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We establish a tight connection between two models of the λ-calculus, namely Milner's encoding into the π-calculus (precisely, the Internal π-calculus), and operational game semantics (OGS). We first investigate the operational correspondence between the behaviours of the encoding provided by π and OGS. We do so for various LTSs: the standard LTS for π and a new 'concurrent' LTS for OGS; an 'output-prioritised' LTS for π and the standard alternating LTS for OGS. We then show that the equivalences induced on λ-terms by all these LTSs (for π and OGS) coincide. These connections allow us to transfer results and techniques between π and OGS. In particular we import up-to techniques from π onto OGS and we derive congruence and compositionality results for OGS from those of π. The study is illustrated for call-by-value; similar results hold for call-by-name.

Introduction

The topic of the paper is the comparison between Operational Game semantics (OGS) and the π-calculus, as generic models or frameworks for the semantics of higher-order languages.

Game semantics [START_REF] Abramsky | Full abstraction for pcf[END_REF]20] provides intentional models of higher-order languages, where the denotation of a program brings up its possible interactions with the surrounding context.

Distinct points of game semantics are the rich categorical structure and the emphasis on compositionality. Game semantics provides a modular characterization of higher-order languages with computational effects like control operators [START_REF] Laird | Full abstraction for functional languages with control[END_REF], mutable store [START_REF] Abramsky | A fully abstract game semantics for general references[END_REF][START_REF] Abramsky | Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with active expressions[END_REF] or concurrency [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF][START_REF] Laird | Game semantics for higher-order concurrency[END_REF]. This gives rise to the "Semantic Cube" [START_REF] Abramsky | Game semantics for programming languages[END_REF], a characterization of the absence of such computational effects in terms of appropriate restrictions on the interactions, with conditions like alternation, well-bracketing, visibility or innocence. For instance, wellbracketing corresponds to the absence of control operators like call/cc.

Game semantics has spurred Operational Game Semantics (OGS) [START_REF] Ghica | A system-level game semantics[END_REF][START_REF] Jagadeesan | Open bisimulation for aspects[END_REF][START_REF] Jeffrey | Java jr: Fully abstract trace semantics for a core java language[END_REF][START_REF] Laird | A fully abstract trace semantics for general references[END_REF][START_REF] Blain | Transition systems over games[END_REF], as a way to describe the interactions of a program with its environment by embedding programs into appropriate configurations and then defining rules that turn such configurations into an LTS. Besides minor differences on the representation of causality between actions, the main distinction with "standard" game semantics is in the way in which the denotation of programs is obtained: via an LTS, rather than, compositionally, by induction on the structure of the programs (or their types). It is nonetheless possible to establish a formal correspondence between these two representations [START_REF] Blain | Transition systems over games[END_REF].

OGS is particularly effective on higher-order programs. To avoid being too intensional, functional values exchanged between the program and its environment are represented as atoms, seen as free variables. Therefore OGS configurations include open terms. The basic actions in the LTS produced by OGS represent the calls and returns of functions between a program and its environment. The OGS semantics has been shown fully-abstract, that is, to characterize observational equivalence, for a wide class of programming languages, including effectful subsets of ML [START_REF] Jaber | Trace semantics for polymorphic references[END_REF][START_REF] Laird | A fully abstract trace semantics for general references[END_REF], fragments of Java [START_REF] Jeffrey | Java jr: Fully abstract trace semantics for a core java language[END_REF], aspect-oriented programs [START_REF] Jagadeesan | Open bisimulation for aspects[END_REF]. The conditions in the above-mentioned Semantic Cube (alternation, well-bracketing, etc.) equally
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In this paper, we consider forms of OGS for the pure untyped call-by-value λ-calculus, which enforce some of such conditions. Specifically we consider: an Alternating OGS, where only one term can be run at a time, and the control on the interactions alternates between the term and the environment; and a Concurrent OGS, where multiple terms can be run in parallel.

The π-calculus is the paradigmatical name-passing calculus, that is, a calculus where names (a synonym for 'channels') may be passed around. In the literature about the πcalculus, and more generally in Programming Language theory, Milner's work on functions as processes [START_REF] Milner | Functions as processes[END_REF], which shows how the evaluation strategies of call-by-name λ-calculus and call-by-value λ-calculus [START_REF] Abramsky | The lazy lambda calculus[END_REF][START_REF] Plotkin | Call by name, call by value and the λ-calculus[END_REF] can be faithfully mimicked, is generally considered a landmark.

The work promotes the π-calculus to be a model for higher-order programs, and provides the means to study λ-terms in contexts other than the purely sequential ones and with the instruments available to reason about processes. In the paper, π-calculus is actually meant to be the Internal π-calculus (Iπ), a subset of the original π-calculus in which only fresh names may be exchanged among processes [START_REF] Sangiorgi | π-calculus, internal mobility and agent-passing calculi[END_REF]. The use of Iπ avoids a few shortcomings of Milner's encodings, notably for call-by-value; e.g., the failure of the β v rule (i.e., the encodings of (λx. M )V and M { V /x} may be behaviourally distinguishable in π).

Further investigations into Milner's encodings [START_REF] Durier | Eager functions as processes[END_REF][START_REF] Sangiorgi | Lazy functions and mobile processes[END_REF] have revealed what is the equivalence induced on λ-terms by the encodings, whereby two λ-terms are equal if their encodings are behaviourally equivalent (i.e., bisimilar) Iπ terms. In call-by-value, this equivalence is eager normal-form bisimilarity [START_REF] Søren | Eager normal form bisimulation[END_REF], a tree structure proposed by Lassen (and indeed sometimes referred to as 'Lassen's trees') as the call-by-value counterpart of Böhm Trees (or Lévy-Longo Trees).

In a nutshell, when used to give semantics to a language, major strengths of the π-calculus are its algebraic structure and the related algebraic properties and proof techniques; major strengths of OGS are its proximity to the source language -the configurations of OGS are built directly from the terms of the source language, as opposed to an encoding as in the π-calculus -and its flexibility -the semantics can be tuned to account for specific features of the source language like control operators or references.

The general goal of this paper is to show that there is a tight and precise correspondence between OGS and π-calculus as models of programming languages, and that such a correspondence may be profitably used to take advantage of the strengths of the two models.

We carry out the above program in the specific case of (untyped) call-by-value λ-calculus, Λ V , which is richer and (as partly suggested above) with some more subtle aspects than call-by-name. However similar results also hold for call-by-name; see Appendix I for the technical details for more comments on it. Analogies and similarities between game semantics and π-calculus have been pointed out in various papers in the literature (e.g., [START_REF] Berger | Sequentiality and the π-calculus[END_REF][START_REF] Hyland | Pi-calculus, dialogue games and full abstraction PCF[END_REF]; see Section 9), and used to, e.g., explain game semantics using π-like processes, and enhance type systems for π-terms. In this paper, in contrast, we carry out a direct comparison between the two models, on their interpretation of functions.

We take the (arguably) canonical representations of Λ V into Iπ and OGS. The latter representation is Milner's encoding, rewritten in Iπ. We consider two variant behaviours for the Iπ terms, respectively produced by the ordinary LTS of Iπ, and by an 'output-prioritised' LTS, opLTS, in which input actions may be observed only in absence of outputs and internal actions. Intuitively, the opLTS is intended to respect sequentiality constraints in the Iπ terms: an output action stands for an ongoing computation (for instance, returning the result of a previous request) whereas an input action starts a new computation (for instance, a request of a certain service); therefore, in a sequential system, an output action should have priority over input actions. For OGS, the Λ V representation is the straightforward adaptation of the OGS representations of typed λ-calculi in the literature, e.g., [START_REF] Laird | A fully abstract trace semantics for general references[END_REF].

We then develop a thorough comparison between the behaviours of the OGS and Iπ representations. For this we define a mapping from OGS configurations to Iπ processes.

We also exploit the fact that, syntactically, the actions in the OGS and Iπ LTSs are the same. We derive a tight correspondence between the two models, which allows us to transfer techniques and to switch freely between the two models in the analysis of the OGS and Iπ representations of Λ V , so to establish new results or obtain new proofs. On these aspects, our main results are the following:

1. We show that the representation of Λ V in the Alternating OGS is behaviourally the same as the representation in Iπ assuming the opLTS. Thus the semantics on λ-terms induced by the OGS and Iπ representations coincide. The same results are obtained between the Concurrent OGS and Iπ under its ordinary LTS.

2.

We transfer 'bisimulation up-to techniques' for Iπ, notably a form of 'up-to context', onto (Concurrent) OGS. The result is a powerful technique, called 'up-to composition', that allows us to split an OGS configuration into more elementary configurations during the bisimulation game.

3.

We show that the semantics induced on Λ V by the Alternating and by the Concurrent OGS are the same, both when the equality in OGS is based on traces and when it is based on bisimulation. In other words, all the OGS views of Λ V (Alternating or Concurrent, traced-based or bisimulation-based) coincide. Moreover, we show that such induced semantics is the equality of Lassen's trees. We derive the result in two ways: one in which we directly import it from Iπ; the other in which we lift eager normal-form bisimulations into OGS bisimulations via the up-to-composition technique.

4.

We derive congruence and compositionality properties for the OGS semantics, as well as a notion of tensor product over configurations that computes interleavings of traces.

The results about OGS in [START_REF] Abramsky | Game semantics for programming languages[END_REF][START_REF] Abramsky | A fully abstract game semantics for general references[END_REF][START_REF] Abramsky | Full abstraction for pcf[END_REF] are obtained exploiting the mapping into Iπ and its algebraic properties and proof techniques, as well as the up-to-composition technique for OGS imported from Iπ.

Structure of the paper. Sections 2 to 5 contain background material: general notations, Iπ, Λ V , the representations of Λ V in the Alternating OGS (A-OGS) and in Iπ. The following sections contain the new material. In Section 6 we study the relationship between the two Λ V representations, in Iπ using the output-prioritised LTS. In Section 7 we establish a similar relationship between a new Concurrent OGS (C-OGS) and Iπ using its ordinary LTS. We also transport up-to techniques onto OGS, and prove that all the semantics of Λ V examined (OGS, Iπ, traces, bisimulations) coincide. We import compositionality results for OGS from Iπ in Section 8.

Notations

In the paper we use various LTSs and behavioural relations for them, both for OGS and for the π-calculus. In this section we introduce or summarise common notations.

We use a tilde, like in a, for (possibly empty) tuples of objects (usually names). Let K µ -→ g K ′ be a generic LTS (for OGS or Iπ; the grammar for actions in the LTSs for OGS and Iπ will be the same). Actions, ranged over by µ, can be of the form a( b), a( b), τ , and ( a),

where τ , called silent or (invisible) action, represents an internal step in K, that is, an action that does not require interaction with the outside, and ( a) is a special action performed by
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Games, mobile processes, and functions abstractions in Iπ and initial configurations in OGS. If µ ̸ = τ then µ is a visible action; we use ℓ to range over them. We sometimes abbreviate τ -→ g as -→ g . We write =⇒ g for the reflexive and transitive closure of τ -→ g . We also write

K µ =⇒ g K ′ if K =⇒ g µ -→ g =⇒ g K ′
(the composition of the three relations). Then

µ =⇒ g is µ =⇒ g if µ ̸ = τ , and =⇒ g if µ = τ .
Traces, ranged over by s, are finite (and possibly empty) sequences of visible actions.

