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Multigrained or polycrystalline composite materials have attracted a considerable attention due to

their potential applications as advanced materials with outstanding thermal, mechanical, and

electromagnetic properties. When the grains’ morphology is displayed at the nanoscopic scale, the

presence of imperfect interfaces plays a central role in determining the effective transport properties.

Therefore, we develop here a self-consistent effective medium theory able to evaluate the influence

of real contacts between the different phases of multigrained composite materials. This approach

takes into account the classical interface schemes that have been introduced in literature, namely, the

low and the high conducting interface models. The theoretical results have been compared with

numerical and experimental data concerning the thermal conductivity of ð1� xÞSi : xGe mixtures

and the electrical conductivity of ð1� xÞLi2O : xB2O3 composites. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967316]

I. INTRODUCTION

The determination of the effective thermal, mechanical,

and electromagnetic properties describing the physical

behavior of heterogeneous materials is a crucial problem in

modern material science.1–4 In particular, the behavior of

nanocomposites, multiphase solid materials where the micro-

structure is displayed at the nanoscopic scale, is remarkably

important because of the recent multiple nanotechnological

applications. In this case, several unusual physical properties

can be attributed to the intensified fraction of interfaces or

grain boundaries within these materials. As a matter of fact,

the features of these interphase regions drive the size effects,

i.e., the effects of the granulometry on the overall physical

properties. Typically, in the classical macroscopic modeling,

the interfaces are assumed to be perfect. For instance, in the

context of the electrical conduction problem, it means that

the electrical potential / and the normal component of the

current density ~J are continuous across any interface:5,6

v/b ¼ 0 and v~J �~nb ¼ 0, where the symbol vf b represents the

jump of the function f across the interface. Of course, this is

only an approximation that is valid in the case of small sur-

face/volume ratio. In most of the cases with nanoscale

microstructures, this approximation is no longer valid, and,

therefore, it is important to take into consideration the spe-

cific properties of interfaces among the constituents. To this

aim, two well-known zero-thickness interface models have

been developed to describe two real limiting cases.

The first model is called low conducting interface, and it

is based on the Kapitza resistance, introduced in the context

of the thermal conduction.7 According to this approach,

v~J �~nb ¼ 0, while the potential suffers a jump proportional to

the local flux, v/b ¼ �r~J �~n, where r is the Kapitza-like

resistance. The second model, called high conducting inter-
face, concerns the case of an interphase of very high

conductivity described by v/b ¼ 0, and by the normal com-

ponent of the current density proportional to the surface

Laplacian of the potential, v~J �~nb ¼ gr2
S/, where g repre-

sents the interphase conductance. Several investigations

on heterogeneous particulate materials with low8–18 or

high11,17,19–23 conducting interfaces can be found in litera-

ture. Moreover, other models are based on an explicit inter-

phase of finite thickness, and, therefore, they separately

consider the inclusions, the interphase medium, and the

matrix.24–26 Recent results concern the integration of the low

and high interface paradigms in more general models based

on the T and P lattice structures,27,28 theories for composites

with curvilinearly anisotropic coated inclusions,29 the predic-

tion of transport behaviors in aggregates with soft interfacial

layers,30 and the interphase description within the two-

temperature model.31

The classical results of the homogenization theory

include the variational approach,32 leading to the Hashin–

Shtrikman bounds,33,34 and the self-consistent approach, lead-

ing to a number of effective medium schemes.35,36 While

most of the earlier theoretical activity has been devoted to

particulate composites, not many investigations concern the

case of the multigrained or polycrystalline microstructure

with imperfect interface.37,38 However, several nanocompo-

sites of interest for the applications exhibit this kind of mor-

phology,37,38 as shown in Fig. 1. While in the particulate

composite, we find two different materials with an asymmet-

ric role, namely, dispersed particles and matrix, in multi-

grained systems, we have a given number of constituents

with a completely symmetric role, being made of grains in

close contact. Here, we propose a self-consistent homogeni-

zation method able to provide the effective transport proper-

ties of multigrained or polycrystalline materials with

imperfect interfaces. In particular, we develop our theory for

the case of low or high conducting interfaces, which are the

typical situations observed in real systems (Fig. 1). Each

grain is considered as an anisotropic material in order toa)Electronic mail: Stefano.Giordano@iemn.univ-lille1.fr
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mimic the real polycrystalline structure. Importantly, the

results will depend on the grain size and on the statistics of

contacts among the constituents. The dependence of the

effective properties on the grain size makes explicit the emer-

gence of the scale effects. On the other hand, the statistics of

contacts is important to correctly describe the possible perco-

lative behaviors. The structure of the paper is as follows. In

Section II, we develop the self-consistent effective medium

theory through a multiscale procedure composed of the fol-

lowing geometries: (i) a coated particle, (ii) a dispersion of

particles with imperfect interfaces, and (iii) a multigrained

system. In Section III, we present the application of the pro-

posed theory to the analysis of the thermal conductivity of

ð1� xÞSi : xGe nanocomposites. Finally, in Section IV, we

study the electric conductivity of nanocrystalline and micro-

crystalline ð1� xÞLi2O : xB2O3 composites.

