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Abstract 

Today there is a high interest to install hybrid systems composed by renewable power plants (RES) coupled to energy storage 

systems (ESS) on geographical islands with or without interconnection. Such is the case in Corsica, an island system with a 

small interconnection to Italy. Given the objectives for high RES penetration, Corsica has been a playground for the deployment 

of new hybrid photovoltaic (PV) plants coupled to li-Ion based ESS. The introduction of this new technology imposed new 

challenges in management and operation of the ESS to guarantee the performance and profitability of such power plants. In this 

work, different estimation models were developed to predict the thermal behaviour and State of Charge (SoC) of 5 existing 

hybrid RES power plants that have a li-ion based storage. These approaches allowed a better understanding of the evolution and 

degradation the systems experience, insights that were later used to optimise the energy management systems present in each 

power plant. 

1 Introduction 

Solar and wind power technology’s improvements, in junction 

with a strong political will to enact an energy transition into 

low-carbon solutions, have increased the penetration of 

renewable energy sources (RES) into the energy mix. RES, 

having as an advantage a low marginal cost per MWh, 

contribute to decrease the off-peak and peak power prices 

following the merit order criteria used in the European 

electricity grid. A merit order trend projection for RES in the 

next 10 and 30 years expects an average decrease of 

1.6€/MWh for the former and 4.2€/MWh for the latter, being 

the less electrically interconnected regions that benefited the 

most from such integration [1]. With the increasing presence 

of RES in the energetic mix, the need for mechanisms to 

ensure the grid stability increases as well.  

Nevertheless, the intrinsic variability of RES changes the 

paradigm of what is needed on  current electrical grids and 

imply higher reserve requirements, factors resulting to 

“hidden” costs that need to be taken into account in the long 

run [2]. In the case of geographical islands, the impact from 

the intermittency of RES goes beyond cost as it also represents 

a source of instability. The French islands have famously had 

a cap of 30% of variable renewable energy they allow into the 

mix since 2008 to ensure stability and safe operation without 

the need of new infrastructures [3]. The French Commission 

for Energy Regulation (CRE) has acknowledged this 

limitation in past and current calls for tenders by building a 

capacity firming framework in which new hybrid systems 

composed by photovoltaic or wind power plants coupled to 

battery energy storage systems (BESS) can participate in the 

insular electricity production [4]. Several such hybrid systems  

have been deployed as consequence, often using li-ion based 

chemistry thanks to the increasingly cheaper technology and 

the more flexible range of operation in comparison to classic 

lead batteries [5]. 

The rules of operation of such systems are well defined as they 

should pre-announce and respect injection power profiles to 

avoid financial penalties. The high cost of storage devices, as 

well as the uniqueness of solar-dependent charge/discharge 

curves makes it necessary to understand the in-situ behaviour, 

constraints, and degradations of the battery systems. In 

general, the effects of the manufacturers’ battery management 

system (BMS) in usage are mostly not considered. Even when 

they are, these limits are often constrained to reducing the 

operating State of Charge allowed [4]. Any more realistic or 

complex implementation of a BMS can rapidly evolve into 

discontinuities and thus complexity. Battery manufacturers 

usually provide a minimal output energy engagement from a 

battery device, but operators require detailed models for the 

devices that would allow a more accurate representation of the 

operation and thus a better estimation of the financial revenues 

during multi-annual operation to justify the investments. For 

residential BESS, an efficient usage and management has been 
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shown to reduce maintenance costs or even allow the system 

to be profitable for operation [6], [7]. 

 

The objective of this paper is to showcase the real case of 4 

hybrid MW-size PV/BESS plants in Corsica and to present the 

thermal, State of Charge (SoC) and State of Health (SoH) 

models developed for the BESS using real in-situ data. Such 

models are used to optimize the plant’s operation and respect 

the imposed constraints by the capacity firming framework. 

The aim is to reduce modelling uncertainties of the storage 

behaviour and the impact this may have on penalties from 

deviations between predicted and scheduled power of the 

combined PV/EES plant. 

 

2. Methodology 

Despite the fact that each battery disposes its own embedded 

BMS by the manufacturer, we had to develop an energy 

management system (EMS) for the entire hybrid power plant 

designed specifically to respect the requirements imposed by 

the capacity firming framework for the hybrid (PV + BESS) 

power plants in the island of Corsica in France. Among the 

functions it executes are the real-time coordination on the 

different power orders sent to each equipment, and the 

supervision, management and storage of any measurement 

which is fundamental to the operation of the hybrid plant.  

 

The developed EMS was then deployed into 5 different sites 

where hybrid power plants have been installed: a proof-of-

concept (POC) site in continental France, and 4 full-sized 

operating hybrid power plants in Corsica.   

