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Abstract

In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced
to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these
descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper,
we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version
of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the
alignment depending on each pair of samples. While this framework was up to now only applied to link different
datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but
partially related descriptors of the cardiac function (shape and deformation).

We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of man-
ifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict
alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D car-
diac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of
right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from
3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experi-
ments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment
is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right
ventricular diseases in our population.

Keywords: Cardiac imaging, dimensionality reduction, information fusion, manifold learning, myocardial strain

1. Introduction

The computational analysis of medical images allows
going beyond the measurements performed in clinical
routine, by considering high-dimensional descriptors that
represent complementary aspects of diseases. Finding
a data representation suited for clinical understanding
across populations is highly challenging, and even more
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when several descriptors are considered. In this paper,
we aim at relating shape and deformation observations,
which are key to characterize the cardiac function. For
this purpose, we demonstrate the relevance of recent rep-
resentation learning schemes not only to combine sev-
eral high-dimensional descriptors, but also to characterize
their interactions depending on individuals and disease.

1.1. Low-dimensional embedding of multiple descriptors
by manifold learning

Manifold learning methods provide a low-dimensional
representation of the data that also preserves the global or
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local relations between samples, and therefore the struc-
ture of the data space. These dimensions represent the
main directions encoding specific properties in the data
(principal geodesics (Tenenbaum et al., 2000), modes of
diffusion (Coifman et al., 2005), etc.) depending on the
specific manifold learning method used. These techniques
are therefore recommended to analyze the distribution of
populations or subgroups, and the relations between sam-
ples according to well-controlled distances. Nonetheless,
they suffer from the absence of explicit mappings to nav-
igate between the high- and the low-dimensional spaces.
In this sense, they differ from the recent variational au-
toencoders (VAE) (Kingma and Welling, 2013), which
constrain the latent space to fit a specific distribution but
do not explicitly consider local relations between sam-
ples. The variant β-VAE reduces this limitation by in-
troducing a weighting factor to control the relative contri-
bution of sample interactions and distribution fit (Higgins
et al., 2016). In contrast, manifold learning explicitly op-
timizes the pairwise interactions between samples. This is
an asset for interpreting latent spaces as in our application.
Besides, the latent dimensions in VAE are not necessarily
ordered by importance, contrary to more classical dimen-
sionnality reduction methods, while this could also facil-
itate the interpretations by clinicians. These limitations
are counterbalanced by intrinsic encoding and decoding
operations with the VAE framework.

From simple linear methods such as principal compo-
nent analysis to non-linear methods that can apprehend
more complex structures, manifold learning (Yan et al.,
2007) has been used on many medical imaging applica-
tions in the last decade. Nevertheless, most of them only
take into account a single descriptor at once, while com-
plex diseases require considering different although par-
tially correlated descriptors.

Manifold learning methods that can exploit several
high-dimensional features and their potential interactions
can be classified into two main categories: fusion and
alignment strategies (Li et al., 2018).

Fusion methods look for a single latent representa-
tion from several input descriptors. For example, Mul-
tiple Kernel Learning (MKL) builds upon the unified
framework of manifold learning, where an affinity ma-
trix -which quantifies the similarities between pairs of
samples- is estimated for each descriptor. MKL performs
a linear combination of the affinity matrices from several

descriptors and optimizes both the mapping to the low-
dimensional representation and the weights given to each
descriptor (Lin et al., 2011). Similarity Network Fusion
(Wang et al., 2014) uses a cross-diffusion process to iter-
atively merge two affinity matrices and reach a consensus
between their corresponding descriptors. Extensions of
the Gaussian process latent variable models also allow the
fusion of manifolds from a Bayesian perspective, which
is interesting to express dependencies between variables
(Lawrence and Moore, 2007). However, the relative con-
tribution of each descriptor is not explicitly considered.

In contrast, alignment methods aim to capture the re-
lationship between the descriptors by aligning the dif-
ferent representations learnt for each descriptor, which
therefore become comparable (Ham et al., 2005). Par-
tial Least Squares (PLS) and Canonical Correlation Anal-
ysis (CCA) are two linear methods that maximize the
covariance or the correlation between the descriptors in
the low-dimensional latent space. However in our appli-
cation, non-linear methods may be more suited to esti-
mate the manifolds associated to cardiac shape and de-
formation, and prevent analysis errors (Duchateau et al.,
2012). Besides, extending PLS and CCA to more than
two descriptors may not be straightforward. In this sense,
the framework of Multiple Manifold Learning (MML) is
relevant (Clough et al., 2019; Lindenbaum et al., 2020),
as a generalization of the strict alignment proposed in
(Ham et al., 2005). It consists in building a larger affin-
ity matrix whose blocks either represent the affinity be-
tween samples according to one descriptor (the diagonal
blocks) or across several descriptors (the extra-diagonal
blocks). The low-dimensional representation is therefore
estimated according to each descriptor and their corre-
spondences. This framework has been illustrated for the
alignment of different datasets (Valencia-Aguirre et al.,
2011; Lee et al., 2016), of different magnetic resonance
slices (Clough et al., 2019; Baumgartner et al., 2017) or
to find regional associations between anatomical struc-
tures (Benkarim et al., 2020). These works slightly dif-
fer regarding the definition of the affinity matrix, and in
particular its extra-diagonal blocks, formulated through
permutation operators (Lee et al., 2016), correlations
(Valencia-Aguirre et al., 2011; Benkarim et al., 2020), or
the graph structure of the datasets (Baumgartner et al.,
2015; Clough et al., 2019).

Nevertheless, these works only aimed at aligning differ-
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ent datasets that originate from the same manifold, such
as 2D MRI slices for 3D stacking purposes (Baumgart-
ner et al., 2017; Clough et al., 2019) or images of objects
represented from similar sets of viewpoints (Valencia-
Aguirre et al., 2011)). Our problem is slightly different, as
we consider descriptors belonging to different manifolds
whose (unknown) link exists but can vary depending on
the samples. We propose to go further and demonstrate
that a manifold alignment strategy is also relevant to char-
acterize the distribution of each descriptor in a population,
while controlling the strength of the alignment for better
disease-specific and subject-specific analysis.

