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Abstract6

We establish a tight connection between two models of the λ-calculus, namely Milner’s encoding7

into the π-calculus (precisely, the Internal π-calculus), and operational game semantics (OGS). We8

first investigate the operational correspondence between the behaviours of the encoding provided9

by π and OGS. We do so for various LTSs: the standard LTS for π and a new ‘concurrent’ LTS10

for OGS; an ‘output-prioritised’ LTS for π and the standard alternating LTS for OGS. We then11

show that the equivalences induced on λ-terms by all these LTSs (for π and OGS) coincide. These12

connections allow us to transfer results and techniques between π and OGS. In particular we import13

up-to techniques from π onto OGS and we derive congruence and compositionality results for OGS14

from those of π. The study is illustrated for call-by-value; similar results hold for call-by-name.15

16

17

1 Introduction18

The topic of the paper is the comparison between Operational Game semantics (OGS) and19

the π-calculus, as generic models or frameworks for the semantics of higher-order languages.20

Game semantics [4, 20] provides intentional models of higher-order languages, where the21

denotation of a program brings up its possible interactions with the surrounding context.22

Distinct points of game semantics are the rich categorical structure and the emphasis on23

compositionality. Game semantics provides a modular characterization of higher-order24

languages with computational effects like control operators [24], mutable store [3, 5] or25

concurrency [15, 26]. This gives rise to the “Semantic Cube” [2], a characterization of the26

absence of such computational effects in terms of appropriate restrictions on the interactions,27

with conditions like alternation, well-bracketing, visibility or innocence. For instance, well-28

bracketing corresponds to the absence of control operators like call/cc.29

Game semantics has spurred Operational Game Semantics (OGS) [16,22, 23, 27, 29], as a30

way to describe the interactions of a program with its environment by embedding programs31

into appropriate configurations and then defining rules that turn such configurations into32

an LTS. Besides minor differences on the representation of causality between actions, the33

main distinction with “standard” game semantics is in the way in which the denotation34

of programs is obtained: via an LTS, rather than, compositionally, by induction on the35

structure of the programs (or their types). It is nonetheless possible to establish a formal36

correspondence between these two representations [29].37

OGS is particularly effective on higher-order programs. To avoid being too intensional,38

functional values exchanged between the program and its environment are represented as39

atoms, seen as free variables. Therefore OGS configurations include open terms. The basic40

actions in the LTS produced by OGS represent the calls and returns of functions between a41

program and its environment. The OGS semantics has been shown fully-abstract, that is, to42

characterize observational equivalence, for a wide class of programming languages, including43

effectful subsets of ML [21,27], fragments of Java [23], aspect-oriented programs [22]. The44

conditions in the above-mentioned Semantic Cube (alternation, well-bracketing, etc.) equally45
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apply to OGS.46

In this paper, we consider forms of OGS for the pure untyped call-by-value λ-calculus,47

which enforce some of such conditions. Specifically we consider: an Alternating OGS, where48

only one term can be run at a time, and the control on the interactions alternates between49

the term and the environment; and a Concurrent OGS, where multiple terms can be run in50

parallel.51

The π-calculus is the paradigmatical name-passing calculus, that is, a calculus where52

names (a synonym for ‘channels’) may be passed around. In the literature about the π-53

calculus, and more generally in Programming Language theory, Milner’s work on functions54

as processes [32], which shows how the evaluation strategies of call-by-name λ-calculus and55

call-by-value λ-calculus [1, 35] can be faithfully mimicked, is generally considered a landmark.56

The work promotes the π-calculus to be a model for higher-order programs, and provides57

the means to study λ-terms in contexts other than the purely sequential ones and with the58

instruments available to reason about processes. In the paper, π-calculus is actually meant to59

be the Internal π-calculus (Iπ), a subset of the original π-calculus in which only fresh names60

may be exchanged among processes [41]. The use of Iπ avoids a few shortcomings of Milner’s61

encodings, notably for call-by-value; e.g., the failure of the βv rule (i.e., the encodings of62

(λx. M)V and M{V/x} may be behaviourally distinguishable in π).63

Further investigations into Milner’s encodings [11,42] have revealed what is the equivalence64

induced on λ-terms by the encodings, whereby two λ-terms are equal if their encodings are65

behaviourally equivalent (i.e., bisimilar) Iπ terms. In call-by-value, this equivalence is eager66

normal-form bisimilarity [28], a tree structure proposed by Lassen (and indeed sometimes67

referred to as ‘Lassen’s trees’) as the call-by-value counterpart of Böhm Trees (or Lévy-Longo68

Trees).69

In a nutshell, when used to give semantics to a language, major strengths of the π-calculus70

are its algebraic structure and the related algebraic properties and proof techniques; major71

strengths of OGS are its proximity to the source language — the configurations of OGS are72

built directly from the terms of the source language, as opposed to an encoding as in the73

π-calculus — and its flexibility — the semantics can be tuned to account for specific features74

of the source language like control operators or references.75

The general goal of this paper is to show that there is a tight and precise correspond-76

ence between OGS and π-calculus as models of programming languages, and that such a77

correspondence may be profitably used to take advantage of the strengths of the two models.78

We carry out the above program in the specific case of (untyped) call-by-value λ-calculus,79

ΛV, which is richer and (as partly suggested above) with some more subtle aspects than80

call-by-name. However similar results also hold for call-by-name; see Appendix I for the81

technical details for more comments on it. Analogies and similarities between game semantics82

and π-calculus have been pointed out in various papers in the literature (e.g., [6, 19]; see83

Section 9), and used to, e.g., explain game semantics using π-like processes, and enhance type84

systems for π-terms. In this paper, in contrast, we carry out a direct comparison between85

the two models, on their interpretation of functions.86

We take the (arguably) canonical representations of ΛV into Iπ and OGS. The latter87

representation is Milner’s encoding, rewritten in Iπ. We consider two variant behaviours for88

the Iπ terms, respectively produced by the ordinary LTS of Iπ, and by an ‘output-prioritised’89

LTS, opLTS, in which input actions may be observed only in absence of outputs and internal90

actions. Intuitively, the opLTS is intended to respect sequentiality constraints in the Iπ91

terms: an output action stands for an ongoing computation (for instance, returning the92

result of a previous request) whereas an input action starts a new computation (for instance,93
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a request of a certain service); therefore, in a sequential system, an output action should94

have priority over input actions. For OGS, the ΛV representation is the straightforward95

adaptation of the OGS representations of typed λ-calculi in the literature, e.g., [27].96

We then develop a thorough comparison between the behaviours of the OGS and Iπ97

representations. For this we define a mapping from OGS configurations to Iπ processes.98

We also exploit the fact that, syntactically, the actions in the OGS and Iπ LTSs are the99

same. We derive a tight correspondence between the two models, which allows us to transfer100

techniques and to switch freely between the two models in the analysis of the OGS and Iπ101

representations of ΛV, so to establish new results or obtain new proofs. On these aspects,102

our main results are the following:103104

1. We show that the representation of ΛV in the Alternating OGS is behaviourally the same105

as the representation in Iπ assuming the opLTS. Thus the semantics on λ-terms induced106

by the OGS and Iπ representations coincide. The same results are obtained between the107

Concurrent OGS and Iπ under its ordinary LTS.108

2. We transfer ‘bisimulation up-to techniques’ for Iπ, notably a form of ‘up-to context’, onto109

(Concurrent) OGS. The result is a powerful technique, called ‘up-to composition’, that110

allows us to split an OGS configuration into more elementary configurations during the111

bisimulation game.112

3. We show that the semantics induced on ΛV by the Alternating and by the Concurrent113

OGS are the same, both when the equality in OGS is based on traces and when it is based114

on bisimulation. In other words, all the OGS views of ΛV (Alternating or Concurrent,115

traced-based or bisimulation-based) coincide. Moreover, we show that such induced116

semantics is the equality of Lassen’s trees. We derive the result in two ways: one in which117

we directly import it from Iπ; the other in which we lift eager normal-form bisimulations118

into OGS bisimulations via the up-to-composition technique.119

4. We derive congruence and compositionality properties for the OGS semantics, as well as120

a notion of tensor product over configurations that computes interleavings of traces.121

The results about OGS in (2-4) are obtained exploiting the mapping into Iπ and its algebraic122

properties and proof techniques, as well as the up-to-composition technique for OGS imported123

from Iπ.124

Structure of the paper. Sections 2 to 5 contain background material: general notations,125

Iπ, ΛV, the representations of ΛV in the Alternating OGS (A-OGS) and in Iπ. The following126

sections contain the new material. In Section 6 we study the relationship between the two127

ΛV representations, in Iπ using the output-prioritised LTS. In Section 7 we establish a similar128

relationship between a new Concurrent OGS (C-OGS) and Iπ using its ordinary LTS. We129

also transport up-to techniques onto OGS, and prove that all the semantics of ΛV examined130

(OGS, Iπ, traces, bisimulations) coincide. We import compositionality results for OGS from131

Iπ in Section 8.132

2 Notations133

In the paper we use various LTSs and behavioural relations for them, both for OGS and for134

the π-calculus. In this section we introduce or summarise common notations.135

We use a tilde, like in ã, for (possibly empty) tuples of objects (usually names). Let136

K
µ−→g K ′ be a generic LTS (for OGS or Iπ; the grammar for actions in the LTSs for OGS137

and Iπ will be the same). Actions, ranged over by µ, can be of the form a(̃b), a(̃b), τ , and (ã),138

where τ , called silent or (invisible) action, represents an internal step in K, that is, an action139

that does not require interaction with the outside, and (ã) is a special action performed by140
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abstractions in Iπ and initial configurations in OGS. If µ ̸= τ then µ is a visible action; we141

use ℓ to range over them. We sometimes abbreviate τ−→g as −→g. We write =⇒g for the142

reflexive and transitive closure of τ−→g. We also write K
µ=⇒g K ′ if K =⇒g

µ−→g=⇒g K ′
143

(the composition of the three relations). Then µ̂=⇒g is µ=⇒g if µ ̸= τ , and =⇒g if µ = τ .144

Traces, ranged over by s, are finite (and possibly empty) sequences of visible actions.145

If s = ℓ1, . . . , ℓn (n ≥ 0), then K
s=⇒g K ′ holds if there are K0, . . . , Kn with K0 = K,146

Kn = K ′, and Ki
ℓi+1=⇒g Ki+1 for 0 ≤ i < n; and K

s=⇒g if there is K ′ with K
s=⇒g K ′.147

Two states K1, K2 of the LTS are trace equivalent, written K1 ≏g K2, if (K1
s=⇒g iff148

K2
s=⇒g), for all s.149

Similarly, bisimilarity, written ≈g, is the largest symmetric relation on the state of the150

LTS such that whenever K1 ≈g K2 then K1
µ=⇒g K ′

1 implies there is K ′
2 with K2

µ̂=⇒g K ′
2151

and K ′
1 ≈g K ′

2. For instance, in the Iπ LTS µ−→π of Section 3.1, P ≏π Q means that the Iπ152

processes P and Q are trace equivalent, and P ≈π Q means that they are bisimilar.153

▶ Remark 1 (bound names). In an action a(̃b) or a(̃b) or (̃b), name a is free whereas b̃ are154

bound; the free and bound names of a trace are defined accordingly. Throughout the paper,155

in any statement (concerning OGS or Iπ), the bound names of an action or of a trace that156

appears in the statement are supposed to be all fresh; i.e., all distinct from each other and157

from the free names of the objects in the statement. ◀158

3 Background159

3.1 The Internal π-calculus160

The Internal π-calculus, Iπ, is, intuitively, a subset of the π-calculus in which all outputs161

are bound. This is syntactically enforced by having outputs written as a(̃b) (which in the162

π-calculus would be an abbreviation for ν b̃ a⟨̃b⟩). All tuples of names in Iπ are made of163

pairwise distinct components. Abstractions are used to write name-parametrised processes,164

for instance, when writing recursive process definitions. The instantiation of the parameters165

of an abstraction B is done via the application construct B⟨ã⟩. Processes and abstractions166

form the set of agents, ranged over by T . Lowercase letters a, b, . . . , x, y, . . . range over the167

infinite set of names. The grammar of Iπ is thus:168

P ≜ 0 | a(̃b). P | a(̃b). P | νa P | P1 | P2 | !a(̃b). P | B⟨ã⟩ (processes)
B ≜ (ã) P | K (abstractions)

