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Abstract

Motivated by A/B/n testing applications, we consider a finite set of distributions
(called arms), one of which is treated as a control. We assume that the population
is stratified into homogeneous subpopulations. At every time step, a subpopulation
is sampled and an arm is chosen: the resulting observation is an independent draw
from the arm conditioned on the subpopulation. The quality of each arm is assessed
through a weighted combination of its subpopulation means. We propose a strategy
for sequentially choosing one arm per time step so as to discover as fast as possible
which arms, if any, have higher weighted expectation than the control. This strategy
is shown to be asymptotically optimal in the following sense: if τδ is the first
time when the strategy ensures that it is able to output the correct answer with
probability at least 1 − δ, then E[τδ] grows linearly with log(1/δ) at the exact
optimal rate. This rate is identified in the paper in three different settings: (1)
when the experimenter does not observe the subpopulation information, (2) when
the subpopulation of each sample is observed but not chosen, and (3) when the
experimenter can select the subpopulation from which each response is sampled.
We illustrate the efficiency of the proposed strategy with numerical simulations on
synthetic and real data collected from an A/B/n experiment.

1 Introduction

A/B/n testing is a website optimization procedure where multiple versions of the content (called
"arms" below) are compared, often in order to find the one with the highest conversion rate. However,
many e-commerce companies use A/B/n testing not only to deploy the best product implementation,
but primarily to draw post-experiment inferences [11]. The decision-making involves, besides
experiment results, factors such as the cost of scaling-up a solution, external data, or whether the
implementation fits in a broader theme. In this setting, each of the arms better than the default product
(which we will refer to as the "control" arm) is a contender for being deployed and the interest is not
only in the best arm.
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Given the control and K ≥ 1 alternative implementations (variants), the simplest idea is to distribute
the traffic uniformly among the arms; the arms that appear to be significantly better than the control
at the end of the experiment are considered for deployment. While well-established, this process
can be inefficient in terms of resources. Some alternatives are soon obviously worse (or better) than
the control and would require fewer samples than the alternatives closer to the control. A second
related shortcoming of the basic A/B/n testing approach is that setting the duration of the experiment
–when done in advance– necessitates a very conservative approach by choosing a run-length that is
sufficiently long to differentiate even the smallest possible changes.

To address these limitations, we consider in this work sequential testing policies that can both adjust
the allocation of the samples and be stopped adaptively, in light of the data gathered during the
experiment. In the terminology of multi-armed bandits, this corresponds to pure exploration problems
(see, e.g., Chap. 33 of [15]). A pure exploration strategy will typically choose every minute (say),
an allocation of traffic that favors arms for which the uncertainty is the highest. The experiment is
stopped as soon as the significance is considered sufficient for every arm. Approaches have been
developed in [8, 12, 10] for the identification of the single arm with the highest mean, a task called the
Best Arm Identification (BAI) problem. In particular, [10] propose a strategy that is asymptotically
optimal in the fixed confidence setting, meaning that, given a risk parameter δ, it finds the best arm
with probability at least 1− δ, using an expected number of samples that is hardly improvable when δ
is small. Later, [18] incorporated the special role of the control arm in BAI and proposed an algorithm
that declares as winning arm the one with the highest mean only if it is significantly better than the
control. In this paper, we propose a solution to the problem of identifying all the arms that are better
than the control, in a framework that generalizes the fixed confidence setting. In order to provide
useful tools for practical A/B/n testing, we address two additional issues.

First, traditional stochastic bandit models are based on the assumption that the arm samples are
i.i.d., whereas real world data streams usually show trends or some form of inhomogeneity. A
particular case of interest for website optimization are the seasonal patterns caused by time-of-day or
day-of-week variations. We henceforth include in our model observed covariates (e.g. the time of the
day, but possibly also the country of origin, or controlled covariates like the order in which partners
appear on the page, etc.) that stratify the observations into homogeneous subpopulations. We study
different scenarios, depending on how much interaction is possible with these subpopulations. We
provide a sample complexity analysis and an efficient algorithm in each case. In particular, we will
show that using the subpopulation information efficiently can provide significant speedups of the
decision-making. In the following, we will refer to the task of identifying the set of Arms that are
Better than the Control in the presence of Subpopulations as the ABC-S problem.

Second, the practice of A/B/n testing often differs from a pure sequential experiment in that the
experimenter cannot always fix a risk δ at the beginning and passively wait for the stopping time of
the experiment without any time limitation. To address this issue, [11] proposed to define some notion
of sequential "p-values" that can be monitored as the experiment progresses and used to terminate it.
This notion was further used in the BAI setting in [18]. In this contribution, we elaborate on this idea
by sequentially updating a suggested solution to the ABC-S problem together with a risk assessment
for this suggestion. We show that, for any stopping time, the probability that the suggested solution is
incorrect is indeed lower than the risk assessment. When the stopping time is selected as in usual
fixed-confidence pure exploration, we recover the exact same guarantees but this view of the problem
also provides useful results, for instance, if the experiment needs to be terminated prematurely.

Related work. Pure exploration strategies have been studied in various settings: the identification
of the best arm [8, 10], the identification of the top m arms [3, 12, 9] identifying the arms that are
better than a threshold [16, 4], or identifying all ε-good arms [17]. As far as we know, this paper
is the first to consider the problem of identifying all the arms better than a control. It is also the
first to consider subpopulations in pure exploration tasks. While motivated by the example of online
companies, we believe that the proposed algorithms are relevant to other domains where randomized
controlled trials are used for learning. An example could be clinical trials: one may wish to identify
all the alternative treatments that work better that some reference medical treatment. This would
permit to choose among them taking into account different characteristics (some could be cheaper,
using another molecule for avoiding allergy, etc.).

Close to the notion of the control is the notion of threshold. Locatelli et al. [16] propose an algorithm
for identifying all arms above a given threshold. Their algorithm samples according to the significance
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of a statistical test, and shares some similarities with the present article in the Gaussian case; however,
the perspective is rather different: the authors consider the fixed-budget setting: the total number of
samples is fixed, and the goal is then to minimize the probability of returning a wrong answer at the
end. Here, the index of the control arm is known but its probability distribution is not.

In our work, the quality of the different arms is assessed with a weighted combination of its subpopu-
lations means. Minimizing the estimation error of a convex combination of means through adaptive
sampling was considered in [2] with the introduction of a stratified estimator that will naturally
appear in our analysis.

The paper is organized as follows. In Section 2, we present the mathematical model and study the
information-theoretic complexity of the problem, extending the lower bound of [10] to the ABC-S
setting. We show how the complexity of the problem depends on the degree of interaction that one
has with the subpopulations, introducing different modes of interaction to be defined in Figure 1
below. We also consider in detail the Gaussian case which gives rise to more interpretable results.
Section 3 describes how to implement the proposed strategy, which involves the numerical resolution
of non-trivial optimization problems. Finally, we provide the results of numerical experiments on
synthetic and real data sets in Section 4.

2 The complexity of the ABC-S problem

2.1 Mathematical framework

A problem instance consists of the following ingredients. Known to the learner are the number of arms
K ≥ 1 in addition to the designated control arm 0, the number of subpopulations J (a standard bandit
being J = 1), and the vector β ∈ RJ representing the relative importance of the subpopulations for
the learning objective. We further make the stochastic assumption that samples from each arm a
(including the control) and subpopulation i are drawn i.i.d. from an unknown probability distribution
νa,i on R, whose mean we will denote by µa,i. The quality of arm a is µa :=

∑J
i=1 βiµa,i the

combination of the means of the arms in the different populations. For β ∈ RJ we define the ABC-S
problem as the correct identification of the set

Sβ(µ) :=
{
a ∈ [K]

∣∣∣ J∑
i=1

βiµa,i >

J∑
i=1

βiµ0,i

}
.

At every time step t, the algorithm selects an arm At based on previous choices and outcomes and
observes or selects (except when explicitly specified) the population type It. Upon the selection of the
arm At a reward Xt is obtained. This defines a sigma-field generated by the observations up to time
t denoted Ft = σ(I1, X1, . . . , It, Xt). The number of times arm a was selected for subpopulation
i at time t is denoted Na,i(t) :=

∑t
s=1 1(As = a, Is = i) and the number of draws of arm a,

Na(t) :=
∑t
s=1 1(As = a). We define the gap with the control arm and arm a, ∆a := µ0 − µa.

Modes of interaction We consider four modes of interaction of the learner with the bandit, as
specified in Figure 1 below. In any of the three passive modes of interaction (described in Figures 1b
to 1d), we assume that the subpopulation i represents a known proportion αi of the total population,
and hence that the sequence of subpopulations is drawn i.i.d. from the fixed and discrete distribution
It ∼ α = (α1, . . . , αJ) with α ∈ ΣJ := {x ∈ [0, 1]J | ∑i xi = 1} the J-dimensional simplex.
Here α is an exogenous parameter and can differ from β which is inherent to the learning objective
and is also assumed to be known. Although it is most natural in many applications to consider that
β = α (it is even necessary in the oblivious mode to make the estimation of the µa’s feasible),
Example 1 below describes a concrete scenario in which β has negative components.

