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A B S T R A C T   

Glutamate carboxypeptidase II (GCP(II)), also known as the prostate-specific membrane antigen (PSMA), is a 
transmembrane zinc(II) metalloenzyme overexpressed in prostate cancer. Inhibitors of this receptor are used to 
target molecular imaging agents and molecular radiotherapy agents to prostate cancer and if the affinity of 
inhibitors for GCP(II)/PSMA could be improved, targeting might also improve. Compounds containing the 
dipeptide OH-Lys-C(O)-Glu-OH (compound 3), incorporating a urea motif, have high affinity for GCP(II)/PSMA. 
We hypothesized that substituting the zinc-coordinating urea group for a thiourea group, thus incorporating a 
sulfur atom, could facilitate stronger binding to zinc(II) within the active site, and thus improve affinity for GCP 
(II)/PSMA. A structurally analogous urea and thiourea pair (HO-Glu-C(O)-Glu-OH - compound 5 and HO-Glu-C 
(S)-Glu-OH - compound 6) were synthesized and the inhibitory concentration (IC50) of each compound measured 
with a cell-based assay, allowing us to refute the hypothesis: the thiourea analogue showed 100-fold weaker 
binding to PSMA than the urea analogue.   

In the last 5 years, clinical management of prostate cancer has been 
transformed by the introduction of radiopharmaceuticals targeting 
glutamate carboxypeptidase II (GCP(II)), also known as the prostate- 
specific membrane antigen (PSMA).1–4 Positron emission tomography/ 
computed tomography (PET/CT) scans of prostate cancer patients 
imaged with radiopharmaceuticals that target this receptor, such as 
[68Ga]Ga-HBED-CC-PSMA5 and [68Ga]Ga-THP-PSMA,6 can provide 
clinically useful information about the location and spread of dis
ease.1–4,7,8 PET/CT scans allow clinicians to accurately stage patients 
and alter treatment plans accordingly.1,7 Molecular radiotherapy with 
[177Lu]Lu-PSMA-617 is currently being evaluated in a multinational 
phase 3 trial9 (NCT NCT03511664). As a consequence, the demand for 
PSMA imaging agents is growing year on year. The excellent perfor
mance of these imaging agents is underpinned by two factors: i) GCP(II)/ 
PSMA is very specific to prostate cancer, with 100–1000 fold higher 
expression in prostate cancer compared to normal prostate and low 
endogenous expression in other organs10,11; ii) radiopharmaceuticals 

are designed to be very specific to GCP(II)/PSMA with Ki (equilibrium 
constant) and IC50 (half maximal inhibitory concentrations) values in 
the low nM to sub-nM range.5,6,12,13 

GCP(II)/PSMA is a transmembrane zinc(II) metalloenzyme that cat
alyzes the cleavage of terminal glutamates.14 Its active site is specific for 
C-terminal glutamate residues, binding them tightly. A feature of the 
active site is the presence of two zinc(II) ions which participate in 
catalyzing the cleavage of the peptide bond between the terminal 
glutamate and the remainder of the substrate.15,16 The natural sub
strates of GCP(II)/PSMA - N-Acetyl-L-aspartyl-L-glutamate (NAAG) and 
poly-glutamated-folates14 - are shown in figure 1 (compounds 1 & 2, 
respectively). Examples of the dipeptide urea-based targeting motifs 
used in the majority of GCP(II)/PSMA targeted radiopharmaceuti
cals5,6,11,17,18 are also shown in figure 1. The OH-Lys-C(O)-Glu-OH 
(compound 3) and OH-Cys-C(O)-Glu-OH (compound 4) motifs were 
developed by rational design from the natural substrates of GCP(II)/ 
PSMA19 and are remarkably small, simple and potent.5,12,17–19 These 
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ligands preserve the structure of the terminal glutamate but replace the 
peptide bond with a urea bond, thus reducing the electrophilicity of the 
carbonyl carbon atom and providing stability against enzymatic cleav
age by GCP(II)/PSMA. The urea functional group links the glutamate to 
a second amino acid (L-lysine or L-cysteine), which can be used to 
functionalize this inhibitory motif.15 For example, it can be converted 
into a PET radiotracer by adding a prosthetic group containing 
covalently-bound radionuclide such as fluorine-18,20,21 or a chelator 
allowing radiometals, such as gallium-68, to be incorporated.5,6,18,22 

