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Abstract—This position paper deals with privacy for deep
neural networks, more precisely with robustness to membership
inference attacks. The current state-of-the-art methods, such
as the ones based on differential privacy and training loss
regularization, mainly propose approaches that try to improve
the compromise between privacy guarantees and decrease in
model accuracy. We propose a new research direction that
challenges this view, and that is based on novel approximations
of the training objective of deep learning models. The resulting
loss offers several important advantages with respect to both
privacy and model accuracy: it may exploit unlabeled corpora,
it both regularizes the model and improves its generalization
properties, and it encodes corpora into a latent low-dimensional
parametric representation that complies with Federated Learning
architectures. Arguments are detailed in the paper to support
the proposed approach and its potential beneficial impact with
regard to preserving both privacy and quality of deep learning.

Index Terms—Differential privacy, regularization, unsuper-
vised risk

I. INTRODUCTION

Data is ubiquitous but, assuming that there is enough

computational power, time and human efforts, two other major

issues severely limit its exploitation in machine learning:

• Data is rarely free, because it is always costly either to

produce (e.g., writing a tweet) or to capture (e.g., buying

and maintaining sensors in the industry as well as the

storing devices). So the people who have invested time

or money in this process own rights over the data.

• Information in data may be harmful to specific people or

groups of people, and should not be openly accessible.

These two issues, namely copyrights and privacy, despite

originating from fundamentally divergent motivations and

contexts, may be considered jointly from the technical point

of view, because they both can be addressed from similar

computational approaches that restrict access to the data,

while still making the best efforts to exploit the information

contained in data to enrich shared models.

One widely known approach to achieve this is differential

privacy (DP). However, DP suffers from several major issues,

which we review next, and we propose in the following an

alternative approach that shall relieve us from the urge to rely

on DP and its drawbacks.
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II. LIMITS OF DIFFERENTIAL PRIVACY

The first limitation of DP is due to the fact that noise is

injected in the training process: this noise inevitably impacts

the classification or regression performances of the model.

Therefore, a compromise between quality of the model and

the level of protection of private information has to be found.

Several studies report that, in practical applications, in order

to reach acceptable level of privacy, the quality of the model

has to be severely degraded, which makes the model nearly

useless for the target task [1].

Another major drawback of DP is a direct consequence of

the core principle of DP that aims at preventing the model from

memorizing individual samples from the training corpus. This

principle comes in contradiction with recent works [2], which

prove that memorization of singleton labels that typically occur

in the long-tail distribution of labels (e.g., think about the long

tail of the Zipf law ubiquitous in natural language), is required

so that the model may be able to generalize to infrequent

sample sub-populations. This result shows that alternative

approaches to DP shall be considered to protect privacy if

we want to train high-quality models with good generalization

properties.

III. REGULARIZATION FOR PRIVACY

We argue next that DP can be advantageously replaced in

deep neural networks by a combination of data protection

approach, and non-destructive regularization techniques during

training.

First, privacy can only be guaranteed when the data itself

is not accessible to other practitioners than the data producers

themselves. Federated Learning is currently one of the privi-

leged approach to protect data, as the data itself does not leave

the data producer’s premises. Every computation that requires

access to this particular data, such as training a deep neural

network, is realized locally on such premises.

Second, the model itself, after or during training, shall not

disclose private information. Instead of degrading the model to

achieve this goal, as DP does, we argue that the models shall

rather be modified to prevent membership inference attacks.

This is of course a less strong guarantee than the one obtained

by DP, because making the model robust to a selected set of

membership inference attacks does not guarantee that, later,

someone will design a novel privacy attack to which our model

may not be robust. But compared to the loss in quality incurred



by DP models, we believe that this potential threat is more

acceptable, and may be dealt with later on if it ever happens.

A. Privacy attacks and mitigations

We focus next on blackbox membership inference attacks,

which are one of the most general and easiest types of privacy

attacks against deep learning models.

The first family of such attacks rely on training a shadow

model to mimick the behavior of the model under attack [3].

