation of the methyl group, debromination and replacement of bromine 32 

by hydroxyl group were proposed. Among them, debromination was identified as the 33 

dominating process that could be achieved via homolytic C-Br bond cleavage from 34 

singlet and triplet MF, as confirmed by laser flash photolysis (LFP) experiments and 35 

density functional theory (DFT) calculations. Toxicity assessment revealed that 36 

photochemical degradation reduced the ecotoxicity of MF efficiently. Nitrate ions and 37 

humic acid promoted the MF photolysis, while bicarbonate exhibited no effect. 38 

Results obtained in this work would increase our understanding on the environmental 39 

fate of MF in sunlit surface waters. 40 

Keywords: Metrafenone; Photolysis; Debromination; Homolytic cleavage; Bond 41 

dissociation energy. 42 

1. Introduction 43 

Fungicides are widely applied to control fungal pathogens on growing crops to 44 

improve yields (Cintia et al., 2021; Lin et al., 2020; Miller et al., 2021; Nermine et al., 45 

2021; Patrick et al., 2021; Regueiro et al., 2015). Metrafenone (MF) is a new type of 46 
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benzophenone derivative fungicide, which is a brand-new active ingredient in the 47 

field of phytochemical protection (structure in Fig. 1). Studies have demonstrated that 48 

MF is effective in reducing spore germination, preventing appressorium formation, 49 

and inhibiting powdery mildew infestation (Franck et al., 2000; Krystina et al., 2006). 50 

Hence, it has been widely used to prevent and treat powdery mildew in crops such as 51 

wheat and grapes. However, repeated application of fungicides over a longtime period 52 

would inevitably lead to their accumulation in the environment. These toxic 53 

compounds can leach out of the soil, and contaminate surface water and groundwater, 54 

inducing potential health risks to residents (Freya and Jane, 2004; Pimmata et al., 55 

2013). In agricultural production, MF is normally pre-applied and there is a tendency 56 

to increase the amount applied as microbial resistance increases, resulting in its 57 

persistence in the environment (Kunova et al., 2016; Leroux et al., 2013). Residual 58 

MF has been widely detected in grapes, juices, and wines after its application to vines, 59 

which eventually affect the human health (Briz-Cid et al., 2014; Cabras and Angioni, 60 

2000; Noelia et al., 2018; Noguerol et al., 2010). Regueiro et al. (2015) once 61 

evaluated the toxicity of MF on cortical neurons in mice, they reported that MF 62 

induces depolarization of mitochondrial membranes, reduces cellular activity, and 63 

exhibits toxic effects after 7 days of exposure (Regueiro et al., 2015). 64 

Fig. 1.  65 

In order to accurately assess the ecological risks of fungicides, it is essential to 66 

investigate their transformation and fate in the environment (Baćmaga et al., 2019). 67 

Photochemical transformation is among the most important processes that affect the 68 
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fate of organic compounds in surface water (Ge et al., 2009; Yong et al., 2009). Direct 69 

photolysis of fungicides is caused by direct absorption of photons, while indirect 70 

photolysis is triggered by the absorption of light by photosensitizers. Active 71 

components in water (such as dissolved organic matter and ions) can interact with 72 

organic pollutants through energy transfer of excited substances or through 73 

photoproduction of reactive transient species, which affects the persistence and fate of 74 

fungicides in the environment (Avetta et al., 2014; Fréneau et al., 2019; Jennifer et al., 75 

2019; Liu et al., 2016). As shown in Fig. 1, the molecular structure of MF contains 76 

chromophores such as benzene rings and carbonyl groups which can absorb 77 

ultraviolet or visible light, indicating that direct photolysis of MF is likely upon 78 

irradiation (Turro, 1978). López-Fernández et al. (2018) confirmed that photolysis is 79 

an effective route for the removal of MF from grape juice (López-Fernández et al., 80 

2018). However, to our knowledge, specific studies on the photolytic fate of MF in 81 

natural surface waters is quite limited.  82 

In the current study, the photolytic behavior of MF in aqueous solution is 83 

investigated systematically, the main degradation pathways and mechanisms are 84 

proposed. For this, steady-state irradiations are performed to measure the quantum 85 

yield of MF photolysis, the second order rate constant ( 1
2O ,MF

k ) for the reaction 86 

between singlet oxygen (
1
O2) and MF and test the effect of pH and quenchers. In 87 

addition, laser flash photolysis (LFP) experiments are conducted to identify the 88 

transient species involved in the reaction and density functional theory (DFT) 89 

calculations are adopted to confirm the hypotheses. The and MF and are also 90 
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measured. The photodegradation products of MF are determined by high resolution 91 

mass spectrometry (HR-MS) and their toxicity is evaluated by Ecological Structure 92 