The distributions (νa,i)a,i are assumed to belong the same one-parameter exponential family, P :=
{(νθ)θ : dνθ/dξ = exp(θx− b(θ))}, with ξ a reference measure on R and b : Θ ⊂ R 7→ R. Every
probability distribution νθ in P is entirely defined by its mean ḃ(θ) [1]. We may hence identify any
bandit instance with its matrix of means µ ∈ R(K+1)×J In addition, the Kullback-Leibler divergence
between two distributions νθ and νθ′ ∈ P may be written in the following Bregman form:

d(µ, µ′) = KL(νθ, νθ′) = b(θ′)− b(θ)− ḃ(θ)(θ′ − θ) ,
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1. Pick At and It
2. See Xt ∼ νAt,It

(a) Active mode

1. See It ∼ α
2. Pick At
3. See Xt ∼ νAt,It

(b) Proportional mode

1. Pick At
2. See It ∼ α
3. See Xt ∼ νAt,It

(c) Agnostic mode

1. Pick At
2. Do not see It ∼ α
3. See Xt ∼ νAt,It

(d) Oblivious mode.

Figure 1: Modes of Interaction between Learner and Bandit in each round. In Active mode the learner
determines the subpopulation, while in the right three passive modes it is sampled from α.

where µ = ḃ(θ) and µ′ = ḃ(θ′) correspond to the means of the two distributions νθ and νθ′ . We also
use the notation kl(p, q) to denote the KL divergence of two Bernoulli distributions of parameter p
and q.

We define L := {µ : ∀a ∈ [K] ∪ {0},∀i ∈ [J ], νa,i ∈ P andµ0 6= µa} the set of identifiable
instances where no arm has the same weighted mean as the control. At every time step, the policies
we consider output a risk assessment δ̂t together with a recommendation Ŝt. We focus on safely
calibrated policies, that are defined as satisfying the following property

∀µ ∈ L, ∀δ ∈ (0, 1), Pµ
(
∃t ≥ 1 : Ŝt 6= Sβ(µ) ∩ δ̂t ≤ δ

)
≤ δ . (1)

Finally, when fixing a level of risk δ, we consider the stopping time associated to the filtration Ft,
τδ = inf{t ≥ 0, δ̂t ≤ δ}. The objective is then to minimize the expected number of rounds necessary
to obtain a level of risk of at most δ. Contrary to usual δ-PAC algorithms if stopped before τδ,
the strategy still provides guarantees on the output set following Equation 1. In particular, safely
calibrated policies have a sampling rule that does not depend on any pre-specified δ, and as such they
are δ-PAC for any δ.

Example 1 ([Largest Profit Identification problem 13, p24]). Consider a company choosing among
K product designs the model to mass produce. Each candidate design k has an (equilibrium)
sales price µk,1 and production cost µk,2. The goal is to find the model k with the largest profit
µk,1 − µk,2. Prices and costs are currently unknown, but can be adaptively sampled. Sampling the
"price" subpopulation i = 1 is typically implemented by performing user preference studies, taking
questionnaires, etc. Samples from the "cost" subpopulation i = 2 involve rating manufacturing
facilities, forecasting material and labor costs etc. This problem is interesting both in the BAI and
ABC objectives. The importance vector is here β = (1,−1) and α has to be set by the learner.

2.2 General form of the sample complexity

Depending on the mode of interaction from Figure 1, the learner has a set of sampling constraints
to satisfy, here denoted C and precisely defined in the next section. We define Alt(µ), the different
problem instances where the set of arms better than the control differs from that of the instance µ.
Formally, Altβ(µ) := {λ ∈ L | Sβ(λ) 6= Sβ(µ)}. This allows us to bound the sample complexity.

Theorem 1. Let δ ∈ (0, 1) and β ∈ RJ . For any strategy satisfying Equation 1 and any µ ∈ L, the
expected number of rounds for the ABC-S problem for the agnostic, proportional and active mode
satisfies:

Eµ[τδ] ≥ T ?(µ) kl(δ, 1− δ) and lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ T ?(µ) . (2)

where (recalling that λa =
∑J
i=1 βiλa,i)

T ?(µ)−1 = sup
w∈C

inf
λ∈Altβ(µ)

K∑
a=0

J∑
i=1

wa,id(µa,i, λa,i) (3)

= sup
w∈C

min
b 6=0

inf
λ∈L:λ0=λb

∑
a∈{0,b}

J∑
i=1

wa,id(µa,i, λa,i) . (4)

This result is established in Appendix A. T ? characterizes the difficulty of the learning problem.
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2.3 Influence of the mode of interaction

We consider the four different modes governing the sampling rule as outlined in Figure 1. In the
agnostic mode (Fig. 1c) an arm is first selected, after which the subpopulation type is observed.
Mathematically, this brings the equality Eµ[Na,i(T )] = αiEµ[Na(T )] established in Lemma 2 and
the independence constraint on the weightsw ∈ Cagnostic := {wa,i = αiua : (u0, . . . , uK) ∈ ΣK+1}.
In the proportional mode (Fig. 1b), At is chosen based on Ft−1 and the current subpopulation It.
Here, the constraint is that the total number of pulls of the different arms in the subpopulation i should
respect the frequency of this subpopulation, i.e.

∑
a Eµ[Na,i(T )] = αiT . This induces a marginal

constraint on the weights of the form w ∈ Cprop := {w ∈ Σ(K+1)J | ∀i ≤ J,
∑
a wa,i = αi}. This

result is established in Lemma 3 reported in Appendix B.

In the active mode (Fig. 1a), the learner has an additional degree of freedom— she can ask for any
subpopulation type at any round. In that case, w ∈ Cactive := Σ(K+1)J is unconstrained.

By remarking that Cagnostic ⊂ Cprop ⊂ Cactive, and given the optimization program (3) solved to obtain
the characteristic time, one immediately gets

∀µ ∈ L, T ?active(µ) ≤ T ?proportional(µ) ≤ T ?agnostic(µ) . (5)

Hence, as expected, the more control/information on the subpopulation the learner has, the faster she
is able to identify the set of arms that are better than the control.

To compare with the oblivious mode, in which the subpopulation information is not even observed,
we have to assume that α = β. In that case, the arm rewards follow a mixture distribution:
Xt|At = a ∼ ∑J

i=1 αiνa,i. In Proposition 4 reported in Appendix B.3, we properly define the
characteristic time of an oblivious safely calibrated policy and prove that the joint convexity of
Kullback-Leibler divergences implies that it is larger than its agnostic counterpart. This completes
the picture of the ordering of the characteristic times by showing that, when α = β,

∀µ ∈ L, T ?active(µ) ≤ T ?proportional(µ) ≤ T ?agnostic(µ) ≤ T ?oblivious(µ) . (6)

Note that although we provide, in Section 3, algorithms to numerically compute the first three
complexites, evaluating T ?oblivious(µ) would be much harder, as the mixture distributions can no more
be parameterized by their mean only. Our current techniques do not yield a general-purpose practical
algorithm that is asymptotically optimal in the oblivious mode for the ABC-S problem. In the
Bernoulli case, however, as mixtures of Bernoulli distributions are Bernoulli distribution, one can use
the single-population Bernoulli approach discussed in the next paragraph. For Gaussian distributions,
one can use a suboptimal approach based on the observation that location mixtures of Gaussians with
bounded means are sub-Gaussian (see Appendix B.3 for details).

2.4 Single population and relationship with best arm identification

In order to illustrate the nature of the the ABC-S problem, we make a detour through the single
population case, that is, when J = 1. Given two weights wa, wb and two means µa, µb, we introduce
the minimum weighted transportation cost for moving the means to a common position.

dmid(wa, µa, wb, µb) := inf
v
wad(µa, v) + wbd(µb, v) = wad(µa, v

?
a,b) + wbd(µb, v

?
a,b)

where v∗a,b, the optimal common location, is the weighted average, i.e. v∗a,b = wa
wa+wb

µa + wb
wa+wb

µb.

Constructing an instance in the alternative When identifying all the arms better than a control,
there are two different ways to obtain a close-by bandit model λ in the alternative. The first option
consists in taking an arm which does not belong to Sβ(µ) and to augment its mean on the alternative
model such that it becomes above the control (or to reduce the mean of the control). Otherwise, it is
possible to take an arm that is better than the control in the bandit model µ and to shrink its mean
such that it becomes lower than the control on the alternative (or augment the control). Note that the
infimum over the alternative has the same expression in the two cases (see proof of Proposition 1 in
Appendix A.2).

There is a priori no link between a BAI problem and an ABC one. In particular, in the BAI problem
there are only K + 1 possible choices for the best arm while when looking for Sβ(µ) there are up to
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2K different sets to consider. Yet, the next proposition shows that the characteristic time T ? of any
ABC problem with J = 1 subpopulation shares strong similarities with that of BAI problems.
Proposition 1. Let δ ∈ (0, 1) and µ ∈ L. For any strategy satisfying Equation 1, Equation 2 holds
with

T ?(µ)−1 = sup
w∈ΣK+1

inf
λ∈Altβ(µ)

K∑
a=0

wad(µa, λa) = sup
w∈ΣK+1

min
b 6=0

dmid(w0, µ0, wb, µb) .

The proof is reported in Appendix A.2. Note that the expression of the sample complexity is really
close to the one in the BAI setting (Garivier and Kaufmann [10, Lemma 3]) except that we consider
all the indices different from the control here instead of the indices different from the best arm.

2.5 The Gaussian case

In this section, we consider the Gaussian case which is of interest as the characteristic time admits a
more explicit expression, making it possible to further investigate the differences between the various
modes of interaction. We will state our results for the heteroscedastic case, in particular to get a
closed-form proxy for the Bernoulli case, where each variance is a function of the (unknown) mean.

