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Introduction

Functions in real spaces can be studied, characterized and operated in a virtually infinite number of possibilities. Among the several approaches that can be used for that finality, the following three approaches are particularly important and frequently used, being characterized by the consideration of: (i) individual functions; (ii) functionals defined on these functions; (iii) binary operators on functions; (iv) functionals on binary operators. By binary operator is meant functions that two functions are taken as argument, yielding a third as a result. There are several other possible approaches, but several of them can be handled and understood in terms of the four cases above.

Developments in mathematics and the physical sciences have largely relied on basic algebraic operations that include functions such as harmonic, polynomial and binary operations of sum, product, and division. Though the operations of maximum, minimum and sign of a function are well defined and robust in real function spaces, they do not seem to have been employed as often as the aforementioned algebraic functions and operations.

Based on recent results [START_REF] Da | An ample approach to modeling[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF], the present work elaborates on the suggested possibility [START_REF] Da | An ample approach to modeling[END_REF] of developing an analogy between Boolean algebra, set theory, and real function spaces or, as well as other spaces including but not limited to complex functions and scalar/vector fields.. For instance, the algebraic operation min(f, g), where f and g are any two real functions with a common support, becomes understood as the 'intersection' f ∩ g between those functions, -f as the 'complement' f C of function f , and the integral of a function over a specified support as its respective 'cardinality'. These analogies will mostly involve the sign function and the operations of maximum and minimum. Observe that, in this work, we will understand Boolean variables as -1 and 1 instead of 0 and 1.

Table 1, extracted from [START_REF] Da | Multisets[END_REF], illustrates some of the many possibly analogies that can be considered between the domains of Boolean algebra, set theory, and real function spaces.

Observe that these analogies are established only in a conceptual manner, requiring no changes whatsoever in logical

¬ ∧ ∨ set theoretical [] C ∩ ∪ algebraic -min() max()
Table 1: The potential interrelationships between three basic operations at the logic, set, and algebraic levels ( [START_REF] Da | An ample approach to modeling[END_REF]).

any of the three considered spaces. The point here is that the relationships between the three considered domains, with emphasis on the 16 possible Boolean operations between two logic variables (see Table 2), can lead to hypothesis which can be subsequently validated in the respective domains.

In particular, the present work proposes the conjecture that all the analogies between the three considered domains are valid.

For simplicity's sake, we adopt set notation for dealing with functions, but it should be kept in mind that we are just meaning conceptual analogies.

Though motivated with the areas of scientific modeling, complexity, pattern recognition and signal processing in mind, the reported developments can also be further explored from a more theoretical point of view.

We start by describing the main associations between set and function theories, motivated by recently described results [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF], and then proceed to addressing the four possibilities indicated above.

Single Functions and Functionals

Each possible single real function can be understood as corresponding to a 'set'. For instance, the real function f (x) becomes f . In case the independent variable x needs to be identified, we can have f x . Given a function f (x), -f (x) is conceptually understood as the complement f C of f . The domain of a function f (x) becomes associated to its support.

A function of particular interest is the sign of a function, which is here expressed as:

sgn(f (x)) = s f =    -1 ⇐⇒ f (x) < 0 0 ⇐⇒ f (x) = 0 1 ⇐⇒ f (x) > 0 (1)
The absolute value can then be expressed as:

|f (x)| = s f f (2) 
The integral of a function f is henceforth conceptually understood as its cardinality:

\f \ = ˆ∞ -∞ f (x)dx (3) 
We can now write respectively to the cardinality:

-f = s f f = f C = -f (4) \ -f \ = \s f f \ = \f C \ = -\f \ (5) 
and, with respect to the sign function:

(s f )(s f ) = 1 (6) (s f ) n = 1, n is even -1, n is odd (7)

Binary Operations

Though there are 16 possible logical operations between two Boolean variables (e.g. [START_REF] Da | An ample approach to modeling[END_REF]), in the present work we will shall focus on the operations of union, intersection, sum, and subtraction. The other 12 possible binary operations will be addressed in subsequent works.