169

The operators have the usual meaning; we omit the standard definition of free names, bound170

names, and names of an agent, respectively indicated with fn(−), bn(−), and n(−). In the171

grammar, K is a constant, used to write recursive definitions. Each constant K has a defining172

equation of the form K ≜ (x̃) P , where (x̃) P is name-closed (that is, without free names);173

x̃ are the formal parameters of the constant . Replication could be avoided in the syntax174

since it can be encoded with recursion. However its semantics is simple, and it is useful in175

encodings.176

An application redex ((x̃)P )⟨ã⟩ can be normalised as P{ã/x̃}. An agent is normalised if177

all such application redexes have been contracted. In the remainder of the paper we identify178

an agent with its normalised expression.179

Since the calculus is polyadic, we assume a sorting system [31] to avoid disagreements in180

the arities of the tuples of names. Being not essential, it will not be presented here.181
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Operational semantics and behavioural relations182

In the LTS for Iπ, recalled in Appendix A, transitions are of the form T
µ−→π T ′, where the183

bound names of µ are fresh, i.e., they do not appear free in T .184

Trace equivalence (≏π) and bisimilarity (≈π) have been defined in Section 2. We refer to185

Appendix A for the standard definition of expansion, written ≲π. (The expansion relation186

≲π is an asymmetric variant of ≈π in which, intuitively, P ≲π Q holds if P ≈π Q but also Q187

has at least as many τ -moves as P .) All behavioural relations are extended to abstractions by188

requiring ground instantiation of the parameters; this is expressed by means of a transition;189

e.g., the action (x̃) P
(x̃)−→π P (see rule abs in Appendix A).190

The “up-to” techniques191

The “up-to” techniques allow us to reduce the size of a relation R to exhibit for proving192

bisimilarities. Our main up-to technique will be up-to context and expansion [40], which193

admits the use of contexts and of behavioural equivalences such as expansion to achieve the194

closure of a relation in the bisimulation game. So the bisimulation clause becomes:195

if P R Q and P
µ−→ P ′′ then there are a static context Cctx and processes P ′ and Q′ s.t.196

P ′′
π≳ Cctx[P ′], Q

µ̂=⇒ π≳ Cctx[Q′] and P ′ R Q′ (∗)197

where a static context is a context of the form ν c̃ (R | [·]).198

We will also employ: bisimulation up-to ≈π [30], whereby bisimilarity itself is employed199

to achieve the closure of the candidate relation during the bisimulation game; a variant200

of bisimulation up-to context and expansion, called bisimulation up-to context and up-to201

(π≳, ≈π), in which, in (∗), when µ is a visible action, expansion is replaced by the coarser202

bisimilarity, at the price of imposing that the static context Cctx cannot interact with the203

processes P or Q. (This technique, as far as we know, does not appear in the literature.)204

Details on these techniques may be found in Appendix A.205

3.2 The Call-By-Value λ-calculus206

The grammar of the untyped call-by-value λ-calculus, ΛV, has values V , terms M , evaluation207

contexts E, and general contexts C:208

Vals V ≜ x | λx. M

Terms M, N ≜ V | MN

ECtxs E ≜ [·] | V E | EM

Ctxs C ≜ [·] | λx. C | MC | CM
209

where [·] stands for the hole of a context. The call-by-value reduction →v has two rules:

(λx. M)V →v M{V/x}
M →v N

E[M ] →v E[N ]

In the following, we write M ⇓ M ′ to indicate that M ⇒v M ′ with M ′ an eager normal210

form, that is, either a value or a stucked call E[xV ].211

4 Operational Game Semantics212

We introduce the representation of ΛV in OGS. The LTS produced by the representation of213

a term intends to capture the possible interactions between the term and its environment.214

Values exchanged between the term and the environment are represented by names, akin to215

free variables, called variable names and ranged over by x, y, z. Continuations (i.e., evaluation216
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(Pτ) ⟨M, p, γ, ϕ⟩ τ−→a ⟨N, p, γ, ϕ⟩ when M →v N

(PA) ⟨V, p, γ, ϕ⟩ p̄(x)−→a ⟨γ · [x 7→ V ], ϕ ⊎ {x}⟩
(PQ) ⟨E[xV ], p, γ, ϕ⟩ x̄(y,q)−→ a ⟨γ · [y 7→ V ] · [q 7→ (E, p)], ϕ ⊎ {y, q}⟩
(OA) ⟨γ · [q 7→ (E, p)], ϕ⟩ q(x)−→a ⟨E[x], p, γ, ϕ ⊎ {x}⟩
(OQ) ⟨γ, ϕ⟩ x(y,p)−→ a ⟨V y, p, γ, ϕ ⊎ {y, p}⟩ when γ(x) = V

(IOQ) ⟨[? 7→ M ], ϕ⟩ (p)−→a ⟨M, p, ε, ϕ ⊎ {p}⟩

Figure 1 The LTS for the Alternating OGS (A-OGS)

contexts) are also represented by names, called continuation names and ranged over by p, q, r.217

Actions µ have been introduced in Section 2. In OGS, we have five kinds of (visible) actions:218

Player Answers (PA), p̄(x), and Opponent Answers (OA), p(x), that exchange a variable219

x through a continuation name p;220

Player Questions (PQ), x̄(y, p), and Opponent Questions (OQ), x(y, p), that exchange a221

variable y and a continuation name p through a variable x;222

Initial Opponent Questions (IOQ), (p), that introduce the initial continuation name p.223

▶ Remark 2. The denotation of terms is usually represented in game semantics using the224

notion of pointer structure rather than traces. A pointer structure is defined as a sequence of225

moves, together with a pointer from each move (but the initial one) to a previous move that226

‘justifies’ it. Taking a trace s, one can reconstruct this pointer structure in the following way:227

an action µ is justified by an action µ′ if the free name of µ is bound by µ′ in s (here we are228

taking advantage of the ‘freshness’ convention on the bound names of traces, Remark 1).229

Environments, ranged over by γ, maintain the association from names to values and230

evaluations contexts, and are partial maps. A single mapping is either of the form [x 7→ V ]231

(the variable x is mapped onto the value V ), or [p 7→ (E, q)] (the continuation name p is232

mapped onto the pair of the evaluation context E and the continuation q).233

There are two main kinds of configurations F : active configurations ⟨M, p, γ, ϕ⟩ and234

passive configurations ⟨γ, ϕ⟩, where M is a term, p a continuation name, γ an environment235

and ϕ a set of names called its name-support. Names in dom(γ) are called P-names, and236

those in ϕ\dom(γ) are called O-names. So we obtain a polarity function polF associated to237

F , defined as the partial maps from ϕ to {O, P} mapping names to their polarity. In the238

following, we only consider valid configurations, for which:239

dom(γ) ⊆ ϕ240

fv(M), p are O-names;241

for all a ∈ dom(γ), the names appearing in γ(a) are O-names.242

The LTS is introduced in Figure 1. It is called Alternating, since, forgetting the Pτ243

transition, it is bipartite between active configurations, that perform Player actions, and244

passive configurations, that perform Opponent actions. Accordingly, we call Alternating245

the resulting OGS, abbreviated A-OGS. In the OA rule, E is “garbage-collected” from γ, a246

behavior corresponding to linear continuations. More details on the rules may be found in247

Appendix C.248

To build the denotation of a term M , we introduce an initial configuration associated249

to it, written ⟨[? 7→ M ], ϕ⟩, with ϕ the set of free variables we start with. When this set is250

taken to be the free variables of M , we simply write it as ⟨M⟩. In the initial configuration251
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V[[V ]] ≜ (p) p(y). V∗[[V ]]⟨y⟩ V∗[[λx. M ]] ≜ (y) !y(x, q). V[[M ]]⟨q⟩ V∗[[x]] ≜ (y) y ▷ x

V[[MN ]] ≜ (p) νq
(
V[[M ]]⟨q⟩ | q(y). νr

(
V[[N ]]⟨r⟩ | r(w). y(w′, p′). (w′ ▷ w | p′ ▷ p)

))
Figure 2 The encoding of call-by-value λ-calculus into Iπ

the choice of the continuation name p is made, by performing an Initial Opponent question252

(IOQ). (Formally, initial configurations should be considered as passive configurations.)253

5 The encoding of call-by-value λ-calculus into the π-calculus254

We recall here Milner’s encoding of call-by-value λ-calculus, transplanted into Iπ. The
core of any encoding of the λ-calculus into a process calculus is the translation of function
application. This becomes a particular form of parallel combination of two processes, the
function and its argument; β-reduction is then modelled as a process interaction. As in OGS,
so in Iπ the encoding uses continuation names p, q, r, . . . , and variable names x, y, v, w . . . .
Figure 2 presents the encoding. Process a ▷ b represents a link (sometimes called forwarder;
for readability we have adopted the infix notation a ▷ b for the constant ▷). It transforms
all outputs at a into outputs at b; thus the body of a ▷ b is replicated, unless a and b are
continuation names:

▷ ≜

{
(p, q). p(x). q(y). y ▷ x if p, q are continuation names
(x, y). !x(z, p). y(w, q). (q ▷ p | w ▷ z) if x, y are variable names

The equivalence induced on call-by-value λ-terms by their encoding into Iπ coincides with255

Lassen’s eager normal-form (enf) bisimilarity [28]. That is, V[[M ]] ≈π V[[N ]] iff M and N256

are enf-bisimilar [11]. In proofs about the behaviour of the Iπ representation of λ-terms we257

sometime follow [11] and use an optimisation of Milner’s encoding, reported in Appendix D258

together with its correctness (Lemma 47).259

6 Relationship between Iπ and A-OGS260

To compare the A-OGS and Iπ representations of the (call-by-value) λ-calculus, we set a261

mapping from A-OGS configurations and environments to Iπ processes. The mapping is262

reported in Figure 3. It is an extension of Milner’s encoding of the λ-calculus and is therefore263

indicated with the same symbol V . The mapping uses a representation of environments γ as264

associative lists.265

▶ Remark 3. The encoding of a configuration F with name-support ϕ does not depend266

on ϕ. This name-support ϕ is used in OGS both to enforce freshness of names, and to267

deduce the polarity of names, as represented by the function pol. And indeed, the process268

V[[F ]] has its set of free names included in ϕ, and uses P -names in outputs and O-names in269

inputs. The polarity property could be stated in π-calculus using i/o-sorting [34]. Indeed, a270

correspondence between arenas of game semantics (used to enforce polarities of moves) and271

sorting has been explored [18,19].272

6.1 Operational correspondence273

The following theorems establish the operational correspondence between the A-OGS and274

Iπ representations. In Theorem 4, as well as in following theorems such as Theorems 5, 7,275
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Encoding of environments: Encoding of configurations:
V[[[y 7→ V ] · γ′]] ≜ V∗[[V ]]⟨y⟩ | V[[γ′]]

V[[[q 7→ (E, p)] · γ′]] ≜ q(x). V[[E[x]]]⟨p⟩ | V[[γ′]]
V[[ε]] ≜ 0

V[[⟨M, p, γ, ϕ⟩]] ≜ V[[M ]]⟨p⟩ | V[[γ]]
V[[⟨γ, ϕ⟩]] ≜ V[[γ]]

V[[⟨[? 7→ M ], ϕ⟩]] ≜ V[[M ]]

Figure 3 From OGS environments and configurations to Iπ

and 13, the appearance of the expansion relation π≳ (in place of the coarser ≈π), in the276

statement about silent actions, is essential, both to derive the statement in the theorems277

about visible actions, and to use the theorems in up-to techniques for Iπ (more generally, in278

applications of the theorems in which one reasons about the number of steps performed).279

▶ Theorem 4.280

1. If F =⇒a F ′, then V[[F ]] =⇒π π≳ V[[F ′]];281

2. If F
ℓ=⇒a F ′, then V[[F ]] ℓ=⇒π ≈π V[[F ′]].282

▶ Theorem 5.283

1. If V[[F ]] =⇒π P then there is F ′ such that F =⇒a F ′ and P π≳ V[[F ′]] ;284

2. If V [[F ]] ℓ=⇒π P and ℓ is an output, then there is F ′ such that F
ℓ=⇒a F ′ and P π≳ V [[F ′]];285

3. If F is passive and V [[F ]] ℓ=⇒π P , then there is F ′ such that F
ℓ=⇒a F ′ and P ≈π V [[F ′]].286

In Theorem 5, a clause is missing for input actions from V [[F ]] when F active. Indeed such287

actions are possible in Iπ, stemming from the (encoding of the) environment of F , whereas288

they are not possible in A-OGS. This is rectified in Section 6.2, introducing a constrained289

