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a b s t r a c t

Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of
Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in
individual muscle force. However, it is not known if this relationship remains valid for higher intensities.
The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and
muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region
of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental
isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as
an index of muscle torque and elastic modulus. A high coefficient of determination (R2) (range: 0.86–
0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled
by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus
as a function of torque were highly repeatable. Lower R2 values (0.89 ± 0.13 for 1/16 of ROI) and signif-
icantly increased absolute errors were observed when the shear elastic modulus was averaged over smal-
ler ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18 ± 0.24 cm2). It suggests that
the ROI should be as large as possible for accurate measurement of muscle shear modulus.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate estimation of individual muscle force would pro-
vide crucial information for fields such as motor control, biome-
chanics, robotics and rehabilitation sciences. Biomechanical
models to estimate muscle force have been proposed but in the
absence of experimental methods to measure individual muscle
force, these models cannot be validated. Consequently it remains
one main challenge in biomechanics (Erdemir et al., 2007). The
muscle shear elastic modulus (i.e. muscle stiffness) measured
using the Supersonic Shear Imaging technique (SSI) is linearly
related to muscle force during low-level isometric contraction
(Bouillard et al., 2011, 2012) and passive stretching (Koo et al.,
2014; Maisetti et al., 2012). In other words, more the muscle con-
tracts or lengthens and more it becomes stiffer. Consequently, the

muscle shear elastic modulus can be easily used to estimate
changes in muscle force (Bouillard et al., 2014; Hug et al., 2014).

Due to both hardware and software limitations, the saturation
limit of the previous version of the SSI scanner (266 kPa) made
impossible to measure accurately the elastic modulus of very stiff
tissues such as muscles during high-intensity contractions.
Consequently, previous studies were limited to low-intensity con-
tractions, i.e. up to 50–60% of the maximal voluntary contraction
(MVC) (Bouillard et al., 2011; Yoshitake et al., 2013). It is therefore
unknown if muscle shear elastic modulus is linearly related to
muscle force over the full range of contraction intensity (0–100%
of MVC). In addition, the influence of the size of the region of inter-
est (ROI) (i.e., the region of the muscle considered to average the
shear elastic modulus), on the relationship between modulus and
force has not been determined. It is unclear whether the muscle
shear elastic modulus determined over relatively small ROIs accu-
rately represents the modulus of the whole muscle.

Saturation of shear elastic modulus measurements is the main
limitation of the software package previously developed. The
new version used in the current study has been improved for the
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measurement of fast shear waves without a saturation limit for
muscular tissues.

The aim of the present study was to determine the relationship
between muscle shear elastic modulus and joint torque over the
full range of contraction intensity using the new version of the
SSI scanner. For that purpose, the Abductor Digiti Minimi (ADM),
which is the only muscle producing little finger abduction torque
(Lebreton, 2010) was investigated. Therefore, the measurement
of joint torque using a simple force sensor provides a good esti-
mate of changes in the force produced by this muscle (Bouillard
et al., 2011). The influence of the size of the ROI on this relationship
was also investigated.

2. Methods

2.1. Participants

Ten healthy males participated in this experiment (age:
27.8 ± 2.9 years, height: 178.4 ± 5.9 cm, weight: 71.8 ± 8.6 kg).
They were informed of the purpose and the methods used before
providing written consent. The local ethical committee approved
the study and all procedures conformed to the Declaration of
Helsinki.

2.2. Ergometer

A homemade ergometer was used to measure the abduction
torque produced by the little finger. The ergometer used in the pre-
sent study was previously described in details (Fig. 1, Bouillard
et al., 2011). The participants were seated with right elbow flexed
at 130� with the pronated forearm was supported by a platform. All
fingers were extended with the palm facing down. The wrist and
fingers #2 to #4 of the right hand were immobilized to prevent
any motion (see Fig. 1, Bouillard et al., 2011). The lateral side of
the little finger was in contact with a rigid interface, with the prox-
imal interphalangeal joint aligned with the force sensor (SML-50,
Interface, Arizona, USA). Data were sampled at 10 kHz
(ADInstruments, Powerlab 16/35, NZ).