A/B testing When K = 1 (one arm and the control arm), we are considering a standard A/B test
with subpopulations and one can easily prove the following result (established in Appendix C).
Proposition 2. For any µ ∈ L with K = 1 and νa,i = N (µa,j , σ

2
a,j) one has

1. T ?agnostic(µ) =
2

(√∑J
i=1

β2
i
σ2
0,i

αi
+

√∑J
i=1

β2
i
σ2
1,i

αi

)2

∆2
1

and w?a,i =
αi

√∑J
i=1

β2
i
σ2
a,i

αi√∑J
i=1

β2
i
σ2
0,i

αi
+

√∑J
i=1

β2
i
σ2
1,i

αi

2. T ?prop(µ) =
2
∑J
i=1

β2i
αi

(σ0,i+σ1,i)
2

∆2
1

and ∀i ≤ J, ∀a ∈ {0, 1}, w?a,i =
αiσa,i

σ0,i+σ1,i

3. T ?active(µ) =
2(
∑J
i=1 |βi|(σ0,i+σ1,i))

2

∆2
1

and ∀i ≤ J, ∀a ∈ {0, 1}, w?a,i =
|βi|σa,i∑J

i=1 |βi|(σ0,i+σ1,i)

The optimal allocations in the agnostic and proportional cases are constrained by the proportion of
the different subpopulations α, whereas, for the active mode, the optimal weights only depend on
β. In general, the optimal weights also depend on the subpopulation variances, as is well-known in
stratified sampling estimation. Note however, that when (a) the subpopulations all have a common
variance σ2 and (b) β = α, then the optimal allocations and the characteristic times are equal for the
agnostic, the proportional and the active modes. In that case, w?a,i = αi/2, which also corresponds to
the well-known result in Gaussian A/B testing [14]. We have more generally observed that whenever
the subpopulations have approximately the same variances, the agnostic and proportional modes
yield very similar performances.

Weight computation in the homoscedastic case Even in scenarios where all subpopulation
variances are equal to σ2, the active mode remains very attractive in the cases where β 6= α. The
following proposition shows that in that case, the optimal weights for the ABC-S problem can be
computed efficiently.
Proposition 3 (Efficient computation in the Gaussian case). With Gaussian distributions with a
known variance σ2, letting (u?0, . . . , u

?
K) = argmaxu∈ΣK+1

minb6=0
∆2
b

2
(

1
u0

+ 1
ub

) , the optimal weights

for the active mode satisfy

∀a ∈ {0, . . . ,K}, ∀i ≤ J, w?a,i = u?a
|βi|∑J
i=1 |βi|

.

If, in addition α = β, the above also holds for the agnostic and the proportional modes.

The interesting part of Proposition 3 is that computing (u?0, . . . , u
?
K) can be done efficiently using

Theorem 5 from [10]. The optimal weights of the ABC-S problem can be deduced from u? without
any further calculation.

6



3 Algorithms

To obtain our algorithms, we instantiate the Track-and-Stop algorithm template to our ABC-S problem.
Garivier and Kaufmann [10] introduced Track-and-Stop and proved its asymptotic optimality in the
BAI setting. Asymptotic optimality for general partition identification problems was subsequently
established by Kaufmann and Koolen [13, Theorem 23] under the assumption of continuity of the
oracle weights µ 7→ w∗(µ). Degenne and Koolen [6] show that the continuity assumption holds for
all single-answer problems, in the upper-hemicontinuity sense, which they show implies asymptotic
optimality of the Track-and-Stop (T-a-S) algorithm. These results directly apply to our ABC-S
problem. Degenne et al. [7] interpret T-a-S as a noisy sequential equilibrium computation for the
max-min problem from the lower bound (e.g. Equation 3) and develop computationally attractive
variants including lazy iterative solution of thew∗ problem, and optimistic gradients instead of forced
exploration.

The details of our implementation are given in Appendix F. In short, we use the simple standard
Θ(
√
t) forced exploration rounds, a mode/subpopulation aware upgrade of the D-tracking scheme

[10] (which is empirically superior to C-tracking) and we approximately and incrementally compute
the oracle weights using the AdaHedge vs Best Response iterative saddle point solver from [7]. We
use one single learner, instead of one per possible answer, as advocated in [7, Section 4]. Note that
we are not affected by the non-convergence of D-tracking from [7, Appendix E], as our problem has
a unique w∗ because it is strictly concave in w (see Appendix E).

The sampling rule The high level overview of the algorithm is as follows. We are given the number
of arms K and subpopulations J , the exponential family, the mode of interaction, the subpopulation
importance coefficients β and, for passive modes, their natural frequencies α. The algorithm then
proceeds in rounds t = 1, 2, . . . Each round t, it calculates the empirical frequencies µ̂t ∈ R(K+1)×J

given by µ̂a,i(t) = 1
Na,i(t)

∑t
s=1Xs1 {As = a, Is = i}. It then computes (a suitable approximation

of) the maximiser (i.e. the oracle policy) wt = w∗(µ̂t) ∈ Σ(K+1)×J of problem (2). In the
active mode, we “D-track” wt, i.e. we sample (At, It) ∈ argmaxa,iNa,i(t − 1) − twt(a, i). In
the proportional mode, the subpopulation It is given and we “D-track” the conditional distribution
of wt on arms given the subpopulation, i.e. At ∈ argmaxaNa,It(t − 1) − tαItwt(a|It), where
wt(a, i) = αiwt(a|i). In the agnostic mode we “D-track” the marginal distribution of wt on
arms, i.e. At ∈ argmaxaNa(t − 1) − twt(a). For each mode, this sampling strategy ensures that
Na,i(t) ≈ twt(a, i) ≈ tw∗a,i(µ), thus driving down the reported level of confidence as quickly as
possible given the lower bound from Theorem 1.

The recommendation Concluding each round, we recommend Sβ(µ̂t) at confidence level δ̂(t) =
min {δ ∈ (0, 1)|Λ(t) ≥ β(t, δ)} obtained by inverting the threshold β(t, δ) at the GLR statistic

Λ(t) = min
b 6=0

inf
λ∈L:λ0=λb

∑
a∈{0,b}

J∑
i=1

Na,i(t)d(µ̂a,i(t), λa,i) . (7)

The threshold For the sharpest theoretically supported thresholds we refer to [13]. Namely, an
ABC-S problem with K-arms and J-subpopulations has 2K answers, and its rank [13, Definition 22]
is 2J , as can be read off from (4). By [13, Proposition 23] we have validity for β(t, δ) = 6J ln ln t+
ln 1

δ + K + 2J · O(ln ln 1
δ ). In practice, we follow [10] and use instead the heavily stylized

ln((1 + ln t)/δ) that omits several union bounds.
Theorem 2. For every mode, Subpopulation Track-and-Stop is safely calibrated (Equation 1).
Moreover, Subpopulation Track-and-Stop is asymptotically optimal and matches the lower bound
from Theorem 1, in the sense that

for every bandit µ ∈ L, lim
δ→0

E[τδ]

ln(1/δ)
= T ?(µ) .

We include the proof in Appendix E.

4 Experiments
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4.1 Simulations

We conduct numerical experiments to evaluate the proposed algorithms, focusing on Bernoulli bandit
models, which are ubiquitous in practical applications.

In our experiments, in addition to our T-a-S algorithms with the various interaction modes, we
include two more sampling rules for comparison: (1) uniform sampling as a baseline, and (2) the
experimentally efficient Best Challenger heuristic inspired by [10], adapted to the ABC problem and
denoted BC-ABC in the sequel. BC [10] for the BAI problem samples in every round the empirical
best arm ât or its best challenger, i.e. the arm ĉt 6= ât at which the GLR statistic (Equation 7) reaches
its minimum. Our BC-ABC adaptation samples in every round the control arm or the arm that
yields the minimum GLR statistic Λ(t), in the agnostic interaction mode (since Λ(t) is subpopulation
independent). For clearer comparison between the sampling strategies, all algorithms use the Chernoff
stopping criterion [10] to determine either when to stop or output the risk assessment at a given
time. We also opted for sampling rules independent from the confidence parameter δ, because we are
aiming for safely calibrated policies.

We first illustrate the fact that the T-a-S algorithm provides a correct –but rather conservative–
assessment of the risk of its decision whatever the time it is stopped at. To do so, we generated
1000 bandit instances uniformly at random from [0, 1] with K = 2 arms. For each instance, we
recorded the first time a certain risk assessment level is reached and the correctness of the algorithm’s
recommendation at that point. We map to each risk assessment level the proportion of errors across
all instances. We chose two stopping rates that are not supported by theory but are recommended in
practice [10]. Figure 2 (Left) illustrates the isotonic curve fitted on our observations and suggests that
even the most lenient stopping threshold ln((ln(t)+1)/δ) results in much lower empirical probability
of error than the risk assessment. In the following, we use the stopping threshold ln((ln(t) + 1)/δ).

10−3 10−2 10−1 100

risk assessment

10−3

10−2

10−1

100

er
ro
r
ra
te

ln((ln(t) + 1)/δ)

ln((K ln(t) + 1)/δ)

active prop. agn. BC-ABC Uniform

0

10000

20000

30000

40000

50000

60000

70000

avg

lower bd

practical bd

Figure 2: (Left) Risk assessment calibration on a log-log scale. (Right) Stopping time boxplot forµ =
[0.1 0.4 0.3; 0.2 0.5 0.2; 0.5 0.1 0.1] ∈ [0, 1](K+1)×J when β = [1/3, 1/3, 1/3],α = [0.4, 0.5, 0.1]
with Bernoulli distributions.

In our second experiment 1, we generated 3000 Bernoulli bandit instances with K = 2 and a
random number of subpopulations J between 2 and 10. Each subpopulation-arm’s mean µa,i is
drawn uniformly at random from [0, 1], and the subpopulation frequency vector α is drawn from a
Dirichlet(10) distribution. Table 1 reports the average stopping time of each algorithm across all
bandit instances. On average, the T-a-S algorithms at all modes stop at similar times, and all adaptive
sampling methods terminate faster than uniform sampling.