1.2. Analyzing myocardial shape and deformation
In this work, we aim at exploring the link between two

relevant descriptors of the cardiac function (myocardial
shape and deformation) on complex diseases of the right
ventricle, for which the overall ventricle is dilated but
shape and deformation are affected differently depending
on the disease, its severity, and subject-specific character-
istics. Although myocardial shape and deformation corre-
spond to high-dimensional information accessible at each
point of the ventricle and each instant of the cycle, clinical
practice and even research generally reduce it to scalars
such as volumes, ejection fraction or global strains (Cikes
and Solomon, 2016). This represents a strong truncation
of the available data which could hamper disease under-
standing and patient management.

The low-dimensional embedding of myocardial shape
or motion/deformation has been thoroughly explored in
research, as reviewed in (Gilbert et al., 2020; Duchateau
et al., 2020). Nonetheless, shape and deformation should
not be considered independently from each other. They
may undergo structural (Bijnens et al., 2012) and disease-
related interactions as illustrated for our application of in-
terest: the characterization of right ventricular diseases
with pressure- or volume-overload (Moceri et al., 2018;
Sanz et al., 2019). Details on the studied diseases and
their specific shape-deformation abnormalities are given
in Sec. 2.1

Few works investigated myocardial shape or deforma-
tion in the context of multiple high-dimensional imag-
ing descriptors. For instance, (Sanchez-Martinez et al.,
2017) combined multiple features among which myocar-
dial velocities using non-linear techniques (MKL) to char-
acterize different patterns of functional responses to stress

in the heart failure with preserved ejection fraction syn-
drome. The different descriptors may be partially cor-
related, but this aspect was not explicitly considered.
The correlation between two descriptors (motion obtained
from two different modalities) was specifically addressed
in (Puyol-Antón et al., 2017) using linear embedding
techniques such as PLS and CCA. In this case, the correla-
tion between descriptors is high, as they correspond to two
instances of the same objects seen with different modal-
ities. In preliminary work, we tested these linear tech-
niques on myocardial shape and deformation, but only
limited our assessment to the observation of substantial
differences in zones of high interest for the studied dis-
eases (Di Folco et al., 2020). In the present paper, we in-
vestigate this link much more in detail, on both synthetic
and (larger) real populations. Besides, we focus on non-
linear methods, which are better suited to the underlying
structure of the spaces to which shape and deformation
descriptors belong, and provide better flexibility to study
their interactions.

1.3. Proposed approach and contributions

We specifically address two challenges in this paper:

1. Finding a joint embedding for two high-dimensional
and heterogeneous descriptors (myocardial shape
and deformation) whose link depends on individuals
and disease.

2. Characterizing this link on a relatively large database
of Right Ventricular (RV) meshes from 3D echocar-
diography, from patients with pressure or volume
overload, which may exhibit a dilated RV but for
which local shape and deformation patterns, and
their potential interactions, are key to assess the dis-
ease severity and evolution.

To do so, we propose to apply unsupervised manifold
learning and especially MML to apprehend this link. We
evaluated the interest of this alignment strategy over fu-
sion methods (MKL), and the embedding of each descrip-
tor independently (Diffusion Maps (DM)). We also eval-
uated its relevance over linear alignment based on PLS,
which we used previously in (Di Folco et al., 2020).

For understanding purposes, we first tested our ap-
proach on a synthetic dataset of pressure and volume
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curves from a 0D circulation model, where the link be-
tween two descriptors is fully controlled. Then, we evalu-
ated the potential of this approach to characterize the link
between cardiac shape and cardiac deformation on a pop-
ulation of patients with RV volume- or pressure-overload,
from two 3D echocardiographic studies (Moceri et al.,
2018, 2020), which exhibit both shape and deformation
changes with disease. To do so, we proposed a set of ex-
periments to explore the consistency between neighboring
samples, the latent dimensions and the main anatomical
characteristics encoded. Finally, we illustrated the interest
of our approach by linking the results of the experiments
to clinical observations.

2. Methods

2.1. Data

We processed a database of 310 subjects, whose RV en-
docardial surface was tracked with 3D echocardiographic
image sequences using the commercial software 4D-RV
Function 2.0 (TomTec Imaging Systems GmbH, Unter-
schleißheim, Germany). The meshes (valves excluded)
consisted of 822 points and 1587 triangular cells. Point-
to-point correspondences between the meshes from dif-
ferent subjects are ensured by the software, which allows
straightforward inter-subject comparisons at each point or
cell of the RV mesh. The database is composed of four
different groups detailed in Table 1. The 100 cases in the
control group served as reference for the shape meshes
and for normality to quantify the anomalies of the dis-
eased groups. In particular, 55 controls are age- and sex-
matched with the Atrial Septal Defect (ASD) and Tetral-
ogy of Fallot (ToF) groups.

ASD and ToF are two congenital diseases. Patients
with ASD exhibit a hole in the inter-atrial septum. RV vol-
ume overload is observed when the hole becomes hemo-
dynamically significant, because of chronic left-to-right
shunt with increased pulmonary blood flow. Patients with
ToF typically present a deviated conal septum, an over-
riding aorta with ventricular septal defect and pulmonary
stenosis (muscular and valvar pulmonary stenosis). Re-
pair usually occurs during infancy and the surgeon has to
close the ventricular septal defect and relieve the RV out-
flow obstruction, thus being classically responsible for the
development of pulmonary regurgitation that can impact

Table 1: Clinical characteristics of the studied subjects

Subgroup Overload RVEDV1(mL) RVEF2(%)
Global
RVAS3

(%)
N

Controls None 64.0 ± 25.3 54.2 ± 6.3 −32.5 ± 5.2 100
PH Pressure 103.1 ± 49.2 34.9 ± 11.1 −20.8 ± 6.8 155
ASD Volume 153.6 ± 91.2 55.2 ± 8.7 −35.4 ± 7.3 27
Tof Volume 152.1 ± 61.8 43.6 ± 9.5 −26.2 ± 5.5 28