Activity Relationship (ECOSAR 2.0) software. Subsequently, the effects of water 93 

matrices including nitrate ions, bicarbonate, and humic acid on MF photodegradation 94 

are evaluated. Results obtained here will provide a scientific basis for a 95 

comprehensive understanding of the photochemical fate of MF in the aquatic 96 

environment. 97 

2. Materials and methods 98 

2.1. Materials 99 

Metrafenone (MF, 99.7%) and humic acid (HA, 99%) were purchased from 100 

Sigma-Aldrich (St. Louis, MO, USA). Phosphoric acid with chromatographic purity 101 

and sorbic acid (99.8%) were obtained from Aladdin (Shanghai, China). Deuterium 102 

oxide (D2O, 99.9%) was obtained from Energy Chemical (Shanghai, China). 103 

Isopropanol (IPA, 99.9%) was obtained from Thermo Fisher Scientific (Waltham, 104 

USA). Sodium nitrate (≥98.5%) and sodium bicarbonate (≥99.5%) were purchased 105 

from Sinopharm Chemical Reagent Co., Ltd and Richjoint, respectively. HPLC grade 106 

acetonitrile (ACN, 99%) was obtained from J&K Scientific Ltd (Shanghai, China). 107 

Other reagents were at least of analytical grade and used as received.  108 

2.2. Photolysis experiments 109 

2.2.1 Steady-state photolysis experiments 110 

Steady-state photolysis experiments were conducted in a device equipped with a 111 

500 W high pressure mercury lamp (Beijing Zhongjiao Jinyuan Technology Co., Ltd, 112 
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China) surrounded by a 290 nm cut-off filter as the light source. The mercury lamp 113 

was turned on preliminarily for 30 min. After stabilization, 25 mL solution to be 114 

irradiated containing target compounds (20 μM) were pipetted into a Pyrex glass 115 

reactor. During the irradiation process, Pyrex glass reactors were transferred to the 116 

water-cooled immersion well in the device to maintain the temperature at 20 
○
C. Dark 117 

controls were also performed under the same conditions. During the irradiated process, 118 

0.5 mL aliquot of the solution to be irradiated was withdrawn at predetermined time 119 

intervals for analysis. To ensure the reliability of the data, all experiments were 120 

carried out at least in duplicates, and the error bars in the figures represent the 121 

standard deviation (SD). 122 

2.2.2 Laser flash photolysis experiments 123 

Laser flash photolysis (LFP) experiments were carried out using a Quanta Ray 124 

LAB-150–10 Nd:YAG laser at an excitation wavelength of 266 nm to investigate the 125 

absorbance and disappearance of the transient species in ACN solutions of MF. 126 

Solutions were purged with purified N2 prior to the experiments to evaluate the effect 127 

of O2 (triplet quencher) on the lifetime of transient species. Different time windows 128 

were used to fit the decay of the transient species of MF. 129 

2.3. Analytical methods 130 

The concentration of MF was measured using a high performance liquid 131 

chromatograph (HPLC, Waters) equipped with a separation module (Waters 2695) 132 

and a photodiode array detector (Waters 2998). Detailed operation conditions are 133 

provided in Text. S1. 134 
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The transformation products were identified by a high resolution mass 135 

spectrometry (HR-MS), which was coupled to a HPLC Waters Alliance system for 136 

chemical separation. The details of HR-MS analysis are given in Text. S2. 137 

The bromine ion concentration was measured by ion chromatograph and the 138 

details are provided in Text. S3. 139 

The details for electron paramagnetic resonance spectroscopy analysis (EPR) are 140 

illustrated in Text. S4.  141 

2.4 Quantum yield 142 

The polychromatic quantum yields of MF (ΦMF) direct photolysis in aqueous 143 

solutions were determined using p-nitroanisole (PNA)/pyridine (pyr) as an 144 

actinometer according to Eq. (1). 145 

λ λ λ,MFMF
MF PNA

PNA λ λ λ,PNA

(L ε )

(L ε )

k

k


   


                (1) 146 

where kMF and kPNA were the observed photolysis rate constant of MF and PNA, 147 

respectively. ελ (mol
-1 

cm
-1

) represented the molar absorptivity and Lλ (cm
-2

 s
-1

) was 148 

the incident light intensity.  ( λελ,MF)λ  and  ( λελ,P A)λ  were the light absorption 149 

for MF and actinometer, respectively. ΦPNA was the quantum yield of PNA and was 150 

calculated according to ΦPNA = 0.29[pyr] + 0.00029 ( aszakovits et al., 2016). The ελ 151 

values of aqueous MF and PNA solutions were measured using a UV-Vis 152 

spectrophotometer and specific pathlength quartz cells.  153 

2.5. DFT calculations 154 

In this study all the density functional theory (DFT) calculations were conducted 155 

by using Gaussian 16 package with hybrid density functional B3LYP method. The 156 
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details for DFT calculation were illustrated in Text. S6. 157 