Table 1: Average stopping time. Description in text.
T-a-S (active) T-a-S (proportional) T-a-S (agnostic) BC-ABC Uniform

14871 15231 15444 15279 21586

To better understand the role of β and α, we ran the algorithms on a specific model (see Figure 2,
Right) with α 6= β. In this case, the optimal proportions are constrained by the frequencies of the

1Code at https://gitlab.com/ckatsimerou/abc_s_public
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subpopulation for passive interaction modes. The expected number of samples needed to identify
the ABC-S solution is lower for the active policy, which has an additional degree of freedom in its
sampling strategy. The proportional interaction mode and the agnostic interaction modes perform
similarly. As expected, all the proposed strategies outperform the uniform sampling rule. We contrast
the stopping time with the lower bound kl(δ, 1− δ)T ∗(µ), and with a more practical version, which
indicates, approximately, the first time at which the GLR statistic crosses the threshold, i.e. solving
t = ln((ln(t) + 1)/δ)T ∗(µ), as was done in [7]. All adaptive algorithms perform well on this
instance, with their average runtime being very close to their respective practical bound.

4.2 Application to A/B/n experiment

We evaluate the algorithms on data collected from an actual A/B/n experiment, which compares
different copies of a component of the webpage, in order to identify the ones better than the default
copy. The metric of interest is whether the visitor clicked at least once during the experiment to the
next page after getting exposed to one of the variants. For this setup we considered K = 2 copies
competing against the control, with each copy being treated as an arm. Due to global traffic, the
data exhibits strong seasonality patterns within a day, as seen in Figure 3a, in which every point
corresponds to click-through rate per six hours (quarter of day) for 12 consecutive days. We treat
the J = 4 seasons as i.i.d. subpopulations. Within each season we shuffled the data to eliminate the
weekly trend.

The summary statistics of the dataset, together with the characteristic times and the optimal weights
for each T-a-S mode can be found in Appendix G. Note that the small gaps between the arm means
makes this practical ABC-S problem much harder than the synthetically generated examples.

We tested all algorithms described in Section 4.1. Each algorithm terminates when it reaches for the
first time δ̂t ≤ 0.1 or outputs a risk assessment on the recommendation if it runs out of samples, which
in this experiment occurs after 1.4·107 observations. Here, we weigh the importance β of each season
equally to its observed frequency α. Doing so, we do not expect large performance discrepancies
between the different T-a-S interaction modes, which is confirmed by their characteristic times
(Appendix G). The observations from Fig. 3b are similar to the results from the numerical simulations:
adaptive sampling achieves lower sample complexity over uniform sampling and T-a-S for the active
interaction mode terminates faster than for the passive modes. All algorithms yield the correct
recommendation, but not with the same risk assessment. All T-a-S algorithms terminated within the
available sample size, BC-ABC almost terminated and output a risk assessment slightly above 0.1
and uniform’s risk assessment was 0.67. Of course, when viewing seasonality as a subpopulation,
the active mode is unrealistic, but it is still informative to see that it can be very economical in hard
problems in which sampling the subpopulations actively is an option. In this instance, proportional,
agnostic and oblivious modes terminated at similar times. However, we would recommend using the
proportional mode, given that we expect it to never perform worse than the other passive modes on
average. One should not be surprised by the curve for the uniform sampling, this policy was stopped
before convergence because it ran out of samples.

Lastly, here we assumed that seasons occur in i.i.d. fashion, but in reality there is temporal dependence
between them. This imposes extra constraints on the optimal weights and increases the sample
complexity. However, we do not expect this to be detrimental for cases in which seasons alternate
frequently and full cycles are observed often, as was the case with our example.

5 Conclusion

In this work, we considered the pure exploration task of identifying all the arms that are better than a
control arm in the presence of subpopulations (ABC-S). We design asymptotically optimal policies
for this problem under different assumptions on the mode of interaction between the learner and
the bandit. We observed that the active mode, in which the learner decides which subpopulation it
samples, may significantly reduce decision times. On the other hand, the other modes, in which the
learner has to respect the natural proportions of the different subpopulations (i.e., in proportional and
agnostic modes) produce more modest effects, except when the subpopulations differ significantly in
variances. Finally, we proposed a natural way to provide anytime decisions with risk guarantees in
the Track-and-Stop framework.
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Figure 3: Real data and results.

6 Potential Societal Impact

The contributions presented in this work are mostly related to methods and, as such, do not have a
direct expected societal impact. This being said, a potential concern that will need to be addressed
more carefully in subsequent applications of these methods is the use of subpopulation information,
which could be exploited to target specific user behaviour or characteristics. In the use case
considered in Section 4.2, the subpopulations correspond to time slots that are used to model
seasonality in the user responses, which does not raise any specific ethical concern. However, in
cases where the subpopulations are formed using characteristics of individual users, the impact needs
to be assessed more thoroughly. Note that in such cases, restricting to one of the more conservative
modes of interaction (i.e. agnostic or even oblivious) may become necessary in order to prevent
undue use of population-dependent information.
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A General form of the characteristic time

A.1 Proof of Theorem 1

Theorem 1. Let δ ∈ (0, 1) and β ∈ RJ . For any strategy satisfying Equation 1 and any µ ∈ L, the
expected number of rounds for the ABC-S problem for the agnostic, proportional and active mode
satisfies:

Eµ[τδ] ≥ T ?(µ) kl(δ, 1− δ) and lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ T ?(µ) . (2)

where (recalling that λa =
∑J
i=1 βiλa,i)

T ?(µ)−1 = sup
w∈C

inf
λ∈Altβ(µ)

K∑
a=0

J∑
i=1

wa,id(µa,i, λa,i) (3)

= sup
w∈C

min
b 6=0

inf
λ∈L:λ0=λb

∑
a∈{0,b}

J∑
i=1

wa,id(µa,i, λa,i) . (4)

Proof. Using the transportation lemma from [14] and recalling that Na,i(t) is the number of draws
of arm a in subpopulation i up to time t, we have for any safely calibrated policies

∀λ ∈ Altβ(µ),

J∑
i=1

K∑
a=0

Eµ[Na,i(τδ)]d(µa,i, λa,i) ≥ kl(δ, 1− δ) .

Therefore,

kl(δ, 1− δ) ≤ inf
λ∈Altβ(µ)

K∑
a=0

J∑
i=1

Eµ[Na,i(τδ)]d(µa,i, λa,i)

= Eµ[τδ] inf
λ∈Altβ(µ)

K∑
a=0

J∑
i=1

Eµ[Na,i(τδ)]

Eµ[τδ]
d(µa,i, λa,i)

≤ Eµ[τδ] sup
w∈C

inf
λ∈Altβ(µ)

K∑
a=0

J∑
i=1

wa,id(µa,i, λa,i) .

In the last inequality, we used the fact that the normalized expected numbers of draws satisfy the set
of constraints defined by C ⊂ Σ(K+1)J . Using kl(δ, 1− δ) ∼ ln(1/δ) when δ tends to 0 gives the
first result.

We denote Λ(w,λ,µ) :=
∑K
a=0

∑J
i=1 wa,id(µa,i, λa,i). To obtain the second result, we will

simplify the expression of T ?(µ)−1. Using that the KL divergences and the weights are positive,
for λ to be in the alternative, one of the two following conditions need to be met: (1) there exists
a ∈ Sβ(µ) such that λa < λ0. (2) there exists a ∈ S−β (µ) := {a ∈ [K] | µa < µ0} such that
λa > λ0.

For this reason, one has

inf
λ∈Altβ(µ)

Λ(w,λ,µ) = min

 min
a∈Sβ(µ)

inf
λ:λa<λ0

Λ(w,λ,µ), min
a∈S−β (µ)

inf
λ:λa>λ0

Λ(w,λ,µ)

 .

We obtain the desired result by remarking that the inner optimization programs infλ are each
achieved on the boundary (the constraint being satisfied with equality) where they coincide, and that
{1, . . . ,K} = Sβ(µ) ∪ S−β (µ).

A.2 Proof of Proposition 1

In the particular case when J = 1, the expression of the characteristic time can be simplified.
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Proposition 1. Let δ ∈ (0, 1) and µ ∈ L. For any strategy satisfying Equation 1, Equation 2 holds
with

T ?(µ)−1 = sup
w∈ΣK+1

inf
λ∈Altβ(µ)

K∑
a=0

wad(µa, λa) = sup
w∈ΣK+1

min
b 6=0

dmid(w0, µ0, wb, µb) .

Proof. The first part of the proof can be obtained using similar argument than for Theorem 1. The
missing part is the simplification of the expression of T ?(µ).

We denote Λ(w,λ,µ) :=
∑K
a=0 wad(µa, λa). Following the reasoning from the proof of Theorem 1

one of the two following conditions needs to be met: (1) there exists a ∈ Sβ(µ) such that λa < λ0.
(2) there exists a ∈ S−β (µ) := {a ∈ [K] | µa < µ0} such that λa > λ0.

For this reason, one has

inf
λ∈Altβ(µ)

Λ(w,λ,µ) = min

 min
a∈Sβ(µ)

inf
λ:λa<λ0

Λ(w,λ,µ), min
a∈S−β (µ)

inf
λ:λa>λ0

Λ(w,λ,µ)

 .

In this simpler case, it is possible to obtain an explicit formula for this infimum. We start from

T ?(µ)−1 = sup
w∈ΣK+1

min

 min
a∈Sβ(µ)

inf
λ:λa<λ0

Λ(w,λ,µ), min
a∈S−β (µ)

inf
λ:λa>λ0

Λ(w,λ,µ)

 .