If s = ℓ 1 , . . . , ℓ n (n ≥ 0), then K s =⇒ g K ′ holds if there are K 0 , . . . , K n with K 0 = K, K n = K ′ , and K i ℓi+1 =⇒ g K i+1 for 0 ≤ i < n; and K s =⇒ g if there is K ′ with K s =⇒ g K ′ .
Two states K 1 , K 2 of the LTS are trace equivalent, written

K 1 ≏ g K 2 , if (K 1 s =⇒ g iff K 2 s =⇒ g ), for all s.
Similarly, bisimilarity, written ≈ g , is the largest symmetric relation on the state of the LTS such that whenever

K 1 ≈ g K 2 then K 1 µ =⇒ g K ′ 1 implies there is K ′ 2 with K 2 µ =⇒ g K ′ 2 and K ′ 1 ≈ g K ′ 2 .
For instance, in the Iπ LTS µ -→ π of Section 3.1, P ≏ π Q means that the Iπ processes P and Q are trace equivalent, and P ≈ π Q means that they are bisimilar.

▶ Remark 1 (bound names). In an action a( b) or a( b) or ( b), name a is free whereas b are bound; the free and bound names of a trace are defined accordingly. Throughout the paper, in any statement (concerning OGS or Iπ), the bound names of an action or of a trace that appears in the statement are supposed to be all fresh; i.e., all distinct from each other and from the free names of the objects in the statement. ◀

3 Background

The Internal π-calculus

The Internal π-calculus, Iπ, is, intuitively, a subset of the π-calculus in which all outputs are bound. This is syntactically enforced by having outputs written as a( b) (which in the π-calculus would be an abbreviation for ν b a⟨ b⟩). All tuples of names in Iπ are made of pairwise distinct components. Abstractions are used to write name-parametrised processes, for instance, when writing recursive process definitions. The instantiation of the parameters of an abstraction B is done via the application construct B⟨ a⟩. Processes and abstractions form the set of agents, ranged over by T . Lowercase letters a, b, . . . , x, y, . . . range over the infinite set of names. The grammar of Iπ is thus:

P ≜ 0 | a( b). P | a( b). P | νa P | P 1 | P 2 | !a( b). P | B⟨ a⟩ (processes) B ≜ ( a) P | K (abstractions)
The operators have the usual meaning; we omit the standard definition of free names, bound names, and names of an agent, respectively indicated with fn(-), bn(-), and n(-). In the grammar, K is a constant, used to write recursive definitions. Each constant K has a defining equation of the form K ≜ (x) P , where (x) P is name-closed (that is, without free names);

x are the formal parameters of the constant . Replication could be avoided in the syntax since it can be encoded with recursion. However its semantics is simple, and it is useful in encodings.

An application redex (( x)P )⟨ a⟩ can be normalised as P { a/ x}. An agent is normalised if all such application redexes have been contracted. In the remainder of the paper we identify an agent with its normalised expression.

Since the calculus is polyadic, we assume a sorting system [START_REF] Milner | The polyadic π-calculus: a tutorial[END_REF] to avoid disagreements in the arities of the tuples of names. Being not essential, it will not be presented here.

Operational semantics and behavioural relations

In the LTS for Iπ, recalled in Appendix A, transitions are of the form T µ -→ π T ′ , where the bound names of µ are fresh, i.e., they do not appear free in T .

Trace equivalence (≏ π ) and bisimilarity (≈ π ) have been defined in Section 2. We refer to

Appendix A for the standard definition of expansion, written ≲ π . (The expansion relation ≲ π is an asymmetric variant of ≈ π in which, intuitively, P ≲ π Q holds if P ≈ π Q but also Q has at least as many τ -moves as P .) All behavioural relations are extended to abstractions by requiring ground instantiation of the parameters; this is expressed by means of a transition; e.g., the action (x) P (x)

-→ π P (see rule abs in Appendix A).

The "up-to" techniques

The "up-to" techniques allow us to reduce the size of a relation R to exhibit for proving bisimilarities. Our main up-to technique will be up-to context and expansion [START_REF] Sangiorgi | Locality and non-interleaving semantics in calculi for mobile processes[END_REF], which admits the use of contexts and of behavioural equivalences such as expansion to achieve the closure of a relation in the bisimulation game. So the bisimulation clause becomes:

if P R Q and P µ -→ P ′′ then there are a static context C ctx and processes P ′ and Q ′ s.t.

P ′′ π ≳ C ctx [P ′ ], Q µ =⇒ π ≳ C ctx [Q ′ ] and P ′ R Q ′ ( * )
where a static context is a context of the form νc (R | [•]).

We will also employ: bisimulation up-to ≈ π [START_REF] Milner | Communication and Concurrency[END_REF], whereby bisimilarity itself is employed to achieve the closure of the candidate relation during the bisimulation game; a variant of bisimulation up-to context and expansion, called bisimulation up-to context and up-to

( π ≳, ≈ π )
, in which, in ( * ), when µ is a visible action, expansion is replaced by the coarser bisimilarity, at the price of imposing that the static context C ctx cannot interact with the processes P or Q. (This technique, as far as we know, does not appear in the literature.)

Details on these techniques may be found in Appendix A.

The Call-By-Value λ-calculus

The grammar of the untyped call-by-value λ-calculus, Λ V , has values V , terms M , evaluation contexts E, and general contexts C:

Vals V ≜ x | λx. M Terms M, N ≜ V | M N ECtxs E ≜ [•] | V E | EM Ctxs C ≜ [•] | λx. C | M C | CM
where [•] stands for the hole of a context. The call-by-value reduction → v has two rules:

(λx. M )V → v M {V /x} M → v N E[M ] → v E[N ]
In the following, we write

M ⇓ M ′ to indicate that M ⇒ v M ′ with M ′ an eager normal form, that is, either a value or a stucked call E[xV ].

Operational Game Semantics

We introduce the representation of Λ V in OGS. The LTS produced by the representation of a term intends to capture the possible interactions between the term and its environment.

Values exchanged between the term and the environment are represented by names, akin to free variables, called variable names and ranged over by x, y, z. Continuations (i.e., evaluation

(P τ ) ⟨M, p, γ, ϕ⟩ τ -→ a ⟨N, p, γ, ϕ⟩ when M → v N (P A) ⟨V, p, γ, ϕ⟩ p(x) -→ a ⟨γ • [x → V ], ϕ ⊎ {x}⟩ (P Q) ⟨E[xV ], p, γ, ϕ⟩ x(y,q) -→ a ⟨γ • [y → V ] • [q → (E, p)], ϕ ⊎ {y, q}⟩ (OA) ⟨γ • [q → (E, p)], ϕ⟩ q(x) -→ a ⟨E[x], p, γ, ϕ ⊎ {x}⟩ (OQ) ⟨γ, ϕ⟩ x(y,p) -→ a ⟨V y, p, γ, ϕ ⊎ {y, p}⟩ when γ(x) = V (IOQ) ⟨[? → M ], ϕ⟩ (p) 
-→ a ⟨M, p, ε, ϕ ⊎ {p}⟩ Figure 1 The LTS for the Alternating OGS (A-OGS) contexts) are also represented by names, called continuation names and ranged over by p, q, r.

Actions µ have been introduced in Section 2. In OGS, we have five kinds of (visible) actions:

Player Answers (PA), p(x), and Opponent Answers (OA), p(x), that exchange a variable

x through a continuation name p;

Player Questions (PQ), x(y, p), and Opponent Questions (OQ), x(y, p), that exchange a variable y and a continuation name p through a variable x;

Initial Opponent Questions (IOQ), (p), that introduce the initial continuation name p.

▶ Remark 2. The denotation of terms is usually represented in game semantics using the notion of pointer structure rather than traces. A pointer structure is defined as a sequence of moves, together with a pointer from each move (but the initial one) to a previous move that 'justifies' it. Taking a trace s, one can reconstruct this pointer structure in the following way:

an action µ is justified by an action µ ′ if the free name of µ is bound by µ ′ in s (here we are taking advantage of the 'freshness' convention on the bound names of traces, Remark 1).

Environments, ranged over by γ, maintain the association from names to values and evaluations contexts, and are partial maps. A single mapping is either of the form [x → V ] (the variable x is mapped onto the value V ), or [p → (E, q)] (the continuation name p is mapped onto the pair of the evaluation context E and the continuation q).

There are two main kinds of configurations F : active configurations ⟨M, p, γ, ϕ⟩ and passive configurations ⟨γ, ϕ⟩, where M is a term, p a continuation name, γ an environment and ϕ a set of names called its name-support. Names in dom(γ) are called P-names, and those in ϕ\dom(γ) are called O-names. So we obtain a polarity function pol F associated to F , defined as the partial maps from ϕ to {O, P } mapping names to their polarity. In the following, we only consider valid configurations, for which:

dom(γ) ⊆ ϕ fv(M ), p are O-names;
for all a ∈ dom(γ), the names appearing in γ(a) are O-names.

The LTS is introduced in Figure 1. It is called Alternating, since, forgetting the Pτ transition, it is bipartite between active configurations, that perform Player actions, and passive configurations, that perform Opponent actions. Accordingly, we call Alternating the resulting OGS, abbreviated A-OGS. In the OA rule, E is "garbage-collected" from γ, a behavior corresponding to linear continuations. More details on the rules may be found in Appendix C.

To build the denotation of a term M , we introduce an initial configuration associated to it, written ⟨[? → M ], ϕ⟩, with ϕ the set of free variables we start with. When this set is taken to be the free variables of M , we simply write it as ⟨M ⟩. In the initial configuration

V[[V ]] ≜ (p) p(y). V * [[V ]]⟨y⟩ V * [[λx. M ]] ≜ (y) !y(x, q). V[[M ]]⟨q⟩ V * [[x]] ≜ (y) y ▷ x V[[M N ]] ≜ (p) νq V[[M ]]⟨q⟩ | q(y). νr V[[N ]]⟨r⟩ | r(w). y(w ′ , p ′ ). (w ′ ▷ w | p ′ ▷ p) Figure 2
The encoding of call-by-value λ-calculus into Iπ the choice of the continuation name p is made, by performing an Initial Opponent question (IOQ). (Formally, initial configurations should be considered as passive configurations.)

The encoding of call-by-value λ-calculus into the π-calculus

We recall here Milner's encoding of call-by-value λ-calculus, transplanted into Iπ. The core of any encoding of the λ-calculus into a process calculus is the translation of function application. This becomes a particular form of parallel combination of two processes, the function and its argument; β-reduction is then modelled as a process interaction. As in OGS, so in Iπ the encoding uses continuation names p, q, r, . . . , and variable names x, y, v, w . . . . Figure 2 presents the encoding. Process a ▷ b represents a link (sometimes called forwarder; for readability we have adopted the infix notation a ▷ b for the constant ▷). It transforms all outputs at a into outputs at b; thus the body of a ▷ b is replicated, unless a and b are continuation names:

▷ ≜ (p, q). p(x). q(y). y ▷ x if p, q are continuation names (x, y). !x(z, p). y(w, q). (q ▷ p | w ▷ z) if x, y are variable names
The equivalence induced on call-by-value λ-terms by their encoding into Iπ coincides with Lassen's eager normal-form (enf) bisimilarity [START_REF] Søren | Eager normal form bisimulation[END_REF]. That is,

V[[M ]] ≈ π V[[N ]] iff M and N
are enf-bisimilar [START_REF] Durier | Eager functions as processes[END_REF]. In proofs about the behaviour of the Iπ representation of λ-terms we sometime follow [START_REF] Durier | Eager functions as processes[END_REF] and use an optimisation of Milner's encoding, reported in Appendix D together with its correctness (Lemma 47).