Total 310

Controls vs. PH4 <0.001 <0.001 <0.001
Controls vs. ASD vs. ToF5 <0.001 <0.001 <0.001

1 Right Ventricle End-Diastolic Volume (RVEDV)
2 Right Ventricle Ejection Fraction (RVEF)
3 Right Ventricle Area Strain (RVAS)
4 p-value from unpaired t-test
5 p-value from one-way ANOVA

the long term prognosis. The chronic pulmonary regurgi-
tation induces RV volume overload and can be responsi-
ble of symptoms and lead to chronic heart failure. Both
groups present RV volume overload with shape and defor-
mation abnormalities, at different grades (Moceri et al.,
2020) and different stages of the disease (Sanz et al.,
2019). In contrast, patients with Pulmonary Hypertension
(PH) undergo right ventricular pressure overload, which
affects the RV contractility to preserve the cardiac output
and leads to shape and deformation abnormalities (Mo-
ceri et al., 2018). For all, the clinical challenge is to be
able to characterize the differences between these types
of overload up to local abnormalities in the shape and de-
formation patterns.

2.2. Shape and deformation features
To reduce the bias due to different spatial heart po-

sitions, we realigned the meshes using generalized Pro-
crustes analysis (Gower, 1975) with a similarity trans-
form. For this population, we represent myocardial shape
and deformation by two high-dimensional descriptors
available at each point of the RV mesh. The first one,
called area strain (Fig. 1a), stands for the relative change
in the area of each mesh cell (in %) between End-Diastole
(ED) and End-Systole (ES). In our implementation, area
strain was redefined at each point of the mesh by averag-
ing its values from the immediate adjacent cells. This pro-
vides slight smoothing of the strain patterns and therefore
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reduces local artifacts due to the meshing, and enables
analyzing deformation and shape at the same locations.
Area strain therefore corresponds to a high-dimensional
descriptor of dimensions 822 × 1 (822 is the number of
points for each mesh). The second descriptor charac-
terizes shape at ED, through a 3D displacement vector
(Fig. 1b) computed at each mesh point between a given
case and the average shape of the controls (obtained by
Procrustes analysis on this subgroup), used as reference
for normality. This descriptor is of dimensions 822 × 3.

(a) Deformation feature (b) Shape feature

Figure 1: (a) Area strain (%) at ES for a healthy case. (b) Distance
vector (mm) colored by magnitude for the same healthy case. The red
mesh stands for the average shape of the controls, used as reference for
the computations.

2.3. Manifold learning

Given a population of K subjects, let’s denote X =[
x1, · · · , xK

]T
∈ RK×M (the dimensionality M is usu-

ally large) the input data for one descriptor. Manifold
learning estimates a set of low-dimensional coordinates
Y =

[
y1, · · · , yK

]T
∈ RK×N such that N << M.

2.3.1. One descriptor - Diffusion Maps
The unified framework for manifold learning (Yan

et al., 2007) performs spectral embedding as in Laplacian
eigenmaps. It constructs an affinity matrix W = [Wi j] ∈
RK×K where:

Wi j = exp
−∥xi − x j∥

2

σ2 (1)

where σ is the width of the kernel. Then, it minimizes:

Φ(Y) =
1
2

K∑
i, j=1

∥yi − y j∥
2Wi j = tr(YT LY)

s.t. YT DY = I

(2)

where D = [Di j] is a diagonal matrix such that Dii =∑
j Wi j. L stands for the graph Laplacian and is de-

fined by: L = D − W. Intuitively, the cost function in
Eq. 2 means that close samples xi and x j in the high-
dimensional space (Wi j close to 1) will result in close
low-dimensional coordinates yi and y j. Conversely, dis-
tant samples (Wi j close to 0) will not contribute to bring
yi and y j closer.

Equation 2 amounts to solving the generalized eigen-
value problem Lf = λDf, with λ and f standing for the
eigenvalues and eigenvectors, respectively. In practice,
we solve Pf = (1 − λ)f, where P = D−1/2WD−1/2 is sym-
metric, which corresponds to working with the normal-
ized graph Laplacian. The coordinates Y correspond to
the N ≤ K − 1 first eigenvectors associated to the N first
eigenvalues sorted by ascending order after removing the
trivial case associated to the eigenvalue zero.

In practice, we used the generalization of the manifold
learning to DM (Coifman and Lafon, 2006), which pro-
vides invariance to the non-uniform density of the sam-
ples. We do so by first normalizing the affinity matrix W
by the total affinity of each sample to the other samples,
namely using Wi j

Dii · D j j
instead of Wi j. We used the sim-

plest version of the diffusion time parameter, t = 1, which
amounts at considering the diffusion between one sam-
ple and its neighbors in one step. Besides, the parameter
that controls the influence of the density of samples was
set to α = 1, which corresponds to the Laplace-Beltrami
approximation in the formalism of DM.

2.3.2. Two descriptors (fusion) - Multiple Kernel Learn-
ing

MKL is a manifold learning method that combines
multiple descriptors at once and leads to a single low-
dimensional space, contrary to MML. To do so, an affinity
matrix is computed for each descriptor using an associ-
ated Gaussian kernel. MKL then combines the computed
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affinity matrix and optimizes the following equation:

Φ(Y) =
K∑

i, j=1

∥ATK(i)β − ATK( j)β∥2Ŵi j (3)

where β =
[
β1, · · · , βm

]
are the kernel weights with m the

number of descriptors. A is the matrix that maps the input
into the low-dimensional space, Ŵi j are the coefficients of
a global affinity matrix and K(i) is a matrix defined for the
i-th sample by a combination of all the kernels from each
descriptor (Lin et al., 2011). The MKL algorithm alter-
nates the minimization of Eq. 3 with respect to either A
or β. The samples are then mapped to the latent space by:
Y = AT ∑m

k=1 Kkβk. This method will serve to benchmark
our approach based on a alignment strategy (described in
Section 2.3.4) against a fusion strategy.