Despite the success of the dipeptide urea-based motif and its proven 
utility in the clinic, it is expected that further improvement in affinity for 
GCP(II)/PSMA is possible. Valuable information to guide rational design 
is now available from X-ray crystallography studies,23–25 including ev
idence that the urea oxygen coordinates to Zn(II) in the active site,26 and 
many structural modifications to improve affinity have been attempted 
previously.12,16 The main conclusions from this body of published work 
are: (i) the conservation of the terminal glutamate is extremely impor
tant and any modifications to it reduce affinity12,16; (ii) the ability of an 
inhibitor to bind the zinc(II) atoms in the active site also determines 
affinity.16 Urea groups,19,25,26 phosphonates,13,25 phosphinates13,25 and 
phosphonamidates25,27 have been shown to bind strongly to zinc within 
GCP(II)/PSMA, with the urea closely mimicking the structure of a pep
tide bond and the others mimicking the tetrahedral transition state/in
termediate (with an sp3 hybridized carbon) during peptide bond 
cleavage.15 This shows that the zinc(II)-binding group is amenable to 
variation and provides an opportunity to improve affinity (by enhancing 
Zn-binding) through modification of this group. It is also important that 

the selected zinc-binding group is resistant to enzymatic cleavage by 
GCP(II)/PSMA and that it can link the terminal glutamate to the rest of 
the inhibitor, which is used for functionalization. 

The presence of zinc(II) ions in the active site has previously 
prompted investigators to look to thiols as zinc-binding motifs in GCP 
(II)/PSMA inhibitors, with limited success.28 However, to date thiourea- 
based inhibitors have not been tested as GCP(II)/PSMA ligands. The 
rationale for replacing oxygen with sulfur in an inhibitor for a zinc(II)- 
based metalloenzyme is twofold. First, zinc(II) ions and sulfur-based 
ligands, including thiourea, have a strong affinity for each other and 
typically form highly stable complexes.29,30 Zinc(II)-sulfur interactions 
are ubiquitous in biology, including functional processes (for example 
heat shock protein Hsp33 in which zinc(II) binds to redox-active thiolate 
groups that induce a conformation change upon oxidation31), and sta
bilization of structures (for example zinc(II) finger motifs that are 
common to many proteins32). Second, the resonance within the thiourea 
group favours more negative charge on the sulfur compared to the ox
ygen of the urea group; this would be expected to allow stronger 
interaction with the zinc(II) ions. We therefore hypothesized that 
replacing the urea with a thiourea in this class of dipeptide inhibitors 
could improve affinity. 

To test this hypothesis, we elected to modify the symmetrical urea- 
based inhibitor compound 5 (HO-Glu-C(O)-Glu-OH), which is reported 
to have a Ki = 8 nM for GCP(II)/PSMA.12 The thiourea analog compound 
6 (HO-Glu-C(S)-Glu-OH), was designed to conserve the interactions in 
the glutamate binding pocket and remain resistant to enzymatic cleav
age, but to have enhanced interactions with the zinc(II) ions through the 

Fig. 1. Structures of the natural substrates of GCP(II)/PSMA (top row) and known inhibitors and the novel inhibitor (compound 6 - HO-Glu-C(S)-Glu-OH) addressed 
in this communication. 
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presence of the sulfur atom. The formation of thiourea is synthetically 
achievable through an isothiocyanate intermediate, using existing well- 
characterized chemistry.33 

Compounds 5 and 6 were synthesized by similar two-step synthetic 
routes. The reaction schemes for compound 5 are found in the supple
mental files and the reaction scheme for compound 6 is found in figure 2. 
The first step was the formation of a urea or thiourea linkage between 
two t-butyl-protected L-glutamate residues (compound 8). For the urea 
compound 14 (Glu(tBu)2-C(O)-Glu(tBu)2), triphosgene was used to 
generate an isocyanate intermediate, followed by reaction with another 
equivalent of compound 8, to yield the desired product. For the thiourea 
compound 10 (Glu(tBu)2-C(S)-Glu(tBu)2), thiophosgene was used to 
generate an isothiocyanate intermediate with subsequent formation of a 
thiourea bond. 

The second synthetic step removed the t-butyl protecting groups 
before purification of the final compounds. Compound 14 was depro
tected using trifluoroacetic acid in the presence of phenol and triiso
propylsilane as scavengers, and then isolated using semi-preparative 
reverse phase HPLC purification. However, when compound 10 was 
similarly deprotected using trifluoroacetic acid/ phenol/ triisopro
pylsilane, the major species obtained was compound 11 which con
tained a γ-lactam pyroglutamic acid residue. Similar cyclization 
reactions are well-known34 and many peptides and proteins naturally 
have a pyroglutamic acid at their N terminus.35 This suggests that 
compound 10 is more prone than compound 14 to dehydration under 
these conditions. This is likely to be due to the stronger preference of 
thiourea for the enol/enolate resonance form, due to sulfur’s weaker 
π-bonding and its concomitant ability to stabilize the negative charge. 

