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Abstract

Four silver-based coordination polymers {[Ag(L)2](BF4)}∞ (1), {[Ag(H2BTC)(L)]×(H3BTC)}∞ 

(2), {[Ag2(H2BTEC)(L)2] × 3.33H2O }∞ (3) and [Ag(H25SSA)(L)]∞ (4) were synthesized using 

thiomorpholine-4-carbonitrile (L) as the primary ligand and three aromatic polyoxoacids as co-

ligands: trimesic (H3BTC), pyromellitic (H4BTEC) and 5-sulfosalicylic acid (H35SSA). 

Compounds 1 and 3 are two-dimensional, while 2 and 4 are one-dimensional. L acts as a bis-

monodentate ligand, while Ag(I) ion is three-coordinated in 2, and four-coordinated in all the 

other compounds. Tetrahedral coordination of Ag(I) in 3 leads to an almost complete absence of 

intermolecular interactions with the metal center. All compounds show reasonable photocatalytic 

activity for photocatalytic degradation of mordant blue 9 dye, with reaction rates in 0.036‒0.056 

min–1 range. Changes in the reaction rates can be correlated with the type and coordination of the 

co-ligand. Complex 3 exhibits photoluminescence at 77 K, while 4 exhibits photoluminescence 

at both room temperature and 77 K. Luminescence lifetimes indicate electronic transitions of 

singlet parentage, where transitions are allowed. TD-DFT study determined the contributions of 

individual singlet-singlet electronic excitations to the fluorescence, indicating that metal- intra 

ligand transitions is responsible for luminescence in both complexes.

Keywords: Silver complexes; Coordination polymers; Intermolecular interactions; 

Photoluminescence; Photocatalysis; TD-DFT.

1. INTRODUCTION

The investigation of coordination polymers (CPs) is a rapidly growing field of material 

science. 1D–3D CPs have been studied because of the wide range of potential applications, 

predominantly in catalysis, gas storage and separation, optoelectronics and sensors, molecular 

electronics, nanomaterial synthesis, illumination and photodetection.1–15 Silver is among the top 

ten metals used for the preparation of 2D CPs,16,17 while 8 % of all CPs (1D–3D)  deposited in 

CSD MOFs subset18 are Ag-CPs. The ability to adopt coordination numbers from  2 to 6, thus 

offering various coordination geometries, makes silver a viable metal of choice for the synthesis 

of CPs.19 In addition, coordination numbers higher than six have been observed in some of Ag-

CPs.20,21 Structural diversity of Ag-CPs is not only influenced by supramolecular Ag···ligand, 

Ag···π, C‒H···π, π-π stacking and anion interactions, as well as H-bonds,22,23 but also by 
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argentophilic (Ag···Ag) and Ag···C interactions.24,25 Finally, the structures of Ag-CPs are 

heavily influenced by the nature of the anion of the starting silver salt.26–30 In the case of 1D Ag-

CPs, linear, zigzag, helical, ladder and 1D coordination tubes have been identified.22 In 2013, the 

first ribbon topology was observed for one 1D Ag-CP.31 More recently, the structure with metal 

cluster topology was discovered,32 making rotaxane topology the only unrealized topology type 

of 1D Ag-CPs up to now. On the other hand, representative topologies of 2D Ag-CPs include sql 

and hcb.18 

Ag-CPs may undergo structural transformation induced by light,33 heating,34,35  

solvation,36–40 desolvation,35 guest molecule40,41 and anion exchange26,36,42,43 stimuli. They can be 

used as precursors for the preparation of Ag nanoparticles by heating25,44 or ultrasonic 

irradiation.45 Some of the investigated Ag-CPs form metallogels28,46–52 showing interesting 

properties, such as the ability to sense hazardous gases.49 Metallogels can also act as precursors 

for Ag-based nanoparticles which can be obtained in situ,49 spontaneously46 or upon exposure to 

light.50 These nanoparticles exhibit luminescence properties,51 as well as the ability to be 

reversibly assembled or disassembled by various stimuli.52 Finally, Ag-CPs metallogels can 

display thixotropic behavior,47 stimuli-responsive to some anions as well as antibacterial 

properties.47 A wide variety of functional properties makes Ag-CPs useful for different 

applications. These properties include antibacterial activity,47,53 gas sensing,49 proton 

conductivity, high capacitance and good cycling ability,54,55 and chemical sensing.19,56 Moreover, 

Ag-CPs might play a significant role in environmental remediation,57–59 as they have been 

tailored to achieve a particular mechanism of oxoanion exchange to maximize their 

effectiveness.60 Most recently, there were several reports on Ag-CPs manifesting excellent 

catalytic and photocatalytic properties.61–64 Environmentally friendly and recyclable Ag-CP with 

9,10-anthraquinone-1,4-dicarboxylate acid catalyzed the reaction of the visible-light-driven 

aerobic oxidation of alkynes into 1,2-diketones under ambient conditions.61 1D Ag-CPs with 

N',N'-2,2-tetrakis(diphenylphosphanylmethyl)thiocarbohydrazide showed exceptional 

performance as a photocatalyst for degradation of organic dyes in water, while generating higher 

photocurrent response than molecular complexes with the same ligand.62 Nano-microstructured 

Ag-CPs offer performance at a level competitive with known semiconductors in photocatalytic 

water splitting and degradation of organic pollutants and dyes.63 They exhibit a highly reactive 

valence band potential and could be readily recycled, maintaining high activity after four uses. 
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Two Ag-CPs constructed using Co-metalloligands act as recyclable heterogeneous catalysts for 

the A3–coupling reactions of aldehydes, secondary amines and alkynes,64 where the relative 

position of substituted pyridyl ring affected both the resulting coordination polymer structures 

and their catalytic activity.

Luminescent CPs are of great interest since they have been employed in sensing (metal 

ions, solvents and explosives) and (bio)imaging.65–68 Some of the investigated Ag-CPs showed 

potential for ion19,21,56,59 and solvent69 sensing. In that sense, the goal of our work is the 

preparation of novel Ag-CPs, characterization of their luminescent properties at both low and 

room temperature, and explanation of its origin using TD-DFT. For the preparation of Ag-CPs, 

we used thiomorpholine-4-carbonitrile (L) and aromatic polyoxoacids as co-ligands (trimesic 

acid, H3BTC; pyromellitic acid, H4BTEC and 5-sulfosalicylic acid, H35SSA, Figure 1). L was 

chosen as a ligand since it belongs to the class of bis-monodentate ligands which are able to form 

Ag-CPs70–72, although it has never been used for this purpose. On the other hand, selected co-

ligands showed photoluminescent properties73–75 and can easily form Ag-CPs56,73,84,85,76–83 – 

photoluminescent in some cases.76–83,85,86

Figure 1. Structures of L and aromatic polyoxoacids co-ligands.
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2. EXPERIMENTAL

2.1. Materials and methods

All the employed reagents and solvents were of analytical grade and used without further 

purification. AgNO3 (≥ 99.0 %), AgBF4 (98 %), 1,2,4,5-benzenetetracarboxylic acid (96 %) and 

5-sulfosalicylic acid dihydrate (≥ 99.0 %) were obtained from Aldrich (Sigma-Aldrich Chemie 

GmbH, Steinheim, Germany). 1,3,5-benzenetricarboxylic acid (≥ 95.0 % ) was obtained from 

Merck. Elemental analyses (C, H, N, S) were performed by the standard micro-methods using 

the ELEMENTARVario ELIII C.H.N.S=O analyzer. Infra-red (IR) spectra were recorded on a 

Thermo Scientific Nicolet 6700 FT-IR spectrometer by the Attenuated Total Reflection (ATR) 

technique in the region 4000−400 cm−1. Abbreviations used for IR spectra: vs, very strong; s, 

strong; m, medium; w, weak. The NMR spectra were performed on a Bruker Avance 500 

equipped with a broad-band direct probe. 