2.3.3. Two descriptors (alignment) - Pairwise correspon-
dences

(Ham et al., 2005) described a manifold learning
method with a strict alignment strategy called pairwise
correspondences. The method aims to link each sample
of a latent space to the corresponding sample in the other
latent space as defined by the following energy:

Φ(Y) =
K∑

i, j=1

∥y1
i − y1

j∥
2W1

i j +

K∑
i, j=1

∥y2
i − y2

j∥
2W2

i j

+µ

K∑
i=1

∥y1
i − y2

i ∥
2

(4)

where W1 = [W1
i j] and W2 = [W2

i j] stand for the affinity
matrices of the two descriptors and µ > 0 is the weight of
the interactions.

As for the diffusion maps approach, this problem can
be reformulated using a matrix form, with the following
affinity matrix:

W =
[

W1 U12

U21 W2

]
(5)

where U = [Ui j] with Ui j = µI.
With the matrix W defined as above, Eq. 4 amounts at

solving:

Φ(Y) = tr(YTLY)

s.t. YT DWY = I
(6)

where L = DW −W and DWi,i =
∑

j Wi j.
The minimization of Eq. 4 is achieved as for the sin-

gle descriptor setting. As W ∈ R2K×2K , we obtain eigen-
vectors whose first/last K rows correspond to the low-
dimensional coordinates for the first/second descriptor
respectively. The method therefore provides one latent
space for each descriptor. Note that the formulation of
Eq. 4 requires y1

i and y2
i to have the same dimensionality

N.

2.3.4. Proposed approach: Two descriptors (alignment) -
Multiple Manifold Learning

The pairwise correspondences method may be too strict
to characterize cardiac shape and deformation, whose link
may differ depending on the sample. MML is an align-
ment strategy that generalizes the pairwise correspon-
dences method. MML weights the link between the de-
scriptors through an inter-descriptors affinity matrix M =
[Mi j] ∈ [0, 1], leading to the following energy to mini-
mize:

Φ(Y) =
K∑

i, j=1

∥y1
i − y1

j∥
2W1

i j +

K∑
i, j=1

∥y2
i − y2

j∥
2W2

i j

+µ

K∑
i, j=1

∥y1
i − y2

j∥
2Mi j

(7)

where W1 and W2 stand for the affinity matrices of the
two descriptors, and M = [Mi j] ∈ RK×K encodes inter-
descriptor correspondences, weighted by a factor µ > 0.

In the way we defined W in the pairwise correspon-
dences, we can define the problem with the following
block matrix:

W =
[

W1 µM
µMT W2

]
(8)

We considered the formulation of the matrix M
(Valencia-Aguirre et al., 2011; Benkarim et al., 2020)
where:

Mi j =
< w1

i ,w
2
j >

∥w1
i ∥ ∥w

2
j∥
∈ [0, 1] (9)
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where wm
i is a row of the affinity matrix Wm. Note that

the values of wm
i lie in the interval [0,1], and therefore

Mi j ∈ [0, 1].
This measure of similarity between descriptors is rela-

tively simple, but interesting for our problem as it consid-
ers the relations between a sample and its nearest neigh-
bors for each descriptor. The overall formulation of the
problem would not differ with other similarity measures
used in the literature, such as a generalization of the diffu-
sion distance (Coifman and Hirn, 2014) or the wave ker-
nel signature (Aubry et al., 2013; Clough et al., 2019).

In our implementation, the matrix M by setting to 0 the
elements of W1 and W2 that do not belong to the kM near-
est neighbors of each sample (i.e. the kM highest value of
each line of the matrix W1 and W2). M is then computed
by the Equation 9 with these two sparsified matrices. The
solution of MML with this sparsification remains similar.

The minimization of Eq. 7 is achieved as for the pair-
wise correspondences setting. We describe in Supplemen-
tary Material how the formulation of the graph Laplacian
associated to the matrix W is obtained.

Of note, generalized versions of MML to more than two
descriptors have been proposed in (Clough et al., 2019;
Lindenbaum et al., 2020) which are addressed in a similar
manner as above.

2.4. Exploiting the latent space

The following sections introduce one reconstruction
method and two scalar measures that will be used in Sec-
tion 3 to compare the latent spaces obtained by the differ-
ent manifold learning methods.

2.4.1. Reconstruction from the low-dimensional spaces
Neither MML nor MKL have explicit operators to

reconstruct high-dimensional samples from the low-
dimensional space, which corresponds to the out-of-
sample extension problem identified in (Bengio et al.,
2004). Nonetheless, we can approximate this mapping
by kernel regression. This regression looks for a map-
ping function fm defined between the low- and high-
dimensional spaces associated to the m-th descriptor,
which minimizes:

1
2
∥ fm2∥ +

γm

2

K∑
i=1

∥ fm(ym
i ) − xm

i ∥
2 (10)

where γm is a trade-off between the regularization term
(first term) and the adherence to the data (second term).
The analytical solution of this problem is

fm(ym) =
K∑

i=1

k(ym, ym
i ).bm

i (11)

where bm
i corresponds to the i-th column of the matrix:

Bm =

(
K +

1
γm

I
)−1

Xm (12)

with K = k
(
ym

i , y
m
j

)
∈ RK×K and I the identity ma-

trix. The kernel function k is defined as a Gaussian with
imposed bandwidth σ. In practice, we used a multiscale
implementation (Duchateau et al., 2013), which is more
robust to the non-uniform density of the samples and only
requires to set the hyperparameter γm.