II. EFFECTIVE MEDIUM THEORY

We develop here the multiscale homogenization scheme,

composed of three consecutive steps, leading to the proposed

effective medium theory.

A. Composite particle

To begin, we consider a composite particle in d-dimen-

sion (d¼ 2 for the cylindrical geometry and d¼ 3 for the

spherical one) composed of an anisotropic core of tensor

conductivity r̂c with radius Rc and an isotropic shell of scalar

conductivity rs with radius Rs (see Fig. 2). In the Appendix,

we prove that this composite system is equivalent to a homo-

geneous particle of conductivity tensor

r̂ef f ¼ rs ðd � 1Þð1� cÞrsÎ þ ½1þ cðd � 1Þ�r̂c

� �
� ðd � 1þ cÞrsÎ þ ð1� cÞr̂c

� ��1
; (1)

where c is the volume fraction of the core within the whole

particle. The shell region is useful to introduce the behavior

of the imperfect interface between core and matrix. To this

aim, we introduce the shell width h ¼ Rs � Rc, and we have

c ¼ ðRc=RsÞd ¼ ð1� h=RsÞd ’ 1� dh=Rs for small values

of h. If we consider a low conducting interface, the interface

resistance is defined as11,27

r ¼ lim
h!0;rs!0

h

rs
: (2)

Hence, in this case Eq. (1) simplifies to

r̂eff ;LC ¼ r̂c Î þ r

R
r̂c

� ��1

; (3)

where R ¼ Rs ¼ Rc under the limit of h! 0. On the other

hand, the interface conductance for a high conducting inter-

face is given by11,27

g ¼ lim
h!0;rs!1

hrs: (4)

Therefore, the effective conductivity given in Eq. (1)

becomes

r̂eff ;HC ¼ r̂c þ d � 1ð Þ g

R
Î; (5)

where, again, R ¼ Rs ¼ Rc under the limit of h! 0.

This means that a single anisotropic particle with an

imperfect interface can be replaced by another equivalent

anisotropic particle with a perfect interface and a conductiv-

ity tensor given by Eq. (3) or Eq. (5) for LC or HC inter-

face, respectively. We note that r̂eff ;LC and r̂eff ;HC depend

on R. This shows the scale effects induced by the imperfect

interfaces.

B. Dispersion of particles

The second step of the procedure takes into account a

population of cylindrical or spherical equivalent anisotropic

particles (as defined above) dispersed in a given matrix (see

Fig. 3). To begin, we consider a particle of conductivity ten-

sor r̂eff ;n (see Eqs. (3) and (5)) embedded in a matrix of sca-

lar conductivity rm (n stands for LC or HC depending on the

type of imperfect interface considered). If we suppose to

apply an external field ~E0 to a system composed of a single

particle, we obtain the following electric field and current

density inside the particle itself:

~Ein ¼ drm½ðd � 1ÞrmÎ þ r̂eff ;n��1~E0; (6)

FIG. 1. Examples of a multigrained materials with imperfect interfaces.

One can find low conducting interfaces described by v~J �~nb ¼ 0 and v/b ¼
�r~J �~n or high conducting interfaces described by v/b ¼ 0 and

v~J �~nb ¼ gr2
S/.

FIG. 2. Composite particle with an anisotropic core of conductivity r̂c

(radius Rc) and an isotropic shell of conductivity rs (radius Rs), embedded in

a matrix of conductivity rm. It is equivalent to a homogeneous particle of

conductivity r̂ef f given by Eq. (1).
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~Jin ¼ drmr̂eff ;n½ðd � 1ÞrmÎ þ r̂eff ;n��1~E0: (7)

These expressions can be simply obtained through the proce-

dure described in the Appendix, where however we impose

Rc¼Rs. Now, since we are interested in analysing a multi-

grained material where each anisotropic grain is randomly

oriented in the space, we introduce a rotation matrix R̂ to

describe the orientation of the particle. Hence, we can write

the internal fields as

~Ein ¼ drmR̂ ðd � 1ÞrmÎ þ r̂eff ;n

h i�1

R̂
T~E0; (8)

~Jin ¼ drmR̂r̂eff ;n ðd � 1ÞrmÎ þ r̂eff ;n

h i�1

R̂
T~E0: (9)