However, training such shadow models is becoming more

and more difficult, if not impossible, given the size and cost

of recent deep neural networks, especially in the Natural

Language Processing domain, such as GPT3 or GShard and

its 600 billion parameters [4]. Furthermore, other studies [5]

have shown that as good and sometimes even better attacks

may be achieved by simple metrics computed on the output

logits of the target model. When considering these families

of attacks, a straightforward objective to mitigate them is to

prevent the outputs of the model to be different between in-

training and out-of-training samples. This can be achieved

by adding regularization terms to the loss during training

of the model. Such regularization may be the standard L2-

norm, or dedicated adversarial terms [6]. However, similarly

to differential privacy, such regularization terms alter the

parameters search space landscape during training and moves

away the regularized optimum from the task objective, which

is classification accuracy. Consequently, this may also result

in a decrease in performances of the trained model.

B. On regularization

Our claim that, conversely to differential privacy, regulariza-

tion approaches shall not inevitably lead to a decrease in the

accuracy of the trained model, and so regularization constitutes

a better option to investigate than DP to maximize both privacy

and accuracy.

The loss function that is optimized during training is com-

posed of two terms: the main error loss, which usually min-

imizes the empirical risk, and the regularization term, which

commonly minimizes the model’s parameters complexity.

Minimizing the empirical risk with the main error loss makes

the model overfits to the training dataset, which negatively

impacts both its generalization capabilities and its robustness

to membership inference attacks. Therefore, a regularization

term, such as the L2-norm, is used to counterbalance such

negative consequences. By smoothing the parameters search

space, this regularization term reduces overfitting, which im-

proves generalization as well as robustness to membership

inference attacks. But regularization may also have a negative

impact on the model accuracy, because it commonly only

depends on the values of the model’s parameters, and not

on the task-specific evidence. Therefore, a compromise has

classically to be found between the respective weights of both

terms in the total loss.

Our proposal in this paper rather aims at designing an

ideal regularization term that would both prevent overfitting

and optimize the classification risk. We believe an interesting

research direction towards this goal might be to give up the

standard empirical risk approximation, as it is done in [7]. We

briefly describe the underlying principle next and how it could

be applied to mitigate membership inference attacks without

impacting the model accuracy.

C. Unsupervised risk approximation

Let us consider without loss of generality a binary classifier

that is trained with the hinge loss; our objective is to minimize

the error that the classifier makes on unknown test data: this

objective is formalized with the classification risk R(θ):

R(θ) = Ep(x,y)

[

(1− f(x) · (2y − 1))+
]

(1)

= P (y = 0)

∫

p(f(x) = α|y = 0)(1 + α)+dα+

P (y = 1)

∫

p(f(x) = α|y = 1)(1− α)+dα

where x are the observations, y the true class (y is unknown,

because we consider here unsupervised training) and f(x) is

the scalar output score for observation x of a deep neural

network parameterized by θ. Class 0 (resp. class 1) is chosen

when f(x) is negative (resp. positive). In the first equation,

the expected value of the hinge loss is computed over the full

continuous data distribution p(x, y), including any unknown

test corpus that will be created in the future.

Usually, this unknown distribution p(x, y) is approximated

by a finite labeled corpus, which leads to the classical su-

pervised training algorithm with empirical risk minimization.

We do not consider such an approximation here, because it

requires to know the gold labels y, and because it is the

root cause of overfitting. We rather follow two assumptions

proposed in [8], which state that the prior P (y) is known

and that the class-conditional distribution of the output score

p(f(x)|y) is Gaussian. We will discuss next some conditions

proposed in [7] to fulfill these assumptions. But for now, these

assumptions allow us to derive Equation-1 into the following

closed-form equation of the risk:

R(µ, σ) =
P (y = 0)

2
(1 + µ0)

(

1− erf

(

−1− µ0

σ0

√
2

))

+

P (y = 0)σ2
0N(−1;µ0, σ0) + (2)

P (y = 1)

2
(1− µ1)

(

1 + erf

(

1− µ1

σ1

√
2

))

+

P (y = 1)σ2
1N(1;µ1, σ1)

where (µ0, σ0) and (µ1, σ1) are the parameters of the Gaus-

sians respectively associated with class 0 and class 1.

This equation has several important properties with regard

to our privacy objective:

• The Gaussian parameters µ = (µ0, µ1) and σ = (σ0, σ1)
can be estimated from an unlabeled corpus with standard

Gaussian mixture estimation algorithms; the mixture co-

efficient being the known prior P (y).