2.4.2. Neighborhood consistency
The closest neighbors to each sample are easily identi-

fiable from the affinity matrix associated to each descrip-
tor (for MML and DM). We exploited this information to
compute the Euclidean distance in each latent space be-
tween each sample and its n nearest neighbors as:

di =
1
n

∑
j∈Vi

∥ym
i − ym

j ∥
2 (13)

with Vi representing the n nearest neighbors to the sample
i in the input space. Before computing the distance, each
latent space was normalized according to the standard de-
viation along the first dimension.

2.4.3. Anomaly quantification
Shape and deformation anomalies were quantified from

the latent spaces by comparing individual samples to the
controls, used as reference for normality. This can be
achieved through a leave-one-out strategy: for each sam-
ple, the MML and MKL latent spaces are computed from
the remaining K-1 samples, and the excluded sample is
projected onto these latent spaces. The projection was
performed by kernel regression for MML (Duchateau
et al., 2013), and the intrinsic projection provided by
MKL as in (Sanchez-Martinez et al., 2017). Finally,
anomalies were quantified in the latent space between the
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tested sample and the distribution of controls (reference
for normality) by the Mahalanobis distance, which is rel-
evant to quantify the distance between one sample and a
distribution. The process was repeated for all of the sam-
ples in the population.

3. Experiments

Our Matlab code for DM and MML is publicly avail-
able1, accompanied with demo data corresponding to the
synthetic experiment discussed in this section. The Mat-
lab code for MKL corresponds to the one from Sanchez-
Martinez et al. (2017).

3.1. Experiments on synthetic data
The four approaches (DM, MML, MKL and pairwise

correspondences) require defining the width σ of the
Gaussian kernel, which we set as the average distance of
each point to its kσ-th neighbor. MML is also controlled
by µ (the weight of the interactions) and kM (the amount
of nearest neighbors to sparsify the extra-diagonal matrix
M).

3.1.1. Choice of hyperparameters
To illustrate the choice of the hyperparameters for

MML, we specifically designed a synthetic database
where the link between the descriptors is fully controlled.
A 0D model was used to simulate pressure and volume
curves across one cycle of the left ventricle. The model
is written in CellML2 and can be launched in the Open-
Cor modelling platform (Molléro et al., 2018). We used
a script version provided by the authors that facilitates re-
peated runnings of the model with different sets of param-
eters. A first set of 130 cases was obtained by only mod-
ifying two parameters among 14 active parameters: the
relaxation rate krs (in the range 5 s−1 to 60 s−1) and the
maximal contraction σ0 (in the range 4 MPa to 10 MPa).
We selected these two parameters because of their influ-
ence on the pressure and volume (see Fig. 2 with varying
σ0 and fixed krs = 10 s−1). In this configuration, pres-
sure and volume are outputs of the same model and are
therefore fully linked.

1https://gitlab.com/maxDif/mml_pressure-volume-demo
2https://models.cellml.org/workspace/44c

Figure 2: Simulation of the left ventricular pressure (left) and volume
(right) across a full cardiac cycle, for a fixed krs = 10 s−1 and a varying
σ0 (MPa).

This link was deteriorated by changing a third param-
eter (the peripheral resistance Rp) for one sample and
its 8 neighbors regarding σ0 and krs (σ0 equal to 6.5,
7.0 or 7.5 MPa and krs equal to 16, 20 and 25 s−1).
For those samples, Rp(MPa.m−3.s) was selected randomly
in a bandwidth centered around the initial value Rp =

2.5 × 10−7MPa.m−3.s.
The influence of the hyperparameters µ and kM on the

latent space is illustrated in Fig. 3. We also tested sev-
eral values of kσ around 10% of the number of samples,
but these had little influence on the latent space and are
not illustrated here. We set kσ = 10 for the experiments
on this dataset. Rows respectively correspond to the vol-
ume and pressure low-dimensional spaces and the point-
to-point differences between them. The nine points for
which the pressure-volume link was artificially deterio-
rated are highlighted in red in the last row. For the vol-
ume and pressure latent spaces, the samples are colored
by their value of krs and σ0.

Due to the non-linear changes observed in the curves
depicted in Fig. 2, we only compared non-linear methods
in this synthetic experiment. DM consider the descrip-
tors independently, and substantial differences between
the two latent spaces are observed (last row of Fig. 3a),
even if we applied an a-posteriori Procrustes alignment.
For MML, as the descriptors are fully correlated except
for nine noisy points, we expect the two latent spaces to
be close on the last row. Despite some noisy points, the la-
tent spaces are consistent as assessed by the arrangement
of the colored samples.

At fixed kM (Fig. 3b), the optimal µ was obtained by
computing the energy in Eq. 7 for several values of µ at
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(a) (b) (c)

Figure 3: Influence of the hyperparameters µ and kM , tested on the synthetic population (a) Independent embedding using DM after Procrustes
alignment. (b) Latent spaces using MML for a fixed kM = 10 and a varying µ. (c) Latent spaces using MML without sparsification and with
different kM at optimal µ (µ = 0.9, 1, 1 and 0.1 respectively for kM = 3, kM = 5, kM = 10 and without sparsification). The rows from top to bottom
respectively represent the latent spaces for pressure, volume and the difference between them. The samples are colored by their krs and σ0 values,
as summarized in the small image on the left. The red lines in the bottom row plots correspond to samples whose link between the two descriptors
was artificially deteriorated.

fixed kσ = 10 and kM = 10, and picking the value at which
it is minimized. We observe that the higher µ, the lower
the differences between the latent spaces. This confirms
that the hyperparameter µ gives more weight to the link
between the descriptors and forces the latent spaces to be
closer. Nevertheless, a high µ enforces the link and is not
optimal regarding the energy defined in Eq. 7.

We also analyzed the influence of kM when µ is opti-
mal (Fig. 3c). We applied MML without and with spar-
sification of M and for different values of kM . As in the
previous experiment, the latent spaces are coherent be-
cause they are arranged according to their values of krs

and σ0. As visible in the first three columns, differences
between the latent spaces are low and mainly affect the
noisy points. Without sparsification of kM (the last col-
umn), the difference increases and all points are affected.