Relationship between Iπ and A-OGS

To compare the A-OGS and Iπ representations of the (call-by-value) λ-calculus, we set a mapping from A-OGS configurations and environments to Iπ processes. The mapping is reported in Figure 3. It is an extension of Milner's encoding of the λ-calculus and is therefore indicated with the same symbol V. The mapping uses a representation of environments γ as associative lists.

▶ Remark 3. The encoding of a configuration F with name-support ϕ does not depend on ϕ. This name-support ϕ is used in OGS both to enforce freshness of names, and to deduce the polarity of names, as represented by the function pol. And indeed, the process

V[[F ]
] has its set of free names included in ϕ, and uses P -names in outputs and O-names in inputs. The polarity property could be stated in π-calculus using i/o-sorting [START_REF] Pierce | Typing and subtyping for mobile processes[END_REF]. Indeed, a correspondence between arenas of game semantics (used to enforce polarities of moves) and sorting has been explored [START_REF] Honda | Game-theoretic analysis of call-by-value computation[END_REF][START_REF] Hyland | Pi-calculus, dialogue games and full abstraction PCF[END_REF].

Operational correspondence

The following theorems establish the operational correspondence between the A-OGS and Iπ representations. In Theorem 4, as well as in following theorems such as Theorems 5, 7,

Encoding of environments:

Encoding of configurations:

V[[[y → V ] • γ ′ ]] ≜ V * [[V ]]⟨y⟩ | V[[γ ′ ]] V[[[q → (E, p)] • γ ′ ]] ≜ q(x). V[[E[x]]]⟨p⟩ | V[[γ ′ ]] V[[ε]] ≜ 0 V[[⟨M, p, γ, ϕ⟩]] ≜ V[[M ]]⟨p⟩ | V[[γ]] V[[⟨γ, ϕ⟩]] ≜ V[[γ]] V[[⟨[? → M ], ϕ⟩]] ≜ V[[M ]]
Figure 3 From OGS environments and configurations to Iπ and 13, the appearance of the expansion relation π ≳ (in place of the coarser ≈ π ), in the statement about silent actions, is essential, both to derive the statement in the theorems about visible actions, and to use the theorems in up-to techniques for Iπ (more generally, in applications of the theorems in which one reasons about the number of steps performed).

▶ Theorem 4. 1. If F =⇒ a F ′ , then V[[F ]] =⇒ π π ≳ V[[F ′ ]]; 2. If F ℓ =⇒ a F ′ , then V[[F ]] ℓ =⇒ π ≈ π V[[F ′ ]]. ▶ Theorem 5. 1. If V[[F ]] =⇒ π P then there is F ′ such that F =⇒ a F ′ and P π ≳ V[[F ′ ]] ; 2. If V[[F ]] ℓ =⇒ π P and ℓ is an output, then there is F ′ such that F ℓ =⇒ a F ′ and P π ≳ V[[F ′ ]]; 3. If F is passive and V[[F ]] ℓ =⇒ π P , then there is F ′ such that F ℓ =⇒ a F ′ and P ≈ π V[[F ′ ]].
In Theorem 5, a clause is missing for input actions from V[[F ]] when F active. Indeed such actions are possible in Iπ, stemming from the (encoding of the) environment of F , whereas they are not possible in A-OGS. This is rectified in Section 6.2, introducing a constrained LTS for Iπ, and in Section 7, considering a concurrent OGS.

▶ Corollary 6. If F s =⇒ a then also V[[F ]] s =⇒ π .

An output-prioritised Transition System

We define an LTS for Iπ in which input actions are visible only if no output can be consumed, either as a visible action or through an internal action (i.e., syntactically the process has no unguarded output). The new LTS, called output-prioritised and indicated as opLTS, is defined on the top of the ordinary one by means of the two rules below. A process P is input reactive if whenever P µ -→ π P ′ , for some µ, P ′ then µ is an input action.

P µ -→ π P ′ P input reactive P µ -→ oπ P ′ P µ -→ π P ′ P µ -→ oπ P ′ µ is an output or τ action
The opLTS captures an aspect of sequentiality in π-calculi: a free input prefix is to be thought of as a service offered to the external environment; in a sequential system such a service is available only if there is no ongoing computations due to previous interrogations of the server. An ongoing computation is represented by a τ -action, indicating a step of computation internal to the server, or an output, indicating either an answer to a client or a request to an external server. The constraint imposed by the new LTS could also be formalised compositionally, see Appendix A.

Under the opLTS, the analogous of Theorem 4 continue to hold: in A-OGS configurations, input transitions only occur in passive configurations, and the encodings of passive configurations are input-reactive processes. However, now we have the full converse of Theorem 5 and, as a consequence, we can also establish the converse direction of Corollary 6.
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▶ Theorem 7. 1. If V[[F ]] τ =⇒ oπ P then there is F ′ such that F =⇒ a F ′ and P π ≳ V[[F ′ ]] ; 2. If V[[F ]] ℓ =⇒ oπ P then there is F ′ such that F ℓ =⇒ a F ′ and P ≈ π V[[F ′ ]].
▶ Corollary 8. For any configuration F and trace s, we have

F s =⇒ a iff V[[F ]] s =⇒ oπ .
▶ Remark 9. We recall that, following Remark 1 on the usage of bound names, in Corollary 8 the bound names in s are fresh; thus they do not appear in F . (Similarly, in Theorems 5 and 7 for the bound names in ℓ).

For both results we first establish a correspondence result on strong transitions. See Appendix D for details. ▶ Remark 10. Corollary 8 relies on Theorems 4 and 7. The corollary talks about the opLTS of Iπ; however the theorems make use of the ordinary expansion relation ≲ π , that is defined on the ordinary LTS. Such uses of expansion can however be replaced by expansion on the opLTS (defined as ordinary expansion, but on the opLTS). For more details on this, see

Appendix B.
As a consequence of Corollary 8, trace equivalence is the same, on A-OGS configurations and on the encoding Iπ terms. Moreover, from Theorem 7 the same result holds under a bisimulation semantics. Further, since the LTS produced by A-OGS is deterministic, its trace semantics coincides with its bisimulation semantics. We can thus conclude as in Corollary 11.

We recall that ≏ oπ and ≈ oπ are, respectively, trace equivalence and bisimilarity between Iπ processes in the opLTS; similarly for ≏ a and ≈ a between A-OGS terms.

▶ Corollary 11. For any F, F ′ we have:

F ≏ a F ′ iff V[[F ]] ≏ oπ V[[F ′ ]] iff F ≈ a F ′ iff V[[F ]] ≈ oπ V[[F ′ ]].
Corollary 11 holds in particular when F is the initial configuration for a λ-term. That is, the equality induced on call-by-value λ-terms by their representation in A-OGS and in Iπ (under the opLTS) is the same, both employing traces and employing bisimulation to handle the observables for the two models.

▶ Corollary 12. For any λ-terms M, N , we have:

⟨M ⟩ ≏ a ⟨N ⟩ iff ⟨M ⟩ ≈ a ⟨N ⟩ iff V[[M ]] ≏ oπ V[[N ]] iff V[[M ]] ≈ oπ V[[N ]].
From Theorem 5 and Corollary 8, it also follows that F and V[[F ]] are weakly bisimilar, on the union of the respective LTSs.

Concurrent Operational Game Semantics

In this section we explore another way to derive an exact correspondence between OGS and Iπ, by relaxing the Alternating LTS for OGS so to allow multiple terms in configurations to run concurrently. We refer to the resulting OGS as the Concurrent OGS, briefly C-OGS (we recall that A-OGS refers to the Alternating OGS of Section 4).

We introduce running terms, ranged over by A, B, as finite mappings from continuation names to λ-terms. A concurrent configuration is a triple ⟨A, γ, ϕ⟩ of a running term A, an environment γ, and a set of names ϕ. Moreover, the domains of A and γ must be disjoint.

We extend the definition of the polarity function, considering names in the domain of both A and γ as Player names.

Passive and active configurations can be seen as special case of C-OGS configurations with zero and one running term, respectively. For this reason we still use F, G to range We present the rules of C-OGS in Figure 4. Since there is no more distinction between passive and active configurations, a given configuration can perform both Player and Opponent actions. Notice that only Opponent can add a new term to the running term A. A singleton is a configuration F whose P-support has only one element (that is, in C-OGS, F is either of

(P τ ) ⟨A • [p → M ], γ, ϕ⟩ τ -→ c ⟨A • [p → N ], γ, ϕ⟩ when M → v N (P A) ⟨A • [p → V ], γ, ϕ⟩ p(x) -→ c ⟨A, γ • [x → V ], ϕ ⊎ {x}⟩ (P Q) ⟨A • [p → E[xV ]], γ, ϕ⟩ x(y,q) -→ c ⟨A, γ • [y → V ] • [q → (E, p)], ϕ ⊎ {y, q}⟩ (OA) ⟨A, γ • [p → (E, q)], ϕ⟩ p(x) -→ c ⟨A • [q → E[x]], γ, ϕ ⊎ {x}⟩ (OQ) ⟨A, γ, ϕ⟩ x(y,p) -→ c ⟨A • [p → V y], γ, ϕ ⊎ {y, p}⟩ when γ(x) = V (IOQ) ⟨[? → M ], ϕ⟩ (p) -→ c ⟨[p → M ], ε, ϕ ⊎ {p}⟩
the form ⟨[p → M ], ε, ϕ⟩, or ⟨ε, [x → V ], ϕ⟩, or ⟨ε, [p → (E, q)], ϕ⟩).
In this and in the following section F, G ranges over C-OGS configurations, as reminded by the index 'c' in the symbols for LTS and behavioural equivalence with which F, G appear (e.g., ≏ c ).

Comparison between C-OGS and Iπ

The encoding of C-OGS into Iπ is a simple adaptation of that for A-OGS. We only have to consider the new or modified syntactic elements of C-OGS, namely running terms and configurations; the encoding remains otherwise the same. The encoding of running term is:

V[[[p → M ] • A]] def = V[[M ]]⟨p⟩ | V[[A]] V[[ε]] def = 0
The encoding of configurations is then defined as:

V[[⟨A, γ, ϕ⟩]] def = V[[A]] | V[[γ]].
The results about operational correspondence between C-OGS and Iπ are as those between A-OGS and Iπ under the opLTS.

▶ Theorem 13. 1. If F =⇒ c F ′ then V[[F ]] =⇒ π π ≳ V[[F ′ ]]; 2. if F ℓ =⇒ c F ′ then V[[F ]] ℓ =⇒ π ≈ π V[[F ′ ]]; 3. the converse of (1), i.e. if V[[F ]] =⇒ π P then there is F ′ such that F =⇒ c F ′ and P π ≳ V[[F ′ ]].

the converse of (2), i.e. if V[[F ]]

ℓ =⇒ π P then there is

F ′ such that F ℓ =⇒ c F ′ and P ≈ π V[[F ′ ]].
▶ Corollary 14. For any C-OGS configuration F and trace s, we have

F s =⇒ c iff V[[F ]] s =⇒ π .
From Corollary 14 and Theorem 13, we derive:

▶ Lemma 15. For any F, F ′ we have:

1. F 1 ≏ c F 2 iff V[[F 1 ]] ≏ π V[[F 2 ]]; 2. F 1 ≈ c F 2 iff V[[F 1 ]] ≈ π V[[F 2 ]].
To derive the full analogous of Corollary 12, we now show that, on the Iπ representation of λ-terms, trace equivalence is the same as bisimilarity. This result needs a little care: it is known that on deterministic LTSs bisimilarity coincides with trace equivalence. However, the behaviour of the Iπ representation of a C-OGS configuration need not be deterministic, because there could be multiple silent transitions as well as multiple output transitions (for instance, in C-OGS rule OQ may be applicable to different terms).