LTS for Iπ, and in Section 7, considering a concurrent OGS.290

▶ Corollary 6. If F
s=⇒a then also V[[F ]] s=⇒π.291

6.2 An output-prioritised Transition System292

We define an LTS for Iπ in which input actions are visible only if no output can be consumed,293

either as a visible action or through an internal action (i.e., syntactically the process has294

no unguarded output). The new LTS, called output-prioritised and indicated as opLTS, is295

defined on the top of the ordinary one by means of the two rules below. A process P is input296

reactive if whenever P
µ−→π P ′, for some µ, P ′ then µ is an input action.297

P
µ−→π P ′ P input reactive

P
µ−→oπ P ′

P
µ−→π P ′

P
µ−→oπ P ′

µ is an output or τ action298

The opLTS captures an aspect of sequentiality in π-calculi: a free input prefix is to be299

thought of as a service offered to the external environment; in a sequential system such a300

service is available only if there is no ongoing computations due to previous interrogations301

of the server. An ongoing computation is represented by a τ -action, indicating a step of302

computation internal to the server, or an output, indicating either an answer to a client303

or a request to an external server. The constraint imposed by the new LTS could also be304

formalised compositionally, see Appendix A.305

Under the opLTS, the analogous of Theorem 4 continue to hold: in A-OGS configurations,306

input transitions only occur in passive configurations, and the encodings of passive configura-307

tions are input-reactive processes. However, now we have the full converse of Theorem 5 and,308

as a consequence, we can also establish the converse direction of Corollary 6.309
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▶ Theorem 7.310

1. If V[[F ]] τ=⇒oπ P then there is F ′ such that F =⇒a F ′ and P π≳ V[[F ′]] ;311

2. If V[[F ]] ℓ=⇒oπ P then there is F ′ such that F
ℓ=⇒a F ′ and P ≈π V[[F ′]].312

▶ Corollary 8. For any configuration F and trace s, we have F
s=⇒a iff V[[F ]] s=⇒oπ.313

▶ Remark 9. We recall that, following Remark 1 on the usage of bound names, in Corollary 8314

the bound names in s are fresh; thus they do not appear in F . (Similarly, in Theorems 5315

and 7 for the bound names in ℓ).316

For both results we first establish a correspondence result on strong transitions. See317

Appendix D for details.318

▶ Remark 10. Corollary 8 relies on Theorems 4 and 7. The corollary talks about the opLTS319

of Iπ; however the theorems make use of the ordinary expansion relation ≲π, that is defined320

on the ordinary LTS. Such uses of expansion can however be replaced by expansion on the321

opLTS (defined as ordinary expansion, but on the opLTS). For more details on this, see322

Appendix B.323

As a consequence of Corollary 8, trace equivalence is the same, on A-OGS configurations324

and on the encoding Iπ terms. Moreover, from Theorem 7 the same result holds under a325

bisimulation semantics. Further, since the LTS produced by A-OGS is deterministic, its trace326

semantics coincides with its bisimulation semantics. We can thus conclude as in Corollary 11.327

We recall that ≏oπ and ≈oπ are, respectively, trace equivalence and bisimilarity between Iπ328

processes in the opLTS; similarly for ≏a and ≈a between A-OGS terms.329

▶ Corollary 11. For any F, F ′ we have: F ≏a F ′ iff V[[F ]] ≏oπ V[[F ′]] iff F ≈a F ′ iff330

V[[F ]] ≈oπ V[[F ′]].331

Corollary 11 holds in particular when F is the initial configuration for a λ-term. That is,332

the equality induced on call-by-value λ-terms by their representation in A-OGS and in Iπ333

(under the opLTS) is the same, both employing traces and employing bisimulation to handle334

the observables for the two models.335

▶ Corollary 12. For any λ-terms M, N , we have:336

⟨M⟩ ≏a ⟨N⟩ iff ⟨M⟩ ≈a ⟨N⟩ iff V[[M ]] ≏oπ V[[N ]] iff V[[M ]] ≈oπ V[[N ]].337

From Theorem 5 and Corollary 8, it also follows that F and V[[F ]] are weakly bisimilar,338

on the union of the respective LTSs.339

7 Concurrent Operational Game Semantics340

In this section we explore another way to derive an exact correspondence between OGS and341

Iπ, by relaxing the Alternating LTS for OGS so to allow multiple terms in configurations to342

run concurrently. We refer to the resulting OGS as the Concurrent OGS, briefly C-OGS (we343

recall that A-OGS refers to the Alternating OGS of Section 4).344

We introduce running terms, ranged over by A, B, as finite mappings from continuation345

names to λ-terms. A concurrent configuration is a triple ⟨A, γ, ϕ⟩ of a running term A, an346

environment γ, and a set of names ϕ. Moreover, the domains of A and γ must be disjoint.347

We extend the definition of the polarity function, considering names in the domain of both348

A and γ as Player names.349

Passive and active configurations can be seen as special case of C-OGS configurations350

with zero and one running term, respectively. For this reason we still use F, G to range351
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(Pτ) ⟨A · [p 7→ M ], γ, ϕ⟩ τ−→c ⟨A · [p 7→ N ], γ, ϕ⟩ when M →v N

(PA) ⟨A · [p 7→ V ], γ, ϕ⟩ p̄(x)−→c ⟨A, γ · [x 7→ V ], ϕ ⊎ {x}⟩
(PQ) ⟨A · [p 7→ E[xV ]], γ, ϕ⟩ x̄(y,q)−→ c ⟨A, γ · [y 7→ V ] · [q 7→ (E, p)], ϕ ⊎ {y, q}⟩
(OA) ⟨A, γ · [p 7→ (E, q)], ϕ⟩ p(x)−→c ⟨A · [q 7→ E[x]], γ, ϕ ⊎ {x}⟩
(OQ) ⟨A, γ, ϕ⟩ x(y,p)−→ c ⟨A · [p 7→ V y], γ, ϕ ⊎ {y, p}⟩ when γ(x) = V

(IOQ) ⟨[? 7→ M ], ϕ⟩ (p)−→c ⟨[p 7→ M ], ε, ϕ ⊎ {p}⟩

Figure 4 The LTS for the Concurrent OGS

over C-OGS configurations. Moreover we freely take A-OGS configurations to be C-OGS352

configurations, and conversely for C-OGS configurations with zero and one running term,353

omitting the obvious syntactic coercions. Both the running term and the environment may354

be empty.355

We present the rules of C-OGS in Figure 4. Since there is no more distinction between356

passive and active configurations, a given configuration can perform both Player and Opponent357

actions. Notice that only Opponent can add a new term to the running term A. A singleton358

is a configuration F whose P-support has only one element (that is, in C-OGS, F is either of359

the form ⟨[p 7→ M ], ε, ϕ⟩, or ⟨ε, [x 7→ V ], ϕ⟩, or ⟨ε, [p 7→ (E, q)], ϕ⟩).360

In this and in the following section F, G ranges over C-OGS configurations, as reminded361

by the index ‘c’ in the symbols for LTS and behavioural equivalence with which F, G appear362

(e.g., ≏c).363

7.1 Comparison between C-OGS and Iπ364

The encoding of C-OGS into Iπ is a simple adaptation of that for A-OGS. We only have365

to consider the new or modified syntactic elements of C-OGS, namely running terms and366

configurations; the encoding remains otherwise the same. The encoding of running term is:367

V[[[p 7→ M ] · A]] def= V[[M ]]⟨p⟩ | V[[A]] V[[ε]] def= 0368

The encoding of configurations is then defined as: V[[⟨A, γ, ϕ⟩]] def= V[[A]] | V[[γ]].369

The results about operational correspondence between C-OGS and Iπ are as those between370

A-OGS and Iπ under the opLTS.371

▶ Theorem 13.372

1. If F =⇒c F ′ then V[[F ]] =⇒ππ≳ V[[F ′]];373

2. if F
ℓ=⇒c F ′ then V[[F ]] ℓ=⇒π≈π V[[F ′]];374

3. the converse of (1), i.e. if V[[F ]] =⇒π P then there is F ′ such that F =⇒c F ′ and375

P π≳ V[[F ′]].376

4. the converse of (2), i.e. if V[[F ]] ℓ=⇒π P then there is F ′ such that F
ℓ=⇒c F ′ and377

P ≈π V[[F ′]].378

▶ Corollary 14. For any C-OGS configuration F and trace s, we have F
s=⇒c iff V [[F ]] s=⇒π.379

From Corollary 14 and Theorem 13, we derive:380

▶ Lemma 15. For any F, F ′ we have:381
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1. F1 ≏c F2 iff V[[F1]] ≏π V[[F2]];382

2. F1 ≈c F2 iff V[[F1]] ≈π V[[F2]].383

To derive the full analogous of Corollary 12, we now show that, on the Iπ representation384

of λ-terms, trace equivalence is the same as bisimilarity. This result needs a little care: it is385

known that on deterministic LTSs bisimilarity coincides with trace equivalence. However,386

the behaviour of the Iπ representation of a C-OGS configuration need not be deterministic,387

because there could be multiple silent transitions as well as multiple output transitions (for388

instance, in C-OGS rule OQ may be applicable to different terms).389

▶ Lemma 16. For any M, N we have: V[[M ]] ≏π V[[N ]] iff V[[M ]] ≈π V[[N ]].390

The proof uses the ‘bisimulation up-to context and up-to (π≳, ≈π)’ technique. We can391

finally combine Lemmas 16 and 15 to derive that the C-OGS and Iπ semantics of λ-calculus392

coincide, both for traces and for bisimilarity.393

▶ Corollary 17. For all M, N we have: ⟨M⟩ ≏c ⟨N⟩ iff ⟨M⟩ ≈c ⟨N⟩ iff V[[M ]] ≏π V[[N ]] iff394

V[[M ]] ≈π V[[N ]].395

More details on proofs may be found in Appendix E.396

7.2 Tensor Product397

We now introduce a way of combining configurations, which corresponds to the notion of398

tensor product of arenas and strategies in (denotational) game semantics.399

▶ Definition 18. Two concurrent configurations F, G are said to be compatible if their400

polarity functions polF , polG are compatible — that is, for all a ∈ dom(polF ) ∩ dom(polG),401

we have polF (a) = polG(a).402

▶ Definition 19. For compatible configurations F = ⟨A, γ, ϕ⟩ and G = ⟨B, δ, ϕ′⟩, the tensor403

product F ⊗ G is defined as F ⊗ G ≜ ⟨A · B, γ · δ, ϕ ∪ ϕ′⟩404

The polarity function of F ⊗G is then equal to polF ∪polG, and V [[F1⊗F2]] ≡ V [[F1]] | V [[F2]],405

where ≡ is the standard structural congruence of π-calculi. In the following, we write406

inter(s1, s2) for the set of traces obtained from an interleaving of the elements in the407

sequences s1 and s2.408

▶ Lemma 20. Suppose F1, F2 are compatible concurrent configurations. The set of traces409

generated by F1 ⊗ F2 is the union of the sets of interleaving inter(s1, s2), for F1
s1=⇒c and410

F2
s2=⇒c.411

The tensor product of A-OGS configurations is defined similarly, with the additional412

hypothesis that at most one of the two configurations is active, in order for their tensor413

product to be a valid A-OGS configuration. The details can be found in Appendix H.2.414

7.3 Up-to techniques for games415

We introduce up-to techniques for C-OGS, which allow, in bisimulation proofs, to split two416

C-OGS configurations into separate components and then to reason separately on these.417

These up-to techniques are directly imported from Iπ. Abstract settings for up-to techniques418

have been developed, see [36, 37]; we cannot however derive the OGS techniques from them419

because these setting are specific to first-order LTS (i.e., CCS-like, without binders within420

actions).421
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The new techniques are then used to prove that C-OGS and A-OGS yield the same422

semantics on λ-terms; a further application is in Section 7.5, discussing eager normal-form423

bisimilarity.424

A relation R on configuration is well-formed if it relates configurations with the same425

polarity function. Below, all relations on configurations are meant to be well formed. Given426

a well-formed relation R we write:427

R| for the relation {(F1, F2) : ∃ G s.t. Fi = F ′
i ⊗ G (i = 1, 2) and F ′

1 R F ′
2}.428

R|⋆ for the reflexive and transitive closure of R|. Thus from F1 R G1 and F2 R G2 we429

obtain (F1 ⊗ F2) R|⋆ (G1 ⊗ F2) R|⋆ G1 ⊗ G2.430

⇒c R|⋆
c⇐ for the closure of R|⋆ under reductions. That is, F1 ⇒c R|⋆

c⇐ F2 holds if431

there are F ′
i , i = 1, 2 with Fi =⇒c F ′

i and F ′
1 R|⋆ F ′

2. (As =⇒c is reflexive, we may have432

Fi = F ′
i .)433

▶ Definition 21. A relation R on configurations is a bisimulation up-to reduction and434

composition if whenever F1 R F2:435

1. if F1
µ−→c F ′

1 then there is F ′
2 such that F2

µ̂=⇒c F ′
2 and F ′

1 ⇒c R|⋆
c⇐ F ′

2 ;436

2. the converse, on the transitions from F2.437

A variant of the technique in Definition 21, where the bisimulation game is played only438

on visible actions at the price of being defined on singleton configurations, is presented in439

Appendix F and used in Section 7.5 to lift any eager normal form bisimulation to an OGS440

‘bisimulation up-to’.441

▶ Theorem 22. If R is bisimulation up-to reduction and composition then R ⊆ ≈c.442