The average value of the previous fields can be determined

by using the expression hRikRjki ¼ dij=d and by introducing

the principal conductivities (eigenvalues) rk;n (k ¼ 1; :::; d)

of the symmetric tensor r̂eff ;n. We eventually obtain

D
~Ein

E
¼ rm

Xd

k¼1

½ðd � 1Þrm þ rk;n��1~E0; (10)

D
~J in

E
¼ rm

Xd

k¼1

rk;n½ðd � 1Þrm þ rk;n��1~E0; (11)

where rk;n must be substituted with rk;LC ¼ rk=ð1þ rrk=RÞ
for low conducting interfaces and with rk;HC ¼ rk þ ðd
�1Þg=R for high conducting interfaces, rk (k ¼ 1; :::; d) being

the eigenvalues of r̂c (see Eqs. (3) and (5)). This result repre-

sents the behavior of a randomly oriented single particle.

Now, we suppose to have a dispersion of particles with

volume fraction v in the matrix of conductivity rm (see Fig. 3).

For a dilute dispersion, we can easily determine the average

value of the electric fieldD
~E
E
¼ vh~Eini þ ð1� vÞ~E0; (12)

and the average value of the current densityD
~J
E
¼ rmh~Ei þ vh~Jini � vrmh~Eini: (13)

By combining Eqs. (12) and (13) with Eqs. (10) and (11), we

can evaluate the effective conductivity rd;n (defined by

h~Ji ¼ rd;nh~Ei) for the dilute dispersion of randomly oriented

particles

rd;n ¼ rm
1þ d � 1ð Þva

1� va
’ rm 1þ dvað Þ; (14)

where

a ¼ 1�
Xd

k¼1

rm

d � 1ð Þrm þ rk;n
; (15)

and the approximation in Eq. (14) is valid for v� 1. This

result will play a crucial role in the conclusive step of the

procedure.

C. Multigrained material

We finally consider the multigrained structure, as one can

see in Fig. 1. We assume to have N different materials defined

by volume fractions vi (i ¼ 1; :::;N;
P

ivi ¼ 1), principal con-

ductivities ri
k (i ¼ 1; :::;N; k ¼ 1; :::; d), and average radius

of grains Ri (i.e., average diameter Di ¼ 2Ri). Moreover, we

suppose to know the interface resistances rij (or conductance

gij) between two grains composed of materials i and j for a

system with low (or high) conducting interfaces. Of course,

the matrices rij and gij are symmetric. The summary of all the

involved quantities can be found in Table I.

To complete the system description, we have to specify

the parameter pij representing the fraction of surface of a

grain of material i in contact with grains of material j.
Certainly, these quantities must satisfy the normalizationP

jpij ¼ 18i. In addition, they fulfil another property which

can be found as follows. We observe that the average volume

of a grain of material i is pd=2Rd
i =Cðd=2þ 1Þ and its average

surface is 2pd=2Rd�1
i =Cðd=2Þ, where CðzÞ represents the

Euler’s Gamma function. Then, we can say that the total sur-

face pertaining to the grains of material i is cviV=Di with c
¼ 4Cðd=2þ 1Þ=Cðd=2Þ and V is the total volume of the het-

erogeneous material. Therefore, the total area of material i in

contact with material j is cvipijV=Di, where we used the defi-

nition of pij. The quantity cvipijV=Di must be symmetric, and

thus, we necessarily have that vipij=Di ¼ vjpji=Dj 8i 6¼ j. To

summarize, the parameters pij satisfy the two properties

FIG. 3. Dispersion of particles of conductivity r̂eff ;n with volume fraction v
in the matrix of conductivity rm. The principal conductivities rk;n of r̂eff ;n

are given by rk;LC ¼ rk=ð1þ rrk=RÞ for low conducting interfaces and by

rk;HC ¼ rk þ ðd � 1Þg=R for high conducting interfaces, rk being the eigen-

values of r̂c.

TABLE I. Definition of all the quantities involved in the self-consistent

effective medium theory. See Eqs. (22)–(25).

Symbol Definition

rLC eff. conductivity with low conducting interfaces

rHC eff. conductivity with high conducting interfaces

N Number of constituents

d Dimensionality (2 or 3)

vi Volume fraction of the i-th constituent

pij Surface fraction of grain i in contact with grains j

rij Contact resistances (LC model)

gij Contact conductances (HC model)

Di Average diameter grains i

ri
k Conductivity grains i in direction k

ri Conductivity grains i (isotropic case)

184301-3 P. L. Palla and S. Giordano J. Appl. Phys. 120, 184301 (2016)



XN

j¼1

pij ¼ 18i; (16)

vipij

Di
¼ vjpji

Dj
8i 6¼ j: (17)