Based on these experiments, we would opt for this
dataset for kM = 10, to avoid substantial influence of the
noisy points, before selecting the other hyperparameters
(for this dataset kσ = 10 and µ = 1).

3.1.2. Comparison between MML and pairwise corre-
spondences

We also compared MML and the pairwise correspon-
dence with the stricter formulation from (Ham et al.,
2005), which forces pairwise correspondences between
samples. Figure 4 shows the results obtained with the op-
timal hyperparameters for MML and Ham’s method. We
can observe that the pairwise correspondence formulation
fails to apprehend the link between the descriptors, com-
pared to MML which succeeds to keep close the points
where the link is not deteriorated. This behaviour is due to
the matrix M in MML. Indeed, if samples i (descriptor 1)
and j (descriptor 2) are strongly linked, meaning accord-
ing to Eq. 9 that their neighborhood is comparable, then
Mi j is close to 1, and the MML cost function attempts to
bring closer the coordinates y1

i and y2
j . Conversely, if Mi j

is close to 0, the coordinates y1
i and y2

j will not necessarily
be brought close to each other. In contrast, the pairwise
correspondence scheme forces this matching, but only for
the pairs y1

i and y2
i (and not y2

j ).
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Figure 4: Comparison of the latent spaces obtained with MML and the
pairwise correspondences scheme, each with optimal hyperparameters.
The rows from top to bottom respectively represent the latent spaces
for pressure, volume and the difference between them. The samples are
colored by their krs and σ0 values, as in Fig. 3

3.2. Experiments on real cases with RV pressure overload

In this section, we applied our methodology to a sub-
set of the RV database consisting of 150 PH patients and
100 controls. Five patients were excluded due to obvious
mesh defects near the valves that produced very localized
strain artifacts, and resulted in strong outliers that incor-
rectly constrained the first embedding dimensions. Lower
deformation and more dilated shapes have been reported
for worsening grades of PH (Moceri et al., 2018) using a
pixel-wise analysis of deformation patterns displayed on
subgroup shapes. We propose to confront these findings
with our methodology, which examines more in detail the
population distribution at the pattern level. The hyper-
parameters were determined using an approach similar to
the one described in the previous section. On this real
dataset, the retained values were: kσ = 10 for all the meth-

ods and kM = 10 and µ = 1 for MML.

3.2.1. Latent spaces
Figure 5 represents the latent spaces obtained with DM,

MML and MKL applied to both descriptors (DM was ap-
plied to each descriptor independently).

The dimensions from the shape and deformation latent
spaces are weakly correlated for DM (r2 = 0.07, 0.08 and
0.06 for the 1st,2nd and 3rd dimensions respectively), un-
like for MML (r2 = 0.84, 0.84 and 0.85, respectively).
Besides, the DM latent space for deformation exhibits
strong outliers, while MML and MKL appear more robust
to this effect.

The clinical objective is not to classify the subjects by
their subgroup, because the diagnostic is already known,
but to apprehend the variability inside the population.
Nevertheless, the subgroup arrangement for healthy and
PH is a good indicator for the coherence of our results.

In particular, we observe that the first dimension of the
deformation latent spaces roughly separates the two sub-
groups. This dimension is associated to the strain ampli-
tude as illustrated in Section 3.2.2.

3.2.2. Latent dimensions
We also explored the main variations encoded in the la-

tent spaces. For each strategy, we reconstructed the high-
dimensional data (shape and deformation) for samples at
−2σ, 0, and +2σ as displayed in Fig. 6. Animations of the
latent dimensions are available as supplementary movies.
Contrary to MKL which provides a single space, this pro-
cess was performed on each latent space independently
for DM and MML, and combined into a single subplot for
the sake of simplicity.

The average shape and deformation patterns are very
similar across methods, as confirmed in the difference
plotted in Fig. 7. Strain differences are lower than 10%
between MML and DM, MML and MKL, and are mainly
observed around the valve which is a region where the
tracking and remeshing from the commercial software is
less reproducible. Shape differences are very low, the
maximal distance being 1 mm (of note, the shapes height
is around 80-90mm from base to apex).

The methods differ more regarding the principal latent
dimensions, as shown in Fig. 6. With MML, the first
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(a) DM latent spaces (b) MML latent spaces (c) MKL latent space

Figure 5: Latent spaces provided by DM, MML and MKL for the controls and pulmonary hypertension subsets of the RV population colored by
their labels.

dimension encodes both shape and deformation varia-
tions that are characteristic of PH and control differences:
more spherical shapes and in particular higher curvature
of the septum (black arrow), and lower deformation are
observed for more severe PH patients. The second dimen-
sion encodes shape differences that can be found on both
subgroups, in particular the distance between the valves.
Similar observations can be made for MKL. In contrast,
DM does not capture the link between shape and deforma-
tion. The strain patterns are comparable to those found for
MML and MKL along the first dimension, but very dif-
ferent patterns are observed along the second dimension.
Similarly, the bowing of the septum, which is character-
istic of the studied disease, is more visible on the second
dimension, while the intra-valve distance dominates the
first dimension.

In order to confirm these observations quantitatively,
we computed global indicators (global area strain, and

volume) along the latent dimensions in Fig. 8. The global
area strain is similar between all the methods. Concerning
volume, as observed in Fig. 6, the second mode of DM is
similar to the first one for MML and MKL. We also no-
tice that the second latent dimension of MML and MKL
is almost invariant to the volume.

These results confirm the relevance of considering both
descriptors at the same time, although MML and MKL
seem to have similar behaviors. The following section
will evaluate the relevance of two vs. one latent space
respectively provided by MML and MKL.