The theorem is proved by showing that the Iπ image of R is a bisimulation up-to context443

and up-to (π≳, ≈π), and appealing to Lemma 15(2). See Appendix F for details.444

▶ Remark 23. Results such as Corollary 17 and Theorem 22 might suggest that the equality
between two configurations implies the equality of all their singleton components. That is, if
F ≏c G, with [p 7→ M ] part of F and [p 7→ N ] part of G, then also ⟨[p 7→ M ]⟩ ≏c ⟨[p 7→ N ]⟩.
A counterexample is given by the configurations

F1
def= ⟨[p1 7→ M ] · [p2 7→ Ω]⟩ where M

def= (λz. Ω)(xλy. Ω)
F2

def= ⟨[p1 7→ Ω] · [p2 7→ M ]⟩

Intuitively the reason why F1 ≏c F2 is that M can produce an output (along the variable x),445

but an observer will never obtain access to the name at which M is located (p1 or p2). That446

is, the term M can interrogate x, but it will never answer, neither at p1 nor at p2.447

7.4 Relationship between Concurrent and Alternating OGS448

In Section 6 we have proved that the trace-based and bisimulation-based semantics produced449

by A-OGS and by Iπ under the opLTS coincide. In Section 7.1 we have obtained the same450

result for C-OGS and Iπ under the ordinary LTS. In this section we develop these results451

so to conclude that all such equivalences for λ-terms actually coincide. In other words, the452

equivalence induced on λ-terms by their representations in OGS and Iπ is the same, regardless453

of whether we adopt the alternating or concurrent flavour for OGS, the opLTS or the ordinary454

LTS in Iπ, a trace or a bisimulation semantics. For this, in one direction we show that the455

trace semantics induced by C-OGS implies that induced by A-OGS (Lemma 63). In the456

opposite direction, we lift a bisimulation over the alternating LTS on singleton configurations457

into a bisimulation up-to composition over the concurrent LTS.458
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▶ Lemma 24. If F1, F2 are A-OGS singleton configurations and F1 ≈a F2, then also459

F1 ≈c F2.460

Details may be found in Appendix G. From Corollaries 12, 17, and Lemmas 63, 24 we461

can thus conclude.462

▶ Corollary 25. For any λ-terms M, N , the following statements are the same: ⟨M⟩ ≏a ⟨N⟩;463

⟨M⟩ ≈a ⟨N⟩; ⟨M⟩ ≏c ⟨N⟩; ⟨M⟩ ≈c ⟨N⟩; V[[M ]] ≏oπ V[[N ]]; V[[M ]] ≈oπ V[[N ]]; V[[M ]] ≏π464

V[[N ]]; V[[M ]] ≈π V[[N ]].465

7.5 Eager Normal Form Bisimulations466

We recall Lassen’s eager normal-form (enf) bisimilarity [28].467

▶ Definition 26. An enf-bisimulation is a triple of relation on terms RM, values RV , and468

evaluation contexts RK that satisfies:469

M1 RM M2 if either:470

both M1, M2 diverge;471

M1 ⇓ E1[xV1] and M2 ⇓ E2[xV2] for some x, values V1, V2, and evaluation contexts472

E1, E2 with V1 RV V2 and K1 RK K2;473

M1 ⇓ V1 and M2 ⇓ V2 for some values V1, V2 with V1 RV V2.474

V1 RV V2 if V1x RM V2x for some fresh x;475

K1 RV K2 if K1[x] RM K2[x] for some fresh x.476

The largest enf-bisimulation is called enf-bisimilarity.477

From Corollary 25 and existing results in the π-calculus [11] we can immediately conclude478

that the semantics on λ-terms induced by OGS (Alternating or Concurrent) coincides with479

enf-bisimilarity (i.e., Lassen’s trees).480

In this section we show a direct proof of the result, for C-OGS bisimilarity, as an example481

of application of the up-to composition technique for C-OGS.482

Terms, Values, and Evaluations contexts can be directly lifted to singleton concurrent483

configurations, meaning that we can transform a relation on terms, values, and contexts R484

into a relation R̂ on singleton concurrent configurations in the following way:485

If (M1, M2) ∈ R then (⟨[p 7→ M1], ε, ϕ⟩, ⟨[p 7→ M2], ε, ϕ⟩) ∈ R̂, with ϕ = fv(M1, M2)⊎{p}486

If (V1, V2) ∈ R then (⟨[x 7→ V1], ϕ⟩, ⟨[x 7→ V2], ϕ⟩) ∈ R̂, with ϕ = fv(V1, V2) ⊎ {x};487

If (E1, E2) ∈ R then (⟨[p 7→ (E1, q)], ϕ⟩, ⟨[p 7→ (E2, q)], ϕ⟩) ∈ R̂, with ϕ = fv(E1, E2) ⊎488

{p, q}.489

▶ Theorem 27. Taking (RM, RV , RK) an enf-bisimulation, then (R̂M ∪ R̂V ∪ R̂K) is a490

singleton bisimulation up-to composition in C-OGS (as defined in Appendix F).491

Proof. Taking F1, F2 two singleton configurations s.t. (F1, F2) ∈ R̂M, then we can write492

Fi as ⟨[p 7→ Mi], ϕ⟩ for i = 1, 2, such that (M1, M2) ∈ R. suppose that F1 =⇒c
ℓ−→c F ′

1,493

with ℓ a Player action. We only present the Player Question case, which is where ‘up-to494

composition’ is useful. So writing ℓ as x̄(y, q), F ′
1 can be written as ⟨[y 7→ V1] · [q 7→ (E1, p)]⟩,495

so that M1 →∗
v E1[xV1].496

As (M1, M2) ∈ R, there are E2, V2 s.t. M2 →∗
v E2[xV2], (V1, V2) ∈ R and (E1, E2) ∈ R.497

Hence F2 =⇒c
ℓ−→c F ′

2 with F ′
2 = ⟨[y 7→ V2] · [q 7→ (E2, p)]⟩.498

Finally, (⟨[y 7→ V1]⟩, ⟨[y 7→ V2]⟩) ∈ R̂ and (⟨[q 7→ (E1, p)]⟩, ⟨[q 7→ (E2, p)]⟩) ∈ R̂, so that499

(F ′
1, F ′

2) ∈ R̂|⋆.500

The case of passive singleton configurations is proved in a similar way. ◀501
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8 Compositionality of OGS via Iπ502

We now present some compositionality results about C-OGS and A-OGS, that can be proved503

via the correspondence between OGS and Iπ.504

Compositionality of OGS amounts to compute the set of traces generated by ⟨M{V/x}⟩505

from the set of traces generated by ⟨M⟩ and ⟨[x 7→ V ]]⟩. This is the cornerstone of506

(denotational) game semantics, where the combination of ⟨M⟩ and ⟨[x 7→ V ]⟩ is represented507

via the so-called ‘parallel composition plus hiding’. This notion of parallel composition of two508

processes P, Q plus hiding over a name x is directly expressible in Iπ as the process νx(P | Q).509

Precisely, suppose F, G are two configurations that agree on their polarity functions, but on510

a name x; then we write511

νx(F | G) (∗)512

for the Iπ process νx(V[[F ]] | V[[G]]), the parallel composition plus hiding over x. To define513

this operation directly at the level of OGS, we would have to generalize its LTS, allowing514

internal interactions over a name x used both in input and in output.515

As the translation V from OGS configurations into Iπ validates the βv rule, we can prove516

that the behaviour of ⟨M{V/x}⟩ (e.g., its set of traces) is the same as that of the parallel517

composition plus hiding over x of ⟨M⟩ and ⟨[x 7→ V ]⟩). We use the notation (∗) above to518

express the following two results.519

▶ Theorem 28. For ▷◁ ∈ {≈oπ, ≈π,≏oπ,≏π}, we have520

V[[⟨[p 7→ M{V/x}], γ, ϕ ∪ ϕ′⟩]] ▷◁ νx(⟨[p 7→ M ], ε, ϕ ⊎ {x}⟩ | ⟨γ · [x 7→ V ], ϕ′ ⊎ {x}⟩)521

▶ Corollary 29. For any trace s:522

1. ⟨M{V/x}, p, γ, ϕ ∪ ϕ′⟩ s=⇒a iff νx(⟨M, p, ε, ϕ ⊎ {x}⟩ | ⟨γ · [x 7→ V ], ϕ′ ⊎ {x}⟩) s=⇒oπ523

2. ⟨[p 7→ M{V/x}], γ, ϕ ∪ ϕ′⟩ s=⇒c iff νx(⟨[p 7→ M ], ε, ϕ ⊎ {x}⟩ | ⟨γ · [x 7→ V ], ϕ′ ⊎ {x}⟩) s=⇒π524

Other important properties that we can import in OGS from Iπ are the congruence525

properties for the A-OGS and C-OGS semantics. We report the result for ≏a; the same526

result holds for ≈a,≏c, ≈c.527

▶ Theorem 30. If ⟨M⟩ ≏a ⟨N⟩ then for any ΛV context C, ⟨C[M ]⟩ ≏a ⟨C[N ]⟩.528

The result is obtained from the congruence properties of Iπ, Corollary 25, and the529

compositionality of the encoding V.530

9 Related and Future Work531

Analogies between game semantics and π-calculus, as semantic frameworks in which names532

are central, have been pointed out from the very beginning of game semantics. In the533

pioneering work [19], the authors obtain a translation of PCF terms into the π-calculus534

from a game model of PCF by representing strategies (the denotation of PCF terms in the535

game model) as processes of the π-calculus. The encoding bears similarities with Milner’s,536

though they are syntactically rather different (“it is clear that the two are conceptually quite537

unrelated”, [19]). The connection has been developed in various papers, e.g., [8, 14,17,18,48].538

Milner’s encodings into the π-calculus have sometimes been a source of inspiration in the539

definition of the game semantics models (e.g., transporting the work [19], in call-by-name,540

onto call-by-value [18]). In [48], a typed variant of π-calculus, influenced by differential linear541

logic [13], is introduced as a metalanguage to represent game models. In [9], games are542

defined using algebraic operations on sets of traces, and used to prove type soundness of a543
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simply-typed call-by-value λ-calculus with effects. Although the calculus of traces employed544

is not a π-calculus (e.g., being defined from operators and relations over trace sets rather545

than from syntactic process constructs), there are similarities, which would be interesting to546

investigate.547

Usually in the above papers the source language is a form of λ-calculus, that is interpreted548

into game semantics, and the π-calculus (or dialects of it) is used to represent the resulting549

strategies and games. Another goal has been to shed light into typing disciplines for π-calculus550

processes, by transplanting conditions on strategies such as well-bracketing and innocence551

into appropriate typings for the π-calculus (see, e.g., [6, 47]).552

In contrast with the above works, where analogies between game semantics and π-calculus553

are used to better understand one of the two models (i.e., explaining game semantics in554

terms process interactions, or enhancing type systems for processes following structures in555

game semantics), in the present paper we have carried out a direct comparison between the556

two models (precisely OGS and Iπ). For this we have started from the (arguably natural)557

representations of the λ-calculus into OGS and Iπ (the latter being Milner’s encodings). Our558

goal was understanding the relation between the behaviours of the terms in the two models,559

and transferring techniques and results between them.560

Technically, our work builds on [10, 11], where a detailed analysis of the behaviour of561

Milner’s call-by-value encoding is carried out using proof techniques for π-calculus based562

on unique-solution of equations. Various results in [10, 11] are essential to our own (the563

observation that Milner’s encodings should be interpreted in Iπ rather than the full π-calculus564

is also from [10,11]).565

Bisimulations over OGS terms, and tensor products of configurations, were introduced566

in [29], in order to provide a framework to study compositionality properties of OGS. In567

our case the compositionality result of OGS is derived from the correspondence with the568

π-calculus. In [39], a correspondence between an i/o typed asynchronous π-calculus and569

a computational λ-calculus with channel communication is established, using a common570

categorical model (a compact closed Freyd category). It would be interesting to see if our571

concurrent operational game model could be equipped with this categorical semantics.572

Normal form (or open) bisimulations [28, 44], as game semantics, manipulate open terms,573

and sometimes make use of environments or stacks of evaluation contexts (see e.g., the574

recent work [7], where a fully abstract normal-form bisimulation for a λ-calculus with store575

is obtained).576

There are also works that build game models directly for the π-calculus, i.e., [12,25,26,38]577

A correspondence between a synchronous π-calculus with session types and concurrent game578

semantics [46] is given in [8], relating games (represented as arenas) to session types, and579

strategies (defined as coincident event structures) to processes.580

We have exploited the full abstraction results between OGS and Iπ to transport a few581

up-to techniques for bisimulation from Iπ onto OGS. However, in Iπ there are various other582

such techniques, even a theory of bisimulation enhancements. We would like to see which583

other techniques could be useful in OGS, possibly transporting the theory of enhancements584

itself.585
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A Additional material on Iπ711