2.2. Synthesis of the ligand thiomorpholine-4-carbonitrile (L)

The ligand was synthesized according to a modified literature procedure.87 In a round bottom 

flask, thiomorpholine (1 equiv., 1 mmol), acetonitrile (0.5 M, 2 mL) and 

tetramethylethylenediamine (232 mg, 2 equiv., 2 mmol) were mixed together. Then CuCN (179 

mg, 2 equiv., 2 mmol) was added and the mixture was flushed with oxygen. The reaction 

solution was then let to stir under 1 atmosphere of O2 for 18 h. After a short filtration over 

Celite® that was rinsed thrice with AcOEt (3 × 3 mL), the crude mixture was concentrated under 

vacuum and purified by flash column chromatography (Pentane/AcOEt, SiO2) to afford the 

entitled product. Yield 0.12 g (94%). White solid; m.p.: 41‒43 °C. Anal. Calcd. for C5H8N2S 

(MW = 128.19): C, 46.85; H, 6.29; N, 21.85; S 25.01 %. Found: C, 46.65; H, 6.73; N, 21.74; S 

25.12 %. 1H NMR (CDCl3, 500.26 MHz) δH: 2.70 (t, 4H), 3.46 (t, 4H); 13C NMR (CDCl3, 126 

MHz) δC: 26.1, 50.8, 117.4. 

2.3. Synthesis of {[Ag(L)2](BF4)}∞ (1)

A mixture of AgBF4 (38.00 mg, 0.195 mmol) and L (50.00 mg, 0.393 mmol) dissolved in H2O (5 

ml) was placed in amber round bottom flask. Reaction mixture was refluxed for 1 h. Colorless 

single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation and 

separated by filtration from colorless water solution. Yield: 0.017 g (19 %). Anal. Calcd. for 
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C10H16AgBF4N4S2 (FW = 451.07): C, 26.63; H, 3.58; N, 12.42; S 14.22 %. Found: C, 27.04; H, 

3.65; N, 12.80; S, 14.38 %. IR (ATR, νmax/cm‒1): 3384 (w), 2998 (w), 2978 (w), 2928 (w), 2867 

(w), 2225 (vs), 1446 (m), 1393 (m), 1343 (m), 1285 (m),1161 (m), 1098 (m), 1059 (s), 979 (m), 

946 (m), 714 (w), 531 (w), 507 (w).

2.4. Synthesis of {[Ag(H2BTC)(L)]×(H3BTC)}∞ (2), {[Ag2(H2BTEC)(L)2] × 3.33H2O }∞ (3) and 
[Ag(H25SSA)(L)]∞ (4)

A mixture of H3BTC (82.00 mg, 0.390 mmol) in EtOH (5 ml), H4BTEC (99.00 mg, 0.389 mmol)  

in MeOH (5 ml) or solid H35SSA (98.00 mg, 0.400 mmol) was added to the mixture of AgNO3 

(66.00 mg, 0.388 mmol) and L (50.00 mg, 0.393 mmol) in H2O (10 ml) and placed in amber 

round bottom flask. Reaction mixture was refluxed for 1 h. White single crystals of 2 and pale-

yellow single crystals of 3 and 4, suitable for X-ray diffraction analysis, were obtained by slow 

evaporation and separated by filtration from colorless water solution. 

2: Yield 0.058 g (29.5 %). Anal. Calcd. for C23H19AgN2O12S (FW = 655.33): C, 42.15; H, 2.92; 

N, 4.27; S, 4.89 %. Found: C, 41.90; H, 2.90; N, 4.25; S, 4.95 %. IR (ATR, νmax/cm‒1): 3128 (m), 

2927 (m), 2650 (m), 2527 (m), 2227 (vs), 1694 (vs), 1607 (m), 1447 (s), 1393 (s), 1363 (s), 1282 

(s), 1213 (s), 1157 (s), 1121 (s), 1031 (m), 982 (m), 943 (s), 739 (m), 698 (m), 675 (m), 656 (m), 

532 (m), 509 (m).

3: Yield 0.146 g (68 %). Freshly prepared sample: Anal. Calcd. for C20H20Ag2N4O8S2×3.33H2O 

(FW = 784.31): C, 30.63; H, 3.43; N, 7.14; S, 8.18 %. Found: C, 30.70; H, 3.21; N, 7.27; S, 8.10 

%. Sample dried in desiccator for seven days: Anal. Calcd. for C20H20Ag2N4O8S2 (FW = 724.26): 

C, 33.17; H, 2.78; N, 7.74; S, 8.85 %. Found: C, 33.05; H, 2.91; N, 7.57; S, 8.76 %. IR (ATR, 

νmax/cm‒1; dried sample): 2931 (w), 2824 (w), 2511 (w), 2222 (s), 1822 (w), 1676 (vs), 1608 (s), 

1490 (s), 1420 (s), 1378 (s), 1285 (s), 1169 (s), 1128 (s), 988 (s), 945 (s), 911 (s), 767 (s), 947 

(m), 552 (m), 470 (w).

4: Yield 0.111 g (52 %). Anal. Calcd. for C12H13AgN2O6S2 (FW = 453.23):  C, 31.80; H, 2.89; N, 

6.18; S, 14.15 %. Found: C, 31.52; H, 2.78; N, 6.12; S, 14.20 %. IR (ATR, νmax/cm‒1): 3000 (w), 

2793 (m), 2581 (w), 2500 (w), 2244 (m), 1666 (s), 1610 (m), 1179 (m), 1434 (m), 1370 (m), 

1285 (m), 1233 (m), 1200 (m), 1166 (vs), 1118 (s), 1023 (s), 942 (m), 835 (w), 804 (w), 780 (w), 

757 (w), 715 (w), 663 (w), 588 (s), 534 (w).
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2.5. X- ray crystallography

X-ray diffraction data for 13 were collected at room temperature using Graphite-

monochromated CuKα radiation ( = 1.54184 Å) on an Oxford Diffraction Gemini S 

diffractometer. CrysAlisPro and CrysAlis RED software packages88 were used for data collection 

and data integration. X-ray diffraction data for 4 were collected at 173 K on the Bruker APEX-II 