3.2.3. Neighborhood consistency
In this section, we analyzed further the results of Sec-

tion 3.2.1 and shown in Fig. 5. We used the distance de-
scribed in Section 2.4.2 and generalized this experiment
to all samples. The distribution of the neighbors distance
for MML, DM and MKL and each possible affinity ma-
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(a) MML latent dimensions

(b) MKL latent dimensions

(c) DM latent dimensions

Figure 6: The first two latent dimensions for PH and control subsets, obtained with MML, MKL and DM. For better visualization of shape
differences, the lateral wall and septal views are complemented by a third costal view. Transparency was set to 0.5 on this view to better appreciate
fine changes in the septal curvature, somehow masked by the crescent shape of the RV.
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Figure 7: Average shape and deformation differences between DM and
MKL, each compared to the MML average of the PH and controls sub-
sets.

trix (deformation or shape) is shown in Fig. 9. For the
deformation and shape neighbors, the neighborhoods are
better preserved with DM and MML, compared to MKL.
DM present outliers that correspond to the outlying sam-
ples visible in the latent space. MML succeeds to keep
the neighbors consistency close to DM for each descrip-
tor, contrary to MKL which fuses the descriptors into one
single representation and deteriorates it (higher distribu-
tion of the mean neighbors distance).

3.2.4. Comparison to linear embedding by PLS
In this section, we compared the MML results to the

ones obtained with PLS, a linear approach used in our pre-
vious work (Di Folco et al., 2020), which involves com-
puting the cross-covariance between the two descriptors.
A similarity transform was applied for shape normaliza-
tion to remain consistent with what was used for MML (a
Procrustes alignment was used in (Di Folco et al., 2020)).
Figure 10a reveals that PLS provides slightly different av-
erage shape and deformation from those obtained with
MML, with differences comparable to those noted for DM
and MKL in Fig. 7. Despite similarities regarding the av-
erage, PLS may reconstruct some non-plausible shapes
far from the average along the 2nd and 3rd latent dimen-

(a) Global area strain (%)

(b) Volume (mL)

Figure 8: Variations of global indicators (global area strain and volume)
along the first two latent dimensions for DM, MML and MKL applied
to the control and PH population.

sions (valves too close to each other, and abnormal mem-
branous septum between the two valves, respectively in
Fig. 10b).

3.3. Experiments on real cases with RV volume overload

This section focuses on another subset of the RV
database, which consists of the 27 ASD and the 28 ToF
patients, and their 55 corresponding age- and sex-matched
controls. Using global scalar values (volume and global
strain (Moceri et al., 2018)) or average shapes and defor-
mation patterns (Moceri et al., 2020), the literature re-
ported that ASD and ToF have dilated shapes, but ASD
has preserved deformation compared to ToF. We investi-
gated whether these observations are confirmed by quanti-
fying anomalies using the latent spaces provided by MML
and MKL and a careful examination of the latent spaces as
described in Section 2.4.3. The retained hyperparameters
values for this dataset were: kσ = 10 for all the methods,
and kM = 10 and µ = 1 for MML.
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Figure 9: Distribution of the mean neighbors distance for DM, MML
and MKL applied to the control and PH population for the deformation
and shape descriptors.

3.3.1. Latent spaces

Fig. 11 shows the latent spaces of the population for
MML and MKL. The first two dimensions of the defor-
mation and shape latent spaces for MML are highly cor-
related (r2 = 0.82 and r2 = 0.80 for the 1st and 2nd respec-
tively) but are not correlated to the MKL latent space (De-
formation/ MKL: r2 = 0.22 and Shape/MKL: r2 = 0.29).
We can observe that the deformation latent space sepa-
rates the healthy controls from the ToF subjects. In con-
strast, ASD and ToF are closer in the MML shape latent
space and in the MKL latent space, and rather separated
from the healthy subjects.

3.3.2. Anomaly quantification

To analyze further the latent spaces, we quantified
anomalies using the distance described in Section 2.4.3
for the different subgroups.

As shown in Fig. 12, the three subgroups exhibit similar
anomalies using the single latent space provided by MKL.
In contrast, the separated latent spaces provided by MML
confirm the observations made in the literature. Regard-
ing deformation, ASD patients have low anomalies com-
parable to the controls, unlike ToF patients. Regarding
shape, ASD and ToF patients presented higher anomalies
as compared to controls. Of note, controls are less con-
sistent regarding shape compared to deformation. This
experiment confirms the benefit of having separate but
aligned latent spaces to better represent each descriptor.

(a) Difference to the MML av-
erage

(b) Sample of latent dimensions

Figure 10: Comparison between MML and the PLS linear approach for
the PH population. (a) Shape and deformation differences between PLS
and MML averages, (b) Unplausible shapes observed along the 2nd and
3rd latent dimensions for PLS, compared to MML.

4. Discussion

In this paper, we proposed a strategy to characterize the
interactions between two partially related physiological
traits of the cardiac function: myocardial shape and de-
formation, assessed through high-dimensional descriptors
defined at each point of the myocardium. We exploited a
non-linear manifold learning method for manifold align-
ment (MML) to both control the representation of individ-
ual descriptors and the relationship between two different
descriptors. We demonstrated its value for the character-
ization of several RV diseases where myocardial shape
and deformation are partially related (depending on the
disease type and grade).

We benchmarked the MML approach against the in-
dependent embedding of each descriptor (using DM),
and a fusion strategy that provides a single latent space
(MKL). We observed some similarities between the low-
dimensional latent spaces. However, a finer analysis of
the latent dimensions showed that a joint approach (fusion
or alignment) better captured the link between shape and
deformation variations compared to a strategy that con-
siders them independently. Furthermore, several experi-
ments on the neighborhood consistency and the anomaly
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(a) MML latent spaces (b) MKL latent space

Figure 11: Latent spaces for the controls, ASD and ToF subsets of the
RV population provided by MML and MKL colored by their labels.

Figure 12: Distribution of anomalies across the ASD, ToF and control
subjects, quantified by the Mahalanobis distance to the controls, from
the two latent spaces provided by MML and the single latent space pro-
vided by MKL.

quantification demonstrated the assets of manifold align-
ment, which provides related spaces without potential loss
of information, compared to a fusion strategy. This is
crucial for our application, given that the link between
the two descriptors is unknown. Moreover, we related
the main variations and the anomaly quantification ex-
periment to clinical observations that confirmed the perti-
nence of the approach.