As cyclisation was particularly prevalent in high acid, low water 
conditions, the reaction conditions were modified to avoid it: compound 
10 was reacted in a 2:1 solution of 6 M HCl and acetonitrile for 8 h, 
followed by neutralization and purification by semi-preparative HPLC. 
This increased yields of compound 6. Compounds 5 and 6 were 

characterized by nuclear magnetic resonance (NMR) and high- 
resolution mass spectrometry (supplemental files). 

To ensure that compound 6 was resistant to cyclisation under con
ditions required for in vitro affinity measurements, appropriate NMR 
studies were conducted. Aqueous solutions of compound 5 and com
pound 6 at pH 7 (pH adjusted with phosphate-buffered saline (PBS) and 
ammonium acetate) were monitored using 1H NMR (400 MHz) for 48 h. 
Both inhibitors were stable, with no cyclisation detected under these 
conditions. 1H NMR (400 MHz) was also used to monitor the stability of 
compound 6 with respect to cyclisation in the presence of GCP(II)/ 
PSMA-expressing cells (DU145-PSMA); the thiourea ligand was found 
to be stable in these conditions. 

Inhibition assays (IC50 assays) were conducted in triplicate to 
compare compound 7 (2-(phosphonomethyl)pentanedioic acid, 
(PMPA)), compound 5 and compound 6 over a concentration range of 1 

Fig. 2. Synthesis route for the production of compound 6 (HO-Glu-C(S)-Glu-OH) and cyclized side product compound 11 (HO-Glu-C(S)-pyroGlu).  

Fig. 3. Inhibition curves for compounds 5, 6 and 7, (HO-Glu-C(O)-Glu-OH, HO- 
Glu-C(S)-Glu-OH and PMPA) with [67Ga]Ga-DOTA-PSMA(617) at 1 nM as the 
probe. Values are averaged across triplicate assays. For each assay n = 4 wells 
at each concentration. Note that non-specific binding of [67Ga]Ga-DOTA-PSMA 
(617) with non-GCP(II)PSMA-expressing cells (DU145) was used as the nominal 
value at 1 M inhibitor. 
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nM to 400 μM. Compound 7 is a widely-used GCP(II)/PSMA inhibitor 
that has a phosphonate zinc(II)-binding group (Ki = 0.3 nM13), and was 
included as an additional control. These competitive binding studies 
utilized GCP(II)/PSMA-expressing cells (DU145-PSMA35) and the radi
olabeled PSMA imaging agent [67Ga]Ga-DOTA-PSMA(617)6,37 as the 
probe (1 nM DOTA-PSMA(617)). Non-GCP(II)/PSMA-expressing cells 
(DU14536) were used as a control to account for non-specific binding. 
The IC50 assays revealed large differences in affinity between the three 
inhibitors (figure 3): 1340 ± 70 nM, 135000 ± 6600 nM and 94 ± 4 nM 
for compounds 5, 6 and 7, respectively. Table 1 shows the relative IC50 
ratios for the three inhibitors. Ki values from isolated enzyme assays 
have been previously reported for compound 713 and compound 512. 
The relative Ki ratio for these two compounds (ratio 26.7) match well 
with the relative IC50 ratio determined for the same inhibitors using our 
cell-based assay (ratio 14.3). A summary of the relationship between 
IC50 and Ki and the conditions under which their relative ratios can be 
directly compared38 is available in supplemental files. 

The 100-fold increase in the IC50 value for the newly synthesized 
thiourea compared to the urea compound shows that the compound 6 is 
a much less potent inhibitor than compound 5, and therefore this 
modification worsens rather than improves affinity – the opposite of our 
hypothesis. The quantification and stability tests performed confirmed 
that compound 6 was at the required concentration during the assay 
(supplemental files) and that it was stable for its duration. Therefore, 
this value is a true reflection of the change in IC50 value resulting from 
the replacement of urea with thiourea. 

The unexpected low affinity of compound 6 could be due to the 
longer C––S bond relative to the C––O bond (1.71 Å39 and 1.26 Å40 

respectively). Additionally, Zn-S bonds are also typically longer than Zn- 
O bonds41. Such changes could detrimentally perturb the interactions of 
other key functional inhibitor groups within the active site; the additive 
enthalpic cost of these weakened interactions may counteract any gain 
in affinity caused by the stronger bond between the zinc(II) ion and the 
thiourea sulfur atom. This is consistent with previous findings, which 
suggest that the effectiveness of a zinc(II) ion binding group for GCP(II)/ 
PSMA ligands is dependent on maintaining the glutamate interactions 
within the active site16. 

This work expands existing knowledge about GCP(II)/PSMA and 
inhibitor design. Although the thiourea modification weakened affinity 
for the receptor, further investigation into novel ways to improve the 
affinity would be extremely valuable and could impact prostate cancer 
management. 
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