• (µ, σ) depend deterministically on the model parameters

θ; this enables to train θ with gradient descent and with

the chain rule:

∂R(θ)

∂θ
=

∂R(θ)

∂(µ, σ)
×

∂(µ, σ)

∂θ

The Gaussians thus act as a proxy that decouples the

model parameters from the corpus: once the gradients

with respect to each Gaussian have been computed, the

deep model can be trained without any information from

the corpus. This is important in the context of distributed

privacy-protecting architectures.

• Such a training process uses the unlabeled corpus of

observations only to estimate 4 parameters: the 2-

dimensional vectors (µ, σ); then, the large number of pa-

rameters θ of the deep neural network may be trained only

from (µ, σ), without any data. This makes optimizing the

risk extremely robust to overfitting.

However, this training process provably converges towards

the optimum classification risk minθ R(θ) only when both as-

sumptions are fulfilled. The first assumption about the known

prior is not a major issue, as P (y) can often be estimated from

prior knowledge in many applications, such as the prevalence

of a disease in healthcare diagnostics, and preliminary ex-

periments suggest that unsupervised optimization is relatively

robust to small estimation errors of P (y).
About the second assumption, it is shown in [7] that the

bi-Gaussianity assumption is valid in a neighborhood of the

minimum of the empirical risk. Therefore, we suggest to not

use Equation-2 as the first risk to optimize, but rather as a

regularizer that should be applied after standard supervised

training. The advantages of our regularizer, compared to

the other ones, is that it both reduces overfitting, improves

generalization and optimizes the test accuracy of the model.

D. Optimization process

The proposed approach may thus be decomposed into the

following stages:

• In the first stage, the deep neural network is trained

classically with the supervised empirical risk objective,

which gives an initial set of parameters θ. At this stage,

the accuracy of the model is good but it is sensitive to

membership inference attacks.

• In the second stage, we collect an additional unsupervised

corpus of data from the application. This second corpus

does not need to be labeled, which greatly reduces the

cost of the collection process, as raw unlabeled data is

often readily available in many application domains. If

this is not an option, then the initial training corpus that

has been used in the first stage may also be used in

stage 2, although better generalization properties may be

obtained with a larger unlabeled corpus.

• In the third stage, the model parameters are optimized

without supervision by iterating the following steps:

– Make a forward pass over the unlabeled corpus to

obtain the distribution p(f(x)).

– Compute the bi-Gaussian parameters (µ, σ) from this

distribution with, e.g., the Linde-Buzo-Gray algo-

rithm or any other related method.

– Apply one step of gradient descent to optimize R(θ)
given (µ, σ).

During the third step, the model parameters θ will slowly

deviate from the initial minimum of the empirical risk, which

is prone to overfitting, and rather converge towards our approx-

imation of the optimal true classifier risk R(θ), which does

not depend on the finite training corpus and is thus immune

to overfitting.

Of course, the quality of the approximation of R(θ) by

Equation-2 depends on the representativity of the second

corpus collected in stage 2; but this corpus does not need to be

labeled, and can thus be much larger than the training corpus

used in stage 1. Furthermore, only 4 parameters are trained

on this corpus, which makes overfitting of these Gaussian

parameters nearly impossible.

In other words, the rationale of this approach is to exploit

large-capacity deep neural networks to project the observed

features into a simple latent space where the class-conditional

Gaussianity assumption is valid. Note that quite a similar

relationship between a simple Gaussian and a complex feature

space is also built in related works, such as the well-known

variational auto-encoder [9], which confirms that such a pro-

jection is achievable through neural networks with enough ca-

pacity. Then, in this simple latent space, the corpus distribution

is discarded and replaced by the low-dimensional Gaussian

mixture; this is this “replacement” step that actually performs

regularization, as all the specific details and outliers observed

in the corpus are deleted. The Gaussian mixture approximation

also generalizes beyond the training corpus, and implicitly

covers domain samples that have not been seen in the training

corpus. Optimizing Equation-2 with a few gradient steps then

attemps to reduce the overlapping between both Gaussians,

which provably converges towards the true classifier risk. Only

a few gradient steps must be performed before the Gaussian

parameters shall be re-estimated from the data in order to avoid

the Gaussian mixture to diverge from the observations.