2.6. Ecotoxicity assessment 158 

The aquatic toxicity data was an essential judgment basis for environmental 159 

hazard classification and ecological risk assessment of chemicals (Cash, 1998). In the 160 

present study, the ecotoxicity of MF and photoproducts was evaluated by the 161 

Ecological Structure Activity Relationship (ECOSAR 2.0). Three classical aquatic 162 

organisms (green algae, daphnia and fish) were assessed for acute toxicity (half-lethal 163 

and half-effect concentration (LC50, EC50)) and chronic toxicity values (Chv) (Wang 164 

et al., 2019).  165 

3. Results and discussion 166 

3.1 Direct photolysis of MF 167 

The UV-Vis absorption spectrum of aqueous MF exhibits a broad absorption 168 

band ranging from 260 to 350 nm (λmax = 292 nm, ε292 = 7750 mol
-1 

cm
-1

) thus well 169 

overlapping with the emission spectrum of the mercury lamp (Fig. 2) and of the solar 170 

spectrum, implying that direct photodegradation can potentially take place for MF in 171 

natural conditions. The absorption band of MF is mainly due to the presence of 172 

chromophores such as benzene and ketone groups that are capable of absorbing 173 

UV-Vis light. In the present study, the absorption band corresponds to the low energy 174 

π→π* excitation due to the presence of the benzene chromophore rather than the 175 

ketone chromophore (n→π* excitation) (Turro, 1978). This could be further 176 

confirmed by TD-DFT calculations, as shown in Fig. S1, the broad band ranging from 177 

260 nm to 350 nm is attributed to the S1 to S5 absorptions, among which the S4 state 178 
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has the largest oscillator strength (Table. S1). We thus analyzed the molecular orbital 179 

(MO) transition contributions of the S4 state. The two main transitions are the highest 180 

occupied molecular orbital (HOMO)−2 to the lowest unoccupied molecular orbital 181 

( UMO) and HOMO−1 to  UMO. Based on the isosurfaces of HOMO−2 (π), 182 

HOMO−1 (π), and  UMO (π*) (Fig. S2), the excitation can be as assigned to a π→π* 183 

transition. In addition, solvatochromic experiments by using ACN as a solvent could 184 

also demonstrate this phenomenon of absorption band distribution (Fig. 2). Molecules 185 

that undergo a π→π* transition are believed to have excited states more strongly 186 

polarized than the ground state. Therefore, a strongly polar solvent (such as water) has 187 

a greater stabilizing effect on the excited state and can reduce the energy difference 188 

between the excited state and the ground state. Therefore, as polarity of the solvent 189 

decreased with the solvent substitution of H2O by ACN, the absorption was 190 

hypochromatically shifted, which implied that the energy required from the ground 191 

state to the excited state became larger, demonstrating that the MF molecule 192 

underwent a π→π* transition (Da et al., 2001). The n→π* excitation was not 193 

observed (or was weak) because of the poor spatial overlap of the n and π* orbitals, 194 

resulting in a weak vibronic intensity, which should theoretically be at 350 nm (Lim 195 

and Jack, 1966). 196 

Fig. 2. 197 

Dark control experiments showed no loss of MF, therefore, hydrolytic or 198 

microbial degradations were not further considered in this study. Upon irradiation, a 199 

significant MF decay was observed, implying that photolysis limited the persistence 200 
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of MF in aqueous solutions. The decay of MF could be fitted by a pseudo-first-order 201 

kinetics, and the observed rate constant (kobs) was calculated by linear regression of 202 

logarithmic concentration values (ln([MF]t / [MF]0)) determined as a function of time 203 

(Eq. (2)). Half-life (t1/2) was also calculated according to Eq. (3). In the present work,  204 

kobs was determined to be 0.056 ± 0.003 h
-1

 under simulated sunlight, corresponding 205 

to a half-life (t1/2) of 12.4 ± 0.6 h. These values were comparable with that reported 206 

values (0.072 ± 0.005 h
-1 

(kobs) and 9.6 ± 0.7 h (t1/2)) (López-Fernández et al., 2018). 207 

European Food Safety Authority (EFSA) concluded that the half-life of MF in the 208 

dark aerobic water sediment system (biological degradation) is 8.5-9.2 days (EFSA., 209 

2006). It clearly shows that MF is difficult to biodegrade, therefore, we can conclude 210 

that photolysis plays an important role in the elimination of MF in the aquatic 211 

environment. 212 

ln ( [MF]
t
[MF]

0
) = -  obs                       (2) 213 

 1 2  = ln2   obs                             (3) 214 

Quantum yields are important parameters in photochemistry. The quantum of a 215 

given process or of a global reaction corresponds to the ratio of photons triggering a 216 

photochemical process or the reaction to the total number of absorbed photons (Rene, 217 

2002) and therefore gives the efficiency of absorbed photons to achieved the process 218 

or the reaction. Here, the polychromatic quantum yield of MF photolysis (ФMF) at 20 219 

µM was determined to be 1.06×10
-4

, which is higher than the quantum yields of 220 

photolysis of other benzophenone derivatives that do not contain halogene atoms such 221 

as benzophenone-3 (1.51×10
-5

) and 4-hydroxy-benzophenone (7.91×10
-6

) (Li et al., 222 



11 

 