2.3. Elastography

An Aixplorer ultrasonic scanner (Supersonic Imagine, Aix-en-
Provence, France), coupled with a linear transducer array (4–
15 MHz, SuperLinear 15–4; Vermon, Tours, France), was used in
Shear Wave Elastography (SWE) mode (musculoskeletal preset).
This elastographic technique consisted of a radiation force induced
by a focused ultrasonic beam (Bercoff et al., 2004). Each ultrasonic
beam generated a transient and remote mechanical vibration
resulting in the propagation of a transient shear wave. Then, an
ultrafast echographic imaging sequence was performed to acquire
successive raw radio-frequency data at a very high frame rate. A
one-dimensional cross correlation of successive radio-frequency
signals was used to determine the shear wave velocity (Vs) along
the principle axis of the probe using a time-of-flight estimation.
Then, assuming a linear (Bercoff et al., 2004; Catheline et al.,
2004; Gennisson et al., 2003) and elastic (Deffieux et al., 2009;
Gennisson et al., 2003; Nordez et al., 2008) behavior, the shear
elastic modulus (l) was calculated using Vs as follows:

l ¼ qV2
s ð1Þ

where q is the density of muscle (1000 kg/m3). Maps of shear elastic
modulus (Fig. 2) were obtained with a spatial resolution of
1 � 1 mm. The ultrasound transducer was aligned with the fiber
direction. All the measurements were performed by the same
experimenter. During data acquisition, minimal pressure was
applied with the probe on the skin.

The new software package used in the present study combines
three new features compared to the previous version: (1) adjust-
ment of the sequence and in particular increase of the ultrafast
frame rate to allow shear wave velocity of stiff tissues to be mea-
sured; (2) ability to increase the SWE frame rate from 1 to 4 Hz
during a limited time (4 s); and (3) increase of the size of the 2-D
map of shear elastic modulus (up to 5 cm2).

2.4. Protocol

First, preconditioning was performed to avoid interference in
the measurements of early changes in mechanical properties of
musculo-tendinous structures (Maganaris et al., 2002). To this
end, participants performed three maximal isometric little finger
abductions lasting 4 s separated by 2 min of recovery. Then, they
performed additional 3 maximal contractions (lasting 4 s and sep-
arated by 2 min of recovery) during which the maximal force
(MVC) was measured. Finally, each participant performed 2 tasks.

Task 1. Isometric ramp contraction from 0% to 70% of MVC in
16 s. This task was performed to determine the effects of region
of interest (ROI, i.e., the region of the muscle considered to average
the shear elastic modulus) size on the shear elastic modulus (at
1 Hz of data acquisition).

Task 2. Isometric ramp contraction from 0% to 100% of MVC in
4 s. This task was performed to test the relationship between the
shear elastic modulus and torque over the full range of contraction
intensities with a data acquisition rate of 4 Hz.

For each task, ramps were repeated 2 times to assess the
repeatability of the measurements. 16 data points were obtained
for each ramp contraction in both tasks. Recovery time between
each ramp was 2 min. To control the ramp contractions, a real-time
visual feedback was displayed on a monitor.

Fig. 1. The right pronated forearm was supported on a platform and all fingers were
extended with the palm facing down. The hand and fingers 2–4 were immobilized
with velcro straps to prevent any movement and compensation during contrac-
tions. The little finger was in contact with a rigid interface, with the proximal
interphalangeal joint aligned with the force sensor. Adapted with permission from
Bouillard et al. (2011).
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2.5. Data analysis

Videos of shear wave elastography recordings were exported in
‘‘mp4’’ format and sequenced into images (‘‘jpeg’’ compression) for
task 1. Data processing was performed using MATLAB scripts (The
Mathworks, Natick, USA). A rectangular area as large as possible
with exclusion of aponeurosis was chosen as the ROI from the
shear elasticity map (Fig. 2). The colored map was converted into
shear elastic modulus values. An average value of the shear elastic
modulus over the ROI was calculated for each image. For task 2, the
average shear elastic modulus was obtained from the software of
the ultrasound device (Q-box function). These modulus values
were synchronized with the torque using the trigger signal sent
at the time of each shear elastic modulus measurement during
data acquisition. Force values (in N) were normalized to MVC for
each participant. Assuming a constant moment arm during the

Fig. 2. Typical example of shear elastic modulus measurement from ADM. Black
outlined box shows ROI (the greatest muscular region avoiding aponeurosis). Dark
grey, light grey, and white outlined boxes show 1/2, 1/4, and 1/16 of ROI (the
smaller areas tested to examine the effects of ROI size on the relationship between
shear elastic modulus and torque).