It is henceforth assumed that all pairs of functions considered by the binary operators share their respective supports.

The union between two functions f and g corresponds to:

f ∪ g = max {f, g} (8) 
The intersection between two functions f and g corresponds to:

f ∩ g = min {f, g} (9) 
The sum and subtraction between two functions f and g are associated respectively to f -g and f + g.

It is interesting to consider how the sign function in the context of binary operators. In particular, we define the conjoint sign function as:

s f,g = (s f )(s g ) (10) 
The analogy of the De Morgan theorem in real function spaces can now be expressed as:

[f ∪ g] C = f C ∩ g C (11) [f ∩ g] C = f C ∪ g C (12) 
In order to verify the validity of this putative property, we translate back the above equations into the real function notation as:

-min {f (x), g(x)} = max {-f (x), -g(x)} (13) -max {f (x), g(x)} = min {-f (x), -g(x)} (14) 
which is evidently satisfied. This development provides an example of how insights derived from set theory, as well as the respectively associated logical (or Boolean) operations [START_REF] Da | An ample approach to modeling[END_REF], can be verified for real functions.

X Y op 0 op 1 op 2 op 3 op 4 op 5 op 6 op 7 op 8 op 9 op 10 op 11 op 12 op 13 op 14 op 15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Table 2:
The 16 possible logical operations between two logical (or Boolean) variables X and Y . Interestingly, some of them -such as "not", "and" , and "or" -seem to be much closer to human intuition, being more frequently employed.

Indeed, let's also consider the real function analogy of the exclusive or logical operation translated to sets, i.e.:

A ⊕ B = (¬A ∧ B) ∪ (A ∧ ¬B) (15) 
The exclusive or can now be associated to two real functions f and g as:

f ⊕ g = (f C ∩ g) ∪ (f ∩ g C ) ( 16 
)
which can be immediately expanded as:

max {min {-f (x), g(x)} , min {f (x), -g(x)}} (17) 
therefore also corresponding to a valid operation in the space of real functions, with several related properties.

Observe that, in this case, we are considering two successive associations, one from logical operations into sets, and then from sets to real functions.

A direct benefit of establishing the correspondence between functions and sets is that intricate operations involving the maximum, minimum and sign of functions can become much more intuitive and simple when transforming them into the set notation. For example, let the following expression totally immersed and valid in the space of real functions:

r(x) = max {min {f (x), g(x)h(x)} , min {-g(x)h(x), f (x)}} Let's translate it into set notation: r = (f ∩ gh) ∪ [gh] C ∩ f
Now, basic set properties can be employed to simplify the expression as:

r = (f ∩ gh) ∪ f ∩ [gh] C = = f ∩ (gh ∪ [gh] C )) = f (18) 
So that r(x) = f (x).

Binary Operation Functionals

The possibly most important functional in real function spaces is the inner product, between two functions f (x) and g(x), which is defined as:

f (x), g(x) = ˆS f (x)g(x)dx ( 19 
)
where S is a valid considered domain (or support).

The inner product has special conceptual interpretation as providing a possible quantification of the similarity between the two functions. This becomes more evident respectively to the inner product of two vectors, which is proportional to the cosine of the smallest angle between the vectors.

A possible analogue of the inner product in multisets has been proposed [START_REF] Da | Multisets[END_REF], corresponding to:

f (x), g(x) = ˆS s f,g min {s f f (x), s g g(x)} dx (20)
or, in the notation described in this work:

f, g = \s f,g [s f f ∩ s g g] \ (21) 
This concept, which corresponds to a valid functional totally immersed in the real function space, irrespectively to sets or multisets, has been called the common product between the two functions f (x) and g(x). Actually, this functional can be interpreted as a first order version of the inner product, as it relies on the intersection analogy (with respect to the minimum of two functions) instead of the product of two functions, which can be seen as a second order binary operator.