2016). This result suggests that the presence of a Br atom in MF may favor the 223 

photodegradation. 224 

The potential impact of pH solution on MF photolysis was also tested. Our results 225 

indicated that the rate of photodegradation was barely affected by the solution pH 226 

between 4 and 10 (Fig. S4). This phenomenon is reasonable based on the 227 

pH-independent absorption spectra of MF (Fig. S5) and on the absence of dissociable 228 

functional groups in the molecular structure of MF. 229 

3.2 Identification of potential reactive intermediates 230 

The triplet excited state of carbonyls has attracted a wide interest as a special 231 

oxidant in photochemical reactions. Upon irradiation, MF molecules were likely to 232 

absorb photons to make an energy level transition from the ground state to the singlet 233 

excited state (
1
MF*), followed by an intersystem crossing (ISC) process to generate 234 

the triplet excited state (
3
MF* containing two electrons with the same spin direction 235 

and unpaired) (Eq. (4)) (Nicholas et al., 2012).  236 

The presence of a bromine atom in MF molecule is expected to enhance the 237 

spin-orbit coupling due to the heavy halogen effect, thus favoring the ISC process. 238 

Therefore, the generation of 
3
MF* and its involvement in the photolysis process is 239 

likely. Sorbic acid (a triplet excited state quencher) was added to the MF solution to 240 

test the involvement of 
3
MF* (Zhou et al., 2013). As shown in Fig. 3, the presence of 241 

sorbic acid (0.4 mM) partially inhibited the reaction, confirming the involvement of 242 

3
MF* in the photo-transformation. 243 

 
1 3MF MF MFhv ISC                   (4) 244 
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It has been reported that the energy required to excite many aromatic compounds to 245 

their triplet excited states was greater than 250 kJ mol
-1

, whereas the energy for 
1
O2 246 

formation was only 94 kJ mol
-1

 (Zepp et al., 1987). Therefore, under irradiation, 247 

energy transfer between the triplet excited state of organic compounds and dissolved 248 

oxygen may occur, resulting in the production of 
1
O2. For example, the triplet excited 249 

state energy of benzophenone was as high as 288 kJ mol
-1

, which was sufficient to 250 

transfer energy to dissolved oxygen and generate 
1
O2 with a quantum yield of 0.34 251 

(Turro et al., 2012). Since replacing H2O with D2O extends the lifetime of 
1
O2 13-fold 252 

(Rodgers and Snowden, 1982) a D2O-H2O mixture (50:50, v:v) was employed as a 253 

solvent to investigate whether 
1
O2 was produced in the reaction and was responsible 254 

for MF oxidation. The reaction rate constant increased by a factor of 1.64 when the 255 

solvent was changed to the mixture of D2O-H2O (Fig. 3), indicating that 
1
O2 was 256 

generated in the photolysis of MF by photosensitization. Therefore, these results are 257 

consistent with the formation of 
3
MF* and the generation of 

1
O2 by energy transfer to 258 

O2 (Eq. (4) and (5)). Once formed, 
1
O2 could react with MF (Eq (6)). We therefore 259 

further measured the bimolecular rate constant of this reaction, 1
2O ,MF

k . The value 260 

found: 5.6 × 10
7
 L mol

-1
 s

-1
 demonstrated the easy oxidation of MF by 

1
O2. 261 

Furthermore, the irradiation of MF in the presence of isopropanol (0, 8 and 20 mM) 262 

used as an •OH radical scavenger ruled out the involvement of this radical in the 263 

photolysis of MF (Fig. S6). 264 

  
3 1

2 2MF O MF O                       (5) 265 

1
O2  +  MF    oxidation products             (6) 266 
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 267 

Fig. 3. 268 

 269 

In the case MF disappears through Eq (6), the rate of MF loss can be written: 270 

-d[MF]/dt = Ia ×ФSO × ( 1
2O ,MF

k .[MF]/ ( 1
2O ,MF

k .[MF]+ kd)         (7) 271 

Where Ia is the rate of light absorption by MF, ФSO, the quantum yield of 
1
O2 272 

formation and kd, the rate of 
1
O2 desactivation in water (2.5 × 10

5
 s
−1

, Rodgers and 273 

Snowden, 1982). Moreover, ФMF is equal to : 274 

ФMF = -d[MF]/dt/Ia = ФSO×( 1
2O ,MF

k .[MF]/( 1
2O ,MF

k .[MF]+ kd)   -(8) 275 

It means that ФMF depends on the [MF], in particular when 1
2O ,MF

k .[MF] << kd, that is 276 

the case at the chosen concentrations. To check this, we measured ФMF for several 277 

concentrations ranging from 20 to 5 µM. ФMF decreased from 1.06×10
-4

for 20 µM to 278 

0.52×10
-4 

for 5 µM, in accordance with a contribution of 
1
O2 to the 279 

phototransformation of MF. 280 

 281 

M. A. J. Rodgers, P. T. Snowden. Lifetime of (
1
O2) in Liquid Water As Determined by 282 

Time-Resolved Infrared Luminescence Measurements.  J. Am. Chem. Soc. 1982, 283 

104, 5541-5543.doi-org.ezproxy.uca.fr/10.1021/ja00384a070 284 

 285 

3.3 Photoproducts identification 286 

In this work, we systematically investigated intermediate photoproducts of MF 287 

via HR-MS analysis after 22 h irradiation. The major intermediate photoproducts are 288 

https://doi-org.ezproxy.uca.fr/10.1021/ja00384a070
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listed in Table. S2. Bromine atom has two isotopes (relative atomic mass 78.9183 and 289 