CCD diffractometer. Graphite-monochromated MoKα radiation ( = 0.71073 Å) was used to 

measure diffraction from suitable single crystals of 4. Bruker APEX2 and Bruker SAINT 

software packages89 were used for data collection and data integration. Space group 

determinations for 14 were based on analysis of the Laue class and systematically absent 

reflections. Collected data for 13 were corrected for absorption effects using analytical numeric 

absorption correction applying a multifaceted crystal model,90 while for 4 we used the multi-scan 

method, applying an empirical absorption correction using spherical harmonics as implemented 

in SADABS.89 Structure solution and refinement for 14 were carried out with the programs 

SHELXT91 and SHELXL-2018/3,92 respectively. MERCURY93 was employed for molecular 

graphics and WinGX94 software was used to prepare material for publication. Non-hydrogen 

atoms were refined anisotropically while hydrogen atoms in 1 and 2 were treated by constrained 

isotropic refinement. On the other hand, hydrogen atoms in 3 and 4 were treated by a mixture of 

independent and constrained refinement. Even though complex 3 has disordered crystalline water 

molecules we presented its structure as it is, using SHELXL DFIX instructions to restrain OH 

bond lengths. Crystal data and refinement parameters for 14 are summarized in Table 1. We 

also treated complex 3 by the SQUEEZE routine, implemented in Platon95, to remove the 

disordered water molecules and presented crystal data and refinement parameters in Table S1 

(Electronic supplementary material, ESI). Topological analysis was performed with the 

ToposPro program package and the TTD collection of periodic network topologies.96
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Table 1. Crystallographic data and refinement parameters for 14.

Crystal data
Compound 1 2 3 4

Chemical formula 2(C5H8Ag0.50N2S)·BF4 C23H19AgN2O12S
C30H30Ag3N6O12S3 
× 5H2O

C12H13AgN2O6S2

FW 451.07 655.33 1176.47 453.23
Crystal system Tetragonal Triclinic Monoclinic Monoclinic

Space group P‒421m P‒1 P21/n P21/n
a (Å) 13.1613 (6) 9.6126 (5) 9.8212 (10) 12.8066 (4) 
b (Å) 13.1613 (6) 11.9927 (8) 26.3006 (4) 8.7191 (3)
c (Å) 4.4326 (6) 12.1218 (6) 16.2293 (3) 13.4239 (6)
 (°) 90 67.755 (6) 90 90
 (°) 90 78.686 (5) 93.666 (10) 97.048 (3)
 (°) 90 68.517 (6) 90 90
V (Å3) 767.81 (13) 1200.86 (14) 4183.51 (11) 1487.61 (10)
Z 2 2 4 4
Dx (Mg m−3) 1.951 1.812 1.868 2.024
µ (mm−1) 13.49 8.20 13.24 1.67

Crystal size (mm) 0.28 × 0.08 × 0.07 0.13 × 0.10 × 0.09 0.37 × 0.16 × 0.07 0.40 × 0.20 × 
0.15

Data collection
Absorption correction Analytical Analytical Analytical Multi-scan 

Tmin, Tmax 0.178, 0.466 0.487, 0.606 0.094, 0.482 0.651, 0.746

Reflections collected 3187 7362 16229 29703
Independent reflections 799 4504 7963 5109

Observed reflections    
[I > 2σ(I)] 744 4022  6801 4548

Rint 0.034 0.025 0.026 0.018
Range of h, k, l h=−16→13    

k=−15→7        
 l=−5→4

h=−11→11               
k =−14→14 
l=−14→11

h=−12→11         
k=−32→20          
l=−19→19

h=−19→19 
k=−12→12 
l=−19→19

θ values (°) θmax = 72.8, θmin = 4.8 θmax = 72.6, θmin = 4.0 θmax = 71.7, θmin = 3.2 θmax = 32.0, θmin 
= 2.1

Refinement
R[F2 > 2σ(F2)], wR(F2) 0.0373, 0.0955 0.0326, 0.0828 0.0326, 0.0786 0.0222, 0.0525
R[all data], wR2 0.0410, 0.0998 0.0375, 0.0865 0.0393, 0.0823 0.0276, 0.0567
Goodness-of-fit (S) 1.058 1.025 1.031 1.086
No. of reflections 799 4504 7963 5109

No. of parameters 59 357 574 216

No. of restraints 0 0 136 0

Δρmax, Δρmin (e Å−3) 0.48, −0.39 0.48, −0.39 0.76, −0.73 0.52, −0.51
CCDC no. 1987944 1987947 1990303 1987949
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The X-ray powder diffraction experiment was conducted on Rigaku Smartlab X-ray 

diffractometer in θ-θ geometry (the sample in horizontal position) in parafocusing Bragg-

Brentano geometry using D/teX Ultra 250 strip detector in 1D standard mode with 

CuKα1,2 radiation source (U = 40 kV and I = 30 mA). The XRPD patterns were collected in 5-65° 

2θ range, with a step of 0.01°, and the data collection speed of 5 °/min with horizontal sample 

rotation of 20 rpm. For every compound, a small amount of single-crystal sample was 

pulverized, and low background single crystal silicon sample holder was used to minimize the 

background. The crystal phases present in the samples were identified in dedicated Rigaku 

PDXL 2.0 software, comparing them with user database comprised of CIFs previously obtained 

by a single crystal X-ray diffraction.

2.6. Hirshfeld surface analysis and intermolecular interaction energies

Hirshfeld surface analysis was carried out using the Crystallographic Information File. 

Before calculating the surfaces, the lengths of the bonds which include hydrogen atoms were 

normalized to standard values determined by neutron diffraction. The Hirshfeld surfaces 

visualization and the presentation of the results as dnorm, shape index, and curvedness, as well as 

the calculation of 2D fingerprint plots with de and di distances were pefrormed by Crystal 

Explorer v.17.5.97,98 The parameter dnorm represents the sum of the distance of the nearest nucleus 

external to the surface (de) and the distance from the surface to the nearest nucleus internal to the 

surface (di), normalized by the van der Waals radius of the atom. The surfaces were mapped over 

a standard color scale, with the corresponding 2D fingerprint plots calculated using de and di 

values in the range 0.4‒2.8 Å. The intermolecular interaction energies were determined using 

CrystalExplorer v17.5, with the wavefunction calculated using Gaussian09 software99 with 

B3LYP method and DGDZVP basis set.100 The model systems were built from supercells of 

different size by creating a non-polymeric system. This was achieved by removing the metal 

centers, preserving whole ligand molecules, and capping eliminated covalent bonds with 

hydrogen atoms to preserve the charge balance.

2.7. TGA-DSC analysis
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Thermal data were collected using the TA Instruments SDT Q600 thermal analyzer. The 

decomposition was followed from room temperature to 400 °C at 10 °C min‒1 heating rate in 

argon carrier gas (flow rate = 30 cm3 min‒1). Sample holder/reference is alumina crucible/empty 

alumina crucible. The sample mass was 3‒5 mg. 