Since Eq. (16) corresponds to N conditions and Eq. (17) cor-

responds to NðN � 1Þ=2 conditions, we have N2 � N
�NðN � 1Þ=2 ¼ NðN � 1Þ=2 degrees of freedom for the

N�N matrix pij. In particular, when N¼ 2, we have one

degree of freedom to define the 2� 2 matrix pij. In the sim-

plest case, we have no specific affinities between the materi-

als and pij does not depend on i. Hence, in this particular

case, we have that pij is proportional to vj=Dj (i.e., to the total

surface of material j) or, more precisely

pij ¼
1XN

k¼1

vk

Dk

vj

Dj
: (18)

In the presence of arbitrary affinities, however, the quantities

pij must fulfil Eqs. (16) and (17), in order to properly describe

the statistics of the contact surfaces within the system.

We can now discuss the application of the effective

medium theory to the multigrained material with imperfect

interfaces. We assume to have a structure as in Fig. 1 and to

know its overall effective conductivity rn (i.e., rLC or rHC

depending on the type of imperfect interfaces considered).

Then, we imagine to add a small grain with volume dV to the

heterogeneous material (see Fig. 4). Consequently, the effec-

tive conductivity assumes the value r0n. The latter can be

evaluated through Eq. (14), where rm ¼ rn; v ¼ dV=V � 1

and rk;n describes the properties of the added grain.

Therefore, we can write

r0n ¼ rn 1þ d
dV

V
1�

Xd

k¼1

rn

d � 1ð Þrn þ rk;n

 !" #
; (19)

where rk;n represents rk;LC ¼ rk=ð1þ rrk=RÞ for low con-

ducting interfaces and rk;HC ¼ rk þ ðd � 1Þg=R for high

conducting interfaces, rk (k ¼ 1; :::; d) being the principal

conductivities of the grain.

The properties of the added grain can be summed up

through a vector ~p composed of the principal conductivities

rk (k ¼ 1; :::; d), the radius R, and the interface parameter

r or g, depending on the type of imperfection considered. We

suppose now that the property of the added grain has been

randomly attributed, self-consistently, to the same statistics

of the other grains composing the heterogeneous material. It

means that they have been assigned by means of the density

probability

f ~pð Þ ¼
XN

i¼1

XN

j¼1

vipij

Yd

k¼1

d rk � ri
k

� 	
d r � rij

2


 �
d R� Rið Þ;

(20)

describing low conducting interfaces. When the high con-

ducting interfaces are considered, r and rij must be simply

substituted with g and gij. To complete the procedure, we

can average Eq. (19) with the density in Eq. (20). The left

hand side leads to
Ð
Xrn

0f ð~pÞd~p ¼ rn, where X is the space

where the properties ~p can range. It means that, if the added

grain has the same statistics of the other grains, the average

conductivity of the whole material remains unchanged.

Therefore, the averaging of Eq. (19) yields

ð
X

1�
Xd

k¼1

rn

d � 1ð Þrn þ rk;n

 !
f ~pð Þd~p ¼ 0; (21)

which represents the self-consistent mean field theory for our

microstructure (see Fig. 4).

It is important to remark that in the first step of our pro-

cedure, we considered cylindrical (d¼ 2) or spherical (d¼ 3)

particles embedded in a matrix. Then, the application of the

self-consistent approach removes the concept of matrix,

smearing out, at the same time, the concept of geometric

shape of the particles. The average geometrical isotropy of

the grains is however preserved. As a matter of fact, it is

well known that the self-consistent approach is able to

describe the effective behavior of microstructures repre-

sented by Voronoi tessellations.39

By combining Eq. (21) with Eq. (20), we straightfor-

wardly obtain the final result for the low (n ¼ LC) or high

(n ¼ HC) conducting interfaces

1

rLC
¼
XN

i¼1

XN

j¼1

Xd

k¼1

vipij

ri
k

1þ rij

Di
ri

k

þ d � 1ð ÞrLC

; (22)

1

rHC
¼
XN

i¼1

XN

j¼1

Xd

k¼1

vipij

ri
k þ d � 1ð Þ gij

Di
þ rHC


 � : (23)

These equations represent the main achievement of this work

and allow the determination of the effective conductivity of

multigrained microstructures with imperfect interfaces. We

developed the whole theory by considering physically aniso-

tropic constituents in order to present a model of large appli-

cability, without intrinsic limitations. However, the examples

discussed in the following will consider isotropic grains. In

this simpler case, we have ri
k ¼ ri 8k and Eqs. (22) and (23)

simplify to

FIG. 4. Application of the effective medium theory to obtain the overall

conductivity rn of the multigrained material with imperfect interfaces. The

structure on the right is averaged over the properties ~p ¼ ðrk8k ¼
1; :::; d; R; r if n ¼ LC or g if n ¼ HCÞ of the added grain.
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1

drLC
¼
XN

i¼1

XN

j¼1

vipij

ri

1þ rij

Di
ri
þ d � 1ð ÞrLC

; (24)

