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Abstract: Photosynthesis has to work efficiently in contrasting environments such as in shade and 12 
full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport 13 
chain cause production of reactive oxygen species, which can potentially damage the photosynthetic 14 
apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many 15 
levels, including light absorption in antenna, electron transfer reactions in the reaction centres, and 16 
consumption of ATP and NADPH in different metabolic pathways.  Many regulatory mechanisms 17 
involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, 18 
a certain number of chloroplast proteins exist in different oligomerization states, which temporally 19 
associate to the thylakoid membrane and modulate their activity. This review starts by giving a 20 
short overview of the lipid composition of the chloroplast membranes, followed by describing su- 21 
percomplex formation in cyclic electron flow. Protein movements involved in the various mecha- 22 
nisms of non-photochemical quenching, including thermal dissipation, state transitions and the 23 
photosystem II damage-repair cycle are detailed. We highlight the importance of changes in the 24 
oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that 25 
may be responsible for these changes. Photosynthesis-related protein movements and organisation 26 
states of certain proteins all play a role in acclimation of photosynthetic organism to the environ- 27 
ment.. 28 

Keywords: photosynthesis; regulation; abiotic stress; membrane association; thylakoid membrane 29 
 30 

Introduction 31 

The  thylakoid membrane in chloroplasts is a complex three-dimensional structure 32 
that is morphologically highly dynamic, as seen by rearrangements of protein complexes 33 
under low light and high light conditions. The thylakoid membrane harbours the photo- 34 
synthetic electron transport chain. It is known that several processes that regulate the ef- 35 
ficiency of light harvesting and electron transport are linked to membrane dynamics. The 36 
electron transport chain is made out of the main protein complexes photosystem II (PSII), 37 
the site of water oxidation and oxygen release, the cytochrome b6f complex (Cyt b6f) and 38 
photosystem I (PSI), where ferredoxin is reduced. Reduced ferredoxin reduces NADP+ to 39 
NADPH, as catalyzed by the Ferredoxin NADP+ oxidoreductase (FNR). Both photosys- 40 
tems contain chlorophylls and carotenoids in their reaction centres, in the inner antenna 41 
and in the light harvesting complexes (LHC). During photosynthetic electron transport a 42 
proton gradient (ΔpH) is established that is, together with an electrochemical gradient 43 
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(ΔΨ), the driving force for the synthesis of ATP by the CF0CF1-ATP synthase. Regulation 44 
of light absorption efficiency of the pigment containing antenna systems and of photosyn- 45 
thetic electron transport are essential to allow the plant to acclimate rapidly to changes in 46 
light intensities, which can occur for example in sun flecks, when shade leaves or whole 47 
plants are suddenly exposed to full sun light. Regulation of photosynthetic electron 48 
transport is also needed to fulfil the energetic demands of the chloroplast/cell/organism 49 
by optimizing the ATP/NADPH ratio. This can be achieved by changing the activity of 50 
cyclic electron transport around PSI, a process requiring formation and dissolution of su- 51 
percomplexes. Well-characterized processes involved in the distribution of the LHCs be- 52 
tween the photosystems, the so-called state transitions, depend on movements of large 53 
protein-pigment complexes within the membrane. Another well-known process that in- 54 
volves protein movements within the thylakoid membrane is the PSII damage-repair cy- 55 
cle. Furthermore, soluble proteins attach reversibly to the thylakoid, enabling their in- 56 
volvement in metabolic reactions and regulatory mechanisms (Figure 1). 57 

 58 

Figure 1. Dynamic changes of the association of proteins with the thylakoid membrane. In the 59 
stroma, proteins can be present in soluble forms or as peripheral membrane proteins, and their 60 
oligomerization state can change upon membrane association (1). Transmembrane proteins can 61 
move laterally within the membrane and associated with different partner proteins (2). Soluble 62 
proteins can attach to protein complexes in the membrane (3). In the lumen, soluble proteins can 63 
attach to the membrane as a function of pH (4). 64 

In this review, we first shortly describe the specific characteristics of the thylakoid 65 
membrane. Then we focus on cyclic electron flow, alterations of the efficiency of light ab- 66 
sorption and dissipation of excess energy as heat (non-photochemical quenching, NPQ), 67 
followed by a chapter on state transitions and the PSII damage – repair cycle. We will 68 
present other less well-known processes that are involved in the acclimation response of 69 
the photosynthetic apparatus and which depend on dynamic interactions with the 70 
thylakoid membrane (Figure 2). We focus mainly on processes taking place in eukaryotic 71 
photosynthetic organisms. 72 
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 73 