80.9163), based on this property, isotopic features were used as a diagnostic tool for 290 

the identification of photoproducts containing bromine atoms. For instance, the parent 291 

compound MF had a molecular ion cluster corresponding to m/z = 409.0634/411.0612 292 

([M+H]
+
) with retention time of 4.91 min, suggesting that the molecular structure of 293 

MF contained one bromine atom. Reviewing Table. S2, it can be seen that eight 294 

photoproduct intermediates were detected. Specifically, TP1 with m/z = 295 

423.0426/425.0404 ([M+H]
+
) at retention time of 1.97/2.65 min was assigned as the 296 

oxidation product in which a methyl group was oxidized into aldehyde. The m/z = 297 

439.0375/441.0353 ([M+H]
+
) molecular ion was labeled as the secondary product 298 

(TP2), which was generated by oxidation of the methyl group to carboxyl with 299 

retention time of 1.28/1.6 min. Based on the total ion currents (TICs), debrominated 300 

product (TP3) was a major intermediate product generated during MF photolysis (Fig. 301 

S7), which was eluted at 2.56 min with m/z = 331.1530. Furthermore, 302 

debrominated-methyl oxidation products (TP4 and TP5) were identified based on m/z 303 

= 345.1325 and 361.1273 ([M+H]
+
) with retention time of 1.63/1.90 and 1.22/1.41 304 

min, respectively. Notably, TP3, TP4 and TP5 were also observed in a previous study 305 

(López-Fernández et al., 2018). Moreover, TP6 with m/z = 347.1480 ([M+H]
+
) was 306 

identified as the OH substitution product, which was another major debromination 307 

product (Fig. S7). To the best of our knowledge, the formation of 308 

debrominated-hydroxylated photoproduct in the photolysis of MF was reported for the 309 

first time. TP7 and TP8 (m/z = 361.1273 and 377.1221, [M+H]
+
) were assigned to the 310 
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methyl oxidized from of TP6. 311 

To gain deeper insight into the debromination process, the evolution of releasing 312 

bromide was recorded during the photolysis of MF, and the yield of bromide was 313 

calculated according to Eq. (9) (Xu et al., 2020): 314 

Yield of bromide = 
[Br-] 

[MF]0 [MF] 
×100%                 (9) 315 

where [Br
–
]t is the concentration of bromide ion detected at irradiation time t; [MF]0 316 

and [MF]t are the concentrations of MF at irradiation time zero and t, respectively. 317 

Based on the results of ion chromatography, we obtained an average bromine yield of 318 

731% for MF direct photolysis (Fig. S8), which confirmed our conclusion that 319 

debromination is a major pathway in the direct photolysis of MF. 320 

3.4 Photolysis pathways 321 

Based on the detected intermediates, several photodegradation pathways of MF 322 

are proposed (Fig. 4). Pathway I corresponded to the oxidation of the β-methyl group, 323 

giving rise to a phenylacetaldehyde product (TP1), followed by a further oxidation 324 

process to convert the aldehyde group to a carboxyl group. Pathway II corresponded 325 

to the debromination process, leading to the generation of TP3. It was noteworthy that 326 

TP3 exhibited a relatively strong signal in the mass spectrum (Fig. S7), indicating that 327 

the yield of this product was relatively high during MF photolysis. Subsequently, TP3 328 

could further undergo methyl oxidation and aldehyde oxidation to produce TP4 and 329 

TP5 sequentially. Such process has been previously reported by López-Fernández et 330 

al. (2018) in the photolysis process of MF. Pathway III corresponded to the 331 

substitution of bromine by a hydroxyl group to give TP6, then, the methyl group on 332 
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TP6 could sequentially be oxidized to form TP7 and TP8.  333 

Furthermore, it has been well documented that for the photochemical 334 

transformation of carbonyl chemicals, Norrish type I and II reactions were proposed 335 

to take place through which fission of the carbon-carbon bond would occur at the α- 336 

and γ-positions, leading to the formation of bond cleavage or intramolecular 337 

cyclization products, respectively (Turro, 1978). However, in the present study, none 338 

of the above-mentioned products were identified by mass searching from the total ion 339 

chromatography (TIC) spectra; instead, the dominated photolysis pathway of MF was 340 

proposed as debromination process, which would be discussed in detail in the 341 

following section. 342 

Fig. 4. 343 

3.5 Photo-induced debromination 344 

As mentioned, debrominated product (TP3) were found to be the major 345 

photoproduct of MF, indicating that C-Br bond dissociation was an important path of 346 

mechanistic explanation. This bond cleavage might take place either via a homolytic 347 

process to give a carbon-based benzoylbenzyl radical and bromine atom, or through a 348 

heterolytic process to generate a corresponding benzyl cation and bromide anion.  349 