▶ Lemma 16. For any M, N we have:

V[[M ]] ≏ π V[[N ]] iff V[[M ]] ≈ π V[[N ]].
The proof uses the 'bisimulation up-to context and up-to ( π ≳, ≈ π )' technique. We can finally combine Lemmas 16 and 15 to derive that the C-OGS and Iπ semantics of λ-calculus coincide, both for traces and for bisimilarity.

▶ Corollary 17. For all M, N we have:

⟨M ⟩ ≏ c ⟨N ⟩ iff ⟨M ⟩ ≈ c ⟨N ⟩ iff V[[M ]] ≏ π V[[N ]] iff V[[M ]] ≈ π V[[N ]].
More details on proofs may be found in Appendix E.

Tensor Product

We now introduce a way of combining configurations, which corresponds to the notion of tensor product of arenas and strategies in (denotational) game semantics. 

F ⊗ G is defined as F ⊗ G ≜ ⟨A • B, γ • δ, ϕ ∪ ϕ ′ ⟩
The polarity function of F ⊗G is then equal to pol F ∪pol G , and

V[[F 1 ⊗F 2 ]] ≡ V[[F 1 ]] | V[[F 2 ]],
where ≡ is the standard structural congruence of π-calculi. In the following, we write inter(s 1 , s 2 ) for the set of traces obtained from an interleaving of the elements in the sequences s 1 and s 2 .

▶ Lemma 20. Suppose F 1 , F 2 are compatible concurrent configurations. The set of traces generated by F 1 ⊗ F 2 is the union of the sets of interleaving inter(s 1 , s 2 ), for F 1 s1 =⇒ c and

F 2 s2 =⇒ c .
The tensor product of A-OGS configurations is defined similarly, with the additional hypothesis that at most one of the two configurations is active, in order for their tensor product to be a valid A-OGS configuration. The details can be found in Appendix H.2.

Up-to techniques for games

We introduce up-to techniques for C-OGS, which allow, in bisimulation proofs, to split two C-OGS configurations into separate components and then to reason separately on these.

These up-to techniques are directly imported from Iπ. Abstract settings for up-to techniques have been developed, see [START_REF] Pous | Enhancements of the bisimulation proof method[END_REF][START_REF] Pous | Bisimulation and coinduction enhancements: A historical perspective[END_REF]; we cannot however derive the OGS techniques from them because these setting are specific to first-order LTS (i.e., CCS-like, without binders within actions).

XX:12 Games, mobile processes, and functions

The new techniques are then used to prove that C-OGS and A-OGS yield the same semantics on λ-terms; a further application is in Section 7.5, discussing eager normal-form bisimilarity.

A relation R on configuration is well-formed if it relates configurations with the same polarity function. Below, all relations on configurations are meant to be well formed. Given a well-formed relation R we write:

R | for the relation {(F 1 , F 2 ) : ∃ G s.t. F i = F ′ i ⊗ G (i = 1, 2) and F ′ 1 R F ′ 2 }.
R |⋆ for the reflexive and transitive closure of R | . Thus from

F 1 R G 1 and F 2 R G 2 we obtain (F 1 ⊗ F 2 ) R |⋆ (G 1 ⊗ F 2 ) R |⋆ G 1 ⊗ G 2 . ⇒ c R |⋆ c ⇐ for the closure of R |⋆ under reductions. That is, F 1 ⇒ c R |⋆ c ⇐ F 2 holds if there are F ′ i , i = 1, 2 with F i =⇒ c F ′ i and F ′ 1 R |⋆ F ′ 2 .
(As =⇒ c is reflexive, we may have

F i = F ′ i .)
▶ Definition 21. A relation R on configurations is a bisimulation up-to reduction and composition if whenever

F 1 R F 2 : 1. if F 1 µ -→ c F ′ 1 then there is F ′ 2 such that F 2 µ =⇒ c F ′ 2 and F ′ 1 ⇒ c R |⋆ c ⇐ F ′ 2 ;
2. the converse, on the transitions from F 2 . 

A variant of the technique in

F ≏ c G, with [p → M ] part of F and [p → N ] part of G, then also ⟨[p → M ]⟩ ≏ c ⟨[p → N ]⟩.
A counterexample is given by the configurations

F 1 def = ⟨[p 1 → M ] • [p 2 → Ω]⟩ where M def = (λz. Ω)(xλy. Ω) F 2 def = ⟨[p 1 → Ω] • [p 2 → M ]⟩
Intuitively the reason why F 1 ≏ c F 2 is that M can produce an output (along the variable x), but an observer will never obtain access to the name at which M is located (p 1 or p 2 ). That is, the term M can interrogate x, but it will never answer, neither at p 1 nor at p 2 .

Relationship between Concurrent and Alternating OGS

In Section 6 we have proved that the trace-based and bisimulation-based semantics produced by A-OGS and by Iπ under the opLTS coincide. In Section 7.1 we have obtained the same result for C-OGS and Iπ under the ordinary LTS. In this section we develop these results so to conclude that all such equivalences for λ-terms actually coincide. In other words, the equivalence induced on λ-terms by their representations in OGS and Iπ is the same, regardless of whether we adopt the alternating or concurrent flavour for OGS, the opLTS or the ordinary LTS in Iπ, a trace or a bisimulation semantics. For this, in one direction we show that the trace semantics induced by C-OGS implies that induced by A-OGS (Lemma 63). In the opposite direction, we lift a bisimulation over the alternating LTS on singleton configurations into a bisimulation up-to composition over the concurrent LTS.

▶ Lemma 24. If F 1 , F 2 are A-OGS singleton configurations and F 1 ≈ a F 2 , then also

F 1 ≈ c F 2 .
Details may be found in Appendix G. From Corollaries 12, 17, and Lemmas 63, 24 we can thus conclude.

▶ Corollary 25. For any λ-terms M, N , the following statements are the same:

⟨M ⟩ ≏ a ⟨N ⟩; ⟨M ⟩ ≈ a ⟨N ⟩; ⟨M ⟩ ≏ c ⟨N ⟩; ⟨M ⟩ ≈ c ⟨N ⟩; V[[M ]] ≏ oπ V[[N ]]; V[[M ]] ≈ oπ V[[N ]]; V[[M ]] ≏ π V[[N ]]; V[[M ]] ≈ π V[[N ]].

Eager Normal Form Bisimulations

We recall Lassen's eager normal-form (enf) bisimilarity [START_REF] Søren | Eager normal form bisimulation[END_REF].

▶ Definition 26. An enf-bisimulation is a triple of relation on terms R M , values R V , and evaluation contexts R K that satisfies:

M 1 R M M 2 if either: both M 1 , M 2 diverge; M 1 ⇓ E 1 [xV 1 ] and M 2 ⇓ E 2 [xV 2 ] for some x, values V 1 , V 2 ,

and evaluation contexts

E 1 , E 2 with V 1 R V V 2 and K 1 R K K 2 ; M 1 ⇓ V 1 and M 2 ⇓ V 2 for some values V 1 , V 2 with V 1 R V V 2 . V 1 R V V 2 if V 1 x R M V 2 x for some fresh x; K 1 R V K 2 if K 1 [x] R M K 2 [x]
for some fresh x.

The largest enf-bisimulation is called enf-bisimilarity.

From Corollary 25 and existing results in the π-calculus [START_REF] Durier | Eager functions as processes[END_REF] we can immediately conclude that the semantics on λ-terms induced by OGS (Alternating or Concurrent) coincides with enf-bisimilarity (i.e., Lassen's trees).

In this section we show a direct proof of the result, for C-OGS bisimilarity, as an example of application of the up-to composition technique for C-OGS.

Terms, Values, and Evaluations contexts can be directly lifted to singleton concurrent configurations, meaning that we can transform a relation on terms, values, and contexts R into a relation R on singleton concurrent configurations in the following way:

If (M 1 , M 2 ) ∈ R then (⟨[p → M 1 ], ε, ϕ⟩, ⟨[p → M 2 ], ε, ϕ⟩) ∈ R, with ϕ = fv(M 1 , M 2 )⊎{p} If (V 1 , V 2 ) ∈ R then (⟨[x → V 1 ], ϕ⟩, ⟨[x → V 2 ], ϕ⟩) ∈ R, with ϕ = fv(V 1 , V 2 ) ⊎ {x}; If (E 1 , E 2 ) ∈ R then (⟨[p → (E 1 , q)], ϕ⟩, ⟨[p → (E 2 , q)], ϕ⟩) ∈ R, with ϕ = fv(E 1 , E 2 ) ⊎ {p, q}. ▶ Theorem 27. Taking (R M , R V , R K ) an enf-bisimulation, then ( R M ∪ R V ∪ R K ) is a
singleton bisimulation up-to composition in C-OGS (as defined in Appendix F).

Proof. Taking F 1 , F 2 two singleton configurations s.t. (F 1 , F 2 ) ∈ R M , then we can write

F i as ⟨[p → M i ], ϕ⟩ for i = 1, 2, such that (M 1 , M 2 ) ∈ R. suppose that F 1 =⇒ c ℓ -→ c F ′ 1 ,
with ℓ a Player action. We only present the Player Question case, which is where 'up-to composition' is useful. So writing ℓ as x(y, q), F ′ 1 can be written as

⟨[y → V 1 ] • [q → (E 1 , p)]⟩, so that M 1 → * v E 1 [xV 1 ]. As (M 1 , M 2 ) ∈ R, there are E 2 , V 2 s.t. M 2 → * v E 2 [xV 2 ], (V 1 , V 2 ) ∈ R and (E 1 , E 2 ) ∈ R. Hence F 2 =⇒ c ℓ -→ c F ′ 2 with F ′ 2 = ⟨[y → V 2 ] • [q → (E 2 , p)]⟩. Finally, (⟨[y → V 1 ]⟩, ⟨[y → V 2 ]⟩) ∈ R and (⟨[q → (E 1 , p)]⟩, ⟨[q → (E 2 , p)]⟩) ∈ R, so that (F ′ 1 , F ′ 2 ) ∈ R |⋆ .
The case of passive singleton configurations is proved in a similar way.

◀ Compositionality of OGS via Iπ

We now present some compositionality results about C-OGS and A-OGS, that can be proved via the correspondence between OGS and Iπ.

Compositionality of OGS amounts to compute the set of traces generated by ⟨M {V /x}⟩ from the set of traces generated by ⟨M ⟩ and ⟨[x → V ]]⟩. This is the cornerstone of (denotational) game semantics, where the combination of ⟨M ⟩ and ⟨[x → V ]⟩ is represented via the so-called 'parallel composition plus hiding'. This notion of parallel composition of two processes P, Q plus hiding over a name x is directly expressible in Iπ as the process νx(P | Q).

Precisely, suppose F, G are two configurations that agree on their polarity functions, but on a name x; then we write

νx(F | G) ( * ) for the Iπ process νx(V[[F ]] | V[[G]]
), the parallel composition plus hiding over x. To define this operation directly at the level of OGS, we would have to generalize its LTS, allowing internal interactions over a name x used both in input and in output.

As the translation V from OGS configurations into Iπ validates the β v rule, we can prove that the behaviour of ⟨M {V /x}⟩ (e.g., its set of traces) is the same as that of the parallel composition plus hiding over x of ⟨M ⟩ and ⟨[x → V ]⟩). We use the notation ( * ) above to express the following two results.