2.8. Photocatalytic and photophysical properties

Mordant blue (MB9), a widespread environmental pollutant, is a commonly used dye in 

the textile industry. A volume of 50 ml of dye solution in water (c = 0.5 mol/L), was mixed with 

50 mg of each of the complexes. The powdered complexes were added to the water solution 

under constant stirring and left in the dark for 15 min to equilibrate. The samples were 

illuminated by a spotlight source (Hamamatsu LC5) from a distance of 1 cm (light intensity 5.2 

mW/cm2). The decomposition rate of MB9 as a function of irradiation time was measured by a 

Varian Cary 50 Scan UV-Vis spectrophotometer. A lamp with the emission in the UV and 

visible part of the spectrum was turned on, followed by the extraction of 5 ml of solution at 

regular intervals later measured in a UV/VIS spectrometer. MB9 has two main absorption 

regions: around 330 and around 530 nm. The relative concentration of MB9 is tracked using 

absorption intensities in these regions. The measured absorption intensities were used to 

calculate relative concentrations of MB9 dye and the corresponding rate constants for the 

photocatalytic degradation reaction of MB9 dye.101

Diffuse reflectance UV-vis spectra of pressed powder samples diluted with KBr were 

recorded on a Shimadzu (UV-3600 spectrophotometer with a Harrick Praying Mantis accessory) 

and recalculated following the Kubelka−Munk function. Excitation and emission spectra in the 

solid state were recorded with a Jobin-Yvon Horiba Fluorolog 3–22 Tau-3 spectrofluorimeter. 

Lifetime measurements were recorded with a Datastation HUB-B with a nanoLED controller and 

DAS6 software. The nanoLED employed for lifetime measurements were of 320 nm with pulse 

lengths of 0.8–1.4 ns. The lifetime data were fitted with the Jobin-Yvon software package. 

2.9. Computational details
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Single point DFT and TD-DFT calculations were carried out for models 3 and 4. In both 

the ground-state calculations and the subsequent calculations of the electronic excitation spectra, 

the B3LYP functional102–104 as implemented in TURBOMOLE105 was used. The excitation 

energies were obtained at the density functional level by using the time dependent perturbation 

theory approach (TD-DFT),106–109 which is a DFT generalization of the Hartree-Fock linear 

response (HF-LR) or random-phase approximation (RPA) method.110 In all calculations, the 

Karlsruhe split-valence quality basis sets augmented with polarization functions111,112 were used 

for the light elements (SVP) whereas the def2-TZVP bases sets were used  for Ag.113 The 

Stuttgart effective core potential in TURBOMOLE was used for Ag.114

3. RESULTS AND DISCUSSION

3.1 Molecular and crystal structures of 1‒4

Complex 1 crystallizes in the tetragonal P‒421m space group. The asymmetric unit of 1 

contains a Ag(I) and a tetrafluoroborate anion, both of a quarter occupancy, as well as a half of 

the L ligand. Ag(I) atoms are situated on a 2-fold axis along which two mirror planes intersect 

(Wyckoff position 2c, site symmetry 2.mm). Moreover, L lies on the (110) mirror plane 

(Wyckoff position 4e, site symmetry ..m) with half-occupancy, except for the C2 and C3 atoms 

in general positions. The F1 atom of the tetrafluoroborate anion is in a general position, while the 

quarter-occupancy B1 atom is located at the Wyckoff 2a position (site symmetry –4..). The part 

of infinite structure of 1 depicted in Figure 2A shows that Ls form a distorted tetrahedron around 

the Ag(I). The geometric index of distortion is τ4 = 0.86.115 Each of the Ag(I) ions in 1 is 

coordinated to two nitrogen and two sulfur atoms from four different L ligands. Selected bond 

lengths are given in Table 2. L acts as a bridging ligand with bis–monodentate coordination 

connecting the Ag(I) ions to form a two-dimensional coordination network (Figure 2B). The 

crystal packing of 1 comprises of 2D layers stacked along c-axis with a thickness of 4.57 Å 

(Figure 2C).
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Figure 2. (A) ORTEP drawing (generated by MERCURY93) of the part of infinite structure of 1 

with labeled non-H atoms. The atoms of the asymmetric unit are labeled in black. Displacement 

ellipsoids are shown at the 50% probability level, while the H atoms are drawn as spheres of 

arbitrary radii. Symmetry codes: (1) −x+1, −y, z; (2) y, −x+1, −z; (3) −y+1, x−1, −z. Lengths of 

bonds labeled as 1 and 2 (in blue) are given in Table 2. (B) The crystal packing of 1 viewed 

along c-axis. (C) Stacked layers viewed along b-axis. All hydrogen atoms (B, C) and 

tetrafluoroborate anions (C) are omitted for clarity.
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Table 2. Selected bond lengths for 14.

Compound Bond label Bond type Bond length (Å)
1 Ag1–N1, Ag1–N11 2.327(9) 1
2 Ag1–S12, Ag1–S13 2.555(2) 
3 Ag1–N1 2.180(3) 
4 Ag1–S19 2.4164(7) 2

5 Ag1–O1 2.406(2) 
6 Ag1–N1 2.221(3)
7 Ag1–O1 2.340(2)
8 Ag1–S311 2.4309(11)
9 Ag1–O512 2.479(3)
10 Ag2–N2 2.245(3)
11 Ag2–O5 2.333(2)
12 Ag2–S113 2.4321(10)
13 Ag2–O114 2.467(3)
14 Ag3–N3 2.216(3)
15 Ag3–O9 2.343(2)
16 Ag3—S2 2.4341(11)

3

17 Ag3–O915 2.494(3)
18 Ag1–N1 2.1818(15) 
19 Ag1–O1 2.4576(11)
20 Ag1–S1 2.4903(4)

4

21 Ag1–O2 2.6170(1) 
Symmetry codes: (1) −x+1, −y, z; (2) y, −x+1, −z; (3) −y+1, x−1, −z; (9) x−1, y, z; (11) −x+2, −y+1, −z+1; (12) 

−x+1, −y+2, −z+1; (13) −x+1, −y+1, −z+1; (14) x+1, y, z; (v) x+1/2, −y+3/2, z+1/2; (15) x−1/2, −y+3/2, 

z−1/2.

Complex 2 crystallizes in the triclinic P‒1 space group. The asymmetric unit consists of a 

Ag(I) ion, one of each L and H2BTC‒ ligands, as well as one neutral non-coordinated H3BTC 

molecule. The part of infinite structure of 2, shown in Figure 3A, reveals that the Ag(I) ion tri-

coordinated by a nitrogen and a sulfur atom from two different L ligands and one deprotonated 

carboxylate oxygen atom from H2BTC‒. This gives rise to a distorted trigonal planar geometry 

with values of N1–Ag1–O1, N1–Ag1–S19, and O1–Ag1–S19 angles of 93.77(12)°, 149.25(11)°, 
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and 116.24(6)°, respectively. Selected bond lengths are given in Table 2. The coordination mode 

of H2BTC‒ is monodentate, while L behaves as a bis-monodentate ligand creating a 

centrosymmetric 1D chain parallel to the a-axis (Figure 3B). Non-coordinated H3BTC molecule 

and H2BTC‒ ligands are connected by the OH···O hydrogen interactions (Table 3). 