Let us focus on the case, λa < λ0 and fix an index a ∈ Sβ(µ). Λ is always smaller when all the λb
for b 6= 0 and b 6= a coincides with µb. This gives,

min
a∈Sβ(µ)

inf
λ:λa<λ0

Λ(w,λ,µ) = min
a∈Sβ(µ)

inf
λ:λa≤λ0

w0d(µ0, λ0) + wad(µa, λa) .

We consider the Lagrangian function, L(λ0, λa, q) = w0d(µ0, λ0) + wad(µa, λa) + q(λa − λ0).
Differentiating with respect to λ0 and λa brings the condition

λ?0 = λ?a = λ?a,0 = argminλw0d(µ0, λ) + wad(µa, λ) =
w0

w0 + wa
µ0 +

wa
w0 + wa

µa .

Recalling, dmid(wa, µa, wb, µb) := infv wad(µa, v) + wbd(µb, v) one has,

min
a∈Sβ(µ)

inf
λ:λa<λ0

Λ(w,λ,µ) = min
a∈Sβ(µ)

dmid(w0, µ0, wa, µa) . (8)

Solving the optimization program for a ∈ S−β (µ) and under the constraint λa > λ0, gives the exact
same set of constraints and optimal solution, i.e.

min
a∈S−β (µ)

inf
λ:λa>λ0

Λ(w,λ,µ) = min
a∈S−β (µ)

dmid(w0, µ0, wa, µa) . (9)

Bringing Equation 8 and Equation 9 together and remarking that [K] = Sβ(µ) ∪ S−β (µ) gives the
announced result.

A.3 Link between ABC and BAI

In the particular case, of Gaussian distributions with a known variance σ2, for any µ ∈ L, one can
easily create a BAI instance with the same characteristic time as T ?(µ).
Lemma 1. Let µ ∈ L where all the arms are Gaussian distributions with known variance σ2. Let µ0

be the mean of the control arm. We define µ̃ as follows

µ̃k =

{
2µ0 − µk if µk > µ0

µk otherwise.

By denoting T ?BAI(µ) the characteristic time for the BAI problem with a bandit instance µ, then one
has

T ?(µ) = T ?BAI(µ̃) .
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Proof. In the particular case of Gaussian distributions with known variance σ2, easy calculation
brings

T ?(µ)−1 = sup
w∈ΣK+1

min
b 6=0

dmid(w0, µ0, wb, µb) = min
b 6=0

(µ0 − µb)2

2
((1− αb)2w0 + α2

bwb)

with αb = w0

wb+w0
.

On the instance µ̃, first note that µ̃0 is the best arm by construction. For an index k such that µk > µ0,
one has

µ̃0 − µ̃k = µ0 − (2µ0 − µk) = µk − µ0 > 0 .
For this reason, ∀k ∈ [K], µ̃0 > µ̃k. Using Lemma 3 from [10], by defining Iγ(µ1, µ2) :=
γd(µ1, γµ1 + (1− γ)µ2) + (1− γ)d(µ2, γµ1 + (1− γ)µ2), one has

T ?BAI(µ̃) = sup
w∈ΣK+1

min
b6=0

(w0 + wb)I w0
w0+wb

(µ0, µb) .

Furthermore, letting αb = w0/(w0 + wb):

(w0 + wb)Iαb(µ0, µb) = (w0 + wb)

(
αb

(1− αb)2(µ0 − µb)2

2σ2
+ (1− αb)

α2
b(µ0 − µb)2

2σ2

)
=

(µ0 − µb)2

2σ2

(
(1− αb)2w0 + α2

bwb
)
.

Plugging this in the expression of T ?BAI(µ̃) gives the announced result.

B Results for specific modes of interaction

B.1 Agnostic mode

Lemma 2. For any agnostic policy where At is chosen knowing Ft−1 but independently from It,
when defining Na,j(t) =

∑t
s=1 1(As = a ∩ Is = j) and Na(t) =

∑t
s=1 1(As = a), then

∀a ∈ {0, . . . ,K},∀j ∈ {1, . . . , J},∀t ≥ 1, Eµ[Na,j(t)] = αjEµ[Na(t)]

Proof.

Eµ[Na,j(t)] =

t∑
s=1

P(As = a ∩ Is = j) =

t∑
s=1

Pµ(As = a|Is = j)P(Is = j)

=

t∑
s=1

αjPµ(As = a|Is = j) =

t∑
s=1

αjPµ(As = a)

= αjEµ[Na(t)] ,

where in the third equality, we have used that the action At is selected independently from the
population indicator It.

B.2 Proportional mode

Lemma 3. For any proportional policy where At is chosen knowing Ft−1 and It, when defining
Na,j(t) =

∑t
s=1 1(As = a ∩ Is = j) and Na(t) =

∑t
s=1 1(As = a), then

∀j ∈ {1, . . . , J},∀t ≥ 1,

K∑
a=0

Eµ[Na,j(t)] = αjt .

Proof.
K∑
a=0

Eµ[Na,j(t)] =

t∑
s=1

K∑
a=0

Eµ [1(Is = j)1(As = a)] =

t∑
s=1

Eµ

[
1(Is = j)

K∑
a=0

1(As = a)

]

=

t∑
s=1

Pµ(Is = j) = αjt .
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B.3 Oblivious mode

In the oblivious mode, the subpopulations can not be observed by the learner. In this case, we have

1. E [Xt|At = a] =
∑J
i=1 αiµa,i ,

2. Xt|At = a ∼∑J
i=1 αiνa,i .

While with observable subpopulations the distributions are entirely characterized by their means,
this is no longer the case with mixture distributions. In particular, this requires defining a different
alternative.

Alt(ν) := {ν′ : ∀a, ν′a =

J∑
i=1

αiν
′
a,i with ν′a,i ∈ P and S(ν′) 6= S(ν) } .

Proposition 4. Let δ ∈ (0, 1) and β ∈ RJ . For any oblivious strategy satisfying Equation 1 and any
µ ∈ L, the characteristic time satisfies

Eµ[τδ] ≥ T ?oblivious(µ) kl(δ, 1− δ) and lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ T ?oblivious(µ) .

where

T ?oblivious(µ)−1 = sup
w∈ΣK+1

inf
ν′∈Alt(ν)

K∑
a=0

waKL

(
J∑
i=1

αiνa,i,

J∑
i=1

αiν
′
a,i

)
. (10)

Furthermore,
∀µ ∈ L, T ?oblivious(µ) ≥ T ?agnostic(µ) .

Proof. Using the transportation lemma from [14] we have for any safely calibrated oblivious policy

∀ν′ ∈ Alt(ν),

K∑
a=0

Eµ[Na(τδ)]KL

(
J∑
i=1

αiνa,i,

J∑
i=1

αiν
′
a,i

)
≥ kl(δ, 1− δ) .

Therefore,

kl(δ, 1− δ) ≤ inf
ν′∈Alt(ν)

K∑
a=0

Eµ[Na(τδ)]KL

(
J∑
i=1

αiνa,i,

J∑
i=1

αiν
′
a,i

)

= Eµ[τδ] inf
ν′∈Alt(ν)

K∑
a=0

Eµ[Na(τδ)]

Eµ[τδ]
KL

(
J∑
i=1

αiνa,i,

J∑
i=1

αiν
′
a,i

)

≤ Eµ[τδ] sup
w∈ΣK+1

inf
ν′∈Alt(ν)

K∑
a=0

waKL

(
J∑
i=1

αiνa,i,

J∑
i=1

αiν
′
a,i

)
.

Using kl(δ, 1− δ) ∼ ln(1/δ) when δ tends to 0 gives the first result.

Using the joint convexity of the KL divergence one gets

KL

(
J∑
i=1

αiνa,i,

J∑
i=1

αiν
′
a,i

)
≤

J∑
i=1

αiKL(νa,i, ν
′
a,i) .

Assuming that the mean of ν′a,i = λa,i and recalling that for distributions in P , one has
KL(νa,i, ν

′
a,i) = d(µa,i, λa,i), we deduce,

T ?oblivious(µ)−1 = sup
w∈ΣK+1

inf
ν′∈Alt(ν)

K∑
a=0

waKL

(
J∑
i=1

αiνa,i,

J∑
i=1

αiν
′
a,i

)

≤ sup
w∈ΣK+1

inf
λ∈Alt(µ)

K∑
a=0

J∑
i=1

αiwad(µa,i, λa,i)

= T ?agnostic(µ)−1 .
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Except in the case of Bernoulli distributions –where the mixture is also a Bernoulli distribution–,
finding a strategy that matches T ?oblivious(µ)−1 is a hard task. However, one may use the following
lemma to treat the mixture in a sub-optimal way, based on the fact that it exhibits sub-gaussian
behavior.
Lemma 4 (Sub-gaussianity of mixture). For each µ ∈ R, assume that νµ is a distribution on R with
mean EX∼νµ [X] = µ that is σ2-sub-Gaussian, meaning that EX∼νµ

[
eλ(X−µ)

]
≤ eσ2λ2/2 for any

λ ∈ R. Further let α(µ) be a prior on µ with mean m that is itself η2-sub-Gaussian, meaning that
Eµ∼α

[
eλ(µ−m)

]
≤ eλ2η2/2. Then the mixture distribution Q = Eµ∼α [νµ] is σ2 + η2 sub-Gaussian.

Proof. The mixture distribution obviously has mean EX∼Q[X] = m and

E
X∼Q

[
eλ(X−m)

]
= E

µ∼α

[
eλ(µ−m) E

X∼νµ

[
eλ(X−µ)

]]
≤ E

µ∼α

[
eλ(µ−m)

]
eσ

2λ2/2

≤ e(σ2+η2)λ2/2.