▶ Theorem 28. For ▷◁ ∈ {≈ oπ , ≈ π , ≏ oπ , ≏ π }, we have V[[⟨[p → M {V /x}], γ, ϕ ∪ ϕ ′ ⟩]] ▷◁ νx(⟨[p → M ], ε, ϕ ⊎ {x}⟩ | ⟨γ • [x → V ], ϕ ′ ⊎ {x}⟩)
▶ Corollary 29. For any trace s:

1. ⟨M {V /x}, p, γ, ϕ ∪ ϕ ′ ⟩ s =⇒ a iff νx(⟨M, p, ε, ϕ ⊎ {x}⟩ | ⟨γ • [x → V ], ϕ ′ ⊎ {x}⟩) s =⇒ oπ 2. ⟨[p → M {V /x}], γ, ϕ ∪ ϕ ′ ⟩ s =⇒ c iff νx(⟨[p → M ], ε, ϕ ⊎ {x}⟩ | ⟨γ • [x → V ], ϕ ′ ⊎ {x}⟩) s =⇒ π
Other important properties that we can import in OGS from Iπ are the congruence properties for the A-OGS and C-OGS semantics. We report the result for ≏ a ; the same result holds for ≈ a , ≏ c , ≈ c .

▶ Theorem 30. If ⟨M ⟩ ≏ a ⟨N ⟩ then for any Λ V context C, ⟨C[M ]⟩ ≏ a ⟨C[N ]⟩.
The result is obtained from the congruence properties of Iπ, Corollary 25, and the compositionality of the encoding V.

Related and Future Work

Analogies between game semantics and π-calculus, as semantic frameworks in which names are central, have been pointed out from the very beginning of game semantics. In the pioneering work [START_REF] Hyland | Pi-calculus, dialogue games and full abstraction PCF[END_REF], the authors obtain a translation of PCF terms into the π-calculus from a game model of PCF by representing strategies (the denotation of PCF terms in the game model) as processes of the π-calculus. The encoding bears similarities with Milner's, though they are syntactically rather different ("it is clear that the two are conceptually quite unrelated", [START_REF] Hyland | Pi-calculus, dialogue games and full abstraction PCF[END_REF]). The connection has been developed in various papers, e.g., [START_REF] Castellan | Two sides of the same coin: Session types and game semantics: A synchronous side and an asynchronous side[END_REF][START_REF] Fiore | Recursive types in games: Axiomatics and process representation[END_REF][START_REF] Honda | Processes and games[END_REF][START_REF] Honda | Game-theoretic analysis of call-by-value computation[END_REF][START_REF] Yoshida | Game semantics: Easy as pi[END_REF]].

Milner's encodings into the π-calculus have sometimes been a source of inspiration in the definition of the game semantics models (e.g., transporting the work [START_REF] Hyland | Pi-calculus, dialogue games and full abstraction PCF[END_REF], in call-by-name, onto call-by-value [START_REF] Honda | Game-theoretic analysis of call-by-value computation[END_REF]). In [START_REF] Yoshida | Game semantics: Easy as pi[END_REF], a typed variant of π-calculus, influenced by differential linear logic [START_REF] Ehrhard | An introduction to differential linear logic: proof-nets, models and antiderivatives[END_REF], is introduced as a metalanguage to represent game models. In [START_REF] Disney | Game semantics for type soundness[END_REF], games are defined using algebraic operations on sets of traces, and used to prove type soundness of a simply-typed call-by-value λ-calculus with effects. Although the calculus of traces employed is not a π-calculus (e.g., being defined from operators and relations over trace sets rather than from syntactic process constructs), there are similarities, which would be interesting to investigate.

Usually in the above papers the source language is a form of λ-calculus, that is interpreted into game semantics, and the π-calculus (or dialects of it) is used to represent the resulting strategies and games. Another goal has been to shed light into typing disciplines for π-calculus processes, by transplanting conditions on strategies such as well-bracketing and innocence into appropriate typings for the π-calculus (see, e.g., [START_REF] Berger | Sequentiality and the π-calculus[END_REF][START_REF] Yoshida | Strong normalisation in the π-Calculus[END_REF]).

In contrast with the above works, where analogies between game semantics and π-calculus are used to better understand one of the two models (i.e., explaining game semantics in terms process interactions, or enhancing type systems for processes following structures in game semantics), in the present paper we have carried out a direct comparison between the two models (precisely OGS and Iπ). For this we have started from the (arguably natural) representations of the λ-calculus into OGS and Iπ (the latter being Milner's encodings). Our goal was understanding the relation between the behaviours of the terms in the two models, and transferring techniques and results between them.

Technically, our work builds on [START_REF] Durier | Unique solution techniques for processes and functions[END_REF][START_REF] Durier | Eager functions as processes[END_REF], where a detailed analysis of the behaviour of Milner's call-by-value encoding is carried out using proof techniques for π-calculus based on unique-solution of equations. Various results in [START_REF] Durier | Unique solution techniques for processes and functions[END_REF][START_REF] Durier | Eager functions as processes[END_REF] are essential to our own (the observation that Milner's encodings should be interpreted in Iπ rather than the full π-calculus is also from [START_REF] Durier | Unique solution techniques for processes and functions[END_REF][START_REF] Durier | Eager functions as processes[END_REF]).

Bisimulations over OGS terms, and tensor products of configurations, were introduced in [START_REF] Blain | Transition systems over games[END_REF], in order to provide a framework to study compositionality properties of OGS. In our case the compositionality result of OGS is derived from the correspondence with the π-calculus. In [START_REF] Sakayori | A categorical model of an i/o-typed π-calculus[END_REF], a correspondence between an i/o typed asynchronous π-calculus and a computational λ-calculus with channel communication is established, using a common categorical model (a compact closed Freyd category). It would be interesting to see if our concurrent operational game model could be equipped with this categorical semantics.

Normal form (or open) bisimulations [START_REF] Søren | Eager normal form bisimulation[END_REF][START_REF] Støvring | A complete, co-inductive syntactic theory of sequential control and state[END_REF], as game semantics, manipulate open terms, and sometimes make use of environments or stacks of evaluation contexts (see e.g., the recent work [START_REF] Biernacki | A complete normal-form bisimilarity for state[END_REF], where a fully abstract normal-form bisimulation for a λ-calculus with store is obtained).

There are also works that build game models directly for the π-calculus, i.e., [START_REF] Eberhart | An intensionally fully-abstract sheaf model for pi[END_REF][START_REF] Laird | A game semantics of the asynchronous π-calculus[END_REF][START_REF] Laird | Game semantics for higher-order concurrency[END_REF][START_REF] Sakayori | A truly concurrent game model of the asynchronous π-calculus[END_REF] A correspondence between a synchronous π-calculus with session types and concurrent game semantics [START_REF] Winskel | Games and strategies as event structures[END_REF] is given in [START_REF] Castellan | Two sides of the same coin: Session types and game semantics: A synchronous side and an asynchronous side[END_REF], relating games (represented as arenas) to session types, and strategies (defined as coincident event structures) to processes.

We have exploited the full abstraction results between OGS and Iπ to transport a few up-to techniques for bisimulation from Iπ onto OGS. However, in Iπ there are various other such techniques, even a theory of bisimulation enhancements. We would like to see which other techniques could be useful in OGS, possibly transporting the theory of enhancements itself.

If C ctx cannot interact with P , whenever C ctx [P ] -→ Q then the interaction is either internal to C ctx or internal to P . Moreover, the property is invariant for reduction; i.e., if

Q = C ′ [P ′ ]
where C ′ is the derivative of C ctx and P ′ the derivative of P , then also C ′ cannot interact with P ′ .

▶ Definition 38.

[bisimulation up-to context and up-to ( π ≳, ≈ π )] A symmetric relation R ⊆ P × P is a bisimulation up-to context and up-to ( π ≳, ≈ π ) if P R Q implies:

1. if P ℓ -→ P ′′ then that there are a static context C ctx and processes P ′ and Q ′ s.t. 

P ′′ ≈ π C ctx [P ′ ], Q µ =⇒ ≈ π C ctx [Q ′ ] and P ′ R Q ′ ,
≳ C ctx [P ′ ], Q µ =⇒ π ≳ C ctx [Q ′ ] and P ′ R Q ′ .
▶ Lemma 39. Suppose R is a bisimulation up-to context and up-to ( π ≳, ≈ π ) and C ctx is a static context that does not interact with processes P and Q.

1. If C ctx [P ] =⇒ P 1 , then there are a static context C ′ and processes P ′ and Q ′ s.t.

P 1 π ≳ C ′ [P ′ ], C ctx [Q] =⇒ π ≳ C ′ [Q ′ ] and P ′ RQ ′ .

If C ctx [P ]

ℓ -→ P 1 , then there are a static context C ′ and processes P ′ and Q ′ s.t.

P 1 ≈ π C ′ [P ′ ], C ctx [Q] ℓ =⇒ π ≈ π C ′ [Q ′ ] and P ′ RQ ′ . ▶ Theorem 40. If R is a bisimulation up-to context and up-to ( π ≳, ≈ π ), then R ⊆ ≈ π .
Proof. By showing that the relation R containing all pairs (P, Q) such that for some static context C ctx and proceses P ′ , Q ′ where C ctx does not interac with

P ′ , Q ′ it holds that P ≈ π C ctx [P ′ ], Q ≈ π C ctx [Q ′ ] and P ′ R Q ′
is a bisimulation. In a challenge transition P µ -→ P 1 one distinguishes the case when µ is a silent or visible action. In both cases, one exploits Lemma 39. ◀

B Behavioural relations in the ordinary LTS and in the opLTS for Iπ

A behavioural relation on the ordinary LTS 'almost always' implies the corresponding relation on the opLTS. The only exceptions are produced by processes that are related although they exhibit different divergence behaviours (by divergence we mean the possibility of performing an infinite number of τ actions) and at the same time may perform input actions. For instance, using τ ω to indicate a purely divergent process (i.e., a process whose only transition is τ ω τ -→ τ ω ), the processes a. 0 | τ ω and a. 0 are bisimilar (and trace) equivalent in the ordinary LTS, but they are not so in the opLTS, since the divergence in the former process prevents observation of the input at a.

Indeed, a 'bisimilarity respecting divergence' would imply bisimilarity on the opLTS.

Such 'bisimilarity respecting divergence', written ≈ ⇑ π , is defined as ≈ π with the additional

requirement that P ≈ π Q implies P ⇑ iff Q ⇑ ( * )
where the predicate ⇑ holds for an agent R if it has a divergence (an infinite path consisting of only τ actions).

▶ Lemma 41. Relation ≈ ⇑ π implies ≈ oπ .

XX:22 Games, mobile processes, and functions

The same result applies to other relations; e.g., the 'expansion respecting divergence' (defined by adding the clause ( * ) above to those of the expansion relation ≲ π ) on the ordinary LTS implies expansion on the opLTS.

The results of operational correspondence between Iπ and A-OGS rely on Lemmas 47-50.

In the proofs of all these lemmas [START_REF] Durier | Unique solution techniques for processes and functions[END_REF], the uses of expansion (≲ π ) come from application of some simple algebraic laws that respect divergence (i.e., the laws do not add or remove any divergence). Indeed the laws either are valid for strong bisimilarity, or they are laws such as

νa (a(x). P | a(x). Q) π ≳ νa (P | Q)
As a consequence, all occurrences of ≲ π in Lemmas 47-50 can be replaced by the expansion relation defined on the opLTS (≲ oπ ). This in turn implies that the same could be done for all occurrences of ≲ π in Theorems 4-7 (that rely on the lemmas).