Figure 3. (A) ORTEP drawing (generated by MERCURY93) of the part of infinite structure of 2 

with labeled non-H atoms. The atoms of the asymmetric unit are labeled in black. Displacement 

ellipsoids are shown at the 50% probability level, while the H atoms are drawn as spheres of 

arbitrary radii. Symmetry codes: (9) x−1, y, z; (10) x+1, y, z. Lengths of bonds labeled as 3–5 (in 

blue) are given in Table 2. (B) The crystal packing of 2 viewed along c-axis. Selected hydrogen 

bonds are showed as dashed lines. The hydrogen atoms not involved in the selected hydrogen 

bonds are omitted for clarity.
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Table 3. Selected hydrogen bond parameters in the crystal packing of 2.

DH···A DH (Å) H···A (Å) D···A (Å) DH···A (°)
O10—H10···O3i 0.82 1.82 2.638 (3) 172.8

O7—H7···O2 0.82 1.70 2.517 (3) 171.0

O4—H4···O9ii 0.82 1.81 2.613 (3) 166.5

O6—H6···O8iii 0.82 1.95 2.698 (3) 151.9

O12—H12···O1iv 0.82 1.82 2.601 (3) 158.5

Symmetry codes: (i) x−1, y+1, z−1; (ii) x+1, y−1, z+1; (iii) x, y−1, z; (iv) x, y+1, z

Complex 3 crystallizes in the monoclinic P21/n space group. The asymmetric unit 

contains three crystallographically different Ag(I) ions, three L ligands, one and a half 

H2BTEC2‒ ligand and five disordered water molecules. Each Ag(I) ion is coordinated to one 

sulfur and one nitrogen atom from different L ligands, as well as two deprotonated carboxylate 

oxygen atoms from different H2BTEC2‒ ligands. Selected bond lengths are given in Table 2. The 

coordination mode of L is bis-monodentate, while H2BTEC2‒ behaves as a bis-bidentate bridging 

ligand. The part of infinite structure is depicted in Figure 4A. The geometry around each of the 

Ag(I) ions is distorted tetrahedral with the geometric index of distortion of τ4 = 0.70 (Ag1), 

τ4 = 0.76 (Ag2), and τ4 = 0.74 (Ag3), thus the structure at each Ag(I) in 3 can be described as 

seesaw.115 The crystal packing comprises of 2D layers of 5.83 Å thickness parallel to the (110) 

plane (Figure 4 B,C). A CSD116 search performed by Con-Quest 1.1893 showed that 3 is the first 

compound containing H2BTEC2‒ ligand coordinated to Ag(I).
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Figure 4. (A) ORTEP drawing (generated by MERCURY93) of the part of infinite structure of 3 

with labeled non-H atoms. The atoms of the asymmetric unit cell are labeled in bold. 

Displacement ellipsoids are shown at the 50% probability level, while the H atoms are drawn as 

spheres of arbitrary radii. Lengths of bonds labeled as 6–17 (in blue) are given in Table 2. (B) 
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The extended structure of 3 viewed parallel to c-axis. (C) The extended structure of 3 viewed 

along a-axis showing two-dimensional layers. All hydrogen atoms are omitted for clarity (B, C).

Complex 4 crystallizes in the monoclinic P21/n space group. The asymmetric unit 

consists of a single Ag(I) atom and one of each L and H25SSA– ligands. Two sulfonate oxygen 

atoms from two different H25SSA– ligands are coordinated to Ag(I), as well as a nitrogen and  a 

sulfur atom from two different L ligands. The part of the infinite structure is illustrated in Figure 

5A. As τ4 = 0.75, the geometry around each of the Ag(I) atoms is seesaw.115 Selected bond 

lengths are given in Table 2. Both H25SSA– and L behave as bis-monodentate ligands, with L 

creating a centrosymmetric double 1D chain parallel to b-axis. (Figure 5B). The crystal packing 

is based on H-interactions (Table 4). A CSD116 search performed by Con-Quest 1.1893 showed 

that 4 is the first compound containing H25SSA– ligand coordinated to Ag(I). 

Figure 5. (A) ORTEP drawings (generated by MERCURY93) of the part of infinite structure of 4 

with labeled non-H atoms. The atoms of the asymmetric unit cell are labeled in black. 
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Displacement ellipsoids are shown at the 50% probability level, while the H atoms are drawn as 

spheres of arbitrary radii. Lengths of bonds labeled as 18–21 (in blue) are given in Table 2. (B) 

The crystal packing of 4 viewed along c-axis. Selected hydrogen bonds are showed as dashed 

lines. The hydrogen atoms not involved in the selected hydrogen bonds are omitted for clarity.

 

Table 4. Selected H-bond parameters in the crystal packing of 4.

DH···A DH (Å) H···A (Å) D···A (Å) DH···A (°)
O5—H5···O3v 0.80 (3) 1.82 (3) 2.6246 (17) 175 (3)

O6—H6···O4 0.85 (3) 1.76 (3) 2.575 (2) 162 (3)

Symmetry code: (v) x, y+1, z

Topological analysis in standard representation suggests that each Ag(I) in 1 and 4 acts as 

a 4-connected node. The overall structure of 1 has a sql, while 4  has (4,4)(0,2) underlying net 

topology.117 In contrast, each Ag(I) ion in 2 acts as a 2-connected node with 2C1 underlying net 

topology. 117 The structure of 3 can be described as a binodal net. Both Ag(I) ions and H2BTEC2‒ 

ligands act as 4-connected nodes, giving rise to a 4,4L28 underlying net topology.117

All samples correspond to the single-phase X-ray powder patterns (Figure S1, ESI) in 

accordance with the structural model obtained by the single-crystal X-ray diffraction.

3.2. Hirshfeld and 2D fingerprint plot analysis

Visualization and quick and easy understanding of intra- and intermolecular interactions 

in the crystal structures can be achieved using Hirshfeld surface and fingerprint plot 

analysis.97,118  The Hirshfeld surfaces and the pseudosymmetric 2D fingerprint plots,119  as well 

as the existing classical and non-classical interactions in the crystal structures of 1‒4 are depicted 

in Figure 6. In all complexes, interactions can be observed in the shape-index plot as red and 

blue regions, as well as in the curvature plot as a flat zone in the same position of the surface as 
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in the shape-index plot. White circles mark the regions of the surfaces through which the 

complexes interact. 

Figure 6. 2D fingerprint plot, Hirshfeld surface mapped with dnorm, shape index and curvedness 

for 1‒4. For interaction types see Table 4.
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The relative contributions of different types of interactions in 1‒4 are shown in Table 5. 