The main challenge and most important aspect in this

paradigm is to start from an initial Gaussian mixture represen-

tation that clusters the data into the target classes of interest.

This is why we propose to first completely train the model in a

supervised way, and then only regularize it a-posteriori, instead

of mixing regularization with the supervised training loss, as

it is usually done. Our preliminary experiments confirm that

this is a viable strategy to fulfill the Gaussianity assumption.

Furthermore, our regularization objective does not deviate

from the classification risk optimum as other regularizers do,

and so it does not need to be “guided” by the main supervised

loss and can be applied independently.

E. Towards improved privacy

Beyond improved generalization, we expect this paradigm

to increase the robustness of the model against membership

inference attacks for the following reasons:



• By reducing overfitting: it has indeed been previously

shown that the degree of overfitting is correlated to

the success of membership inference attacks and that

regularizing the model improves robustness against them.

• By reducing the dependence to the training corpus:

we have seen in the previous section that the proposed

approach decouples the training process from the actual

corpus through the Gaussian mixture distribution. The

model is thus actually trained without seeing any specific

training sample: it only has access to the generic Gaus-

sian mixture distribution. Consequently, its dependence to

specific training samples shall be more and more reduced

during this process, and thus the possibility to exploit the

model’s logits to know whether a sample is in the training

corpus or not also disappears.

• By combining it with other adversarial privacy terms:

the proposed approach replaces the supervised loss by

another unsupervised loss, and so, as far as we know, it

should be compatible with other terms that may be added

to the loss to improve the model’s privacy, especially ad-

versarial terms that prevent the model from being able to

discriminate between samples that belong to the training

corpus and the others. We believe such adversarial terms

also constitute a very interesting track of research towards

improved privacy.

• By combining it with Federated Learning: the pro-

posed loss is particularly well suited to a distributed

computation framework such as Federated Learning, be-

cause of the Gaussian mixture proxy that it uses to

represent the whole training corpus, which boils down

to computing only 4 scalar parameters that are too small

to encode any sensitive private information. It should

thus be possible to compute globally these four global

statistics with simple secure multiparty homomorphic

operations at a reasonable cost, while specialized deep

neural networks are updated locally, but this option is

still to be investigated.

IV. CONCLUSIONS

In this position paper, we have briefly analyzed the impact of

regularization from the perspective of robustness of deep neu-

ral networks to membership inference attacks, and compared it

with other standard approaches, especially differential privacy.

Then, we have proposed a novel regularization process that

relies on a non-standard approximation of the classifier risk,

which gives an unsupervised loss with interesting properties

with regard to generalization and, potentially, privacy. The

benefits of this loss for privacy are only conjectured so far,

and they still need to be validated experimentally. However,

we have also listed several arguments that support this claim,

and drawn extensions of the proposed approach to combine it

with other promising research directions. Novel paradigms are

required to initiate new tracks of research and progress towards

improved privacy, and this proposal clearly departs from the

main lines of research in the domain, but is also complemen-

tary with some of them, such as adversarial regularization. We

believe it opens interesting research directions, but exploring

them and studying experimentally their properties will require

time, and this is why we have opted for now to submit the

current state of our work as a position paper. The next steps

will be, after having extensively evaluated the robustness of the

approach against membership attacks, to study its combination

with other adversarial regularization terms, as well as its

robustness to other types of privacy attacks, especially white-

box attacks that should become more frequent as the number

of large pre-trained deep neural networks that are freely dis-

seminated increase. Another, more technical advantage of the

proposed approach is its relatively moderated computational

cost, which results from the fact that the unsupervised loss can

be fully differentiated in closed form and that good piecewise-

linear approximations may be exploited as suggested in [7].

These questions shall also be experimentally validated in a

future work. Finally, extensions of this approach to multi-class

will be required to make the approach applicable in practical

cases. However, despite such extensions being straightforward

theoretically, we expect that difficult challenges will have to

be solved in practice, for instance to estimate the N Gaussian

mixtures that shall precisely match the target class-conditional

distributions.
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