A final remark concerns the encoding of λ-terms. First we recall that the equivalence induced on call-by-value λ-terms by their encoding into Iπ coincides with Lassen's eager normal-form (enf) bisimilarity [START_REF] Søren | Eager normal form bisimulation[END_REF][START_REF] Støvring | A complete, co-inductive syntactic theory of sequential control and state[END_REF] (also recalled in Definition 26).

▶ Theorem 42 ( [11]). V[[M ]] ≈ π V[[N ]] iff M and N are enf-bisimilar.
On the encoding of λ-terms, the ordinary bisimilarity ≈ π implies the 'bisimilarity respecting divergence' ≈ ⇑ π . This because, intuitively, a term V[[M ]]⟨p⟩ is divergent iff M is so in the call-by-value λ-calculus. Formally, the result is proved by rephrasing the result about the correspondence between ≈ π and Lassen's trees (Theorem 42) in terms of ≈ ⇑ π in place of ≈ π .

Again, this property boils down to the fact that the uses of ≲ π in Lemmas 47-50 (on which also the characterisation in terms of Lassen's trees is built) respect divergence. Thus, using also Lemma 41, we derive the following result.

▶ Theorem 43. For M, N ∈ Λ, we have:

V[[M ]]⟨p⟩ ≈ π V[[N ]]⟨p⟩ iff V[[M ]]⟨p⟩ ≈ oπ V[[N ]]⟨p⟩.
Below we report an alternative proof of the theorem above, however always relying on the variant of Lemmas 47-50 with ≲ oπ in place of ≲ π .

▶ Lemma 44. If F is a singleton configuration, then V[[F ]
] is of three possible forms:

1. V[[M ]
]⟨p⟩, for some M, p;

q(x). V[[E[x]]

]⟨p⟩, for some E, x, q, p;

3. V * [[V ]]⟨y⟩, for some V, y (that is, either !y(x, q). V[[M ]]⟨q⟩ if V = λx. M , or y ▷ x if V = x).
▶ Lemma 45.

Suppose P = P 1 | !a( b). P 2 , and Q = Q 1 | !a( b). Q 2 , and P ≈ π Q. Then also P 1 ≈ π Q 1 .
Similarly, suppose P = P 1 | a( b). P 2 , and

Q = Q 1 | a( b). Q 2 ,
and P ≈ π Q. Then also

P 1 ≈ π Q 1 . ▶ Theorem 46. If F and G are singleton configurations, then V[[F ]] ≈ π V[[G]] implies V[[F ]] ≈ oπ V[[G]].
Proof. Let R be the relations with all pairs (P, Q) where P and Q are of the form

P = P 1 | . . . | P n Q = Q 1 | . . . | Q n
for some n, where all P i , Q i are encodings of singleton configurations and for all i, we have

P i ≈ π Q i . Moreover:
there is at most one i for which P i , Q i are encodings of active configurations; in any P j (resp. Q j ) that is the encoding of a passive configuration, the name of the initial input does not appear free in any other component P j ′ (resp. Q j ′ ) for j ′ ̸ = j.

A consequence of the two conditions above is that two distinct components P i and P j cannot interact. That is, if P µ -→ P ′ , then there is i such that P i µ -→ P ′ i and P ′ = P ′′ 1 | . . . | P ′′ n where P ′′ j = P j if j ̸ = i and

P ′′ i = P ′ i . And similarly if P µ -→ oπ P ′ .
We show that R is a ≈ oπ -bisimulation up-to ≲ oπ (the bisimulation up-to expansion is sound for bisimilarity in any LTS). In the proof below, Lemmas 49 and 50 actually refer to the versions of the lemmas mentioned above, with ≲ oπ in place of ≲ π .

Suppose P µ -→ oπ P ′ . The action orginates from some P i alone, say

P i µ -→ oπ P ′ i . If µ
is a τ action, then also P i µ -→ P ′ i ; and since

P i ≈ π Q i , we have Q i =⇒ Q ′ i with P ′ i ≈ π Q i .
Moreover, also Q i =⇒ oπ Q ′ i -and the corresponding transition from Q.

Using Lemma 49 we infer that, up-to expansion, the derivative processes P ′ i and Q ′ i can be rewritten into processes that fit the definition of R.

For the case when µ is an output, one reasons similarly, possibly also using Lemma 45

when µ is of the form x(z, q).

Finally, if P µ -→ oπ P ′ and µ is an input, then P is input reactive. From the conditions in the definition of R we infer that Q is input reactive too. Then we can conclude, reasoning as in the previous cases, but this time using Lemma 50 with γ a singleton. ◀

Theorem 43 is then a corollary of Theorem 46.

C Explanation of the A-OGS LTS

This appendix contains some additional explanations on the rules of the A-OGS LTS. To help the reader, we first recall the rules (also presented in the main text as Figure 1):

(P τ ) ⟨M, p, γ, ϕ⟩ τ -→ a ⟨N, p, γ, ϕ⟩ when M → v N (P A) ⟨V, p, γ, ϕ⟩ p(x) -→ a ⟨γ • [x → V ], ϕ ⊎ {x}⟩ (P Q) ⟨E[xV ], p, γ, ϕ⟩ x(y,q) -→ a ⟨γ • [y → V ] • [q → (E, p)], ϕ ⊎ {y, q}⟩ (OA) ⟨γ • [q → (E, p)], ϕ⟩ q(x) -→ a ⟨E[x], p, γ, ϕ ⊎ {x}⟩ (OQ) ⟨γ, ϕ⟩ x(y,p) -→ a ⟨V y, p, γ, ϕ ⊎ {y, p}⟩ when γ(x) = V (IOQ) ⟨[? → M ], ϕ⟩ (p) -→ a ⟨M, p, ε, ϕ ⊎ {p}⟩
The term of an active configuration determines the next transition to perform. First the term needs to be reduced, using the rule (Pτ ). When the term is a value V , a Player Answer (PA) is performed, providing a fresh variable x to Opponent, while V is stored in γ at position x. Freshness is enforced using the disjoint union ⊎. When the term is a callback

E[xV ],
with p the current continuation name, a Player Question (PQ) at x is performed, providing two fresh names y, q to Opponent, while storing V at y and (E, p) at q in γ.

On passive configurations, Opponent has the choice to perform different actions. It can perform an Opponent Answer (OA),by interrogating an evaluation context E stored in γ.

For this, Opponent provides a fresh variable x that is plugged into the hole of E, while the continuation name q associated to E in γ is restored. Opponent may also perform an Opponent Question (OQ), by interrogating a value V stored in γ. For this, Opponent provides a fresh variable y as an argument to V .

Encoding of λ-terms:

O[[xV ]] def = (p) x(z, q). (O * [[V ]]⟨z⟩ | q ▷ p) O[[(λx. M )V ]] def = (p) νy, w (O * [[λx. M ]]⟨y⟩ | O * [[V ]]⟨w⟩ | y(w ′ , r ′ ). (w ′ ▷ w | r ′ ▷ p)) O[[V M ]] def = (p) νy (O * [[V ]]⟨y⟩ | νr (O[[M ]]⟨r⟩ | r(w). y(w ′ , r ′ ). (w ′ ▷ w | r ′ ▷ p))) ( * ) O[[M V ]] def = (p) νq (O[[M ]]⟨q⟩ | q(y). νw (O * [[V ]]⟨w⟩ | y(w ′ , r ′ ). (w ′ ▷ w | r ′ ▷ p))) ( * ) O[[M N ]] def = (p) νq (O[[M ]]⟨q⟩ | q(y). νr (O[[N ]]⟨r⟩ | r(w). y(w ′ , r ′ ). (w ′ ▷ w | r ′ ▷ p))) ( * * ) O[[V ]] def = (p) p(y). O * [[V ]]⟨y⟩
where in the rules marked ( * ), M is not a value, and in the rule marked ( * * ) M and N are not values; and where O * [[V ]] is thus defined : We can now establish the operational correspondence between OGS and Iπ. (In all the results about operational correspondence, we exploit the convention on freshness of bound names of actions and traces produced by OGS configurations and Iπ processes, as by Remark 1.) ▶ Lemma 52 (strong transitions, from A-OGS to Iπ).

O * [[λx. M ]] def = (y) !y(x, q). O[[M ]]⟨q⟩ O * [[x]]
O[[[y → V ] • γ ′ ]] def = O * [[V ]]⟨y⟩ | O[[γ ′ ]] O[[[q → (E, p)] • γ ′ ]] def = q(x). O[[E[x]]]⟨p⟩ | O[[γ ′ ]] O[[ε]]
O[[⟨M, p, γ⟩]] def = ⟨O[[M ]]⟨p⟩ | O[[γ]], ϕ⟩ O[[⟨γ⟩]] def = ⟨O[[γ]], ϕ⟩ O[[⟨M ⟩]] def = ⟨O[[M ]], ϕ⟩
1. If F -→ a F ′ , then O[[F ]] -→ π π ≳ O[[F ′ ]]; 2. If F ℓ -→ a F ′ , then O[[F ]] ℓ -→ π ≈ π O[[F ′ ]].
Proof. The proof goes by a case analysis on the rule used to derive the transition from F , using the definition of the encoding, using Lemmas 49-51. ◀ ▶ Lemma 53 (strong transitions, from Iπ to A-OGS).

1. If O[[F ]] -→ π P then there is F ′ such that F -→ a F ′ and P π ≳ O[[F ′ ]] ; 2. If O[[F ]]
µ -→ π P and µ is an output, then there is ▶ Theorem 54 (strong transitions, from A-OGS to Iπ op ).

F ′ such that F µ -→ a F ′ and P π ≳ O[[F ′ ]] ; 3. If F is passive and O[[F ]] µ -→ π P , then there is F ′ such that F µ -→ a F ′ and P ≈ π O[[F ′ ]].
1. If F -→ a F ′ , then O[[F ]] -→ oπ oπ ≳ O[[F ′ ]]; 2. If F ℓ -→ a F ′ , then O[[F ]] ℓ -→ oπ ≈ oπ O[[F ′ ]].
▶ Theorem 55 (weak transitions, from A-OGS to Iπ op ).

1. If F =⇒ a F ′ , then V[[F ]] =⇒ oπ oπ ≳ V[[F ′ ]]; 2. If F ℓ =⇒ a F ′ , then V[[F ]] ℓ =⇒ oπ ≈ oπ V[[F ′ ]].
The following Theorem 56 is needed in the proof of Theorem 7: it relates strong transitions from Iπ op processes to transitions of A-OGS configurations. Again, in both theorems, the occurrences of ≲ π and ≈ π can be replaced by ≲ oπ and ≈ oπ .

▶ Theorem 56.

If O[[F ]]

τ -→ oπ P then there is

F ′ such that F -→ a F ′ and P π ≳ O[[F ′ ]] ; 2. If O[[F ]] ℓ -→ oπ P then there is F ′ such that F ℓ -→ a F ′ and P ≈ π O[[F ′ ]].
We report now more details on the proof of Corollary 8. First, we recall the assertion:

Suppose F has an irredudant name-support. For any trace s, we have

F s =⇒a iff V[[F ]] s =⇒oπ.
Proof. The result is first established for O, and then extended to V, exploiting the correctness of the optimisations in O (Lemma 47; again, in this lemma, the occurrence of ≲ π can be lifted to ≲ oπ ).