Figure 2. Dynamic changes of protein-membrane association for regulating photosynthetic elec- 74 
tron transport. Photosynthetic linear electron flow produces NADPH and ATP for CO2 assimila- 75 
tion in the grana margin. In the grana, heat dissipation at the light-harvesting complex (LHCII), 76 
the so-called qE quenching, occurs, and the damaged PSII migrates and is digested; In the grana 77 
margin STN7 and NSI stimulate the state transition. PTOX changes its localization in response to 78 
stroma pH to maintain the PQ redox poise. A part of PSI forms supercomplexes with PGRL1, 79 
FNR, and NDH in the stroma lamellae.  80 

Membrane composition  81 

Chloroplast membranes have a very unique lipid composition with the galactolipids 82 
monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and the gly- 83 
colipid sulfoquinovosyl-diacylglycerol (SQDG) [1-4]. The external and the internal enve- 84 
lope membranes and the thylakoids have different lipid compositions. The outer envelope 85 
membrane is rather permeable, especially for ions, and is important for the connection 86 
between the chloroplast and the endoplasmic reticulum (ER), where protein translation 87 
principally takes place. It is composed of about 25% DGDG and 30% phosphatidylcholine, 88 
the main lipid of the ER membrane. On the contrary, the inner envelope membrane is 89 
particularly impermeable and serves as a barrier. The thylakoid membranes are mainly 90 
made of MGDG and DGDG (MGDG about 50%, DGDG about 30% of total lipid content). 91 
The lipids SQDG and phosphatidylglycerol (PG), the only major phospholipid in 92 
thylakoids, are negatively charged at neutral pH. Each represents about 10% of the total 93 
lipid content. The physicochemical properties of the head groups of the individual lipids 94 
are important for their behaviour. MGDG and DGDG are neutral lipids with uncharged 95 
polar head groups. MGDG is not able to form a lipid bilayer in water because of its galac- 96 
tose head group [2,3]. In the thylakoid membranes, however, it forms a lipid bilayer 97 
thanks to the presence of a very high protein concentration. Compared with MGDG 98 
DGDG has a bulkier headgroup with a cylindrical shape thanks to the presence of a sec- 99 
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ond galactose residue allowing it to form a lamellar lipid bilayer. The glycolipids consti- 100 
tute the lipid matrix of the thylakoid membrane. As pointed out by Demé et al. [5] and 101 
Kobayashi et al. [6], the ratio of MGDG to DGDG is important for the phase behaviour of 102 
the lipid bilayer, and thereby for the structure and stability of the thylakoid membrane. 103 
The negatively charged lipids SQDG and PG may play a role in the interaction with pe- 104 
ripheral membrane proteins.  105 

 Thylakoid membranes form distinct structures: the so-called grana stacks and stro- 106 
mal lamellae that differ in their protein composition. The outer layer of the grana stacks 107 
and the connection to the stroma lamellae is called the margin. Grana cores are rich in PSII 108 
and LHCII proteins. DGDG contributes to the stacking of the thylakoids in the grana [5] 109 
while PG is important for the trimerization as well as the stabilization of LHC complexes 110 
[7]. Stroma lamellae and margins are mainly composed of PSI, LHCI as well as around 111 
half of the Cyt b6f complex. Margins contain more lipids per protein content than grana 112 
stacks and stroma lamellae [8]. According to Duchêne et al. [9], the distribution of the 113 
individual glycerolipids is identical in grana stacks, margins and stroma lamellae. Lipids 114 
also have an important role as integrated components of the photosynthetic reaction cen- 115 
tres, and are required for the optimal functioning of the photosystems. In cyanobacteria, 116 
absence of PG inhibits electron transfer between QA and QB at the acceptor side of PSII 117 
[10]. The crystal structure of PSII from cyanobacteria revealed the presence of four mole- 118 
cules of SQDG [11]. In the absence of SQDG the electron flow from water to tyrosine Z is 119 
inhibited, possibly due to conformational changes in PSII [12]. According to Schaller et al. 120 
[13] SQDG influences the assembly of PSII core subunits and the antenna complexes. Sev- 121 
eral lipids were found in the structure of PSI from pea, with one being important for the 122 
connection between the Lhc subunit Lhca1 and the PSI subunit PsaF [14].  123 

Dynamic Changes of Supercomplex Formation Required for Cyclic Electron Flow 124 

Depending on the physiological conditions, a higher ATP/NADPH demand is re- 125 
quired to fulfil the metabolic demands. Cyclic electron flow allows the generation of a 126 
proton gradient without the production of NADPH and serves to provide extra ATP. Al- 127 
ternatively, reduction of O2 at PSI, the so-called Mehler reaction or pseudocyclic flow, also 128 
leads to an increase in the ΔpH and ATP synthesis. By increasing the ΔpH, cyclic electron 129 
flow contributes to the qE component of NPQ and to the regulation of linear electron flow 130 
at the level of the Cyt b6f complex in so-called photosynthetic control. In addition, it may 131 
help to increase the volume of the lumen by pumping extra H+ into the lumen in the light. 132 
Swelling of the lumen facilitates diffusion of plastocyanin and may also allow the relocal- 133 
ization of luminal proteins like for example Deg proteases that are involved in the degra- 134 
dation of the D1 protein of PSII [15].   135 