In particular, if α is supported on [±M ], then α is M2 sub-Gaussian, and hence Q is (σ2 + M2)
sub-Gaussian.

C Optimal allocations in the Gaussian case for K = 1 (A/B testing)

Lemma 5. When K = 1 with Gaussian distributions such that νa,i = N (µa,i, σ
2
a,i) the following

holds

inf
λ:λ0=λ1

J∑
i=1

w0,id(µ0,i, λ0,i) +

J∑
i=1

w1,id(µ1,i, λ1,i) =
∆2

1

2
∑J
i=1 β

2
i

(
σ2
0,i

w0,i
+

σ2
1,i

w1,i

) .
Proof. One has for b ∈ {0, 1},

d(µb,i, λb,i) =
(λb,i − µb,i)2

2σ2
b,i

.

Using the result from Theorem 1 for the case K = 1, the following holds

inf
λ∈Altβ(µ)

1∑
a=0

J∑
i=1

wa,id(µa,i, λa,i) = min
λ∈L:λ0=λ1

1∑
a=0

J∑
i=1

wa,id(µa,i, λa,i) .

We introduce

L(λ0, λ1, q) =

J∑
i=1

w0,i
(λ0,i − µ0,i)

2

2σ2
0,i

+

J∑
i=1

w1,i
(λ1,i − µ1,i)

2

2σ2
1,i

+ q

(
J∑
i=1

βi(λ0,i − λ1,i)

)
.

One has,

min
λ∈L:λ0=λ1

1∑
a=0

J∑
i=1

wa,id(µa,i, λa,i) = sup
q∈R

inf
λ∈L

L(λ0, λ1, q) .

Differentiating with respect to λ0,i and λ1,i brings the conditions

λ0,i = µ0,i −
qβiσ

2
0,i

w0,i
and λ1,i = µ1,i +

qβiσ
2
1,i

w1,i
.

Plugging these values back in L gives the function

f(q) = −q
2

2

J∑
i=1

β2
i

(
σ2

0,i

w0,i
+
σ2

1,i

w1,i

)
+ q

J∑
i=1

βi(µ0,i − µ1,i) .
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Easy calculations show that the maximum of the function f is attained for

q? =

∑J
i=1 βi(µ0,i − µ1,i)∑J
i=1 β

2
i

(
σ2
0,i

w0,i
+

σ2
1,i

w1,i

) .
Plugging this value back in the expression of f ,

f(q?) =
∆2

1

2
∑J
i=1 β

2
i

(
σ2
0,i

w0,i
+

σ2
1,i

w1,i

) .

Proposition 2. For any µ ∈ L with K = 1 and νa,i = N (µa,j , σ
2
a,j) one has

1. T ?agnostic(µ) =
2

(√∑J
i=1

β2
i
σ2
0,i

αi
+

√∑J
i=1

β2
i
σ2
1,i

αi

)2

∆2
1

and w?a,i =
αi

√∑J
i=1

β2
i
σ2
a,i

αi√∑J
i=1

β2
i
σ2
0,i

αi
+

√∑J
i=1

β2
i
σ2
1,i

αi

2. T ?prop(µ) =
2
∑J
i=1

β2i
αi

(σ0,i+σ1,i)
2

∆2
1

and ∀i ≤ J, ∀a ∈ {0, 1}, w?a,i =
αiσa,i

σ0,i+σ1,i

3. T ?active(µ) =
2(
∑J
i=1 |βi|(σ0,i+σ1,i))

2

∆2
1

and ∀i ≤ J, ∀a ∈ {0, 1}, w?a,i =
|βi|σa,i∑J

i=1 |βi|(σ0,i+σ1,i)

Proof.

Agnostic mode From the Lemma 2, we have

T ?agnostic(µ)−1 = sup
w∈Cagnostic

inf
λ∈Altβ(µ)

1∑
a=0

J∑
i=1

wa,id(µa,i, λa,i)

= sup
w∈Cagnostic

inf
λ:λ0=λ1

1∑
a=0

J∑
i=1

wa,id(µa,i, λa,i) (Theorem 1)

= sup
w∈Cagnostic

∆2
1

2
∑J
i=1 β

2
i

(
σ2
0,i

w0,i
+

σ2
1,i

w1,i

) (Lemma 5) .

w ∈ Cagnostic implies wa,i = αiua with (u0, . . . , uK) ∈ ΣK+1. For this reason,

w? = argminu:u0+u1=1

J∑
i=1

β2
i

αi

(
σ2

0,i

u0
+
σ2

1,i

u1

)
.

We let ca :=
∑J
i=1

β2
i σ

2
a,i

αi
for a ∈ {0, 1}. Plugging u1 = 1 − u0 in the previous expression and

differentiating with respect to u0 brings the condition

u2
0 + 2u0

c0
c1 − c0

− c0
c1 − c0

.

Solving this polynomial and using that u ∈ Σ2 gives the unique solution

u?0 =

√
c0√

c0 +
√
c1
.

Implying,

w?0,i = αi

√∑J
i=1

β2
i σ

2
0,i

αi√∑J
i=1

β2
i σ

2
0,i

αi
+

√∑J
i=1

β2
i σ

2
1,i

αi

and w?1,i = αi

√∑J
i=1

β2
i σ

2
1,i

αi√∑J
i=1

β2
i σ

2
0,i

αi
+

√∑J
i=1

β2
i σ

2
1,i

αi

.
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With those values,

T ?agnostic(µ) =

2

(√∑J
i=1

β2
i σ

2
0,i

αi
+

√∑J
i=1

β2
i σ

2
1,i

αi

)2

∆2
1

.

Proportional mode Following the same line of proof, gives

T ?prop(µ)−1 = sup
w∈Cprop

∆2
1

2
∑J
i=1 β

2
i

(
σ2
0,i

w0,i
+

σ2
1,i

w1,i

) .
The main difference is now on the constraints on the weights. In the proportional mode, following
Lemma 3, ∀i ≤ J,∑1

a=0 wa,i = αi. We consider the Lagrangian function:

L(w0, w1, q1, . . . , qJ) =
J∑
i=1

β2
i

(
σ2

0,i

w0,i
+
σ2

1,i

w1,i

)
+

J∑
i=1

qi

 ∑
a∈{0,1}

wa,i − αi

 .

Differentiating with respect to w0,i and w1,i gives the constraints:

−β2
i σ

2
0,i

w2
0,i

+ qi = 0 and
−β2

i σ
2
1,i

w2
1,i

+ qi = 0 .

From which we can deduce
w0,i

σ0,i
=
w1,i

σ1,i
.

From w0,i + w1,i = αi, we deduce,

q?i =
β2
i (σ0,i + σ1,i)

2

α2
i

.

Plugging this value in the first constraint gives

w?0,i = αi
σ0,i

σ0,i + σ1,i
and w?1,i = αi

σ1,i

σ0,i + σ1,i
.

Using those weights,

T ?prop(µ) =
2
∑J
i=1

β2
i

αi
(σ0,i + σ1,i)

2

∆2
1

.

Active mode Following the proof of Proposition 2, one has

T ?active(µ)−1 = sup
w∈Σ(K+1)J

∆2
1

2
∑J
i=1 β

2
i

(
σ2
0,i

w0,i
+

σ2
1,i

w1,i

) . (11)

Using the constraint w ∈ Σ(K+1)J , one gets

w1,J = 1−
∑

a={0,1}

J−1∑
i=1

wa,i − w0,J . (12)

We need to minimize the function (where w1,J has been replaced by the expression from Equation 12)

f(w) =
∑

a={0,1}

J−1∑
i=1

β2
i

σ2
a,j

wa,j
+ β2

J

σ2
0,J

w0,J
+ β2

J

σ2
1,J

1−∑1
a=0

∑J−1
i=1 wa,i − w0,J

.
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For i ≤ J − 1, taking the derivative with respect to w0,i and w1,i gives the following constraints

β2
i σ

2
0,i

(
1−

1∑
a=0

J−1∑
i=1

wa,i − w0,J

)2

= β2
Jσ

2
1,Jw

2
0,i ,

β2
jσ

2
1,i

(
1−

1∑
a=0

J−1∑
i=1

wa,i − w0,J

)2

= β2
Jσ

2
1,Jw

2
1,i .

From which we deduce
∀i ≤ J − 1,

w0,i

σ0,i
=
w1,i

σ1,i
. (13)

Differentiating with respect to w1,J gives

σ0,J

(
1−

1∑
a=0

J−1∑
i=1

wa,i − w0,J

)
= σ1,Jw0,J .

Rearranging and using Equation 13 gives,

w0,J =
σ0,J

σ0,J + σ1,J
−
J−1∑
i=1

w0,i

σ0,i

σ0,i + σ1,i

σ0,J + σ1,J
σ0,J . (14)

Using Equation 13 and Equation 14, we define the function

g(w0,1, . . . , w0,J−1) =

J−1∑
i=1

β2
i

σ0,i

w0,i
(σ0,i + σ1,i) +

β2
J(σ0,J + σ1,J)2

1−∑J−1
i=1

w0,i(σ0,i+σ1,i)
σ0,i

.

Differentiating with respect to w0,i for i ≤ J − 1 brings

∀i ≤ J − 1,
|βi|σ0,i

σ0,J + σ1,J

(
1−

J−1∑
i=1

w0,i

σ0,i
(σ0,i + σ1,i)

)
= |βJ |w0,i . (15)

Multiplying both sides of this equation by (σ0,i + σ1,i)/σ0,i and summing for i ≤ J − 1,

J−1∑
i=1

w0,i

σ0,i
(σ0,i + σ1,i) =

∑J−1
i=1 |βi|(σ0,i + σ1,i)∑J
i=1 |βi|(σ0,i + σ1,i)

.