A.1 LTSs712

In Figures 5 and 6 we report, respectively:713

the standard LTS of Iπ;714

a compositional definition of the output-prioritised LTS.715

The symbol ≡α is used to indicate α-equivalence between Iπ agents. If µ = a(̃b) then µ716

is a(̃b), and conversely. Rule abs is used to formalise, by means of an action, the ground717

instantiation of the parameters of an abstraction. In both tables we omit the symmetric of718

parL, called parR.

alpha: P ≡α P ′ P ′ µ−→π P ′′

P
µ−→π P ′′

pre:
µ. P

µ−→π P
parL: P

µ−→π P ′

P | Q
µ−→π P ′ | Q

res: P
µ−→π P ′ x ̸∈ n(µ)

νx P
µ−→π νx P ′

com: P
µ−→π P ′ Q

µ−→π Q′ µ ̸= τ, x̃ = bn(µ)
P | Q

τ−→π νx̃ (P ′ | Q′)

rep: µ. P
µ−→π P ′

!µ. P
µ−→π P ′ | !µ. P

con: P
µ−→π P ′ K

def= (ỹ). Q (ỹ). Q ≡α (x̃). P

K⟨x̃⟩ µ−→π P ′

abs: ( B = (ỹ). Q or (B = K and K
def= (ỹ). Q) ) (ỹ). Q ≡α (x̃). P

B
(̃x)−→ P

Figure 5 The standard LTS for Iπ

719

alpha: P ≡α P ′ P ′ µ−→oπ P ′′

P
µ−→oπ P ′′

pre: bn(µ) = x̃ x̃ ∩ ϕ = ∅
µ. P

µ−→oπ P

parL: P
µ−→oπ P ′ (Q input reactive) or (µ is an output or τ)

P | Q
µ−→oπ P ′ | Q

com: P
µ−→oπ P ′ Q

µ−→oπ Q′ µ ̸= τ, x̃ = bn(µ)
P | Q

τ−→oπ νx̃ (P ′ | Q′)

res: P
µ−→oπ P ′ x ̸∈ n(µ)

νx P
µ−→oπ νx P ′

rep: µ. P
µ−→oπ P ′

!µ. P
µ−→oπ P ′ | !µ. P

con: P
µ−→oπ P ′ K

def= (ỹ). Q (ỹ). Q ≡α (x̃). P

K⟨x̃⟩ µ−→oπ P ′

Figure 6 A compositional presentation of the output-prioritised LTS for Iπ
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A.2 The expansion relation and “up-to” techniques720

For the proof of the results in this paper, we appeal to the expansion relation and to a few721

“up-to” techniques, that are discussed in Section 3.1 and in the following two subsections.722

The expansion relation The expansion relation, ≲π [43], is an asymmetric variant of723

≈π which allows us to count the number of τ -actions performed by the processes. Thus,724

P ≲π Q holds if P ≈π Q but also Q has at least as many τ -moves as P . We recall that725

P
µ̂−→ P ′ holds if P

µ−→ P ′ or (µ = τ and P = P ′).726

▶ Definition 31 (expansion). A relation R ⊆ P × P is an expansion if P R Q implies:727

1. Whenever P
µ−→ P ′, there exists Q′ s.t. Q

µ=⇒π Q′ and P ′ R Q′;728

2. whenever Q
µ−→ Q′, there exists P ′ s.t. P

µ̂−→ P ′ and P ′ R Q′.729

We say that Q expands P , written P ≲π Q, if PRQ, for some expansion R.730

Relation ≲π is a precongruence, and is strictly included in ≈π.731

Bisimulation up-to ≈π732

▶ Definition 32 (bisimulation up-to ≈π). A symmetric relation R on P × P is a bisimulation733

up-to ≈π if P R Q and P
µ=⇒π P ′ imply that there exists Q′ s.t. Q

µ̂=⇒ Q′ and734

P ′ ≈πR≈π Q′.735

▶ Theorem 33. Suppose R is a bisimulation up-to ≈π. Then R ⊆≈π.736

Bisimulations up-to contexts737

▶ Definition 34 (bisimulation up-to context and up-to π≳). A symmetric relation R ⊆ P × P738

is a bisimulation up-to context and up-to π≳ if P R Q and P
µ−→ P ′′ imply that there are739

a static context Cctx and processes P ′ and Q′ s.t. P ′′
π≳ Cctx[P ′], Q

µ̂=⇒ π≳ Cctx[Q′] and740

P ′ R Q′.741

The soundness of the above technique relies on the following lemma.742

▶ Lemma 35. Suppose R is a bisimulation up-to context and up-to π≳, (P, Q) ∈ R holds743

and Cctx is a static context. If Cctx[P ] µ1−→ · · · µn−→ P1, n ≥ 0, then there are a static context744

C ′ and processes P ′ and Q′ s.t. P1 π≳ C ′[P ′], Cctx[Q] µ̂1=⇒ · · · µ̂n=⇒ π≳ C ′[Q′] and P ′ R Q′.745

▶ Theorem 36. If R is a bisimulation up-to context and up-to π≳, then R ⊆≈π.746

Proof. By showing that the relation S containing all pairs (P, Q) such that747

for some static context Cctx and proceses P ′, Q′

it holds that P π≳ Cctx[P ′], Q π≳ Cctx[Q′] and P ′ R Q′748

is a bisimulation. See [40] for details (adapting the proof to Iπ is straightforward). ◀749

We now consider a refinement of the above proof technique, namely bisimulation up-to750

context and up-to (π≳, ≈π).751

▶ Definition 37. A static context Cctx cannot interact with a process P if there is no name752

that appears free both in the context and in the process and with opposite polarities (that is,753

either in input position in the context and output position in the process, or the converse).754
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If Cctx cannot interact with P , whenever Cctx[P ] −→ Q then the interaction is either internal755

to Cctx or internal to P . Moreover, the property is invariant for reduction; i.e., if Q = C ′[P ′]756

where C ′ is the derivative of Cctx and P ′ the derivative of P , then also C ′ cannot interact757

with P ′.758

▶ Definition 38. [bisimulation up-to context and up-to (π≳, ≈π)] A symmetric relation759

R ⊆ P × P is a bisimulation up-to context and up-to (π≳, ≈π) if P R Q implies:760

1. if P
ℓ−→ P ′′ then that there are a static context Cctx and processes P ′ and Q′ s.t.761

P ′′ ≈π Cctx[P ′], Q
µ̂=⇒ ≈π Cctx[Q′] and P ′ R Q′, and, moreover, Cctx cannot interact762

with P or Q;763

2. if P −→ P ′′ then there are a static context Cctx and processes P ′ and Q′ s.t. P ′′
π≳764

Cctx[P ′], Q
µ̂=⇒ π≳ Cctx[Q′] and P ′ R Q′.765

▶ Lemma 39. Suppose R is a bisimulation up-to context and up-to (π≳, ≈π) and Cctx is a766

static context that does not interact with processes P and Q.767

1. If Cctx[P ] =⇒ P1, then there are a static context C ′ and processes P ′ and Q′ s.t.768

P1 π≳ C ′[P ′], Cctx[Q] =⇒π≳ C ′[Q′] and P ′RQ′.769

2. If Cctx[P ] ℓ−→ P1, then there are a static context C ′ and processes P ′ and Q′ s.t.770

P1 ≈π C ′[P ′], Cctx[Q] ℓ=⇒π≈π C ′[Q′] and P ′RQ′.771

▶ Theorem 40. If R is a bisimulation up-to context and up-to (π≳, ≈π), then R ⊆ ≈π.772

Proof. By showing that the relation R containing all pairs (P, Q) such that773

for some static context Cctx and proceses P ′, Q′

where Cctx does not interac with P ′, Q′

it holds that P ≈π Cctx[P ′], Q ≈π Cctx[Q′] and P ′ R Q′
774

is a bisimulation. In a challenge transition P
µ−→ P1 one distinguishes the case when µ is a775

silent or visible action. In both cases, one exploits Lemma 39. ◀776

B Behavioural relations in the ordinary LTS and in the opLTS for Iπ777

A behavioural relation on the ordinary LTS ‘almost always’ implies the corresponding relation778

on the opLTS. The only exceptions are produced by processes that are related although they779

exhibit different divergence behaviours (by divergence we mean the possibility of performing780

an infinite number of τ actions) and at the same time may perform input actions. For781

instance, using τω to indicate a purely divergent process (i.e., a process whose only transition782

is τω τ−→ τω), the processes a. 0 | τω and a. 0 are bisimilar (and trace) equivalent in the783

ordinary LTS, but they are not so in the opLTS, since the divergence in the former process784

prevents observation of the input at a.785

Indeed, a ‘bisimilarity respecting divergence’ would imply bisimilarity on the opLTS.786

Such ‘bisimilarity respecting divergence’, written ≈⇑
π, is defined as ≈π with the additional787

requirement that P ≈π Q implies788

P ⇑ iff Q ⇑ (∗)789

where the predicate ⇑ holds for an agent R if it has a divergence (an infinite path consisting790

of only τ actions).791

▶ Lemma 41. Relation ≈⇑
π implies ≈oπ.792
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The same result applies to other relations; e.g., the ‘expansion respecting divergence’ (defined793

by adding the clause (∗) above to those of the expansion relation ≲π) on the ordinary LTS794

implies expansion on the opLTS.795

The results of operational correspondence between Iπ and A-OGS rely on Lemmas 47-50.796

In the proofs of all these lemmas [10], the uses of expansion (≲π) come from application of797

some simple algebraic laws that respect divergence (i.e., the laws do not add or remove any798

divergence). Indeed the laws either are valid for strong bisimilarity, or they are laws such as799

νa (a(x̃). P | a(x̃). Q) π≳ νa (P | Q)800

As a consequence, all occurrences of ≲π in Lemmas 47-50 can be replaced by the expansion801

relation defined on the opLTS (≲oπ). This in turn implies that the same could be done for802

all occurrences of ≲π in Theorems 4-7 (that rely on the lemmas).803

A final remark concerns the encoding of λ-terms. First we recall that the equivalence804

induced on call-by-value λ-terms by their encoding into Iπ coincides with Lassen’s eager805

normal-form (enf) bisimilarity [28, 45] (also recalled in Definition 26).806

▶ Theorem 42 ( [11]). V[[M ]] ≈π V[[N ]] iff M and N are enf-bisimilar.807

On the encoding of λ-terms, the ordinary bisimilarity ≈π implies the ‘bisimilarity respecting808

divergence’ ≈⇑
π. This because, intuitively, a term V[[M ]]⟨p⟩ is divergent iff M is so in the809

call-by-value λ-calculus. Formally, the result is proved by rephrasing the result about the810

correspondence between ≈π and Lassen’s trees (Theorem 42) in terms of ≈⇑
π in place of ≈π.811

Again, this property boils down to the fact that the uses of ≲π in Lemmas 47-50 (on which812

also the characterisation in terms of Lassen’s trees is built) respect divergence. Thus, using813

also Lemma 41, we derive the following result.814

▶ Theorem 43. For M, N ∈ Λ, we have: V[[M ]]⟨p⟩ ≈π V[[N ]]⟨p⟩ iff V[[M ]]⟨p⟩ ≈oπ V[[N ]]⟨p⟩.815

Below we report an alternative proof of the theorem above, however always relying on816

the variant of Lemmas 47-50 with ≲oπ in place of ≲π.817

▶ Lemma 44. If F is a singleton configuration, then V[[F ]] is of three possible forms:818

1. V[[M ]]⟨p⟩, for some M, p;819

2. q(x). V[[E[x]]]⟨p⟩, for some E, x, q, p;820

3. V∗[[V ]]⟨y⟩, for some V, y (that is, either !y(x, q). V [[M ]]⟨q⟩ if V = λx. M , or y▷x if V = x).821

▶ Lemma 45.822

Suppose P = P1 | !a(̃b). P2, and Q = Q1 | !a(̃b). Q2, and P ≈π Q. Then also P1 ≈π Q1.823

Similarly, suppose P = P1 | a(̃b). P2, and Q = Q1 | a(̃b). Q2, and P ≈π Q. Then also824

P1 ≈π Q1.825

▶ Theorem 46. If F and G are singleton configurations, then V[[F ]] ≈π V[[G]] implies826

V[[F ]] ≈oπ V[[G]].827

Proof. Let R be the relations with all pairs (P, Q) where P and Q are of the form828

P = P1 | . . . | Pn

Q = Q1 | . . . | Qn
829

for some n, where all Pi, Qi are encodings of singleton configurations and for all i, we have830