As expected, the O···H interactions are completely absent in 1 since it does not contain any co-

ligand, and therefore no oxygen. On the other hand, the O···H interactions are the most dominant 

type in other three complexes with aromatic polyoxoacids acids as co-ligands. Furthermore, 2 

exhibits uncommonly high contribution of interactions of hydrogen and oxygen with the metal 

center. This can be attributed to proximity of the carboxylic group of the tricarboxylic acid to the 

metal (at 2.9 Å and 3.2 Å), which is just slightly longer than the Ag‒O distance of the 

coordinated carboxylic group (2.4 Å). This indicates particularly strong interactions of the metal 

center with the carboxylic groups perpendicular to the plane of coordination, resulting in a quasi-

3D structure for 2, with 2D planes connected through the strong Ag···O interactions on the 

perpendicular axis. This type of interaction is also present in 4, where the Ag···O distances are 

2.6 and 3.4 Å, and the interaction comes primarily from the oxygen atoms bound to the sulfur. 

Absence of the Ag···O interactions in 3 can be correlated with the tetrahedral coordination 

around the metal.

Table 5. Relative contributions (in %) and (di + de) values (in Å) of different interaction types in 

the crystal structures of 1‒4.

1 2 3 4

Interaction 

number

interaction 

type

relative 

contribution

di + 

de

relative 

contribution

di + 

de

relative 

contribution

di + 

de

relative 

contribution

di + 

de

1 N···H 6.4 2.9 2.3 2.2 7.55 3.6 3.45 3.2

2 S···H 3.5 3.0 0.75 2.3 2.35 3.6 2.0 3.4

3 C···H 3.85 - 2.1 - 1.65 - 8.65 -

4 F···H 4.85 2.5 - - - - - -

4’ O···H - - 13.6 1.2 17 3.0 12.1 2.6

5 Ag···H - - 8.3 2.4 0.45 - 1.3 2.2

6 Ag···O - - 5.9 2.6 - - 2.25 2.4

3.3. Intermolecular interactions 

Different types of intermolecular interactions within the crystal packing play an 

important part in the behavior of co-crystals, affecting their photophysical and pharmaceutical 

properties.120 Table 6 shows an overview of the calculated values of intermolecular interactions 

Page 20 of 62

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

in model systems for all four complexes. These values are in a similar range for all systems – 

around 40 kJ/mol per monomer unit. However, the relative contributions of different types of 

interactions vary from one system to another (Tables S2‒S5, ESI). In 1, the intermolecular 

interactions are absolutely dominated by the dispersion interactions (88% contribution of 

attractive interactions, Table 7), while the electron interactions are almost negligible. This can be 

attributed to the stacking of monomer units in 2D layers. In 2, on the other hand, electron 

interactions are more dominant (49% contribution to attractive interactions, Table 7), with 

dispersion playing an important part. In 3 and 4, the dispersion interactions contribute 48% and 

55% (Table 7), respectively, while the electron interactions contribute 35% and 31%, 

respectively, to the attractive interactions. This can be attributed to the increased role of 

hydrogen bonding, particularly between oxygen and hydrogen, in 2‒4. In addition, 2 exhibits the 

highest contribution of interactions between hydrogen and metal center, which can be correlated 

with its highest contribution of electron interactions. In all complexes, polarizations interactions 

contribute 11‒17% (Table 7) to the overall attractive interaction energy, indicating that different 

composition and structure has relatively little effect on the role of this type of interactions. In 3, 

slightly increased contribution of polarization interactions can be correlated with somewhat 

lower overall energy of intermolecular interactions. Differences in contributions of different 

types of interactions can be correlated to the spatial arrangement of monomer units in the lattice, 

with the location and orientation of hydrogen bonding being the decisive contributor to the 

electronic contribution to the value of the energy of attractive interactions. The negligible 

contribution of the electron interactions in 1 can be attributed largely to the absence of oxygen in 

the structure.

Table 6. Overview of calculated values for intermolecular interactions in model systems of 1‒4.

Complex Intermolecular 

Interactions (kJ/mol)

monomer units Per monomer unit 

(kJ/mol)

1 ‒84.6 2 ‒42.3

2 ‒682.2 16 ‒42.64

3 ‒288.3 8 ‒36.04

4 ‒466.9 12 ‒38.91
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Table 7. Relative contributions (in %) to attractive interactions in the crystal structures of 1‒4.

Complex Electron Polarization Dispersion

1 0.5 11.1 88.4

2 48.6 13.8 37.6

3 35.2 17.0 47.8

4 30.9 14.0 55.1

3.4. Thermal properties of 1‒4

Based on the thermoanalytical data, 1‒4 do not contain any lattice solvents. Complex 3 

crystallizes with 3.33 water molecules per formula unit (Table 1). However, the lattice water 

almost completely evaporates during storage in desiccator for seven days. The thermal stability 

of the compounds, given by their onset temperatures, is relatively high and increases as follows: 

173 °C (3) < 188 °C (4) < 192 °C (1) < 237 °C (2). The decomposition mechanism of each CP is 

different, in accordance with their different composition and structure. In all cases, the 

decomposition is a complex process which occurs in several more or less overlapped steps 

(Figure 7A).
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Figure 7. DTG (A) and DSC (B) curves of 1‒4 in argon.

The simultaneously recorded DSC curves are shown in Figure 7B. As can be seen, the 

decomposition of 1 and 4 begins with an exothermic process. Although the thermal 

decomposition of tetrafluoroborates in most cases is followed by endothermic heat effects,121–123 

in this case, the decomposition is exothermic. This phenomenon may be a result of 

intramolecular redox reactions between Ag+ and L which are less pronounced in 2‒4, most likely 

because of the nature of the co-ligands. Additionally, 1 is cationic complex with BF4
− as counter 

ion, and all other complexes contain the organic co-ligands coordinated to Ag(I). The oxidative 

properties of Ag+ in the presence of BF4
− are discussed in the literature.124 The small mass loss of 

4 at ~200°C, followed by exothermic heat effect is most probably a CO2 releasing process in 

accordance with the composition of the compound. Above ~250 °C the thermal decomposition of 

4 continues with endothermic processes (Figure 7B). The decomposition process of 2 and 3 is 

followed by endothermic effects in the whole temperature range of analysis (Figure 7B).
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3.5. Photocatalytic properties

Photocatalytic properties of 1‒4 were investigated in the reaction of photocatalytic 

degradation of MB9 dye. Since all complexes are insoluble in water, they were tested as 

heterogeneous catalysts in powder form for a degradation reaction in water. The progress of 

degradation reaction was monitored using UV/VIS spectroscopy (Figure S2, ESI) and the results 

are shown in Table 8. A dependence of –ln(C/C0) on time (Figure S3, ESI), where the initial part 

of the curve shows linear dependence (with R2 > 99%) in all four complexes, indicates that the 

reaction of the photocatalytic degradation of MB9 dye can be treated as a first-order reaction. 