1

drHC
¼
XN

i¼1

XN

j¼1

vipij

ri þ d � 1ð Þ gij

Di
þ rHC


 � : (25)

If we consider rij¼ 0 and gij¼ 0 in Eqs. (24) and (25), we

reobtain the classical result for the effective conductivity of

an isotropic random mixture without imperfect interfa-

ces.40,41 Similar results exist for the elastic properties of

composite materials as well.42,43

III. THERMAL CONDUCTIVITY OF (12x) Si: xGe
NANOCOMPOSITES

As an example of application of the theory for low con-

ducting interfaces, we study the thermal conductivity of

semiconductors nanocomposites, which is significantly

smaller than the thermal conductivity of pure crystals. Such

a strong reduction depends on the phonons scattering pro-

duced by the heterogeneity of the system, and it is here rep-

resented by an equivalent Kapitza resistance between

adjacent grains. This property is exploited for improving the

efficiency of semiconductors used in thermoelectric cooling,

heating, and power generation.44

To begin, we consider a nanocomposite (multigrained

material) composed of silicon (volume fraction 1� x) and

germanium (volume fraction x) grains with average size D
between 5 and 100 nm. We mention that the thermal conduc-

tivity of pure crystal is rSi ¼ 130 W K�1 m�1 for silicon and

rGe ¼ 58 W K�1 m�1 for germanium. As discussed above,

the marked reduction of the thermal conductivity in hetero-

geneous materials is taken into account through the introduc-

tion of a thermal Kapitza resistance between grains.7 Indeed,

the disordered grain boundaries generate phonon scattering

preventing a good heat transfer. In this case, the effective

conductivity of the composite material can be obtained

through Eq. (24), applied to a system with two isotropic

phases

1

drLC
¼ 1� v2ð Þp11

r1

1þ r11r1

D1

þ d � 1ð ÞrLC

þ 1� v2ð Þp12

r1

1þ r12r1

D1

þ d � 1ð ÞrLC

� v2p21

r1

1þ r12r2

D2

þ d � 1ð ÞrLC

þ v2p22

r2

1þ r22r2

D2

þ d � 1ð ÞrLC

;

(26)

where the indices 1 and 2 correspond to Si and Ge, respec-

tively. The model allows to study both the stoichiometry and

the granulometry influence on the effective conductivity.

Here, we consider the case with the same average size for

the Si and Ge grains, i.e., D1 ¼ D2 ¼ D. Moreover, we adopt

Eq. (18) that simply leads to the expression pij ¼ vj (we used

D1 ¼ D2 ¼ D) or, more explicitly, to p11 ¼ p21 ¼ v1 and

p12 ¼ p22 ¼ v2.

In Fig. 5, we show the general behavior of the effective

thermal conductivity rLC in terms of the germanium volume

fraction vGe and the average particles diameter D. We

observe that the conductivity is an increasing function of D
(for any value of vGe) since the fraction of grain boundaries

(reducing the conductivity through the phonon scattering) is

inversely proportional to the average value of D. Moreover,

we note that, for a fixed value of D, the effective conductiv-

ity exhibits a minimum for vGe ¼ 0:4� 0:5, corresponding

to the largest heterogeneity of the system. This corresponds

to the fact that typically the relationships rSi�Ge > rSi�Si and

rSi�Ge > rGe�Ge are satisfied. It means that the degradation

effect of the interface is more pronounced if the adjacent

grains are different.

In Fig. 6, we draw a comparison between the theoretical

results based on Eq. (26), one experimental result for a

FIG. 5. Effective conductivity rLC of the multigrained Si-Ge composite ver-

sus the germanium volume fraction vGe (stoichiometry) and the average

grain size D (granulometry). The surface represents the solution of Eq. (26)

with d¼ 3, rSi ¼ 130 W K�1 m�1, rGe ¼ 58 W K�1 m�1, rSi�Si ¼ 5� 10�9

m2 K/W, rGe�Ge ¼ 3� 10�9 m2 K/W, and rSi�Ge ¼ 8� 10�9 m2 K/W.

FIG. 6. Effective conductivity rLC of multigrained Si-Ge materials versus

the germanium volume fraction vGe (stoichiometry) for different average

grain size D (granulometry). The solid curves represent the solution of Eq.