For O, both directions are proved proceeding by induction on the length of a trace ℓ 1 , . . . , ℓ n . In the direction from left to right, we use Theorem 55 [START_REF] Abramsky | Game semantics for programming languages[END_REF]. For the converse direction, we proceed similarly, this time relying on Theorem 7(2) (again, the version with ≈ oπ in place of ≈ π ). ◀ E Auxiliary results for Section 7.1

We report here auxiliary results needed to establish the relationship between Concurrent OGS (C-OGS) and Iπ.

The two lemmas below are needed in the proofs of Theorems 13 and 22. The reasoning in their proofs is similar to that for Lemmas 52 and 53.

▶ Lemma 57 (from C-OGS to Iπ, strong transitions).

1. If F -→ c F ′ , then O[[F ]] -→ π π ≳ O[[F ′ ]]; 2. If F ℓ -→ c F ′ , then O[[F ]] ℓ -→ π ≈ π O[[F ′ ]];
▶ Lemma 58 (from Iπ to C-OGS, strong transitions).

1. If O[[F ]] -→ π P then there is F ′ such that F -→ c F ′ and P π ≳ O[[F ′ ]] ; 2. If O[[F ]] ℓ -→ π P then there is F ′ such that F ℓ -→ c F ′ and P ≈ π O[[F ′ ]].
The results below are used in the proof of Lemma 16.

A 

-→ π P 1 . Then Q µ =⇒ π Q 1 implies P 1 ≏ π Q 1 .
Lemma below is the analogous to Lemma 45 for traces.

▶ Lemma 60. We can now conclude the proof of Lemma 16. We recall the assertion:

Suppose P = P 1 | !a( b). P 2 , and Q = Q 1 | !a( b). Q 2 ,
For any M, N we have:

V[[M ]] ≏π V[[N ]] iff V[[M ]] ≈π V[[N ]].
Proof. We have to prove that trace equivalence implies bisimilarity. We work with the 

≳ V[[M ′ ]]⟨p⟩, for some M ′ . Moreover, we have V[[M ′ ]]⟨p⟩ ≏ c V[[M ]]⟨p⟩ ≏ c V[[N ]
]⟨q⟩, and we are done.

The case when V[[M ]]⟨p⟩ performs an output action p(x) is simple, as usual using Lemma 49;

we also deduce that p = q.

Suppose now V[[M ]]⟨p⟩ performs an output action x(z, p ′ ). Using Lemma 49, we have

V[[M ]]⟨p⟩ x(z,p ′ ) -→ π ≳ O * [[V ]]⟨z⟩ | p ′ (y). O[[E[y]]]⟨p⟩ for some V, y, E. Since V[[M ]]⟨p⟩ ≏ c V[[N ]
]⟨q⟩, and again using Lemma 49, we deduce

V[[N ]]⟨q⟩ =⇒ x(z,p ′ ) -→ π ≳ O * [[W ]]⟨z⟩ | q ′ (y). O[[E ′ [y]]]⟨q⟩ By Lemma 59, O * [[V ]]⟨z⟩ | p ′ (y). O[[E[y]]]⟨p⟩ ≏ c O * [[W ]]⟨z⟩ | q ′ (y). O[[E ′ [y]]]⟨q⟩
Applying Lemma 60 twice, we deduce

O * [[V ]]⟨z⟩ ≏ c O * [[W ]]⟨z⟩ and q ′ (y). O[[E ′ [y]]]⟨q⟩ ≏ c q ′ (y). O[[E ′ [y]]]⟨q⟩
and we are done, up to expansion and context.

The cases when F and G are of a different form are similar, this time using Lemma 50. ◀

F Auxiliary results for Section 7.3

In Definition 21 we have introduced the technique of bisimulation up-to reduction and composition. Sometimes we do not need the 'closure under reduction'; that is, referring to the clauses of Definition 21 we may take F ′ i = F i , i = 1, 2). In this case we say that R is a 'bisimulation up-to composition'.

We now present an additional up-to technique, which is used in when relating OGS bisimilarity with eager normal form bisimilarity. When R is a relation on singleton configuration, a straitforward simplification of 'bisimulation up-to reduction and composition' allows us to play the bisimulation game only on visible actions; the bisimulation clause becomes:

if

F 1 =⇒ c ℓ -→ c F ′ 1 then there is F ′ 2 such that F 2 =⇒ c ℓ -→ c F ′ 2 and F ′ 1 R |⋆ F ′ 2 .
We call this a singleton bisimulation up-to composition; its soundness is a corollary of that for bisimulation up-to reduction and composition, derived from the up-to techniques for Iπ and the mapping from C-OGS onto Iπ.

▶ Proposition 61. If R is a singleton bisimulation up-to composition, then R ⊆ ≈ c . Proof. Take S def = R ∪ {(F 1 , F 2 ) : there are F ′ 1 , F ′ 2 with F ′ 1 R F ′ 2 and F ′ i =⇒ c F i i = 1, 2} Intuitively 
, S is the closure of R under deterministic reductions. Then S is a bisimulation up-to composition. (Note: we exploit the fact that transitions of singleton configurations are deterministic.) ◀ corresponding to rules Pτ , PA, PQ. The case of Pτ is straightforward, since bisimilarity is preserved by internal actions. We only look at PQ, as PA is simpler. Thus we have

F = ⟨[p → E[xV ]]
, ϕ⟩, for some E, x, V and then

F x(y,q) -→ c ⟨[y → V ] • [q → (E, p)], ϕ ⊎ {y, q}⟩ def = F 1 (2) 
We also have

F x(y,q) -→ a F 1 As F ≈ a G, there are E ′ , W such that G =⇒ ⟨[p → E ′ [xW ]], ϕ⟩ x(y,q) -→ a G 1 with G 1 def = ⟨[y → W ]•[q → (E ′ , p)], ϕ⊎{y, q}⟩ and F 1 ≈ a G 1 .
We also have G

x(y,q)

=⇒ c G 1 . From In summary, as an answer to the challenge (2), we have found G 1 such that G

x(y,q)

=⇒ c G 1

and F 1 R |⋆ G 1 ; this closes the proof. ◀

H Tensor Product

In this section, we prove results about the tensor product of compatible configurations for the Concurrent, the Alternating and the Well-Bracketed LTS presented in Section 7.2. We relate the traces generated by the the tensor product of two configurations to the set of interleavings of traces generated by the component configurations themselves. The result is proved by going through the π-calculus.

H.1 C-OGS

Two π-calculus processes P 1 , P 2 cannot interact if there is no name that appears free in both processes and with opposite polarities (that is, in input position in one, and output position in the other). In Iπ, this property is invariant for transitions (the invariance is false in the full π-calculus). Then tag each of these actions with L or R depending on whether in the derivation proof of that action, the last rule applied was parL or parR. Then The proof of Lemma 20 then follows from these two lemmas, Corollary 14, and the fact =⇒ a .

▶
that V[[F 1 ⊗ F 2 ]] ≡ V[[F 1 ]] | V[[F 2 ]].

H.2 A-OGS

To prove Lemma 68, we use the corespondance between A-OGS and =⇒ oπ the outputprioritised LTS introduced at the end of Section 6.1, via the following Lemma.

▶ Lemma 69. Suppose F 1 , F 2 are compatible configurations, and at most one of the two is active. XX:32 Games, mobile processes, and functions For (2): s ∈ inter a (s 1 , s 2 ) implies that each s i is alternating, at most one of them is P -starting, s is alternating, and active iff one of the composing traces is P -starting. This means that we can assume that when an input transition of s is performed the source process is input reactive. ◀

If O[[F

E := EM | [•] evaluation contexts V := λx. M | v values γ := [v → V ] • γ ′ | [q → (E, p)] • γ ′ | [x → M ] • γ ′ | ε
Then Lemma 68 follows from the previous lemma and the operational correspondence for the output-prioritised LTS =⇒ oπ (Corollary 8).

I The call-by-name λ-calculus

The relationship between OGS and π-calculus representations of the λ-terms examined in Sections 6 and 7 is not specific to call-by-value. A similar relationship can be established for call-by-name. We summarise here the main aspects and the main results. We maintain terminologies and notations in the call-by-value sections. Call-by-name langue is given in Figure 8. Its reduction → n is defined by the following two rules:

(λx. M )N → n M {N/x} M → n N E[M ] → n E[N ]
The OGS for call-by-name uses three kinds of names: continuation names (ranged over by p, q), variable names (ranged over by x, y), and value-variables (ranged over by v, w).

Continuation names are used as in call-by-value; variable names acts as pointers to λ-terms and correspond to the variables of the λ-calculus; value names are pointers to values.

The OGS uses the syntactic categories in Figure 8, where L range over extended λ-terms, which are needed to accommodate value names. We write Λ + for the set of extended λ-terms.

In a call-by-name setting, Player Questions are of two possible shapes:

Player Value-Question (PVQ) v(x, p), receiving a variable x and a continuation name p through a value name v;

Figure 4

 4 Figure 4The LTS for the Concurrent OGS

▶ Definition 18 .▶ Definition 19 .

 1819 Two concurrent configurations F, G are said to be compatible if their polarity functions pol F , pol G are compatible -that is, for all a ∈ dom(pol F ) ∩ dom(pol G ), we have pol F (a) = pol G (a). For compatible configurations F = ⟨A, γ, ϕ⟩ and G = ⟨B, δ, ϕ ′ ⟩, the tensor product

▶ Theorem 22 .▶ Remark 23 .

 2223 Definition 21, where the bisimulation game is played only on visible actions at the price of being defined on singleton configurations, is presented in Appendix F and used in Section 7.5 to lift any eager normal form bisimulation to an OGS 'bisimulation up-to'. If R is bisimulation up-to reduction and composition then R ⊆ ≈ c .The theorem is proved by showing that the Iπ image of R is a bisimulation up-to context and up-to ( π ≳, ≈ π ), and appealing to Lemma 15[START_REF] Abramsky | Game semantics for programming languages[END_REF]. See Appendix F for details. Results such as Corollary 17 and Theorem 22 might suggest that the equality between two configurations implies the equality of all their singleton components. That is, if

def=

  (y) y ▷ x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Encoding of environments:

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Encoding of configurations:

Figure 7

 7 Figure 7The optimised encoding

Proof.

  The proof goes by a case analysis on the possible transition from O[[F ]], again exploiting Lemmas 49-51. ◀ We can strengthen both Lemma 52 and Theorem 4 to a correspondence between transitions from A-OGS configurations and from their Iπ translation under the (more restrictive) opLTS. Further, as discussed in Remark 10 and Appendix B, we can use the expansion relation and bisimilarity on the opLTS, written ≲ oπ and ≈ oπ . We write Iπ op to refer to Iπ under the opLTS.

  optimised encoding O. The relation (O[[F ]], O[[G]]) : F, G are singleton with F ≏ c Gis a bisimulation up-to context and up-to ( π ≳, ≈ π ).

F

  and G, as singleton, are of the forms described in Lemma 44. Moreover, to be in the relation ≏ c they must be of the same form, and, using also Lemmas 49 and 50 we deduce that they have deterministic immediate transitions. Suppose F and G are of the form V[[M ]]⟨p⟩ and V[[N ]]⟨q⟩, respectively. XX:28 Games, mobile processes, and functions Consider the case V[[M ]]⟨p⟩ τ -→ P ; then by Lemma 49, P π

F 1 ≈

 1 a G 1 , appealing to (2.a) we deduce that both ⟨[y → V ], ϕ ⊎ {y}⟩ R ⟨[y → W ], ϕ ⊎ {y}⟩ and ⟨[q → (E, p)], ϕ ⊎ {q}⟩ R ⟨[q → (E ′ , p)], ϕ ⊎ {q}⟩ hold. Hence F 1 R |⋆ G 1 .