Pi ≈π Qi. Moreover:831

there is at most one i for which Pi, Qi are encodings of active configurations;832
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in any Pj (resp. Qj) that is the encoding of a passive configuration, the name of the833

initial input does not appear free in any other component Pj′ (resp. Qj′) for j′ ̸= j.834

A consequence of the two conditions above is that two distinct components Pi and Pj835

cannot interact. That is, if P
µ−→ P ′, then there is i such that Pi

µ−→ P ′
i and P ′ = P ′′

1 | . . . |836

P ′′
n where P ′′

j = Pj if j ̸= i and P ′′
i = P ′

i . And similarly if P
µ−→oπ P ′.837

We show that R is a ≈oπ-bisimulation up-to ≲oπ (the bisimulation up-to expansion is838

sound for bisimilarity in any LTS). In the proof below, Lemmas 49 and 50 actually refer to839

the versions of the lemmas mentioned above, with ≲oπ in place of ≲π.840

Suppose P
µ−→oπ P ′. The action orginates from some Pi alone, say Pi

µ−→oπ P ′
i . If µ841

is a τ action, then also Pi
µ−→ P ′

i ; and since Pi ≈π Qi, we have Qi =⇒ Q′
i with P ′

i ≈π Qi.842

Moreover, also Qi =⇒oπ Q′
i — and the corresponding transition from Q.843

Using Lemma 49 we infer that, up-to expansion, the derivative processes P ′
i and Q′

i can844

be rewritten into processes that fit the definition of R.845

For the case when µ is an output, one reasons similarly, possibly also using Lemma 45846

when µ is of the form x(z, q).847

Finally, if P
µ−→oπ P ′ and µ is an input, then P is input reactive. From the conditions in848

the definition of R we infer that Q is input reactive too. Then we can conclude, reasoning as849

in the previous cases, but this time using Lemma 50 with γ a singleton. ◀850

Theorem 43 is then a corollary of Theorem 46.851

C Explanation of the A-OGS LTS852

This appendix contains some additional explanations on the rules of the A-OGS LTS. To853

help the reader, we first recall the rules (also presented in the main text as Figure 1):854

(Pτ) ⟨M, p, γ, ϕ⟩ τ−→a ⟨N, p, γ, ϕ⟩ when M →v N

(PA) ⟨V, p, γ, ϕ⟩ p̄(x)−→a ⟨γ · [x 7→ V ], ϕ ⊎ {x}⟩
(PQ) ⟨E[xV ], p, γ, ϕ⟩ x̄(y,q)−→ a ⟨γ · [y 7→ V ] · [q 7→ (E, p)], ϕ ⊎ {y, q}⟩
(OA) ⟨γ · [q 7→ (E, p)], ϕ⟩ q(x)−→a ⟨E[x], p, γ, ϕ ⊎ {x}⟩
(OQ) ⟨γ, ϕ⟩ x(y,p)−→ a ⟨V y, p, γ, ϕ ⊎ {y, p}⟩ when γ(x) = V

(IOQ) ⟨[? 7→ M ], ϕ⟩ (p)−→a ⟨M, p, ε, ϕ ⊎ {p}⟩

855

The term of an active configuration determines the next transition to perform. First856

the term needs to be reduced, using the rule (Pτ). When the term is a value V , a Player857

Answer (PA) is performed, providing a fresh variable x to Opponent, while V is stored in γ858

at position x. Freshness is enforced using the disjoint union ⊎. When the term is a callback859

E[xV ], with p the current continuation name, a Player Question (PQ) at x is performed,860

providing two fresh names y, q to Opponent, while storing V at y and (E, p) at q in γ.861

On passive configurations, Opponent has the choice to perform different actions. It can862

perform an Opponent Answer (OA),by interrogating an evaluation context E stored in γ.863

For this, Opponent provides a fresh variable x that is plugged into the hole of E, while864

the continuation name q associated to E in γ is restored. Opponent may also perform865

an Opponent Question (OQ), by interrogating a value V stored in γ. For this, Opponent866

provides a fresh variable y as an argument to V .867
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D Auxiliary results for Section 6868

We present results that are needed to establish the operational correspondence between OGS869

and Iπ, studied in Section 6.870

We begin discussing an optimisation O of the encoding of call-by-value λ-calculus.871

Following Durier et al.’s [11], we sometimes use O to simplify proofs. We report the872

full definition of O; for convenience, we also list the definition of O on OGS environments873

and configurations, thought is the same as that for the initial encoding V — just replacing V874

with O in Figure 3).875

The encoding O is obtained from the initial one V by inlining the encoding and performing876

a few (deterministic) reductions, at the price of a more complex definition. Precisely, in the877

encoding of application some of the initial communications are removed, including those with878

which a term signals to have become a value. To achieve this, the encoding of an application879

goes by a case analysis on the occurrences of values in the subterms.880

We begin with a few results from [10,11] that are needed to reason about the optimised881

encoding O. The first is about the correctness of the otimisation, established by algebraic882

reasoning [10,11]; its extension to encodings of configurations is straightforward.883

▶ Lemma 47 (correctness of the optimisation). For all M , it holds that V[[M ]] π≳ O[[M ]].884

Similarly, for all A-OGS configurations F , it holds that V[[F ]] π≳ O[[F ]].885

▶ Lemma 48. We have:

O[[E[xV ]]]⟨p⟩ π≳ x(z, q). (O∗[[V ]]⟨z⟩ | q(y). O[[E[y]]]⟨p⟩).

The proof [10,11] goes by induction on the evaluation context E.886

The following lemma [10, 11] uses Lemma 48 to establish the shape of the possible887

transitions that a term O[[M ]]⟨p⟩ can perform.888

▶ Lemma 49. For any M ∈ Λ and p, process O[[M ]]⟨p⟩ has exactly one immediate transition,889

and exactly one of the following clauses holds:890

1. O[[M ]]⟨p⟩ p(y)−→ P and M is a value, with P = O∗[[M ]]⟨y⟩;891

2. O[[M ]]⟨p⟩ x(z,q)−→ P and M is of the form E[xV ], for some E, x, V , with

P π≳ O∗[[V ]]⟨z⟩ | q(y). O[[E[y]]]⟨p⟩,

and moreover z is not free in q(y). O[[E[y]]]⟨p⟩ whereas q is not free in O∗[[V ]]⟨z⟩;892

3. O[[M ]]⟨p⟩ τ−→ P and there is N with M −→ N and P π≳ O[[N ]]⟨p⟩.893

We now move to reasoning about the behaviour of the encoding of configurations. Two894

key lemmas are the following ones; they are derived from Lemmas 48 and 49.895

▶ Lemma 50. If O[[γ]] µ−→ P and µ is an input action, then we have three possibilities:896

1. µ is an input y(x, q) and γ = [y 7→ λx. M ] · γ′, and P π≳ O[[M ]]⟨q⟩ | O[[γ]];897

2. µ is an input y(x, q) and γ = [y 7→ z] · γ′, and P π≳ O[[zx]]⟨q⟩ | O[[γ]];898

3. µ is an input q(x) and γ = [q 7→ (E, p)] · γ′, and P π≳ O[[E[x]]]⟨p⟩ | O[[γ′]].899

▶ Lemma 51. O∗[[V ]]⟨y⟩ y(x,q)−→ ≈π O[[V x]]⟨q⟩ | O∗[[V ]]⟨y⟩900

In Lemma 51, the occurrence of ≈π cannot be replaced by π≳; for instance, if V = λx. M901

then, using Lemma 49, we can infer that the derivative process is in the relation π≳ with902
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Encoding of λ-terms:

O[[xV ]] def= (p) x(z, q). (O∗[[V ]]⟨z⟩ | q ▷ p)
O[[(λx. M)V ]] def= (p) νy, w (O∗[[λx. M ]]⟨y⟩ | O∗[[V ]]⟨w⟩ | y(w′, r′). (w′ ▷ w | r′ ▷ p))

O[[V M ]] def= (p) νy (O∗[[V ]]⟨y⟩ | νr (O[[M ]]⟨r⟩ | r(w). y(w′, r′). (w′ ▷ w | r′ ▷ p))) (∗)
O[[MV ]] def= (p) νq (O[[M ]]⟨q⟩ | q(y). νw (O∗[[V ]]⟨w⟩ | y(w′, r′). (w′ ▷ w | r′ ▷ p))) (∗)
O[[MN ]] def= (p) νq (O[[M ]]⟨q⟩ | q(y). νr (O[[N ]]⟨r⟩ | r(w). y(w′, r′). (w′ ▷ w | r′ ▷ p))) (∗∗)

O[[V ]] def= (p) p(y). O∗[[V ]]⟨y⟩

where in the rules marked (∗), M is not a value, and in the rule marked (∗∗) M and N are
not values; and where O∗[[V ]] is thus defined :

O∗[[λx. M ]] def= (y) !y(x, q). O[[M ]]⟨q⟩
O∗[[x]] def= (y) y ▷ x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoding of environments:

O[[[y 7→ V ] · γ′]] def= O∗[[V ]]⟨y⟩ | O[[γ′]]

O[[[q 7→ (E, p)] · γ′]] def= q(x). O[[E[x]]]⟨p⟩ | O[[γ′]]

O[[ε]] def= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Encoding of configurations:

O[[⟨M, p, γ⟩]] def= ⟨O[[M ]]⟨p⟩ | O[[γ]], ϕ⟩

O[[⟨γ⟩]] def= ⟨O[[γ]], ϕ⟩

O[[⟨M⟩]] def= ⟨O[[M ]], ϕ⟩

Figure 7 The optimised encoding
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O[[M ]]⟨q⟩; however it is not in the same relation with O[[V x]]⟨q⟩ (which has extra τ transitions903

with respect to O[[M ]]⟨q⟩).904

We can now establish the operational correspondence between OGS and Iπ. (In all905

the results about operational correspondence, we exploit the convention on freshness of906

bound names of actions and traces produced by OGS configurations and Iπ processes, as by907

Remark 1.)908

▶ Lemma 52 (strong transitions, from A-OGS to Iπ).909

1. If F −→a F ′, then O[[F ]] −→ππ≳ O[[F ′]];910

2. If F
ℓ−→a F ′, then O[[F ]] ℓ−→π≈π O[[F ′]].911

Proof. The proof goes by a case analysis on the rule used to derive the transition from F ,912

using the definition of the encoding, using Lemmas 49-51. ◀913

▶ Lemma 53 (strong transitions, from Iπ to A-OGS).914

1. If O[[F ]] −→π P then there is F ′ such that F −→a F ′ and P π≳ O[[F ′]] ;915

2. If O[[F ]] µ−→π P and µ is an output, then there is F ′ such that F
µ−→a F ′ and P π≳ O[[F ′]]916

;917

3. If F is passive and O[[F ]] µ−→π P , then there is F ′ such that F
µ−→a F ′ and P ≈π O[[F ′]].918

Proof. The proof goes by a case analysis on the possible transition from O[[F ]], again919

exploiting Lemmas 49-51. ◀920

We can strengthen both Lemma 52 and Theorem 4 to a correspondence between transitions921

from A-OGS configurations and from their Iπ translation under the (more restrictive) opLTS.922

Further, as discussed in Remark 10 and Appendix B, we can use the expansion relation and923

bisimilarity on the opLTS, written ≲oπ and ≈oπ. We write Iπop to refer to Iπ under the924

opLTS.925

▶ Theorem 54 (strong transitions, from A-OGS to Iπop).926

1. If F −→a F ′, then O[[F ]] −→oπ oπ≳ O[[F ′]];927

2. If F
ℓ−→a F ′, then O[[F ]] ℓ−→oπ ≈oπ O[[F ′]].928

▶ Theorem 55 (weak transitions, from A-OGS to Iπop).929

1. If F =⇒a F ′, then V[[F ]] =⇒oπ oπ≳ V[[F ′]];930

2. If F
ℓ=⇒a F ′, then V[[F ]] ℓ=⇒oπ ≈oπ V[[F ′]].931

The following Theorem 56 is needed in the proof of Theorem 7: it relates strong transitions932

from Iπop processes to transitions of A-OGS configurations. Again, in both theorems, the933

occurrences of ≲π and ≈π can be replaced by ≲oπ and ≈oπ.934

▶ Theorem 56.935

1. If O[[F ]] τ−→oπ P then there is F ′ such that F −→a F ′ and P π≳ O[[F ′]] ;936

2. If O[[F ]] ℓ−→oπ P then there is F ′ such that F
ℓ−→a F ′ and P ≈π O[[F ′]].937

We report now more details on the proof of Corollary 8. First, we recall the assertion:938

Suppose F has an irredudant name-support.
For any trace s, we have F

s=⇒a iff V[[F ]] s=⇒oπ.
939
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Proof. The result is first established for O, and then extended to V , exploiting the correctness940

of the optimisations in O (Lemma 47; again, in this lemma, the occurrence of ≲π can be941

lifted to ≲oπ).942

For O, both directions are proved proceeding by induction on the length of a trace943