(26) with the same parameters used in Fig. 5. The red square symbol corre-

sponds to an experimental result with D¼ 15 nm and vGe ¼ 0:2,45,46

the green circular symbol corresponds to another experimental result with

D ¼ 10�30 nm and vGe ¼ 0:05,47 and the blue triangles have been obtained

through molecular dynamics simulations.48
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nanocomposite with grains of size D ¼ 15 nm and volume

fraction vGe ¼ 0:2,45,46 and the other with D ¼ 10� 30 nm

and vGe ¼ 0:05,47 and a series of molecular dynamics simula-

tions for a system with average grain size of 10.5 nm and vari-

able volume fraction.48 In order to obtain the quite good

agreement shown in Fig. 6, we considered the values rSi�Si

¼ 5� 10�9 m2 K/W, rGe�Ge ¼ 3� 10�9 m2 K/W, and

rSi�Ge ¼ 8� 10�9 m2 K/W for the thermal resistance

between the grains. These three values represent the only

quantities that we fitted in order to obtain a good agreement

of the effective conductivity with the available data. Of

course, the value of the Kapitza resistance depends on the

nanoscopic architecture of the grain boundary and, therefore,

the values adopted in our model must be considered as effec-

tive values giving the good agreement between model and

existing experimental and numerical data. Interestingly

enough, these values are of the same order of magnitude of

other results for the thermal resistance of grain boundaries, as

published in recent literature.49–52 Therefore, this accordance

confirms the applicability of our model to analyse the thermal

conductivity of multigrained nanocomposites. We can also

observe in Figs. 5 and 6 the thermal behavior of pure poly-

crystalline Si and Ge materials. Indeed, for vGe ¼ 0, we have

polycrystalline silicon and for vGe ¼ 1 we have polycrystal-

line germanium, both with average grains size D. In this sim-

ple case, we easily obtain from Eq. (26) the simpler

expression

rLC ¼
ri

1þ riiri

D

; (27)

which is valid for polycrystalline silicon (i¼ 1, vGe ¼ 0) and

polycrystalline germanium (i¼ 2, vGe ¼ 1). This expression

is perfectly coherent with some earlier investigations.53–55

To conclude, the above results about nanograined sys-

tems can be compared with the thermal conductivity of the

disordered Si-Ge alloys.56–58 We remark that the thermal

conductivity is smaller in multigrained nanocomposites

(with D< 40 nm) than in bulk alloys (where we have a pla-

teau region for 0:2 < vGe < 0:8).48,56 This is coherent with

the fact that in the alloy structure we have no real disordered

grain boundaries between Si and Ge regions but rather a

composition heterogeneity in a well defined crystal lattice.

As a matter of fact, the phonons scattering effects are more

pronounced in real grain boundaries than in non-

homogeneous lattices. This is consistent with earlier experi-

mental and numerical results.45–48

IV. ELECTRIC CONDUCTIVITY OF NANOCRYSTALLINE
AND MICROCRYSTALLINE (12x) Li2O : xB2O3

COMPOSITES

As an example of application of our theory for high con-

ducting interfaces, we consider ionic conductors exhibiting an

uncommon behavior. For instance, by reducing the grain size

of the polycrystalline CaF2, we can observe an increase in the

overall conductivity.59 The same phenomenon has been mea-

sured in diphase multigrain systems, where an insulator is

combined with a conducting material.60 The enhancement of

the conductivity has a practical interest since these ionic con-

ductors are suitable electrolytes in solid-state batteries. Recent

studies concern the measurement of conductivity in nanocrys-

talline and microcrystalline ð1� xÞLi2O: xB2O3 composites,

where Li2O is an ionic conductor and B2O3 is an insula-

tor.61,62 The improved conductivity leads to a pronounced

maximum in the effective conductivity versus the volume

fraction of the insulator phase. This maximum is followed by

a percolation phenomenon characterized by a percolation

threshold and a zero conductivity. This behavior can be

explained by assuming that at the Li2O� B2O3 interfaces the

conductivity is strongly enhanced and it can be therefore

described by the high conducting interface model. Indeed, the

conductivity intensification is more pronounced for smaller

grain size, being in this case larger the total contact area

between Li2O and B2O3. Experiments showed that, at a tem-

perature of 433 K, we have rLiO2
ffi 5� 10�8 S/cm and rB2O3

quite negligible. Therefore, we define r1 ¼ rB2O3
¼ 0 S/cm

and r2 ¼ rLiO2
¼ 5� 10�8 S/cm. We also define the volume

fractions v1 ¼ vB2O3
¼ v; v2 ¼ vLiO2

¼ 1� v and the dimen-

sionless effective conductivity y ¼ rHC=rLiO2
(see Eqs. (23)