Plugging this value back in Equation 15 one has:

∀i ≤ J − 1, w0,i =
|βi|σ0,i∑J

i=1 |βi|(σ0,i + σ1,i)
.

From Equation 13, we deduce,

∀i ≤ J − 1, w1,i =
|βi|σ1,i∑J

i=1 |βi|(σ0,i + σ1,i)
.

We obtain the value of w0,J using Equation 14 and that of w1,J using Equation 12. Plugging those
weights in the expression given by Equation 11 yields the characteristic time.

D General form of the optimal allocation in the Gaussian case

Proposition 3 (Efficient computation in the Gaussian case). With Gaussian distributions with a
known variance σ2, letting (u?0, . . . , u

?
K) = argmaxu∈ΣK+1

minb6=0
∆2
b

2
(

1
u0

+ 1
ub

) , the optimal weights

for the active mode satisfy

∀a ∈ {0, . . . ,K}, ∀i ≤ J, w?a,i = u?a
|βi|∑J
i=1 |βi|

.

If, in addition α = β, the above also holds for the agnostic and the proportional modes.
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Proof. From Lemma 5, when the distribution are Gaussian with a known variance σ2 one has

T ?active(µ)−1 = sup
w∈Σ(K+1)J

min
b6=0

∆2
1

2
∑J
i=1 β

2
i

(
σ2

w0,i
+ σ2

wb,i

) .
Using the same continuity argument than in [10], we know that the supremum of w is attained and is
indeed a maximum. Let

Λb(v, w) :=
∆2
b

2
∑J
i=1 β

2
i

(
σ2

vi
+ σ2

wi

) .
Then

max
w∈Σ(K+1)J

min
b6=0

Λb(w0, wb) = max
u∈ΣK+1

∀a,
∑J
i=1 wa,i=ua

min
b6=0

Λb(w0, wb)

= max
u∈ΣK+1

max
w∈Σ(K+1)J

∀a,
∑
i wa,i=ua

min
b6=0

Λb(w0, wb)

≤ max
u∈ΣK+1

min
b 6=0

max
w∈Σ(K+1)J

∀a,
∑
i wa,i=ua

Λb(w0, wb) (Max-min inequality) .

Let b 6= 0,

max
w∈Σ(K+1)J

∀a,
∑
i wa,i=ua

Λb(w0, wb) = max
w∈Σ(K+1)J

∀a,
∑
i wa,i=ua

∆2
b

2
∑J
i=1 β

2
i

(
σ2

w0,i
+ σ2

wb,i

) .
Equivalently, we are interested in

min
w∈Σ(K+1)J

∀a,
∑
i wa,i=ua

J∑
i=1

β2
i

(
σ2

w0,i
+

σ2

wb,i

)
.

We introduce the associated Lagrangian function

f(w, q) =

J∑
i=1

β2
i

(
1

w0,i
+

1

wb,i

)
+

K∑
a=0

qa

(
J∑
i=1

wa,i − ua
)
.

Taking the derivative with respect to w0,i and wb,i for the different values of i yields

w0,i =
|βi|√
q0

and wb,i =
|βi|√
qb
.

Summing over i implies that

√
q0 =

∑J
i=1 |βi|
u0

and
√
qb =

∑J
i=1 |βi|
ub

,

and plugging the above in the expression of the weights yields

w0,i =
|βi|∑J
i=1 |βi|

u0 and wb,i =
|βi|∑J
i=1 |βi|

ub .

In particular,

max
w∈Σ(K+1)J

∀a,
∑
i wa,i=ua

∆2
b

2
∑J
i=1 β

2
i

(
σ2

w0,i
+ σ2

wb,i

) =
∆2
b

2σ2
(∑J

i=1 |βi|
)2 (

1
u0

+ 1
ub

) , (16)

yielding

max
w∈Σ(K+1)J

min
b6=0

∆2
b

2
∑J
i=1 β

2
i

(
σ2

w0,i
+ σ2

wb,i

) ≤ 1

2σ2
(∑J

i=1 |βi|
)2 max

u∈Σ(K+1)J

min
b6=0

∆2
b(

1
u0

+ 1
ub

) .
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On the other hand, letting wa,i = |βi|∑J
i=1 |βi|

ua with
∑
a ua = 1 we have

1

2σ2
(∑J

i=1 |βi|
)2 max

u∈Σ(K+1)J

min
b6=0

∆2
b(

1
u0

+ 1
ub

) ≤ max
w∈Σ(K+1)J

min
b 6=0

∆2
b

2
∑J
i=1 β

2
i

(
σ2

w0,i
+ σ2

wb,i

) ,
showing that the two optimization programs are equivalent and that when denoting

(u?0, . . . , u
?
K) = argmaxu∈Σ(K+1)J

min
b6=0

∆2
b(

1
u0

+ 1
ub

) ,
one has

∀a ∈ {0, . . . ,K}, ∀i ≤ J, w?a,i = u?a
|βi|∑J
i=1 |βi|

.

This corresponds to the optimal allocation strategy in the active mode. Recalling that when α = β,
the optimal weights for the active mode satisfy both Cprop and Cagnostic completes the proof.

E Asymptotic Optimality: Proof of Theorem 2

In this section we show that T-a-S with C-tracking and a certain threshold β(t, δ) is safely calibrated
and asymptotically optimal. This is an important sanity check to validate our approach theoretically.
Note that for the experimental validation we have explored a practically appealing variant of this
algorithm: we employ an iterative scheme to approximate w∗(µ̂(t)), use D-tracking, and stylise the
threshold.

Safe calibration follows from the definition of the recommendation rule (we report the answer
Sβ(µ̂(t)) at the empirical estimate µ̂(t) of the bandit instance), together with the computation of
the risk assessment δ̂t. It does not depend on the sampling rule. Our confidence level δ̂t is obtained
by inverting the threshold β(t, δ) at the GLR statistic (7). Safe calibration then follows from an
anytime-valid GLR deviation inequality with boundary β(t, δ). We refer to [13, Proposition 23] for a
boundary that is, in case of the ABC-S problem, of order ln 1

δ +K + 2J ·O(ln ln t
δ ).

It remains to argue that the T-a-S sampling rule converges to the oracle weights. The original T-a-S
proof for the BAI problem is due to [10, Theorem 14]. An upgrade to any single-answer problem,
including our ABC-S, is due to [6]. For active mode, their theorem applies directly, while for agnostic
mode it applies with the pair (It, Xt) regarded as the observation. We get:
Theorem 3 ([6, Theorems 7 and 10]). For all ABC-S instances µ ∈ L in active mode and agnostic
mode, Track-and-Stop with C-tracking and stopping threshold β(t, δ) = ln(t2/δ) +O(1) is δ-correct
with asymptotically optimal sample complexity.

In proportional mode, we have the additional constraint that the learner chooses its arm in response to
seeing (but not controlling) the subpopulation It. Still, the tracking convergence result [6, Lemma 6]
goes through, upon observing that the empirical distribution of It converges to α by the law of the
large numbers, and hence our conditional tracking (see “sampling rule” in Section 3) adds the right
conditional to the right marginal. All in all, the computed joint weights converge to the jointw∗prop(µ),
and tracking makes the sampling proportions also converge there.

We conclude with a remark on our use of D-tracking. Recall that D-tracking is the idea of advancing
Na(t) towards t times the most current oracle weights, i.e. tw∗a(µ̂(t)), while C-tracking makes Na(t)

advance towards the sum of encountered oracle weights, i.e.
∑t
s=1 w

∗
a(µ̂(s)). As argued in [7,

Appendix E], D-tracking can fail to make Na(t)/t converge to w∗a(µ). However, this requires that the
maximiser of the lower bound problem is not unique at µ (as we are maximising a concave function,
the set of maximisers is always convex). Here we argue that such a situation does not occur for the
ABC-S problem. To see why, we argue that the lower bound objective, as a function of w, is strictly
concave. It suffices to show this for the active mode problem, as the problems for the other modes are
further constrained maximisation problems of the same objective.
Lemma 6. Fix a bandit instance µ ∈ L. Let λ 7→ d(µa,j , λ) be a strongly convex function for each
arm a and subpopulation j. Then for the ABC-S problem with β such that βj 6= 0 for all j, the oracle
weights w∗(µ) are unique.
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Proof. Let w∗(µ) be any oracle weights at µ. We will show the lower bound objective (4) is strictly
concave as a function of w around w∗(µ), so that w∗(µ) was in fact unique. For each k > 0, let λk

be the minimiser in Altk(µ) of the weighted divergence in (4).

We perform a second-order Taylor expansion of the inner objective around λk, which is a good
approximation near λk (which is, after all, what matters when reasoning about w near w∗(µ)). To
this end, let us abbreviate the divergences, and their first and second derivatives in their second
argument by dkaj := d(µa,j , λ

k
a,j), gkaj := d′(µa,j , λ

k
a,j) and hkaj := d′′(µa,j , λ

k
a,j), which all depend

on λk. A second-order Taylor expansion of the inner objective of (4) around λk yields

inf
λ∈Altk

∑
a,j

wa,jd(µa,j , λa,j) ≈
∑

a∈{0,k},j

wa,j

(
dkaj −

(gkaj)
2

2hkaj

)
+

(∑
j βj

(
gk0j
hk0j
− gkkj

hkkj

))2

2
∑
a∈{0,k},j

β2
j

wa,jhkaj

where the optimiser is given by

λa,j = λka,j −
gkaj
hkaj

+
βj(δa=0 − δa=k)

wa,jhkaj

∑
j βj

(
gk0j
hk0j
− gkkj

hkkj

)
∑
a∈{0,k},j

β2
j

wa,jhkaj

.