Apparent first-order rate constants for all four compounds were calculated to be in 0.036‒0.056 

min–1 range, which is comparable to the values obtained for ZnO-based photocatalysts in 

photocatalytic degradation of organic dyes.125 In addition, this is also comparable to or better 

than the reported activities for Ag-based CPs for photocatalytic degradation of organic dyes126–

129. This indicates that all four complexes exhibit reasonably high photocatalytic activity. The 

lowest value was obtained for 1, and the highest for 2. It is interesting to note that 3 has more Ag 

atoms per monomer unit (Table 8) than 1, 2 and 4, therefore, the increase in photocatalytic 

activity cannot be attributed to higher Ag content. There is also no significant difference in the 

accessible free lattice volume for water (all four complexes have 0), suggesting that none of the 

structures exhibits porosity. Therefore, the increase in photocatalytic activity can most likely be 

correlated with the existence of different co-ligands in the four complexes: 1 does not contain 

carboxylic acid as a co-ligand and exhibits the lowest photocatalytic activity, 4 contains H35SSA 

and exhibits lower photocatalytic activity than 3 and 2, which contain H4BTEC and H3BTC, 

respectively. Complex 2 also contains free H3BTC molecule in addition to the one coordinated to 

the metal center. Complex 4 contains one carboxylic group and one hydroxyl group in addition 

to sulfonic acid group, 3 contains one tetracarboxylic acid, while 2 contains two tricarboxylic 

acids. This suggests that the photocatalytic mechanism most likely includes active hydroxyl 

radicals (•OH) as the main reactive species.126,127 The excited state of the complex reacts with 

water to form •OH which oxidizes the dye. The oxygen in the system can easily re-oxidize the 

reduced complex species making it active again. The presence of more reactive carboxylic 

groups in the system enhances the photocatalytic activity of the complexes, and the change 

photocatalytic reactivity of these complexes can be roughly correlated with increasing number of 

oxygen groups in the structure.
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Table 8. Calculated apparent first-order rate constants corresponding to each compound

Compound General formula
Empirical formula 

(FW)

Rate constant 

(min–1)

1 {[Ag(L)2](BF4)}∞
C10H16AgBF4N4S2 

(FW = 451.07)
0.036±0.001

2 {[Ag(H2BTC)(L)]×(H3BTC)}∞
C23H19AgN2O12S 

(FW = 655.33)
0.056±0.003

3 {[Ag2(H2BTEC)(L)2]}∞
C20H20Ag2N4O8S2 

(FW = 724.26)
0.055±0.004

4 [Ag(H25SSA)(L)]∞
C12H13AgN2O6S2 

(FW = 453.23)
0.040±0.002

3.6. Photophysical properties

While complexes 1 and 2 do not show emissive properties in the solid state at RT or 

77 K, complexes 3 and 4 display luminescent emissions in the solid state when they are 

irradiated with UV light. Complex 3 is not luminescent at RT, but it is luminescent at 77 K, 

showing an emission band centred at 522 nm (λexc 340 nm). In contrast, 4 is emissive at RT, 

displaying a more energetic emission located at 430 nm (λexc 330 nm). When the temperature is 

decreased to 77 K, a very similar emission, without any noticeable energetic shift, is detected for 

this complex (Figure 8).
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Figure 8.  Excitation and emission spectra in solid state at 77K (A) and room temperature and 77 

K (B) for 3 and 4, respectively.

The lifetime obtained for the emission for 3 at 77 K is 8 ns, while for 4 it is 7 and 8 ns at 

room temperature and 77 K, respectively. These lifetimes seem to indicate electronic transitions 

of singlet parentage for the origin of the experimentally observed emissions. In fact, the 

excitation spectra collected in the solid state for 3 and 4 appear included within the wavelength 

range of the corresponding absorption spectra in the solid state, suggesting that the transitions are 

allowed and, therefore, related to fluorescence processes for both complexes (Figure 9).
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Figure 9.  Absorbance (black) and excitation (blue) spectra in the solid state for 3 (A) and 4 (B).

3.7. Computational studies

DFT and TD-DFT computational calculations were carried out to elucidate the origin of 

the luminescent properties displayed by 3 and 4. Tetranuclear model systems were constructed 

based on the experimental X-ray diffraction data, keeping all the distances and the angles fixed 

and representing all the bonds and interactions found in the coordination polymers (Figure 10).
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Figure 10. Theoretical model systems representing complex 3 (A) and 4 (B).

Single point DFT calculations permit the analysis of the electronic structure for these 

complexes. Figures 11 and 12 display the most important frontier molecular orbitals (MOs) as 

computed.
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Figure 11. Frontier MOs for model system 3
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Figure 12. Frontier MOs for model system 4.

If we analyse the results obtained for the electronic structure for model 3, we observe that 

HOMO, HOMO-1 and HOMO-4 orbitals are located mostly at the H2BTEC2‒ ligand (aromatic 

ring and carboxylate groups), with some contribution from the Ag centres. Meanwhile, HOMO-5 

ligand is mostly located at L with a minor contribution from the Ag centres. On the other hand, 

the lowest unoccupied orbitals LUMO to LUMO+2 appear to be located mostly at the H2BTEC2‒ 

ligands, without contribution from the Ag centres. In the case of model system 4, similar 

behaviour is computed. Thus, the molecular orbitals from HOMO to HOMO-9 appear mostly 

centred on the aromatic ring and the SO3 functional group of the H25SAA‒ ligands with a minor 

contribution from the Ag atoms bonded to the SO3 groups. Regarding lowest occupied molecular 

orbitals, from LUMO to LUMO+3 are located on the aromatic ring of the H25SAA‒ ligands with 

minor contributions from the COOH and OH groups bonded to the aromatic ring of the ligand. In 

these empty orbitals, the participation of the Ag atoms or the L ligands is, again, not detected.
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The TD-DFT computation of the first 25 singlet-singlet electronic excitations provides 

same information on the origin of the fluorescent properties of 3 and 4. Table 9 displays the 

information of the wavelength, oscillator strength and contribution of the MOs to the 

corresponding electronic transitions. In the case of model 3, there are five electronic transitions 

of large oscillator strength value between 360 and 424 nm. The computed wavelength values 

agree well with the corresponding excitation spectrum obtained for this complex that shows a 

maximum at 330 nm with a tail extending up to ca. 430 nm. The main contributions to these five 

electronic transitions involve the above commented molecular orbitals, which seems to indicate 

that the origin of the luminescent properties in 3 would be related to metal-perturbed intra ligand 

transitions. In the case of 4, similar behaviour was computed. The most intense electronic 

transitions appear around 296 nm, although less intense transitions appear around 310 nm. This 

result is also in agreement with the excitation spectrum registered for 4 between 275 and 350 nm, 

in which a maximum at 330 nm is obtained. Again, the analysis of the orbitals involved in the 

electronic transitions shows up a metal-perturbed intra ligand transitions as the origin of the 

emissive properties of this complex.
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Table 9.  TD-DFT singlet-singlet excitation calculations for model systems of 3 and 4.