Fig. 3. Shear elastic modulus-force relationships obtained from the ten participants during two ramp contractions from 0% to 100% of MVC (task 2). Ramp 1 and 2 are
depicted in black and grey, respectively.
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isometric contractions, these relative force values corresponded to
normalized torque values (in% of MVC; Bouillard et al., 2011, 2012).
The shear elastic modulus (in kPa) and normalized torque values
were fitted to a linear equation and the coefficient of determina-
tion (R2) was calculated for all contractions as a measure of the
goodness of the fit. For both tasks 1 and 2, the shear elastic modu-
lus values corresponding to 20%, 40%, 60%, 80%, and 100% of MVC
were calculated using the coefficients of the equation of these lin-
ear regressions.

To determine the effect of ROI size on shear elastic modulus
measurements, data collected during task 1 were analyzed for full
(1.18 ± 0.24 cm2), half (the mid half of the area horizontally), 1/4
(mid half of the area both horizontally and vertically), and 1/16
(mid half of the 1/4 of ROI area both horizontally and vertically)
of ROI (Fig. 2). The R2 value of the linear regression between torque
and shear elastic modulus was calculated for each ROI size.
Absolute error between the shear elastic modulus of full ROI (mod-
ulus ROI) and that of half (modulus half of ROI), 1/4 (modulus 1/4 of ROI),
and 1/16 (modulus 1/16 of ROI) of full ROI were calculated at 20%,
40%, 60%, 80%, and 100% of MVC. The ratio of absolute error to
the modulus of full ROI (%Error) was calculated as

%Error¼ ABS modulusROI�modulushalf ;1=2;1=4;1=16of ROI
� �

=modulusROI
� �

�100

ð2Þ

2.6. Statistical analysis

Coefficients of determination (R2) were calculated using Excel
(Microsoft, Redmond, WA, USA) to assess the quality of linear fits
for the shear elastic modulus – torque relationships. For each of
these torque values, the repeatability between the 2 contractions
performed within each task was assessed using the standard error
of measurement (SEM), coefficient of variation (CV), and intraclass
correlation coefficient (ICC) (Hopkins, 2000).

A repeated-measures ANOVA (within subject factors: muscle
contraction intensity and ROI size) was performed to determine
the effects of ROI size on absolute error (The Mathworks, Natick,
USA). If significant effects were found, post hoc tests were per-
formed using the Bonferroni procedure for multiple pair-wise com-
parisons. P values < 0.05 were considered significant.

3. Results

Fig. 3 depicts the shear elastic modulus – torque relationships
obtained during tasks 2 for each participant. The R2 values averaged
across the 10 participants of the linear regression calculated from
each of the two contractions during task 1 and 2 were high (aver-
aged value between the 2 repetitions: 0.96 ± 0.02 and 0.95 ± 0.03

from 0% to 70% – task 1 – and 0% to 100% of MVC – task 2, respec-
tively). This indicates that the relationship between the joint torque
and shear elastic modulus can be accurately modeled by a linear
regression, over the entire range of contraction intensity (0% to
100% of MVC). The low SEM values and high ICC values shown in
Table 1 indicate the high reproducibility of the shear elastic mea-
surement, regardless the contraction intensity. Coefficient of varia-
tions between the 2 repetitions were lower (for task 2) or slightly
higher (for task 1) than 10% for almost all estimated forces (Table 1).

The coefficients of determination of the relationship between
muscle elastic modulus and torque were 0.96 ± 0.02, 0.96 ± 0.03,
0.94 ± 0.07, and 0.89 ± 0.13 when the elastic modulus was calcu-
lated from full, half, 1/4, and 1/16 of full ROI, respectively. The %er-
ror between the shear elastic modulus of full ROI and that of half,
1/4, and 1/16 of full ROI increased with decreasing ROI size
(Table 2). A significant main effect of both muscle contraction
(P = 0.000) and ROI size (P = 0.009) was found. However, the mus-
cle contraction x ROI size interaction was not significant (P = 0.6).
Post-hoc test on size located the difference only for the absolute
error between full and 1/16 of the full ROI (P = 0.02).

4. Discussion

The present study shows that the relationship between ADM
shear elastic modulus and little finger abduction torque is linear
from 0% to 100% of MVC. The repeatability reported in the present
study is similar to that previously reported (i.e., standard errors
were 4.5 kPa, 4.7 kPa and 8.3 kPa at 15%, 30% and 50% of MVC in
Bouillard et al., 2012). These suggest that relative change in ADM
muscle force can be estimated from changes in muscle shear elastic
modulus within the full range of contraction intensity. This offers
promising perspectives. For instance, the normalization of shear
elastic modulus to that recorded at MVC is important to be able
to compare stiffness between muscles and participants. In addi-
tion, if associated with other architectural parameters (physiolog-
ical cross-sectional area and moment arms), muscle shear elastic
modulus might be used to provide a more direct estimation of
muscle force. Although the within-day reliability of the relation-
ship between muscle shear elastic modulus and torque was good,
the between-day reliability remains to be determined.