We tested beforehand our method on a synthetic dataset
where the link is fully controlled, to apprehend the differ-

ent hyperparameters and notably the amount of sparsifi-
cation of the affinity matrix controlling the interactions
between descriptors. We demonstrated the robustness of
the sparsification strategy to a deteriorated link between
descriptors. The notable influence of the hyperparameter
µ was also investigated. A reasoning to select the hyper-
parameters based on our observations was presented: we
first selected kM (to limit the influence of low correlated
samples), then kσ and finally the optimal µ.

MML was applied in literature work to align datasets
belonging to the same manifold with either different im-
ages of objects undergoing the same orientation changes
(Valencia-Aguirre et al., 2011), or 2D MRI slices at dif-
ferent positions (Baumgartner et al., 2017; Clough et al.,
2019). In our work, we aimed at explicitly characterizing
the link between two physiologically related descriptors,
namely cardiac shape and deformation, using the MML
framework. However, these two descriptors do not neces-
sarily correspond to the same manifold, as their link may
vary across individuals and disease.

Besides, we have shown that the MML strategy is in-
teresting for this purpose compared to the stricter align-
ment from (Ham et al., 2005), which enforces pairwise
correspondences for all samples. Our experiments on syn-
thetic data confirmed that MML is able to leverage the
strength of the alignment depending on the actual link
between the two descriptors, which is key for our appli-
cation. This setting has not been explored before in the
literature, which considered multiple datasets originating
from a single manifold.

The MML algorithm involves an affinity matrix ex-
pressing the relations between samples and descriptors,
whose definition naturally conditions the embedding. We
opted for a simple formulation of the inter-descriptor dis-
tances to better focus on the control of the descriptors
interactions. We sparsified the matrix encoding such in-
teractions to reinforce the link between one sample and
its closest neighbors. Stronger sparsification schemes up
to one-to-one correspondences have been used (Clough
et al., 2019), but these do not suit our problem where
considering several neighbors should be prefered for each
sample, as illustrated on our synthetic experiment.

In our preliminary work (Di Folco et al., 2020), we
related shape and deformation using PLS, a linear di-
mensionality reduction method that considers the cross-
covariance between the two descriptors. This work re-
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vealed that considering the two descriptors jointly or inde-
pendently leads to substantial differences in areas of crit-
ical importance for the studied diseases. However, linear
methods may be limited for shape and deformation, which
most-probably originate from a non-linear manifold. Al-
though this limitation may be subtle to assess, we pointed
out that PLS can produce some unplausible shapes when
moving far from the average along some latent dimen-
sions. Note that PLS may be harder to extend to multi-
ple descriptors and does not explicitly control the weigth
given to the interactions, contrary to MML (Clough et al.,
2019).

Linear methods such as PLS come with an explicit re-
construction method. For non-linear manifold learning,
reconstruction from the latent spaces is done a-posteriori
and requires approximation operators. For MML, we used
kernel regression, which might have softened some poten-
tial inconsistencies for extreme cases. This aspect may be
improved by the explicit encoding/decoding of variational
autoencoders, but they currently provide less flexibility on
the statistical representation of populations.

The Procrustes alignment used a similarity transform
and therefore removed scaling differences between sub-
jects, which differs from our previous work (Di Folco
et al., 2020) where we used a rigid transform. This al-
lows observing finer shape differences compared to global
differences previously reported in the literature (Drag-
ulescu et al., 2013). Besides, with rigid transformations,
very small or large shapes in our database are considered
outliers due to insufficiently close neighbors, and these
characteristics dominate the first dimensions of the latent
space. This might be a limitation of manifold learning
methods that may require lots of data in specific regions
of the manifold. This effect can be attenuated by the use
of Diffusion Maps, which can provide invariance to the
non-uniform density of the samples, and by using a gen-
eralized Procrustes with a similarity transformation as we
did. The clinical literature often reports normalizations
by the body mass index, or more specific ones such as the
body size (Medrano-Gracia et al., 2014). The proper nor-
malization of shape differences and their effect on func-
tional descriptors such as strain is a topic under investi-
gation (Guigui et al., 2019, 2021) and the object of our
future development of the present work.

Finally, our work does not consider confounding vari-
ables such as QRS duration, RV wall thickness or the

strong interactions between the Left Ventricle (LV) and
the RV, which can affect the relationship between shape,
deformation, and disease. Nonetheless, we could demon-
strate the value of jointly considering shape and defor-
mation on different RV diseases where such descriptors
are partially related. Our observations on PH patients
highlight key characteristics of the disease that are missed
by an independent analysis (septal bowing, accompanied
by more global shape dilatation and reduced deformation
(Moceri et al., 2018)). Our work confirms the differences
between ASD and ToF patients previouly reported with
single scalar values (Moceri et al., 2020). Moreover, our
analysis goes further by examining high-dimensional de-
scriptors and the distribution of samples, not limited to
average trends (Moceri et al., 2020), hence paving the
ground for a finer analysis of disease occurence and evo-
lution in such populations.

5. Conclusion

We presented a strategy to characterize the interactions
between cardiac shape and deformation using non-linear
manifold learning. We built upon an alignment approach
with multiple manifold learning and evaluated the rel-
evance of joint embedding on a synthetic example and
real data from a RV imaging cohort. Our method was
benchmarked against a fusion approach (MKL) and an
approach that considers descriptors independently (DM).
Results obtained with MML showed better coherence be-
tween the latent spaces associated to each descriptor, and
an increased robustness to outliers. For the application we
target, we also demonstrated the benefit of having several
linked latent spaces as provided by alignment methods,
compared to a single one provided by fusion approaches.
Such latent spaces confirmed in a more detailed man-
ner the clinical observations reported for the RV diseases
studied here.
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