▶

  s 1 is obtained by collecting the subsequence of s with the parL tag, and similarly for s 2 with parR.◀ Lemma 66.Taking two C-OGS configurations F 1 , F 2 , if their polarity function are compatible then V[[F 1 ]] and V[[F 2 ]] cannot interact.

environmentsFFigure 8

 8 Figure 8 Grammars for call-by-name A-OGS configurations

  and, moreover, C ctx cannot interact with P or Q; 2. if P -→ P ′′ then there are a static context C ctx and processes P ′ and Q ′ s.t. P ′′ π

  Lemma 64. If P 1 , P 2 cannot interact, and P 1 | P 2 Suppose P 1 , P 2 cannot interact. 1. If P 1 | P 2 s =⇒ π P ′ 1 | P ′ 2 , then, for i = 1, 2, there is s i such that P i si =⇒ π P ′ i , and s ∈ inter(s 1 , s 2 ); 2. Conversely, if for i = 1, 2, we have P i si =⇒ π P ′ i , and s ∈ inter(s 1 , s 2 ), then P 1 | P 2 Proof. Straightforward. The interesting case is (1). Consider the sequence of one-step actions (including silent actions) that are performed to obtain the trace P 1 | P 2

	µ -→ π P ′ 1 | P ′ 2 then also P ′ 1 , P ′ 2 cannot
	interact.
	▶ Lemma 65. s =⇒ π
	P ′ 1 | P ′ 2 .

s =⇒ π P ′ 1 | P ′ 2 .

  We can then state the adaptation of Lemma 20 to A-OGS. We write inter a (s 1 , s 2 ) for the subset of inter(s 1 , s 2 ) formed by alternated traces.▶ Lemma 68. Suppose F 1 , F 2 are compatible A-OGS configurations, and at most one of the two is active. Then the set of traces generated by F 1 ⊗ F 2 is equal to the set of interleavings inter a (s 1 , s 2 ), with F 1

▶ Definition 67. Taking F 1 , F 2 two A-OGS configurations, with γ i , ϕ i their respective environment and set of names, F 1 ⊗ F 2 is defined as:

⟨M, p, γ 1 • γ 2 , ϕ 1 ∪ ϕ 2 ⟩ when one of F 1 , F 2 is

active, with M, p its toplevel term and continuation name;

⟨γ 1 • γ 2 , ϕ 1 ∪ ϕ 2 ⟩ when F 1 , F

2 are passive; s1 =⇒ a and F 2 s2

  =⇒ oπ P 1 | P 2 , then, for i = 1, 2, there are traces s i such that O[[F i ]]si =⇒ oπ P i , and s ∈ inter a (s 1 , s 2 ).

1 ]] | O[[F 2 ]] s 2. Conversely, if for i = 1, 2, we have O[[F i ]] si =⇒ oπ P i , s ∈ inter a (s 1 , s 2 ), then also O[[F 1 ]] | O[[F 2 ]] s =⇒ oπ P 1 | P 2 .

A Additional material on Iπ

A.1 LTSs

In Figures 5 and6 we report, respectively:

the standard LTS of Iπ; a compositional definition of the output-prioritised LTS.

The symbol ≡ α is used to indicate α-equivalence between Iπ agents. If µ = a( b) then µ is a( b), and conversely. Rule abs is used to formalise, by means of an action, the ground instantiation of the parameters of an abstraction. In both tables we omit the symmetric of parL, called parR. 

A compositional presentation of the output-prioritised LTS for Iπ

A.2 The expansion relation and "up-to" techniques

For the proof of the results in this paper, we appeal to the expansion relation and to a few "up-to" techniques, that are discussed in Section 3.1 and in the following two subsections.

The expansion relation

The expansion relation, ≲ π [START_REF] Sangiorgi | The π-calculus: a Theory of Mobile Processes[END_REF], is an asymmetric variant of ≈ π which allows us to count the number of τ -actions performed by the processes. Thus, P ≲ π Q holds if P ≈ π Q but also Q has at least as many τ -moves as P . We recall that P µ -→ P ′ holds if P µ -→ P ′ or (µ = τ and P = P ′ ).

▶ Definition 31 (expansion).

A relation R ⊆ P × P is an expansion if P R Q implies:

We say that Q expands P , written P ≲ π Q, if P RQ, for some expansion R.

Relation ≲ π is a precongruence, and is strictly included in ≈ π .

Bisimulation up-to

Bisimulations up-to contexts 

The soundness of the above technique relies on the following lemma. 

▶ Theorem 36. If R is a bisimulation up-to context and up-to π ≳, then R ⊆≈ π .

Proof. By showing that the relation S containing all pairs (P, Q) such that for some static context C ctx and proceses

is a bisimulation. See [START_REF] Sangiorgi | Locality and non-interleaving semantics in calculi for mobile processes[END_REF] for details (adapting the proof to Iπ is straightforward). ◀

We now consider a refinement of the above proof technique, namely bisimulation up-to context and up-to ( π ≳, ≈ π ).

▶ Definition 37. A static context C ctx cannot interact with a process P if there is no name that appears free both in the context and in the process and with opposite polarities (that is, either in input position in the context and output position in the process, or the converse).

D Auxiliary results for Section 6

We present results that are needed to establish the operational correspondence between OGS and Iπ, studied in Section 6.

We begin discussing an optimisation O of the encoding of call-by-value λ-calculus.

Following Durier et al.'s [START_REF] Durier | Eager functions as processes[END_REF], we sometimes use O to simplify proofs. We report the full definition of O; for convenience, we also list the definition of O on OGS environments and configurations, thought is the same as that for the initial encoding V -just replacing V with O in Figure 3).

The encoding O is obtained from the initial one V by inlining the encoding and performing a few (deterministic) reductions, at the price of a more complex definition. Precisely, in the encoding of application some of the initial communications are removed, including those with which a term signals to have become a value. To achieve this, the encoding of an application goes by a case analysis on the occurrences of values in the subterms.

We begin with a few results from [START_REF] Durier | Unique solution techniques for processes and functions[END_REF][START_REF] Durier | Eager functions as processes[END_REF] that are needed to reason about the optimised encoding O. The first is about the correctness of the otimisation, established by algebraic reasoning [START_REF] Durier | Unique solution techniques for processes and functions[END_REF][START_REF] Durier | Eager functions as processes[END_REF]; its extension to encodings of configurations is straightforward.

▶ Lemma 47 (correctness of the optimisation). For all M , it holds that

Similarly, for all A-OGS configurations

▶ Lemma 48. We have:

The proof [START_REF] Durier | Unique solution techniques for processes and functions[END_REF][START_REF] Durier | Eager functions as processes[END_REF] goes by induction on the evaluation context E.

The following lemma [START_REF] Durier | Unique solution techniques for processes and functions[END_REF][START_REF] Durier | Eager functions as processes[END_REF] 

O[[M ]]⟨p⟩

x(z,q)

-→ P and M is of the form E[xV ], for some E, x, V , with

We now move to reasoning about the behaviour of the encoding of configurations. Two key lemmas are the following ones; they are derived from Lemmas 48 and 49.

▶ Lemma 50. If O[[γ]]

µ -→ P and µ is an input action, then we have three possibilities:

1. µ is an input y(x, q) and γ = [y → λx. M ] • γ ′ , and

2. µ is an input y(x, q) and γ = [y → z] • γ ′ , and

3. µ is an input q(x) and γ = [q → (E, p)] • γ ′ , and

In Lemma 51, the occurrence of ≈ π cannot be replaced by π ≳; for instance, if V = λx. M then, using Lemma 49, we can infer that the derivative process is in the relation π ≳ with

We now report more details on the proof of Theorem 22. We recall its assertion:

(Theorem 22) If R is bisimulation up-to reduction and composition then R ⊆ ≈ c .

We first need the following Lemma 62, which is a consequence of the compositionality of the mapping from C-OGS to Iπ.

We are now ready to show the proof of Theorem 22.

Proof. We prove the result via Iπ, exploiting Lemma 15 [START_REF] Abramsky | Game semantics for programming languages[END_REF]. Here again, it is convenient to use the optimised encoding O.

is the relation on Iπ processes obtained by mapping each pair in R in the expected manner: As a consequence of the compositionality of the mapping from C-OGS to Iπ, for a relation

Now, let R be the relation in the hypothesis of the theorem. We prove the theorem by showing that O[[R]] is a bisimulation up-to context and up-to ( π ≳, ≈ π ) in Iπ, and then appealing to Theorem 40.

Suppose

] (this is derived from Lemma 57). Since R is bisimulation up-to reduction and composition and

Using Theorem 13(1) from

]]; and by Theorem 13(1), and Lemmas 47 and 57, from We now prove Lemma 24.

Proof. In this proof, we write F ⊆ G when, as partial maps, G is an extension of F .

Let R be the relation on configurations with F R G if: We show that R is a bisimulation up-to composition. We distinguish the cases in which 

in C-OGS. The rule can be OA or OQ. We assume it is OQ; the case for OA is similar. We thus have, for some p, V, x, y

This is sufficient to match (1), as 

-→ a ⟨M, p, ε, ϕ ⊎ {p}⟩ Opponent Questions are of two different shapes too:

Opponent Value-Question (OVQ) v(x, p), sending a variable x and a continuation name p through a value name v;

Opponent Term-Question (OTQ) x(p) sending a continuation name p through a variable

x.

The encodings of call-by-name λ-calculus, OGS environments and configurations, and associated syntactic categories, are reported in Figure 10. The Iπ representation uses the same 3 types of names as the OGS representation.

The results of operational correspondence between OGS and Iπ under the opLTS are the same as for call-by-value. We only report the analogous of Corollary 11.

▶ Corollary 70. For any F, F ′ we have:

The modification to obtain the concurrent version of OGS (C-OGS) for call-by-name are similar to those for call-by-value in Section 7.

We report the results of operational correspondence and full abstraction.

▶ Lemma 71 (C-OGS and Iπ, weak transitions). Suppose F ∈ C-OGS.

As for call-by-value, so for call-by-name the 'up-to composition' technique for bisimulation (Definition 21) can be imported from the π-calculus, and then used to establish that the equivalence induced on λ-terms by the sequential and concurrent versions of OGS coincide.

Specifically, the technique is needed to prove the call-by-name analogous of Lemma 24 ▶ Corollary 72. For any λ-terms M, N , the following statement are the same:

The equivalence induced by the Iπ (or π-calculus) encoding of the call-by-name λ-calculus is known to coincide with that of the Lévy-Longo Trees [START_REF] Sangiorgi | Lazy functions and mobile processes[END_REF]. In the light of Corollary 72, the result can thus be transported to OGS, both in its Alternating and its Concurrent variants, and both for traces and for bisimilarity.

XX:34 Games, mobile processes, and functions

Encoding of call-by-name Λ into Iπ processes: Connections between game semantics and tree representation of λ-terms have been previously explored, e.g., in [START_REF] Ong | Games characterizing levy-longo trees[END_REF], where a game model of untyped call-by-name λ-calculus is shown to correspond to Levy-Longo trees. The connections that we have derived above, however, go beyond Lévy-Longo Trees: in particular, the bisimilaritise that have been established between the observables (i.e., the dynamics) in the two models set a tight relationship between them while allowing one to transfer results and techniques along the lines of what we have shown for call-by-value.