Due to the last term, each of these is a strictly concave function of wa,j for a ∈ {0, k} and all j ≤ J
(here we use βj 6= 0 and strong convexity hkaj > 0).

Now we still need to consider the maxw∈Σ(K+1)×J
mink>0 problem. Let’s convexify this for the

inside finite min, and min-max swap to get a problem of the form minq∈ΣK maxw∈Σ(K+1)×J
. Fixing

the minimax outer strategy for q, we find that w is the maximiser of the strictly concave function

w 7→
∑
k>0

qk

 ∑
a∈{0,k},j

wa,j

(
dkaj −

(gkaj)
2

2hkaj

)
+

(∑
j βj

(
gk0j
hk0j
− gkkj

hkkj

))2

2
∑
a∈{0,k},j

β2
j

wa,jhkaj


To complete the argument, we argue that qk > 0 for all k > 0, or, equivalently, that atw∗ the mink>0
are all equalised. For if not, we can move mass from wk,j for the higher k > 0 to wk′,j for the lower
k′ and increase the objective value. This then proves that w∗(µ) is unique, as the objective function
is bounded above by a strictly concave function itself maximised at w = w∗(µ).

F Algorithm Details

In this section we go into more details on the algorithm for each mode. Let us start with some notation.
Let β(δ, t) be a threshold function. We denote the inverse of β(t, δ) in its second argument by

β−1(t,Λ) = min {δ ∈ (0, 1)|Λ ≥ β(t, δ)} .
We extend the definition of the GLR statistic to sample frequencies w and bandit µ by

Λ(w,µ) := min
b 6=0

inf
λ∈L:λ0=λb

∑
a∈{0,b}

J∑
i=1

wa,id(µa,i, λa,i) ,

so that the original definition (7) is Λ(t) = Λ(N(t)/t, µ̂(t)). For any µ, we denote by∇wΛ(w,µ)
any sub-gradient ofw 7→ Λ(w,µ). We can obtain one such a sub-gradient by letting (b,λ) be any
minimiser of Λ(w,µ), and constructing the vector with entry (a, i) given by

(a, i) 7→
{
d(µa,i, λa,i) if a ∈ {0, b}
0 otherwise

.

Our algorithms will make use of an online learning method (called A below) for linear losses defined
on the simplex. This online learning task is known as the Hedge or Experts setting in the literature.
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We will make use of AdaHedge [5], as it adapts automatically to the range of the losses and does
not require tuning. Our methods for the active, proportional and agnostic modes are displayed as
Algorithms 1, 2 and 3. Each algorithm consists of a Forced Exploration part, which serves to ensure
that the empirical estimate of the bandit model converges, i.e. µ̂(t)→ µ. By forcing exploration sub-
linearly often, the main term in the sample complexity is unaffected asymptotically. Each algorithm
further makes use of online learning to compute w∗(µ). In the notation of this section, we have

w∗(µ) = argmax
w∈C

Λ(w,µ) .

Our approach to learning w∗(µ) is to perform gradient steps on the plug-in loss function w 7→
−Λ(w, µ̂(t)). It is in the convex domain C ⊆ Σ(K+1)×J that we see the main difference between
the three modes. Recall from Section 2.3 that in the active mode w is not constrained further, in
the proportional mode the subpopulation marginal of w must equal α, i.e. 〈1,w〉 = α, and in the
agnostic mode w must be the independent product w = vα of some arm marginal v ∈ ΣK+1 and
the subpopulation frequencies α. We hence need to design online learners for each of the three C. In
the active case, we have one learner A that learns the full jointw∗(a, j) directly, in the proportional
case we use one learner Aj for each subpopulation j ∈ [J ] to learn the conditional distribution
w∗(a|j), and in the agnostic case we again use one learner to learn the common marginal w∗(a).
This difference is reflected in the loss function used in each mode, and hence in the gradient that is
fed to each learner. In the active case we use the full (K + 1)× J gradients

`active
t := −∇wΛ(wt, µ̂(t)) .

In the proportional case we have w(a, i) = w(a|i)αi, and by the chain rule we hence have gradients

`i, proportional
t := −∇w(a|i)Λ(wt, µ̂(t)) = − αi∇wΛ(wt, µ̂(t))ei .

Finally, in the agnostic case we have w(a, i) = w(a)αi, and again by the chain rule we have

`agnostic
t := −∇w(a)Λ(wt, µ̂(t)) = −∇wΛ(wt, µ̂(t))α .

Run Time In each of the three modes, our algorithms evaluate Λ for the confidence in the rec-
ommendation, compute one sub-gradient of Λ for the loss function, and spend O(K × J) time
bookkeeping. Evaluation and sub-gradient computation for Λ boil down to solving a convex minimi-
sation problem with an equality constraint. We use Newton’s method with backtracking line search
to find the minimiser given b. Each Newton iteration takes O(J2) time (recall that only 2 arms are
involved), and we never needed more than 40. Doing this K times for the explicit minimum over b
yields a total per iteration run time of O(KJ2).
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Algorithm 1 Algorithm for Active Mode.
Require: Online learner A for (K + 1)× J experts.

for t = 1, 2, . . . do
if any pair (a, i) has Na,i(t− 1) ≤

√
t then

Pick At, It any such pair . Forced Exploration
Obtain sample Xt from νAt,It .

else
Get wt from online learner A
Pick (At, It) ∈ argmina,iNa,i(t− 1)− twt(a, i) . Direct Tracking
Obtain sample Xt from νAt,It .
Send loss vector `t = −∇wΛ(wt, µ̂(t)) to A

end if
Recommend Ŝt = Sβ(µ̂(t)) at confidence δt = β−1(t,Λ(N(t)/t, µ̂(t))).

end for

Algorithm 2 Algorithm for Proportional Mode.

Require: J online learners A(1), . . . ,A(J) for (K + 1) experts each.
for t = 1, 2, . . . do

See It ∼ α.
if any arm a has Na,It(t− 1) ≤

√∑
aNa,It(t− 1) then

Pick At any such arm . Forced Exploration
Obtain sample Xt from νAt,It .

else
Get w(j)

t from each online learner A(j)

Pick At ∈ argminaNa,It(t− 1)− tw(It)
t (a) . Direct Tracking

Obtain sample Xt from νAt,It .

For j ∈ [J ], send loss vector `(j)
t = −αj∇wΛ

(
[α1w

(1)
t · · ·αJw(J)

t ], µ̂(t)
)
ej to A(j)

end if
Recommend Ŝt = Sβ(µ̂(t)) at confidence δt = β−1(t,Λ(N(t)/t, µ̂(t))).

end for

Algorithm 3 Algorithm for Agnostic Mode.
Require: Online learner A for (K + 1) experts.

for t = 1, 2, . . . do
if any arm a has

∑J
j=1Na,j(t− 1) ≤

√
t then

Pick At any such arm . Forced Exploration
See It ∼ α.
Obtain sample Xt from νAt,It .

else
Get wt from online learner A
Pick At ∈ argmina

∑J
j=1Na,j(t− 1)− twt(a) . Direct Tracking

Obtain sample Xt from νAt,It .
See It ∼ α.
Send loss vector `t = −∇wΛ

(
wtα

>, µ̂(t)
)
α to A.

end if
Recommend Ŝt = Sβ(µ̂(t)) at confidence δt = β−1(t,Λ(N(t)/t, µ̂(t))).

end for
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G Details of A/B/n experiment

1 2 3 4
0 0.0296 0.0372 0.0588 0.0620
1 0.0300 0.0373 0.0596 0.0626
2 0.0295 0.0373 0.0591 0.0630

(a) Estimated click probabilities for the different op-
tions and seasons

1
0 0.1958
1 0.2950
2 0.2813
3 0.2279

(b) frequency and importance vector (α = β)

1 2 3 4
0 0.0719 0.1222 0.1311 0.1238
1 0.0215 0.0475 0.0340 0.0352
2 0.0614 0.1060 0.1377 0.1078

(c)w∗ for active, T ∗ = 3.98 · 106

1 2 3 4
0 0.0740 0.1246 0.1476 0.1226
1 0.0108 0.0179 0.0214 0.0178
2 0.0727 0.1228 0.1460 0.1218

(d) Sampling proportions active
1 2 3 4

0 0.0814 0.1269 0.1289 0.0889
1 0.0230 0.0355 0.0457 0.0277
2 0.0914 0.1326 0.1067 0.1113

(e)w∗ for proportional, T ∗ = 4.06 · 106

1 2 3 4
0 0.0912 0.1374 0.1307 0.1056
1 0.0148 0.0223 0.0214 0.0173
2 0.0898 0.1353 0.1293 0.1048

(f) Sampling proportions proportional
1

0 0.44482
1 0.11111
2 0.44406

(g)w∗ for agnostic, T ∗ = 4.61 · 106

1
0 0.4648
1 0.0766
2 0.4587

(h) Sampling proportions agnostic
1

0 0.44480
1 0.11111
2 0.44409

(i)w∗ for oblivious, T ∗ = 4.63 · 106

1
0 0.4647
1 0.0764
2 0.4589

(j) Sampling proportions oblivious
1

0 0.500
1 0.076
2 0.424

(k) Sampling proportions BC-ABC

Figure 4: Summary of oracle weights and sampling proportions for A/B/n experiment
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