ℓ1, . . . , ℓn. In the direction from left to right, we use Theorem 55(2). For the converse944

direction, we proceed similarly, this time relying on Theorem 7(2) (again, the version with945

≈oπ in place of ≈π). ◀946

E Auxiliary results for Section 7.1947

We report here auxiliary results needed to establish the relationship between Concurrent948

OGS (C-OGS) and Iπ.949

The two lemmas below are needed in the proofs of Theorems 13 and 22. The reasoning950

in their proofs is similar to that for Lemmas 52 and 53.951

▶ Lemma 57 (from C-OGS to Iπ, strong transitions).952

1. If F −→c F ′, then O[[F ]] −→ππ≳ O[[F ′]];953

2. If F
ℓ−→c F ′, then O[[F ]] ℓ−→π≈π O[[F ′]];954

▶ Lemma 58 (from Iπ to C-OGS, strong transitions).955

1. If O[[F ]] −→π P then there is F ′ such that F −→c F ′ and P π≳ O[[F ′]] ;956

2. If O[[F ]] ℓ−→π P then there is F ′ such that F
ℓ−→c F ′ and P ≈π O[[F ′]].957

The results below are used in the proof of Lemma 16.958

A process P has deterministic immediate transitions if, for any µ, whenever P
µ−→π P1959

and P
µ−→π P2, then P1 = P2.960

▶ Lemma 59. Suppose P, Q have deterministic immediate transitions, P ≏π Q, and P
µ−→π961

P1. Then Q
µ=⇒π Q1 implies P1 ≏π Q1.962

Lemma below is the analogous to Lemma 45 for traces.963

▶ Lemma 60.964

Suppose P = P1 | !a(̃b). P2, and Q = Q1 | !a(̃b). Q2, and ⟨P, ϕ⟩ ≏π ⟨Q, ϕ⟩. Then also965

⟨P1, ϕ⟩ ≏π ⟨Q1, ϕ⟩.966

Similarly, suppose P = P1 | a(̃b). P2, and Q = Q1 | a(̃b). Q2, and ⟨P, ϕ⟩ ≏π ⟨Q, ϕ⟩. Then967

also ⟨P1, ϕ⟩ ≏π ⟨Q1, ϕ⟩.968

We can now conclude the proof of Lemma 16. We recall the assertion:969

For any M, N we have:
V[[M ]] ≏π V[[N ]] iff V[[M ]] ≈π V[[N ]].

970

Proof. We have to prove that trace equivalence implies bisimilarity. We work with the971

optimised encoding O. The relation972

(O[[F ]], O[[G]]) : F, G are singleton with F ≏c G973

is a bisimulation up-to context and up-to (π≳, ≈π).974

F and G, as singleton, are of the forms described in Lemma 44. Moreover, to be in the975

relation ≏c they must be of the same form, and, using also Lemmas 49 and 50 we deduce976

that they have deterministic immediate transitions.977

Suppose F and G are of the form V[[M ]]⟨p⟩ and V[[N ]]⟨q⟩, respectively.978
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Consider the case V[[M ]]⟨p⟩ τ−→ P ; then by Lemma 49, P π≳ V[[M ′]]⟨p⟩, for some M ′.979

Moreover, we have V[[M ′]]⟨p⟩ ≏c V[[M ]]⟨p⟩ ≏c V[[N ]]⟨q⟩, and we are done.980

The case when V [[M ]]⟨p⟩ performs an output action p(x) is simple, as usual using Lemma 49;981

we also deduce that p = q.982

Suppose now V[[M ]]⟨p⟩ performs an output action x(z, p′). Using Lemma 49, we have983

V[[M ]]⟨p⟩ x(z,p′)−→ π≳ O∗[[V ]]⟨z⟩ | p′(y). O[[E[y]]]⟨p⟩984

for some V, y, E. Since V[[M ]]⟨p⟩ ≏c V[[N ]]⟨q⟩, and again using Lemma 49, we deduce985

V[[N ]]⟨q⟩ =⇒x(z,p′)−→ π≳ O∗[[W ]]⟨z⟩ | q′(y). O[[E′[y]]]⟨q⟩986

By Lemma 59,987

O∗[[V ]]⟨z⟩ | p′(y). O[[E[y]]]⟨p⟩ ≏c

O∗[[W ]]⟨z⟩ | q′(y). O[[E′[y]]]⟨q⟩
988

Applying Lemma 60 twice, we deduce989

O∗[[V ]]⟨z⟩ ≏c O∗[[W ]]⟨z⟩990

and991

q′(y). O[[E′[y]]]⟨q⟩ ≏c q′(y). O[[E′[y]]]⟨q⟩992

and we are done, up to expansion and context.993

The cases when F and G are of a different form are similar, this time using Lemma 50. ◀994

F Auxiliary results for Section 7.3995

In Definition 21 we have introduced the technique of bisimulation up-to reduction and996

composition. Sometimes we do not need the ‘closure under reduction’; that is, referring to997

the clauses of Definition 21 we may take F ′
i = Fi, i = 1, 2). In this case we say that R is a998

‘bisimulation up-to composition’.999

We now present an additional up-to technique, which is used in when relating OGS bisim-1000

ilarity with eager normal form bisimilarity. When R is a relation on singleton configuration,1001

a straitforward simplification of ‘bisimulation up-to reduction and composition’ allows us to1002

play the bisimulation game only on visible actions; the bisimulation clause becomes:1003

if F1 =⇒c
ℓ−→c F ′

1 then there is F ′
2 such that F2 =⇒c

ℓ−→c F ′
2 and F ′

1 R|⋆ F ′
2.1004

We call this a singleton bisimulation up-to composition; its soundness is a corollary of that1005

for bisimulation up-to reduction and composition, derived from the up-to techniques for Iπ1006

and the mapping from C-OGS onto Iπ.1007

▶ Proposition 61. If R is a singleton bisimulation up-to composition, then R ⊆ ≈c.1008

Proof. Take
S def= R ∪ {(F1, F2) : there are F ′

1, F ′
2 with F ′

1 R F ′
2

and F ′
i =⇒c Fi i = 1, 2}

Intuitively, S is the closure of R under deterministic reductions. Then S is a bisimulation1009

up-to composition. (Note: we exploit the fact that transitions of singleton configurations are1010

deterministic.) ◀1011
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We now report more details on the proof of Theorem 22. We recall its assertion:1012

(Theorem 22) If R is bisimulation up-to reduction and composition then R ⊆ ≈c.1013

We first need the following Lemma 62, which is a consequence of the compositionality of1014

the mapping from C-OGS to Iπ.1015

▶ Lemma 62. For a relation R on C-OGS configurations, if (F1, F2) ∈ R|⋆, then we have1016

(O[[F1]], O[[F2]]) ∈ (O[[R]])ctx.1017

We are now ready to show the proof of Theorem 22.1018

Proof. We prove the result via Iπ, exploiting Lemma 15(2). Here again, it is convenient to1019

use the optimised encoding O.1020

If R is a relation on C-OGS configurations, then O[[R]] is the relation on Iπ processes1021

obtained by mapping each pair in R in the expected manner:1022

O[[R]] def= {(O[[F1]], O[[F2]]) : F1 R F2}1023

And, if S is a relation on Iπ processes, then Sctx is the closure of S under polyadic contexts,1024

i.e., the set of pairs of the form (Cctx[P1, . . . , Pn], Cctx[Q1, . . . , Qn] where Cctx is a polyadic1025

context and for each i, Pi S Qi.1026

As a consequence of the compositionality of the mapping from C-OGS to Iπ, for a relation1027

R on C-OGS configurations, if (F1, F2) ∈ R|⋆, then (O[[F1]], O[[F2]]) ∈ (O[[R]])ctx.1028

Now, let R be the relation in the hypothesis of the theorem. We prove the theorem1029

by showing that O[[R]] is a bisimulation up-to context and up-to (π≳, ≈π) in Iπ, and then1030

appealing to Theorem 40.1031

Suppose O[[F1]] ℓ−→π P . Then there is F ′
1 with F1

ℓ−→π F ′
1 and P ≈π O[[F ′

1]] (this is1032

derived from Lemma 57). Since R is bisimulation up-to reduction and composition and1033

F1 R F2, there are F ′′
1 , and F ′

2, with F ′
1 =⇒c F ′′

1 , F2
ℓ−→π=⇒c F ′

2 and F ′′
1 R|⋆ F ′

2.1034

Using Theorem 13(1) from F ′
1 =⇒c F ′′

1 and the inclusion π≳ ⊆ ≈π, we derive O[[F ′
1]] ≈π1035

O[[F ′′
1 ]]; and by Theorem 13(1), and Lemmas 47 and 57, from F2

ℓ−→π=⇒c F ′
2 we derive1036

O[[F2]] ℓ−→π≈π O[[F ′
2]].1037

Finally, from (F ′′
1 , F ′

2) ∈R|⋆, we derive (O[[F ′
1]], O[[F ′

2]]) ∈ (O[[R]])ctx. This closes the proof,1038

up-to polyadic contexts and bisimilarity.1039

The case when O[[F1]] makes a silent move is simpler, using expansion in place of1040

bisimilarity. ◀1041

G Auxiliary results for Section 7.41042

▶ Lemma 63. For any term A-OGS configuration, its traces in A-OGS are a subset of the1043

traces in C-OGS, precisely, the traces with an alternation between Player and Opponent1044

actions.1045

We now prove Lemma 24.1046

Proof. In this proof, we write F ⊆ G when, as partial maps, G is an extension of F .1047

Let R be the relation on configurations with F R G if:1048

1. F, G are singleton, and1049

2. either1050

a. there are passive F ′, G′ with F ⊆ F ′ and G ⊆ G′ and F ′ ≈a G′,1051
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b. or there are p, M, N, γ, δ with F = ⟨[p 7→ M ], ϕ⟩, G = ⟨[p 7→ N ], ϕ⟩, and ⟨[p 7→1052

M ], γ, ϕ⟩ ≈a ⟨[p 7→ N ], δ, ϕ⟩1053

We show that R is a bisimulation up-to composition. We distinguish the cases in which1054

(2.a) or (2.b) holds. First suppose F R G because (2.a) holds, and there are F ′, G′ as in1055

(2.a). Suppose1056

F
µ−→c F1 (1)1057

in C-OGS. The rule can be OA or OQ. We assume it is OQ; the case for OA is similar. We
thus have, for some p, V, x, y

F = ⟨γ1, ϕ⟩ with γ1 = [x 7→ V ]
µ = x(y, p)

F1 = ⟨A, γ1, ϕ ⊎ {y}⟩ with A = [p 7→ V y]

with F
µ−→a F1. Moreover, we have G = ⟨δ1, ϕ⟩ with δ1 = [x 7→ V ′]. since F ≈a G, there is1058

G1 such that1059

G
µ−→a G1 ≈a F11060

and G1 = ⟨B, δ1, ϕ ⊎ {y}⟩ for B = [p 7→ V y]. We also have1061

G
µ−→c G11062

This is sufficient to match (1), as F1 R|⋆ G1: indeed we have both ⟨γ1, ϕ⟩R⟨δ1, ϕ⟩ and (using1063

clause (2.b)) ⟨A, ϕ ⊎ {y}⟩R⟨B, ϕ ⊎ {y}⟩.1064

Now the case (2.b); let p, γ, δ, ϕ as in (2.b). There are 3 possibilities of transitions,1065

corresponding to rules Pτ , PA, PQ. The case of Pτ is straightforward, since bisimilarity1066

is preserved by internal actions. We only look at PQ, as PA is simpler. Thus we have1067

F = ⟨[p 7→ E[xV ]], ϕ⟩, for some E, x, V and then1068

F
x̄(y,q)−→ c ⟨[y 7→ V ] · [q 7→ (E, p)], ϕ ⊎ {y, q}⟩ def= F1 (2)1069

We also have1070

F
x̄(y,q)−→ a F11071

As F ≈a G, there are E′, W such that1072

G =⇒ ⟨[p 7→ E′[xW ]], ϕ⟩ x̄(y,q)−→ a G11073

with G1
def= ⟨[y 7→ W ]·[q 7→ (E′, p)], ϕ⊎{y, q}⟩ and F1 ≈a G1. We also have G

x̄(y,q)=⇒ c G1. From1074

F1 ≈a G1, appealing to (2.a) we deduce that both ⟨[y 7→ V ], ϕ ⊎ {y}⟩ R ⟨[y 7→ W ], ϕ ⊎ {y}⟩1075

and ⟨[q 7→ (E, p)], ϕ ⊎ {q}⟩ R ⟨[q 7→ (E′, p)], ϕ ⊎ {q}⟩ hold. Hence F1 R|⋆ G1.1076