In order to gain a detailed insight into the photolysis mechanism of MF, LFP 350 

experiments were conducted to identify the potential transient intermediates involved 351 

in the photochemical process. Fig. 5 exhibited the time-dependent transient absorption 352 

spectrum of 0.25 mM MF in ACN after 266 nm laser excitation. As can be seen, a 353 

broad transient absorption band with maximum absorption around 345 nm was 354 
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obtained at the pulse end, and the presence of two different triplet scavengers, namely, 355 

oxygen and acrylamide were found to hardly affect its formation, indicating that this 356 

species could not be assigned to the triplet excited state of MF (Fig. S10). In 357 

accordance, the triplet excited states of benzophenone (BP) and some of its 358 

derivatives were reported to show maximum absorption around 525 nm (Ryuzi et al., 359 

1997) (Fig. 5(d)). We looked after a signal in this wavelength range, but absorbances 360 

were very weak (Fig. 5(c)). On the other hand, the spectrum analogy of our transient 361 

(λmax = 345 nm) with those of m-benzoylbenzyl radical (m-BBR, λmax = 335 nm) and 362 

p-benzoylbenzyl radical (p-BBR, λmax = 320 nm) (Yamaji et al., 2007) prompted us to 363 

assign it to the benzoylbenzyl radical of MF (MBR). Yamaji et al. (2007) reported that 364 

upon 266 nm excitation in LFP experiments, m-bromomethylbenzophenone 365 

(m-BMBP) would be excited to generate m-BBR, and this process could be achieved 366 

via an extremely fast ω-cleavage of both lowest singlet (S1) and triplet (T1) m-BMBP. 367 

In their case also, triplet m-BMBP could be hardly be detected by LFP (Yamaji et al., 368 

2007). However, differently from m-BBR, MBR was found to be short-lived, 369 

undergoing a fast decay within 0.05 μs to give a relatively long-lived secondary 370 

intermediate (Fig. 5(a)). The shorter life-time of MBR might be attributed to the 371 

presence of methyl and methoxy substituents allowing fast intramolecular reactions to 372 

take place.  373 

To further support the formation of MBR, DFT calculation were conducted to 374 

obtain the theoretical UV-Vis absorption of two potential intermediates, namely, MBR 375 

and the benzyl cation. The validation of this method was firstly checked by 376 
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calculating the absorption of parent MF. As seen, theoretical calculation exhibited a 377 

maximum absorption peak at 290 nm (Fig. S1), which was in a good agreement with 378 

the experimentally measured absorption peak at 292 nm (Fig. 2). In the case of MBR, 379 

calculation showed a maximum absorption peak around 350 nm (Fig. S11), matching 380 

well with the spectrum observed by LFP experiments (Fig. 5(a)). For the benzyl 381 

cation, the maximum absorption was calculated to be around 460 nm. Therefore, we 382 

have confirmed the homolytic cleavage of the C-Br bond of MF. 383 

In addition, for the homolytic cleavage process, we further calculated the bond 384 

dissociation energy (BDE) of C-Br bond on the basis of △H derived from 385 

thermochemical parameters from the optimized MF, MBR and bromine atom at an 386 

ideal condition (298.15 K and 1 atm). A BDE value for C-Br bond cleavage of MF 387 

was estimated to be 67.9 kcal mol
-1

, which was lower than that of the lowest singlet 388 

state (S1, 89.1 kcal mol
-1

) and triplet state (T1, 71.2 kcal mol
-1

). Based on the 389 

experimental and theoretical results, an energy diagram for the deactivation and bond 390 

dissociation processes of excited MF is depicted in Scheme.1. Similar to m-BMBP, 391 

the excited singlet state of MF produced an excited triplet state through intersystem 392 

crossing. Alternatively, S1 and T1 state could also undergo C–Br bond cleavage to 393 

produce MBR and bromine atom (Scheme. 1(a)). Bond dissociation from S1 was 394 

thermodynamically more favorable than from T1, and was proposed as the dominant 395 

pathway for C-Br bond cleavage.  396 

Based on the products identification, DFT calculation and LFP experiments, the 397 

detailed debromination mechanism can be tentatively discussed. Once MBR was 398 
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generated, the formation of TP3 required access to hydrogen atoms. They cannot be 399 

supplied by water, while the methyl group on the ortho-position was likely to act as a 400 

good hydrogen donor. In this case MBR might undergo an extremely fast 401 

intramolecular rearrangement process, leading to the rapid disappearance of MBR and 402 

to the formation of the corresponding secondary transient species (Fig. 5(b)). The new 403 

produced intermediate can experience an intermolecular hydrogen extraction from 404 

another MF molecule, giving TP3, or undergo a series of further oxidation processes 405 

to generate the methyl oxidation products. 406 

In conclusion, a detailed diagram of MF photolysis process is illustrated in 407 

Scheme. 1(b). Specifically, upon irradiation, MF would be excited to singlet state, 408 

which could either directly break the C-Br bond or undergo ISC process to give 
3
MF*. 409 

Similarly, 
3
MF* undergoes C-Br bond homolytic cleavage reaction to give rise to 410 