3

Transition λ/nm Oscillator strength Contributions

S0-S1 424.1 0.0772 HOMO→LUMO+2 (95%)

S0-S2 316.0 0.0404
HOMO→LUMO (54%)

HOMO-1→LUMO+1 (31%)

S0-S5 390.9 0.0111

HOMO→LUMO (35%)

HOMO-4→LUMO (30%)

HOMO-1→LUMO+1 (16%)

S0-S7 368.4 0.0233
HOMO-5→LUMO (40%)

HOMO-6→LUMO+1 (25%)

S0-S10 360.3 0.0152
HOMO-5→LUMO+2 (50%)

HOMO-4→LUMO+2 (41%)

4

S0-S4 298.9 0.0155
HOMO→LUMO+3 (46%)

HOMO-1→LUMO+2 (38%)

S0-S7 296.4 0.133

HOMO-8→LUMO (40%)

HOMO-7→LUMO+1 (18%)

HOMO-9→LUMO+1 (18%)

S0-S8 295.7 0.124
HOMO-2→LUMO+3 (46%)

HOMO-3→LUMO+2 (37%)

4. CONCLUSION

Four new Ag(I) coordination polymers with L and aromatic polyoxoacids as co-ligands 

were synthesized and characterized. Compounds 1 and 2 crystallize in the tetragonal P‒421m and 

triclinic P‒1 space group, respectively, while 3 and 4 crystallize in the same monoclinic P21/n 

space group. L behaves as a bis-monodentate ligand in all four structures, while the Ag(I) ion is 

three-coordinated in 2, and four-coordinated in all the other complexes. Thermal analysis showed 

that all four complexes have good thermal stability, with the onset of the thermal decomposition 

in 170‒240 oC temperature range. Investigation of intermolecular interactions evinced that 2 and 

4 exhibit considerable contribution of interactions with the metal center, while the almost 
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complete absence of such interactions in 3 can be attributed to the tetrahedral coordination of Ag. 

While all compounds have similar values of the intermolecular interaction energies, the origin of 

those interactions is different and can be correlated with the type of co-ligand in the structure. 

Photocatalytic properties were measured for photocatalytic degradation of MB9 dye, and show 

that all four complexes exhibit reasonable reaction rates. The differences are attributed to the 

different co-ligands, where both the type and coordination of the co-ligand can be correlated with 

changes in the photocatalytic reaction rate. When irradiated with the UV light, 3 and 4 show 

photoluminescent emission, with 4 exhibiting luminescence at both RT and 77 K. The 

luminescence lifetimes for 3 and 4 suggest electronic transitions of singlet parentage. Since the 

excitation spectra appear to overlap with the wavelength range of the corresponding absorption 

spectra in the solid state, these transitions are most likely allowed and related to fluorescence 

processes. TD-DFT study determined the relative contributions of individual singlet-singlet 

electronic excitations to the fluorescence properties of both complexes, indicating that metal-

perturbed intra ligand transitions is responsible in both cases.
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1D and 2D silver-based coordination polymers with thiomorpholine-4-

carbonitrile and aromatic polyoxoacids as co-ligands: structure, 

photocatalysis, photoluminescence and TD-DFT study

Predrag Ristić, Tamara R. Todorović*, Vladimir Blagojević, Olivera R. Klisurić, 

Ivana Marjanović, Berta Barta Holló, Predrag Vulić, Mihaela Gulea, Morgan Donnard, 

Miguel Monge, María Rodríguez-Castillo, José M. López-de-Luzuriaga, Nenad R. Filipović

Ag(I) coordination polymers 1‒4 exhibit reasonable reaction rates in photocatalytic degradation 

of MB9 dye. When irradiated with the UV light, 3 and 4 show photoluminescent emission. The 

luminescence lifetimes suggest electronic transitions of singlet parentage. TD-DFT study 

determined the relative contributions of individual singlet-singlet electronic excitations to the 

fluorescence properties, indicating that metal-perturbed intra ligand transitions is responsible in 

both cases.
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Figure 1. Structures of L and aromatic polyoxoacids co-ligands. 
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Figure 2. (A) ORTEP drawing (generated by MERCURY93) of the part of infinite structure of 1 with labeled 
non-H atoms. The atoms of the asymmetric unit are labeled in black. Displacement ellipsoids are shown at 
the 50% probability level, while the H atoms are drawn as spheres of arbitrary radii. Symmetry codes: (1) 
−x+1, −y, z; (2) y, −x+1, −z; (3) −y+1, x−1, −z. Lengths of bonds labeled as 1 and 2 (in blue) are given 

in Table 2. (B) The crystal packing of 1 viewed along c-axis. (C) Stacked layers viewed along b-axis. All 
hydrogen atoms (B, C) and tetrafluoroborate anions (C) are omitted for clarity. 
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Figure 3. (A) ORTEP drawing (generated by MERCURY93) of the part of infinite structure of 2 with labeled 
non-H atoms. The atoms of the asymmetric unit are labeled in black. Displacement ellipsoids are shown at 
the 50% probability level, while the H atoms are drawn as spheres of arbitrary radii. Symmetry codes: (9) 
x−1, y, z; (10) x+1, y, z. Lengths of bonds labeled as 3–5 (in blue) are given in Table 2. (B) The crystal 
packing of 2 viewed along c-axis. Selected hydrogen bonds are showed as dashed lines. The hydrogen 

atoms not involved in the selected hydrogen bonds are omitted for clarity. 
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Figure 4. (A) ORTEP drawing (generated by MERCURY93) of the part of infinite structure of 3 with labeled 
non-H atoms. The atoms of the asymmetric unit cell are labeled in bold. Displacement ellipsoids are shown 
at the 50% probability level, while the H atoms are drawn as spheres of arbitrary radii. Lengths of bonds 

labeled as 6–17 (in blue) are given in Table 2. (B) The extended structure of 3 viewed parallel to c-axis. (C) 
The extended structure of 3 viewed along a-axis showing two-dimensional layers. All hydrogen atoms are 

omitted for clarity (B, C). 
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Figure 5. (A) ORTEP drawings (generated by MERCURY93) of the part of infinite structure of 4 with labeled 
non-H atoms. The atoms of the asymmetric unit cell are labeled in black. Displacement ellipsoids are shown 

at the 50% probability level, while the H atoms are drawn as spheres of arbitrary radii. Lengths of bonds 
labeled as 18–21 (in blue) are given in Table 2. (B) The crystal packing of 4 viewed along c-axis. Selected 
hydrogen bonds are showed as dashed lines. The hydrogen atoms not involved in the selected hydrogen 

bonds are omitted for clarity. 
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Figure 6. 2D fingerprint plot, Hirshfeld surface mapped with dnorm, shape index and curvedness for 1‒4. For 
interaction types see Table 4. 
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Figure 7. DTG (A) and DSC (B) curves of 1‒4 in argon. 
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Figure 8.  Excitation and emission spectra in solid state at 77K (A) and room temperature and 77 K (B) for 3 
and 4, respectively. 
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Figure 9.  Absorbance (black) and excitation (blue) spectra in the solid state for 3 (A) and 4 (B). 
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Figure 10. Theoretical model systems representing complex 3 (A) and 4 (B). 
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Figure 11. Frontier MOs for model system 3 
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Figure 12. Frontier MOs for model system 4. 
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