It is then possible to derive a sliding functional operation analogous to the cross-correlation in real function spaces as:

f (x) g(x)[y] = ˆS f (x)g(x -y) dx (22) 
which translates into:

f, g [y] = \s f,g [s f f ∩ s g g x-y ] \ [y] (23) 
an operation that will here be called the cosimilarity between the functions f (x) and g(x).

Similarly a sliding operation analogous to the convolution between two real functions corresponds to:

f (x) g(x)[y] = ˆS f (x)g(y -x) dx ( 24 
)
which translates into:

f g[y] = \s f,g [s f f ∩ s g g y-x ] \ [y] (25)
Now, it is interesting to consider the functional

f (x) • g(x) = s f,g min(s f f (x), s g g(x)) (26) 
which is associated to:

f • g = s f,g [(s f f ) ∩ (s g g)] (27) 
The binary operator f • g is henceforth referred to as sproduct, appearing in all the above functionals and respectively derived sliding functionals. As such, this product deserves further analysis, which is done as follows.

Let's consider the specific case of the sine and cosine functions, illustrated in Figure 1 jointly with their respective sign functions. The function (s f f ) ∩ (s g g) is obtained by multiplying the previous function by the conjoint sign function s f,g , being shown in Figure 2.

The sproduct of the sine and cosine, i.e. f •g, is depicted in Figure 3 jointly with the function s f,g . Therefore, it becomes clear that the function (s f f ) ∩ (s g g) identifies the common areas (hence the name common product assigned to the respective functional) between the functions s f f and s g g. This can be understood as a kind of set intersection that takes into account the signal of the functions so as to consider the common area comprised between the functions and the horizontal axis.

The subsequent product by s f,g then associates signs to the common areas. Now, it becomes clear that the cardinality of f •g, which corresponds to the integral of s f,g along the specified support S, actually quantifies the net similarity between the two functions f and g in directly analogy with inner product action with respect to the algebraic product between two functions. In the case of the sine and cosine, the common product is readily verified to be zero.

Figure 4 presents two other functions f and g.

The respectively obtained sproduct is shown in Figure 5, together with the conjoint sign function s f,g . The resulting common product in this case is equal to 29.68. Interestingly, though the complex exponential does not provide an orthogonal basis for the common productbased convolution, the Walsh functions (e.g. [START_REF] Walsh | A closed set of orthogonal functions[END_REF][START_REF] Stoffer | Walsh-Fourier analysis and statistical applications[END_REF][START_REF] Tzafestas | Walsh Functions in Signal and Systems Analysis and Design[END_REF][START_REF] Harmuth | Applications of Walsh functions in communications[END_REF]) do. This stems directly from the symmetric contributions of the mapping of the parametric mapping of the these functions in the four quadrants in the Cartesian space. Therefore, a transformation directly analogous to the Walsh-Hadamard transform in vector and function spaces can be obtained, allowing also fast analogous implementations (e.g. [START_REF] Researchgate | Fast Walsh-Hadamard transform[END_REF]). This result is particularly important because it indicates that the relatively simpler spaces of sets (and also logic) inherit the structure corresponding to the Walsh basis respectively to the common product binary opeator in vector and function spaces.

Integrating Five Spaces

The above developments motivate a further level of abstraction and integration, involving direct analogies between the nature of several involved spaces, the respective elements and orthogonal basis, and the associated transforms. All cases are endowed with respective convolution/correlation theorems.

Though we have so far focused on analogies between Boolean algebra, sets, and continuous functions, there are actually additional intermediate spaces, as shown in Figure 7.

The spaces are characterized respectively to the type of the domain (x) and image (y) values. The two addi- tional spaces are the Boolean y, discrete x and discrete x, discrete y. The former of these corresponds to binary (or Boolean, or logical) vectors, and the latter to functions that are discrete in both the domain and the image. These two spaces are important in their own ways. For instance, any logic signal in a digital computer or transmission system corresponds to a Boolean y, discrete x function. At the same time, any real function represented in a finite precision computer (i.e. all of them) will give rise to a discrete x, discrete y signal.