2.1 BESS data acquisition procedure 

 

All sites where the 5 hybrid power plants are installed share a 

common electrical structure as seen in Fig. 1  The data sources 

contain two types of data acquisition points, analogue 

measurements of electrical  values and digital data that are 

obtained by each of the two main elements of the hybrid plant 

(PV plant or BESS) using their own internal data acquisition 

mechanisms. Analogue measurements are agnostic to the sites, 

but any storage related information is dependent on the battery 

constructor. Below we give more detailed information for each 

site: 

 

2.1.1 POC site: this site is composed of three 3.3kW/6.5kWh 

li-ion battery blocks with their respective inverter.  

The information available are the DC current, voltage, battery 

temperature and SoC as measured by the embedded 

monitoring of the BESS manufacturer. The analogue 

measurements are the AC power and the external ambient 

temperature. 

 

2.1.2 Corsica’s sites: the BESS in each site is composed of 

multiple battery-only cabinets and multiple DC/AC 

converters. Nevertheless, only system-wide measurements are 

available, and the BESS is treated as a singular unit. The 

nominal capacities are shown in Table 1. Any information 

specific to a singular inverter or battery block is not published 

by the manufacturer. 

 
Fig. 1 Classic electrical power scheme for hybrid PV/BESS 

power sites in Corsica. The power transfer between the BESS 

and the PV system is done through the AC grid.  

 

The information available are the SoC, energy available for 

discharge and maximal energy of the system at full charge. The 

analogue measurements are the AC power and two 

temperatures measurements, one for the ambient air and the 

second for the battery pack’s cabinet surface. 

 

 
(a)

 
(b) 

 
(c) 

Fig. 2 Power (straight line) and SoC (dotted line) curves from 

different days. Subfigure (a) is from a day accepted by the data 

treatment. Subfigures (b) and (c) are examples of rejected days 

because of intermittent disconnection of the ESS or because of 

an abnormal operation.  

 

In all sites, the key information was stored as instantaneous 

values with a frequency of 1Hz. However, this temporal 
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resolution is not used systematically. All the data treatment 

and models were done using instantaneous values with an 

interval of 20s. 

2.2 BESS data treatment 

 

Three types of phenomena that can alter the quality of the data 

were detected since the commissioning of the sites: 

missing/fake datapoints, abnormal power production due to 

errors or manual mismanagement, and electrical outages. A 

numerical and visual filter were used to retain the days that 

best expose the nominal operation of hybrid sites in Corsica. 

Fig. 2 shows a clean curve from an accepted day, as well as 

curves from days not accepted for further analysis. 

An additional variable representing the time in years since the 

power plant’s BESS started to be in nominal operation was 

also added.  

 

Table 1 BEES power and energy storage characteristics for the 

sites in Corsica 

 

Site Nominal Power Nominal Energy 

 
Site A 980 kVA 1218 kWh 

Site B 1560 kVA 2028 kWh 

Site C 1610 kVA 2088 kWh 

Site D 2030 kVA 2610 kWh 

 

2.3 BESS internal temperature estimation model 

 

This section describes the modelling process for the BESS 

internal temperature. This is important because it’s been 

demonstrated that operation in extreme temperatures can 

create irreversible chemical processes that impact the 

performance of the BESS as lithium-plating and, more 

impactful on human safety, a thermal runaway [8], [9] The 

thermal models that we considered are based on three 

measurements to estimate the battery’s temperature:  the SoC, 

the external ambient temperature and the DC current.  Two 

different estimation approaches were used: an intra-day 

temporal estimation and a minimum/maximum temperature 

approach. The former was done using a classical heat equation 

approach seen in eq. (1) where the first element represents the 

heat generated by the battery’s operation, and the second term 

represents the thermal external exchanges due to convection 

[10], [11].  For the former model, we used a neural network, 

where only the daily discharge throughput and the average 

external temperature per day was given as inputs for the model.  

 
𝑑𝑇

𝑑𝑡
=

𝑅𝑖𝑛𝑡

𝐶𝑝

  𝐼2(𝑡) + 𝜆 (𝑇𝑒𝑥𝑡(𝑡) – 𝑇𝑏𝑎𝑡(𝑡)) (1) 

 

In equation (1), the specific heat 𝐶𝑝 and the heat transfer 

coefficient 𝜆 depend exclusively on the materials and physical 

configuration. In contrast, the internal resistance  𝑅𝑖𝑛𝑡  is an 

indicator for the internal state of the battery’s chemistry. A 

parameter identification was done on such parameters by using 

exclusively the data of the POC site. Given the unavailability 

of  battery pack temperature, any validation of parameters is 

impossible in the other sites. 

  

2.4 The SoC estimation model 

 

The state of charge estimation model was developed by using 

power data series and an equivalence of a classical coulomb 

counter written in terms of power.[12] The initial first order 

model of  equation (2) was applied. It uses an energy  

efficiency coefficient  𝜂  as published by the battery 

manufacturer.  

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) − ∫
 𝜂 𝑃(𝑡)

𝐶𝑘𝑊ℎ

𝑑𝑡   (2) 

 

By using the real in-situ data of the BESS’s power flux, and 

the constructor’s own SoC estimation, new efficiency 

coefficients were calculated. 