The updated version of SSI technique used in the present study
does not have any saturation limit. However, it is expected that the
measurements is not reliable above a given shear wave velocity
(and thus above a given elastic modulus value). This limit has
not yet been determined since phantoms stiff enough does not
exist. Nevertheless, this limit is likely achieved for much stiffer tis-
sue than the muscle in contraction (e.g., tendon). In this way, the
present study indicates that this version is able to measure repeat-
able muscle elastic modulus values up to MVC.

Another challenging issue in estimation of muscle force using
muscle shear modulus is the size of the ROI. It is classically
assumed that the shear elastic modulus is representative of the
whole muscle (Nordez and Hug, 2010), but this has never been
demonstrated. In the present study the average shear elastic mod-
ulus was calculated from the greatest region possible (depending

Table 1
Within-session repeatability of shear elastic modulus measurement between the two
ramps for each task.

Force (% MVC) 20% 40% 60% 80% 100%

Task 1
CV (%) 16.3 11.6 11.0 11.1 11.2
SEM (kPa) 4.1 3.9 5.4 7.7 10.3
ICC 0.97 0.98 0.98 0.98 0.98

Task 2
CV (%) 18.6 9.5 7.1 6.9 7.3
SEM (kPa) 5.1 4.9 5.6 6.8 8.3
ICC 0.73 0.86 0.90 0.90 0.89

Shear elastic modulus measured (Task 1) from 0% to 70% of MVC and (task 2) from
0% to 100% of MVC. MVC, Maximal Voluntary Contraction; CV, coefficient of vari-
ation; SEM, Standard Error of Measurement; ICC, Intraclass correlation coefficient.

Table 2
The ratio of absolute error (%Error) between the shear elastic modulus measured over
the full ROI and that measured over smaller ROI.

Force (% MVC) %Error

1/2 1/4 1/16

20 2.0 3.8 6.6
40 4.2 5.4 6.1
60 5.8 7.4 8.9
80 6.7 8.6 10.5

100 7.3 9.3 11.5
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on muscle size and shape). If the ROI size decreased to 1/16 of the
full ROI, not only the R2 value was lower but also the absolute error
(compared to full ROI) increased significantly.

In the passive condition, Kot et al. (2012) tested the effects of ROI
size on the resting shear modulus values for the rectus femoris mus-
cle. They reported significant differences only for the maximal mod-
ulus value over the 2-D map but not for the averaged value. Previous
electromyography studies reported spatial variability in activation
level of the biceps brachii (Holtermann et al., 2005) and the upper
trapezius (Farina et al., 2008) muscles. Furthermore, using magnetic
resonance imaging, Finni et al. (2003) determined the spatial vari-
ability of intramuscular strain distributions within soleus muscle
during isometric contractions. It was shown on dorsiflexor muscles
that this spatial strain variability increases with the level of contrac-
tion (Damon et al., 2008). This spatial variability could be related to a
spatial variability of muscle stiffness, that requires further consider-
ation. It is not possible to assume that our findings on ADM directly
translate to other muscles however, considering the heterogeneity
of various human muscles, it is reasonable to consider that the error
is high for larger muscles if very small ROI are analyzed. Our results
indicate that only very small ROIs affect significantly the quantifica-
tion of shear elastic modulus (i.e. 1/16 of the full ROI that corre-
sponds to about 2% of the transverse area of muscle). Based on
these results, it should be recommended to (i) calculate the shear
elastic modulus over the greatest possible ROI and (ii) average the
modulus over multiple ROIs in order to get value as representative
as possible of the whole muscle if the ROI is too small compared to
the muscle investigated.

In conclusion, our study showed that the relationship between
shear elastic modulus and torque is linear over the full range of
contraction intensity (0 to 100% of MVC). Therefore, regardless of
the contraction intensity, muscle force index can be estimated
from shear elastic modulus measured. However, to improve the
accuracy of the measurements, the present findings suggest to
use measure shear elastic modulus over a ROI as large as possible.
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