and (25) for the definition of rHC). We suppose to have the

same average size for conducting and insulating grains, i.e.,

D1 ¼ D2 ¼ D, coherently with experimental data.61,62 The

Li2O� B2O3 interphase is characterized by a conductivity

rhigh=rLiO2
¼ 200 and by a thickness k¼ 1 nm, independently

of the grain size.61,62 Hence, we can use Eq. (4) in order to

define the value of the interface conductance g. We easily find

the general expression g ¼ krhigh, where k is the interface

thickness and rhigh represents its conductivity. This mixture

shows specific size dependent affinities between the two com-

ponents, which are not taken into account by Eq. (18). So, in

order to apply Eq. (25) to this heterogeneous system, we

search for the most general form of the matrix pij for a diphase

system with D1 ¼ D2 ¼ D. As above discussed, this 2� 2

matrix has only one degree of freedom since it must satisfy

Eqs. (16) and (17). So, if we set p11 ¼ av (p11 must be propor-

tional to the insulator volume fraction), we easily find that

p11 p12

p21 p22

 !
¼

av 1� av
v 1� avð Þ

1� v

1� 2vþ av2

1� v

0
@

1
A: (28)

Of course, when a¼ 1 we obtain the simpler scheme charac-

terized by Eq. (18). Anyway, the application of Eq. (25)

leads to

1

dy
¼ av2

d � 1ð Þy
þ 1� 2vþ av2

1þ d � 1ð Þy

þ v 1� avð Þ
d � 1ð Þ yþ bð Þ

þ v 1� avð Þ
1þ d � 1ð Þ yþ bð Þ

; (29)

where b ¼ g=ðrLiO2
DÞ ¼ krhigh=ðrLiO2

DÞ depends on both

the granulometry and the interface conductance.

The behavior described by Eq. (29) can be found in

Figs. 7 and 8. In Fig. 7, we consider the case with a¼ 1 and

a variable coefficient b, and we plot the normalized effective

conductivity y for two-and three-dimensional structures. We

observe that the percolation behavior depends only on the
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dimensionality of the system. Indeed, we can easily deduce

from Eq. (29) that the percolation threshold is given by

v� ¼
ffiffiffiffiffiffiffiffiffiffiffi
d � 1

ad

r
; (30)

depending only on a and d. It is interesting to note that the

coefficient b controls the emergence of a maximum point in

the conductivity curves. Being b inversely proportional to

the average grain size D, we underline that the maximum is

more pronounced for nanoscopic grains. In previous litera-

ture, this behavior has been clearly observed by using

Monte-Carlo simulations for percolating systems with high

conducting interfaces.63

Conversely, in Fig. 8, we show the results obtained by

setting b¼ 10 and by varying a in the range from 0.8 to 1.2.

In this case, we observe a shift of the percolation threshold,

as predicted by Eq. (30). From the physical point of view,

this point can be explained by observing that pij (or a)

defines the statistics of the contacts between different grains

and, therefore, controls the conducting paths within the com-

posite system. Consequently, the value of a is directly corre-

lated with the percolation properties of the system.

Finally, in Fig. 9, the theoretical results have been accu-

rately confirmed against available experimental data concern-

ing the ð1� xÞLi2O : xB2O3 system with microscopic and

nanoscopic grains.61,62 The microscopic grains have an aver-

age size D ¼ 10 lm, and therefore, we have b ¼ 2� 10�2.

The quite good agreement with the experimental data has

been obtained with a ¼ 1:36. For the nanoscopic grains, we

have D¼ 20 nm and b¼ 10, and we used the value a ¼ 0:81.

We note that the model is able to predict the broad maximum

of the conductivity for vB2O3
’ 0:6 in the case of nanoscopic

grains and the monotone decreasing behavior of the conduc-

tivity for the case of microscopic grains. Moreover, the

introduction of the coefficients pij allowed the perfect inter-

pretation of the percolation threshold positions. This point has

been realized through the associated coefficient a, which is

the sole free parameter (not fixed by known physical quanti-

ties) in this comparison of theoretical and experimental

results.

V. CONCLUSION

In this paper, we presented a generalization of the effec-

tive medium theory explicitly developed for taking into

account the effects of imperfect interfaces in multigrained

(polycrystalline) composite materials. More specifically, we

considered both the low conducting and the high conducting

imperfect interfaces. To approach the problem, we proposed

a multiscale procedure composed of the following steps: (i)

at the beginning, we considered a coated particle and we ana-

lysed the limiting cases of low and high conducting interfa-

ces; (ii) then, we determined the effective conductivity of a

dispersion of particles with imperfect interfaces; (iii) finally,

we implemented a self-consistent effective medium theory

to move from dispersions to multigrained systems. The theo-

retical results have been compared with numerical and

experimental data concerning the thermal conductivity of

ð1� xÞSi : xGe mixtures and the electrical conductivity of

ð1� xÞLi2O : xB2O3 composites. In both cases, we found a

good agreement between theory and earlier results.