MBR and •Br. Meanwhile, 
3
MF* can also transfer its energy to dissolved oxygen, 411 

resulting in the formation of 
1
O2, which in turn leads to the further oxidation of MF.  412 

Fig. 5. 413 

Scheme.1. 414 

3.6 Toxicity prediction during MF transformation  415 

In the present study, the acute and chronic toxicity of MF and photoproducts to 416 

fish, daphnia and green algae was evaluated through the ECOSAR procedure (Wei et 417 

al., 2018). The toxicity was classified according to the Globally Harmonized System 418 

of Classification and Labelling of Chemicals (Liu et al., 2019). 419 
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The acute toxicity values of MF were determined to be 1.20 mg L
-1

, 0.88 mg L
-1

 420 

and 1.85 mg L
-1

 for fish, daphnia and green algae, respectively. These results showed 421 

that MF was toxic for aquatic species, especially with lower trophic organisms such as 422 

daphnia (< 1.0 mg L
-1

). The chronic toxicity values (Chv) of MF were predicted to be 423 

0.16 mg L
-1

, 0.17 mg L
-1

 and 0.85 mg L
-1

 for fish, daphnia and green algae, 424 

respectively, suggesting that MF was more likely to have a chronic toxic effect on 425 

organisms. Simultaneously, the trend in chronic toxicity for the three different trophic 426 

levels was consistent with acute toxicity. In summary, MF was obviously toxic to 427 

aquatic species and can disrupt the ecological balance of the aquatic environment, 428 

thus the detection and control of MF in the environment should be given more 429 

attention. 430 

Predicting the toxicities of intermediate products during MF transformation was 431 

also particularly important (Karci. and Akin., 2014). Therefore, we calculated the 432 

toxicity changes of the intermediate products in the three MF photolysis pathways for 433 

fish, Daphnia and green algae, and the results were shown in Fig. 6. In ECOSAR 434 

predictions, toxicity actually decreases if the toxicity parameter (e.g., Lethal 435 

Concentration 50 (LC50)) decreases by at least one order of magnitude. From this 436 

perspective, the acute toxicity of intermediate products showed a decreasing trend 437 

only for Daphnia. For fish, all the debromination products (TP3 and TP6) and the 438 

methyl aldolization products (TP1, TP4 and TP7) were in the same order of 439 

magnitude of acute toxicity as MF. However, the acute toxicity of the methyl 440 

carboxylation products (TP2, TP5 and TP8) was directly decreased by two orders of 441 
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magnitude. The acute toxicity variation for green algae was similar with fish, but the 442 

toxicity of both TP6 and TP7 in the OH-debromination pathway was one order of 443 

magnitude higher than MF, indicating that toxicity was enhanced. A little different 444 

from the acute toxicity, the chronic toxicity of both debromination pathways showed a 445 

continuous decreasing trend only for green algae (except TP1). For fish and daphnia, 446 

the chronic toxicity of TP1, TP3, TP4, TP6 and TP7 remained in the same order of 447 

magnitude as MF. Aldehyde groups are known to be toxic to organisms through 448 

chemical bonding with amino bearing biomolecules such as enzymes, proteins, 449 

condensates, nucleic acid derivatives etc. via Schiff bases (Slomkowski, 1998; 450 

Sokolsky et al., 2006). This might be responsible to higher toxicity of intermediate 451 

products containing aldehyde groups. Notably, further oxidation of the aldehyde 452 

products to the carboxylate products decreased the toxicity rapidly. All the above 453 

results indicated that the toxicity of some intermediate products of three photolysis 454 

pathways may maintain or even increase, but the toxicity of the final 455 

carboxyl-containing product is greatly reduced, photodegradation is still a method that 456 

can safely reduce the ecotoxicity of MF in aquatic environment. 457 

Fig. 6. 458 

3.7 Effects of natural water constituents 459 

3.7.1 Effect of nitrate  460 

Nitrate is one of the most abundant anions in the aquatic environment whose 461 

photochemical reactivity can affect the photochemical fate of the organic 462 

contaminants (Mack and Bolton, 1999; Zuo et al., 2006). In the present study, the 463 
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photodegradation experiments of MF were conducted in 25 mL aqueous solutions 464 

containing 20 μM substrates with different nitrate concentrations (0, 5, 20 and 50 mM) 465 

under irradiation for 8 h and the results are presented in Fig. 7(a).  466 

The photolysis rate of MF was observed to be significantly accelerated as the 467 

nitrate concentration increased. The rate constants were 0.055, 0.080, 0.143 and 0.167 468 

h
-1

 for nitrate concentrations of 0, 5, 20 and 50 mM, respectively. •OH generated by 469 

nitrate photolysis is one of the major ROS accounting for the attenuation of pollutants 470 

in natural waters (George et al., 1988; Monica et al., 2013). Eqs (9)-(13) show how 471 

solar irradiation of nitrate leads to the formation of • O2 and •OH directly and 472 

indirectly via its photoisomerization to peroxynitrite/peroxynitrous acid (Kotnik et al., 473 