The identified analogies at the several indicated levels motivates the application of the shared structures and properties between any of the considered five levels. For instance, this approach emphasizes the important possibility of using multiset theory for representing and processing x-discrete, y-discrete signals, instead of using real algebraic approaches as it is typically done in signal processing and related areas. This means, for instance, that multiset or integer Fourier transforms, involving only integer multiplicities or values (e.g. [START_REF] Rao | Integer fast fourier transform[END_REF]), would therefore provide a particularly suitable alternative for dealing with this type of signals.

However, the potential of the so-defined analogies are by no means restricted to analogous bases and transforms, extending to correspondences between logic theorems and structures into the other sets, as illustrated in this work with respect to the De Morgan theorem. There is a large number of properties and methods involving the 16 Boolean operations, such as the Karnaugh's optimization method, that can be immediately considered in the other spaces, including continous functions.

In addition, as the difference between the identified spaces concerns the nature of the domain an image of the respective functions, many other properties relying on the adjacency or continuity among the successive values in the domain probably hold when transported to between spaces, with the possible exception of properties relying exclusive and strongly on the continuity of both domains.

In the light of the several developments and results presented and discussed in this work, it is conjectured that there could be a complete, direct correspondence between a large number of properties and methods among these five spaces.

Concluding Remarks

Boolean variables, sets and real function spaces are assuredly quite different mathematical structures. Yet, there are intrinsic analogies between these three domains that can be considered in a more systematic manner so as to provide cross-related insights and bridges between structures and properties in these three realms [START_REF] Da | An ample approach to modeling[END_REF].

The present work presented a preliminary exploration of these possibilities. More specifically, real functions were associated to set theoretical constructs and properties motivated by the recent approaches [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF].

The reported development provided several examples of interesting results that can be obtained, including the verification of the De Morgan theorem (originating from Boolean algebra) for real function spaces. In addition, we also developed a study of the recently introduced concept of common product while considering concepts from both real function spaces as well as set theory analogies.

A large number of related developments are possible, including the systematic identification of the valid analogies between all the 16 possible Boolean algebra operations with set theory and real function spaces. Of particular interest would be to consider the implication ofnew results originating from the considered analogies, such as the common product, in science and technology. For instance, the particular importance of the Walsh transform in quantum computing suggests that other analogous results concerning multisets, the common product, and respective correlation/convolution binary operator can be applicable and useful for that area. However, the possibilities are too ample to be summarized here.
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 1 Figure 1: The sine (a) and cosine (b) functions, as well as their respective sign functions (c) and (d).
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 2 Figure 2: The function (s f f ) ∩ (sgg).

Figure 3 :

 3 Figure 3: The sproduct f • g of the sine and cosine functions (a) and the conjoint sign function s f,g (x) (b). The common product for these two functions is zero.
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 4 Figure 4: Two functions f (x) = e -0.5x (a) and g(x) = e -0.1x 2 (b), and their respective sign functions (c) and (d).

Figure 5 :

 5 Figure 5: The sproduct f • g of the sine and cosine functions (a) and the function s f,g (x) (b). The common product in this case is 29.68.
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 6 Figure 6 illustrates the sproduct bewteen a discrete function consisting of symmetric uniform noise distributed in [-1, 1] and a cosine function.

Figure 6 :

 6 Figure 6: The sproduct f • g of a function consisting of symmetric uniform noise (a) and a cosine function. The conjoint signal function s f,g (x) (b) is also presented. The common product in this case is -5.58.

Figure 7 :

 7 Figure 7: Five successive spaces (first column) progressing from Boolean logic on a single variable (bottom), up to continuous functions in continuous spaces (top), while he second column illustrates the type of element in each of the spaces. The third column indicates a respective orthogonal basis, with the respectively associated transforms are indicated in column five.
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