FIG. 8. Solutions of Eq. (29) with fixed b and variable a for both d¼ 2 and

d¼ 3. The percolation threshold depends on the dimensionality of the sys-

tem and on the value of a, as predicted by Eq. (30).

FIG. 9. Comparison between solutions of Eq. (29) (solid lines) and experi-

mental data (symbols) for microscopic and nanoscopic grains.61,62 While for

D ¼ 10 lm we have a decreasing behavior of the effective conductivity ver-

sus the insulator volume fraction, for D ¼ 20 nm we have a maximum of the

conductivity and a larger percolation threshold.

FIG. 7. Solutions of Eq. (29) with fixed a and variable b for both d¼ 2 and

d¼ 3. The percolation threshold depends only on the dimensionality of the

system.
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APPENDIX: CORE-SHELL STRUCTURE
HOMOGENIZATION

We consider a core-shell structure in d-dimension com-

posed of an anisotropic core of tensor conductivity r̂c with

radius Rc and an isotropic shell of scalar conductivity rs

with radius Rs (see Fig. 2). We embed this composite parti-

cle in a matrix with conductivity rm, where an external uni-

form electric field ~E0 is applied. We use the terminology

typical of the electrical conductivity context, but we know

that the results can be applied to all other transport pro-

cesses as well. We consider the following mathematical

form of the electrical potential in the three regions (core,

shell, and matrix)

/m ¼ �~E0 �~x þ
~Q �~x
rd

; (A1)

/s ¼ ~S �~x þ
~T �~x
rd

; (A2)

/c ¼ ~C �~x; (A3)

where ~x ¼ ðx1; x2; x3Þ is the position vector, r ¼ jj~xjj, and

d¼ 2 or 3 depending on the cylindrical or spherical geometry

considered. As well known, the dipolar term~a �~x=rd satisfies

the Laplace equation 8~a, i.e., r2
dð~a �~x=rdÞ ¼ 0, where

r2
d ¼

Pd
i¼1 @xi

@xi
. The unknown vectors ~Q; ~S; ~T , and ~C

must be determined by considering the continuity of the elec-

trical potential and of the normal component of the displace-

ment vector over the two surfaces with radii Rc and Rs. After

long but straightforward calculations, the four conditions can

be written as follows:

~C ¼ ~S þ
~T

Rd
c

; (A4)

�~E0 þ
~Q

Rd
s

¼ ~S þ
~T

Rd
s

; (A5)

r̂c
~C ¼ rs

~S � rs d � 1ð Þ
~T

Rd
c

; (A6)

rs
~S � rs d � 1ð Þ

~T

Rd
s

¼ �rm
~E0 � rm d � 1ð Þ

~Q

Rd
s

: (A7)

In order to homogenize the composite particle, we need to

analyse the external field described by the vector coefficient
~Q. Its value can be found by solving the system composed of

Eqs. (A4)–(A7), eventually obtaining

~Q ¼ N̂D̂
�1~E0; (A8)

where

N̂ ¼ Rd
s

(
Rs

Rc


 �d

rs � rmð Þ rs d � 1ð ÞÎ þ r̂c

� �

þ rs d � 1ð Þ þ rm½ � r̂c � rsÎ
� 	)

; (A9)

D̂ ¼ Rs

Rc


 �d

rs þ d � 1ð Þrm½ � rs d � 1ð ÞÎ þ r̂c

� �
þ d � 1ð Þ rs � rmð Þ r̂c � rsÎ

� 	
: (A10)

If we consider the particular case of a homogeneous particle

of tensor conductivity r̂ef f , we can determine the corre-

sponding value of ~Q by considering Rc¼Rs and r̂c ¼ r̂ef f in

Eq. (A8). The result is

~Q
Rc ¼ Rs

r̂c ¼ r̂ef f

 !
¼ Rd

s ðr̂ef f � rmÎÞ

� ½rmðd � 1ÞÎ þ r̂ef f ��1~E0: (A11)

The effective conductivity tensor r̂ef f of the composite parti-

cle is defined as the conductivity tensor of an homogeneous

particle that generates the same external field of the compos-

ite one. Hence, we can find r̂ef f by equating Eqs. (A8) and

(A11), and the final result is

r̂ef f ¼ rmðD̂ þ ðd � 1ÞN̂ÞðD̂ � N̂Þ�1

¼ rsfðd � 1Þð1� cÞrsÎ þ ½1þ cðd � 1Þ�r̂cg
� ½ðd � 1þ cÞrsÎ þ ð1� cÞr̂c��1: (A12)

Of course, we can observe that r̂ef f does not depend on rm,

as expected.
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