In summary, as an answer to the challenge (2), we have found G1 such that G
x̄(y,q)=⇒ c G11077

and F1 R|⋆ G1; this closes the proof. ◀1078

H Tensor Product1079

In this section, we prove results about the tensor product of compatible configurations for1080

the Concurrent, the Alternating and the Well-Bracketed LTS presented in Section 7.2. We1081

relate the traces generated by the the tensor product of two configurations to the set of1082

interleavings of traces generated by the component configurations themselves. The result is1083

proved by going through the π-calculus.1084
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H.1 C-OGS1085

Two π-calculus processes P1, P2 cannot interact if there is no name that appears free in both1086

processes and with opposite polarities (that is, in input position in one, and output position1087

in the other). In Iπ, this property is invariant for transitions (the invariance is false in the1088

full π-calculus).1089

▶ Lemma 64. If P1, P2 cannot interact, and P1 | P2
µ−→π P ′

1 | P ′
2 then also P ′

1, P ′
2 cannot1090

interact.1091

▶ Lemma 65. Suppose P1, P2 cannot interact.1092

1. If P1 | P2
s=⇒π P ′

1 | P ′
2, then, for i = 1, 2, there is si such that Pi

si=⇒π P ′
i , and1093

s ∈ inter(s1, s2);1094

2. Conversely, if for i = 1, 2, we have Pi
si=⇒π P ′

i , and s ∈ inter(s1, s2), then P1 | P2
s=⇒π1095

P ′
1 | P ′

2.1096

Proof. Straightforward. The interesting case is (1). Consider the sequence of one-step1097

actions (including silent actions) that are performed to obtain the trace P1 | P2
s=⇒π P ′

1 | P ′
2.1098

Then tag each of these actions with L or R depending on whether in the derivation proof of1099

that action, the last rule applied was parL or parR. Then s1 is obtained by collecting the1100

subsequence of s with the parL tag, and similarly for s2 with parR. ◀1101

▶ Lemma 66. Taking two C-OGS configurations F1, F2, if their polarity function are com-1102

patible then V[[F1]] and V[[F2]] cannot interact.1103

The proof of Lemma 20 then follows from these two lemmas, Corollary 14, and the fact1104

that V[[F1 ⊗ F2]] ≡ V[[F1]] | V[[F2]].1105

H.2 A-OGS1106

▶ Definition 67. Taking F1, F2 two A-OGS configurations, with γi, ϕi their respective envir-1107

onment and set of names, F1 ⊗ F2 is defined as:1108

⟨M, p, γ1 · γ2, ϕ1 ∪ ϕ2⟩ when one of F1, F2 is active, with M, p its toplevel term and1109

continuation name;1110

⟨γ1 · γ2, ϕ1 ∪ ϕ2⟩ when F1, F2 are passive;1111

We can then state the adaptation of Lemma 20 to A-OGS. We write intera(s1, s2) for1112

the subset of inter(s1, s2) formed by alternated traces.1113

▶ Lemma 68. Suppose F1, F2 are compatible A-OGS configurations, and at most one of the1114

two is active. Then the set of traces generated by F1 ⊗ F2 is equal to the set of interleavings1115

intera(s1, s2), with F1
s1=⇒a and F2

s2=⇒a.1116

To prove Lemma 68, we use the corespondance between A-OGS and =⇒oπ the output-1117

prioritised LTS introduced at the end of Section 6.1, via the following Lemma.1118

▶ Lemma 69. Suppose F1, F2 are compatible configurations, and at most one of the two is1119

active.1120

1. If O[[F1]] | O[[F2]] s=⇒oπ P1 | P2, then, for i = 1, 2, there are traces si such that1121

O[[Fi]]
si=⇒oπ Pi, and s ∈ intera(s1, s2).1122

2. Conversely, if for i = 1, 2, we have O[[Fi]]
si=⇒oπ Pi, s ∈ intera(s1, s2), then also1123

O[[F1]] | O[[F2]] s=⇒oπ P1 | P2.1124
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E := EM | [·] evaluation contexts
V := λx. M | v values
γ := [v 7→ V ] · γ′ | [q 7→ (E, p)] · γ′ | [x 7→ M ] · γ′ | ε environments
F := ⟨L, p, γ, ϕ⟩ | ⟨γ, ϕ⟩ | ⟨[? 7→ ϕ], M⟩ configurations
L := M | E[vM ] | v extended λ-terms

Figure 8 Grammars for call-by-name A-OGS configurations

Proof. Proof of (1). We know1125

O[[F1]] | O[[F2]] s=⇒oπ P1 | P2 (3)1126

Hence, by the definition of the LTS 7→, we also have

O[[F1]] | O[[F2]] s=⇒π P1 | P2.

We now apply Lemma 65 to infer O[[Fi]]
si=⇒π Pi. It also holds O[[Fi]]

si=⇒oπ Pi (the1127

observations in si were possible in (3), with an extra parallel component, which may only1128

reduce the possibility of transitions in the LTS 7→).1129

For (2): s ∈ intera(s1, s2) implies that each si is alternating, at most one of them is1130

P -starting, s is alternating, and active iff one of the composing traces is P -starting. This1131

means that we can assume that when an input transition of s is performed the source process1132

is input reactive. ◀1133

Then Lemma 68 follows from the previous lemma and the operational correspondence for1134

the output-prioritised LTS =⇒oπ (Corollary 8).1135

I The call-by-name λ-calculus1136

The relationship between OGS and π-calculus representations of the λ-terms examined in1137

Sections 6 and 7 is not specific to call-by-value. A similar relationship can be established1138

for call-by-name. We summarise here the main aspects and the main results. We maintain1139

terminologies and notations in the call-by-value sections. Call-by-name langue is given in1140

Figure 8. Its reduction →n is defined by the following two rules:1141

(λx. M)N →n M{N/x}
M →n N

E[M ] →n E[N ]

The OGS for call-by-name uses three kinds of names: continuation names (ranged over1142

by p, q), variable names (ranged over by x, y), and value-variables (ranged over by v, w).1143

Continuation names are used as in call-by-value; variable names acts as pointers to λ-terms1144

and correspond to the variables of the λ-calculus; value names are pointers to values.1145

The OGS uses the syntactic categories in Figure 8, where L range over extended λ-terms,1146

which are needed to accommodate value names. We write Λ+ for the set of extended λ-terms.1147

1148

In a call-by-name setting, Player Questions are of two possible shapes:1149

Player Value-Question (PVQ) v̄(x, p), receiving a variable x and a continuation name p1150

through a value name v;1151
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(τ) ⟨M, p, γ, ϕ⟩ τ−→a ⟨N, p, γ, ϕ⟩ when M →n N

(PA) ⟨V, p, γ, ϕ⟩ p̄(v)−→a ⟨γ · [v 7→ V ], ϕ ⊎ {v}⟩
(PV Q) ⟨E[vM ], p, γ, ϕ⟩ v̄(y,q)−→ a ⟨γ · [y 7→ M ] · [q 7→ (E, p)], ϕ ⊎ {y, q}⟩
(PTQ) ⟨E[x], p, γ, ϕ⟩ x̄(q)−→a ⟨γ · [q 7→ (E, p)], ϕ ⊎ {q}⟩
(OA) ⟨γ · [p 7→ (E, q)], ϕ⟩ p(v)−→a ⟨E[v], q, γ, ϕ ⊎ {v}⟩
(OV Q) ⟨γ · [v 7→ V ], ϕ⟩ v(y,p)−→ a ⟨V y, p, γ, ϕ ⊎ {p, y}⟩ when γ(v) = V

(OTQ) ⟨γ, ϕ⟩ x(p)−→a ⟨M, p, γ, ϕ ⊎ {p}⟩ when γ(x) = M

(IOQ) ⟨[? 7→ M ], ϕ⟩ (p)−→a ⟨M, p, ε, ϕ ⊎ {p}⟩

Figure 9 CBN OGS LTS

Player Term-Question (PTQ) x̄(p), receiving a continuation name p through a variable x.1152

Opponent Questions are of two different shapes too:1153

Opponent Value-Question (OVQ) v(x, p), sending a variable x and a continuation name1154

p through a value name v;1155

Opponent Term-Question (OTQ) x(p) sending a continuation name p through a variable1156

x.1157

The encodings of call-by-name λ-calculus, OGS environments and configurations, and1158

associated syntactic categories, are reported in Figure 10. The Iπ representation uses the1159

same 3 types of names as the OGS representation.1160

The results of operational correspondence between OGS and Iπ under the opLTS are the1161

same as for call-by-value. We only report the analogous of Corollary 11.1162

▶ Corollary 70. For any F, F ′ we have: F ≏a F ′ iff N [[F ]] ≏oπ N [[F ′]] iff F ≈a F ′ iff1163

N [[F ]] ≈oπ N [[F ′]].1164

The modification to obtain the concurrent version of OGS (C-OGS) for call-by-name are1165

similar to those for call-by-value in Section 7.1166

We report the results of operational correspondence and full abstraction.1167

▶ Lemma 71 (C-OGS and Iπ, weak transitions). Suppose F ∈ C-OGS.1168

1. If F
µ=⇒ F ′ then N [[F ]] µ=⇒≈π N [[F ′]];1169

2. conversely, if N [[F ]] µ=⇒ P then there is F ′ such that F
µ̂=⇒ F ′ and P ≈π N [[F ′]].1170

As for call-by-value, so for call-by-name the ’up-to composition’ technique for bisimulation1171

(Definition 21) can be imported from the π-calculus, and then used to establish that the1172

equivalence induced on λ-terms by the sequential and concurrent versions of OGS coincide.1173

Specifically, the technique is needed to prove the call-by-name analogous of Lemma 241174

▶ Corollary 72. For any λ-terms M, N , the following statement are the same: ⟨M⟩ ≏a ⟨N⟩;1175

⟨M⟩ ≈a ⟨N⟩; ⟨M⟩ ≏c ⟨N⟩; ⟨M⟩ ≈c ⟨N⟩; N [[M ]] ≏oπ N [[N ]]; N [[M ]] ≈oπ N [[N ]]; N [[M ]] ≏π1176

N [[N ]]; N [[M ]] ≈π N [[N ]].1177

The equivalence induced by the Iπ (or π-calculus) encoding of the call-by-name λ-calculus1178

is known to coincide with that of the Lévy-Longo Trees [42]. In the light of Corollary 72, the1179

result can thus be transported to OGS, both in its Alternating and its Concurrent variants,1180

and both for traces and for bisimilarity.1181
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Encoding of call-by-name Λ into Iπ processes:

N [[λx. M ]] def= (p) p(v). !v(x, q). N [[M ]]⟨q⟩

N [[x]] def= (p) x(r). r ▷ p

N [[MN ]] def= (p) νq
(

N [[M ]]⟨q⟩ | !q(v). v(x, p′). (p′ ▷ p | !x(r). N [[N ]]⟨r⟩)
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extension to Λ+:

N [[E[vM ]]] def= (p) v(x, r). (N [[[r 7→ (E, p)]]] | !x(q). N [[M ]]q)

N [[v]] def= (p) p(w). w ▷ v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoding of OGS environments to Iπ processes:

N [[[v 7→ V ] · γ]] def=


v(x, q). N [[M ]]⟨q⟩ | N [[γ]] if V = λx. M

v ▷ w | N [[γ]] if V = w

N [[[x 7→ M ] · γ]] def= !x(q). N [[M ]]⟨q⟩ | N [[γ]]

N [[[q 7→ (E, p)] · γ]] def=


q(v). v(x, r). (N [[[r 7→ E′, p]]] | !x(q). N [[M ]]⟨q⟩) | N [[γ]] if E = E′M

q ▷ p | N [[γ]] if E = [·]

N [[∅]] def= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Encoding of OGS configurations to Iπ configurations:

N [[⟨M, p, γ, ϕ⟩]] def= ⟨N [[M ]]⟨p⟩ | N [[γ]], ϕ⟩

N [[⟨v, p, γ, ϕ⟩]] def= ⟨N [[v]]⟨p⟩ | N [[γ]], ϕ⟩

N [[⟨E[vM ], p, γ, ϕ⟩]] def= ⟨N [[E[vM ]]]⟨p⟩ | N [[γ]], ϕ⟩

N [[⟨γ, ϕ⟩]] def= ⟨N [[γ]], ϕ⟩

Figure 10 The encoding of call-by-name λ into Iπ
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Connections between game semantics and tree representation of λ-terms have been1182

previously explored, e.g., in [33], where a game model of untyped call-by-name λ-calculus1183

is shown to correspond to Levy-Longo trees. The connections that we have derived above,1184

however, go beyond Lévy-Longo Trees: in particular, the bisimilaritise that have been1185

established between the observables (i.e., the dynamics) in the two models set a tight1186

relationship between them while allowing one to transfer results and techniques along the1187

lines of what we have shown for call-by-value.1188
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