 

2.5 BESS deterioration’s evolution 

 

Both the internal resistance and the energy  efficiency 

coefficient previously mentioned reflect the health of the 

battery cells [12]: A higher internal resistance reflects a 

chemistry deterioration and lowers the capacity of the battery 

cells in a BESS [13], while it’s been reported in commercial 

battery cells how the round trip efficiency at the End-of-Life 

(EoL, usually defined at 80% capacity) of the batteries shows 

a decrease of at least 5% [14]. To monitor the deterioration, 

the internal resistance was estimated in a daily basis to observe 

its evolution in time. 

 
Fig. 3 Expected temperature (y-axis) vs real temperature (x-

axis) using a neural network max. temperature predictor with 

three hidden layers. 

 

3 Evaluation results 

The nominal site’s power operation relies heavily on the 

estimated values for SoC to decide what amount of the 
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photovoltaic production is sent to the BESS. Any correction 

and improvement on this estimation allows the EMS to make 

better decisions. Unwanted phenomena and deviations from 

the planned power production  were reduced to a greater extent 

after applying newly calculated performance coefficients.   

To analyze the different results from the models, the RMSE 

between the expected and real values was used systematically. 

 

3.1 Temperature estimation 

 

The neural network used to predict the min/max temperature 

of the battery packs showed an average error of less than 1°C 

for the three ESS from the POC site. Different number of 

hidden layers in the neural network were used but no 

significant improvement could be detected by  modifying this 

parameter from the base value of three. 

 
Fig. 4 Temperature measurements from an ESS in the PoC site. 

The green line (solid) represents the real temperature as 

reported by the BMS, and the blue line (sectioned) represents 

the estimated value.  

 

Table 2 Average daily RMSE in °C for temperature 

predictions. 

 

PoC’s ESS 3 Hidden Layers 

Max. Temp 

Intra-day 

  

#1 0.926 1.434 

#2 0.948 0.992 

#3 0.951 0.727 

 

Regarding the intra-day prediction in Fig. 4, it  showed to be 

less efficient in  maximal temperature prediction with an 

RMSE >1°C although it followed the real temperature’s 

behavior. The instantaneous RMSE values for these BESS 

were between 0.7 °C and 1.4 °C. Table 2 summarizes the errors 

found for these two approaches.  

 

 

3.2 SoC estimation 

 

The power counter using the roundtrip performance as given 

by the ESS constructor had an average RMSE of 10%.  By 

itself, the SoC prediction allowed the operating EMS to correct 

the in-situ deviations due to the real performance disparity. 

However, as it can be seen in the first hours of operation in 

Fig. 5, disparities between the expected and real SoC due to 

non-linearities induced by the manufacturer’s integrated BMS 

generate undesirable behavior in the charge-discharge curves.  

 

The new efficiency parameters calculated using operation 

conditions data reduced the RMSE to 4%, and certain non-

linearities due to unreliable information by the BMS could be 

circumvented.  

 
(a) 

 
(b) 

Fig. 5 Real SoC and power production an operating site. 

Subfigure (a) shows the initially estimated SoC and the real 

value as reported by the BMS. Subfigure (b) shows the 

planned power production and the real output power. 

 

3.3 Battery degradation 

 

 
(a) 

 
(b) 

Fig. 6 Estimated internal resistance’s parameter in the heat 

equation. Subfigure (a) shows the trend in a daily basis. 

Subfigure (2) shows the temperature for the respective days. 
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The internal resistance parameter was calculated per day using 

the thermal model. The results, as seen in Fig. 6 demonstrate 

an increasing value trend. This finding is coherent with the 

expected temporal degradation li-ion batteries experience as 

the internal chemistry degrades. The linear trend did not show 

a significant increase with the lower external temperature. 

 

4 Conclusion 

Two different models were used to analyse the performance 

and evolution of li-Ion BESS in hybrid photovoltaic sites 

operating under the capacity firming framework defined by 

CRE in France. These sites respect specific constraints in 

terms of engagements to the grid manager and imply a 

distinctive charge/discharge profile as well.  

The thermal model was able to predict within 1 degree Celsius 

the temperature of the battery packs. No significant benefit 

between an intra-day prediction and the min/max predictor 

was found, but the insight gained from the increase and trend 

in internal resistance could make the foundation for more 

complex EoF analyses. 

The initial state of charge estimation deployed was shown to 

be effective by itself; The 10% error it showed initially, 

although minimised in further calculations of the performance 

parameter, did not show any significant loss in revenue for the 

4 sites in Corsica. The large margins of errors accepted by the 

grid manager to manoeuvre any solar variability are exploited 

in the EMS and the effect of an inaccurate SoC prediction are 

reduced. A smaller accepted deviation from he planned power 

productions would put more strain on the accuracy of the 

battery model. 

Future works will focus on implementing the knowledge 

gained from the thermal battery model into long-term SoC and 

SoH predictions for large-scale BESS. Given that some battery 

constructors do not make available all the battery-related 

information, including thermal measurements, the models 

must be able to consider these phenomena without à direct 

estimation due to the impossibility to corroborate it. 
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