2016; Vione et al., 2009). In this work, the •OH generated by nitrate photolysis was 474 

identified by EPR analysis (Fig. S12(a)), thus was proposed to be responsible for the 475 

decay of MF.  476 

      3 2NO  NO + O• •hv                          (9)   477 

• O  + H2O → • OH + OH 
                       (10)     478 

 O3
-

    
     O OO-

                           (11)             479 

 
+ONOO H HOONO  €                      (12) 480 

2HOONO  N• O + H•O                     (13) 481 

3.7.2 Effect of bicarbonate 482 

Bicarbonate is the major anion responsible for water alkalinity. Bicarbonate has 483 

been reported to play an important influence on the indirect photolysis of organic 484 

pollutants in natural waters (Huang and Scott, 2000). Experimental results show that 485 
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the presence of bicarbonate barely affected the photolysis process of 20 μM MF (Fig. 486 

7(b)). The corresponding rate constants were found to be equal to 0.059, 0.064, 0.059 487 

and 0.062 h
−1

 as the bicarbonate concentration increased from 0 to 20 mM. 488 

Bicarbonate can interact with •OH to form carbonate radicals (CO3•
−
) (Eq. (14)) 489 

(Huang and Scott, 2000), which is a strong electrophile that can rapidly oxidize 490 

phenolic compounds (Neta et al., 1988). However, our quenching experiments ruled 491 

out the involvement of •OH in the direct photolysis of MF.  492 

HCO3
-
+ •OH→CO3•

-
+ H2O                    (14) 493 

In addition, the presence of bicarbonate can also affect the photochemical 494 

transformation of organic compounds via altering the solution pH (Ji et al., 2012). 495 

However, this effect is expected to be not important due to the pH-independent 496 

photolysis of MF (vide supra).  497 

3.7.3 Effect of humic acid  498 

Humic substances are ubiquitous in soils and surface waters which are formed by 499 

decomposition of living organisms. In the aquatic environment, they are able to 500 

compete with pollutants to absorb photons for photolysis as an inner filter (light 501 

screener) (Luciano et al., 2009; Monica et al., 2003). Meanwhile, as a photosensitizer, 502 

they are capable of affecting the persistence of organic pollutants in the environment 503 

through energy transfer or reaction with photochemically produced reactive 504 

intermediates (PPRI) (Manjun et al., 2006; Richard et al., 1997; Yong et al., 2009; 505 

Zepp et al., 1985). In view of this, the photolysis of 20 μM MF was conducted in the 506 

presence of humic acids (HA) at a concentration ranging from 0 and 20 mg L
-1

, and 507 
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the results are shown in Fig. 7(c).  508 

The kinetic rate constants were determined to be 0.056, 0.064, 0.094, and 0.139 509 

h
-1

 at HA concentrations 0, 2, 5 and 20 mg L
-1

, respectively. Compared with ultrapure 510 

water controls, the photodegradation rate of MF in the presence of HA was 511 

significantly higher. HA was a macromolecule with a complex structure, containing a 512 

large number of chromophores comprised of benzene ring, carboxyl, carbonyl, and 513 

methoxyl moieties (Laurentiis et al., 2013). The HA-enhanced photolysis of MF may 514 

occur either through energy transfer from the excited HA to the ground state MF, or 515 

via oxidation by PPRI, such as •OH and 
1
O2, which promote the photolysis of MF 516 

(Rajib et al., 2011). The involvement of •OH and 
1
O2 in the photolysis of MF in the 517 

presence of HA was confirmed by our EPR analyses, as illustrated in Fig. S12(b). 518 

From this section, it is clear that natural water constituents such as nitrate and 519 

humic acid have significant impacts on the photodegradation rate of MF. Therefore, 520 

direct photolysis is not expected to be the main photodegradation pathway of MF in 521 

the environment, and further studies are required to better understand its 522 

photoreactivity. 523 

Fig. 7. 524 

4. Conclusions 525 

In this study, the photodegradation of MF in aqueous solution under simulated 526 

solar irradiation was investigated, including photolysis kinetics, reactive intermediates, 527 

products identification, photolysis pathways and mechanisms. Under simulated sunlit, 528 

direct photolysis rate constant of MF in aqueous solution was 0.056 ± 0.003 h
-1

, 529 
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corresponding to a half-life of 12.4 ± 0.6 h, indicating that photochemical degradation 530 

was an important pathway for the removal of the fungicide MF in nature. Three 531 

different pathways were proposed based on HR-MS analysis, including methyl 532 

oxidation, debromination and replacement of Br by OH group. Among them 533 

debromination process was identified as the main path. Homolytic cleavage of the 534 

C-Br bond from both 
1
MF* and 

3
MF* is likely to take place. MF is also likely 535 

oxidized by 
1
O2 produced by energy transfer from 

3
MF* to O2. NO3

-
 and humic acid 536 

were found to enhance the decay of MF, while HCO3
-
 exhibited no significant effect 537 

on MF photolysis. Toxicity assessment revealed that photochemical transformation 538 

was an efficient process to reduce the ecotoxicity of MF. This study provided 539 

important information for the understanding of photolytic behavior of MF in the 540 

aqueous environment. 541 
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