There are two pathways of cyclic electron flow, the first is insensitive to the inhibitor 136 
Antimycin A and involving the NDH complex, while the second is Antimycin-A-sensitive 137 
and involves the Cyt b6f complex as well as the proton gradient regulation complex 138 
PGR5/PGRL1. A protein supercomplex composed of PSI with LHCI, LHCII, Cyt b6f com- 139 
plex, FNR, and the integral membrane protein PGRL1 has been isolated from C. reinhardtii 140 
and suggested to be a prerequisite for cyclic flow [16]. FNR may change its interaction 141 
partners and sub-chloroplast location as part of a mechanism to decrease CEF and increase 142 
LEF during light adaptation. FNR has been discussed for a long time to be either present 143 
in a soluble form in the stroma, or tethered to the thylakoid membrane by interaction with 144 
partner proteins. Recently it has been demonstrated that FNR is always associated with 145 
the membrane [17]. This view was questioned by Takahashi et al. [18] who found the same 146 
protein composition of supercomplexes in C. reinhardtii wild type, and in a mutant inca- 147 
pable of performing state transitions. According to their data, there is no correlation be- 148 
tween state transitions and cyclic electron flow, but rather between the latter and chloro- 149 
plast redox state (anoxic versus oxic conditions). Furthermore, they reported the presence 150 
of PGRL1 together with FNR in high molecular weight fractions that did not contain PSI 151 
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or Cyt b6f complex. In this context, it is interesting to mention that thioredoxin m forms a 152 
complex with PGRL1 [19,20], which itself contains redox-active cysteine residues [21]. The 153 
formation of a complex between reduced thioredoxin m and PGRL1 may inhibit cyclic 154 
electron flow by preventing the supercomplex formation required for cyclic flow. The 155 
work by Takahasi et al [18], and the reports on the interaction between thioredoxin m and 156 
PGRL1 [19,20], indicate that formation of supercomplexes in the stroma lamellae depends 157 
on the redox state of the plastoquinone pool, and on the general redox state of the chloro- 158 
plast. 159 

The example of cyclic electron flow demonstrated that the protein localization is very 160 
dynamic, that it is likely under the control of thethe redox state of the chloroplast and that 161 
protein movements within the thylakoid membrane are needed for acclimation responses. 162 

  163 
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Protein Movements Involved in Non-Photochemical Quenching 164 

One of the strategies to protect the photosynthetic apparatus from photo-oxidative 165 
damage is to dissipate excess light energy as heat at PSII, the so-called NPQ. NPQ is com- 166 
posed of several components that can be distinguished by their relaxation time in the 167 
darkness: qE (seconds to minutes), state transitions, qT, (tens of minutes) , and photoinhi- 168 
bition, qI (hours).. A long persisting quenching related to photoinhibition is called qH. 169 
Here, we focus on the recent research progress on dynamic changes in protein-membrane 170 
association in NPQ, especially qE, qT (see also the recent review by Johnson and Wientjes 171 
[18]) and we will finish by introducing a newly found slowly relaxing quenching: qH. 172 

qE quenching 173 

qE quenching is the largest component of NPQ in short-term regulations in eukary- 174 
otic phototrophs. It occurs within the PSII antenna, the so-called LHCII. LHCII is the most 175 
abundant integral membrane protein in chloroplasts and binds 13-15 Chl a and Chl b mol- 176 
ecules [23], 3-4 carotenoids [24] and one phospholipid [25] per monomer. Lumen acidifi- 177 
cation in the light changes the macro structure of thylakoid membranes affecting the as- 178 
sociations between proteins and thylakoid membranes. Different models for the molecu- 179 
lar mechanisms of qE in plants and algae have been proposed in the last decades, and they 180 
are still a matter of debate. In the following we describe qE related to (a) the pH-dependent 181 
de-epoxidation of violaxanthin to the quencher zeaxanthin, (b) the protein PsbS and (c) to 182 
aggregation of LHC proteins.  183 

(a) One proposed qE mechanism depends on the formation of zeaxanthin as a 184 
quencher of excited states of chlorophyll. The xanthophyll cycle enzyme violaxanthin de- 185 
epoxidase (VDE), converting violaxanthin to zeaxanthin with the help of ascorbate, is an 186 
example of dynamic association of a protein to the thylakoid membranes. It is associated 187 
with the membrane depending on the pH in the lumen. VDE is localized at the luminal 188 
side of the thylakoid membrane and is attached to the membrane domain containing 189 
LHCII and being rich in MGDG when the luminal pH is approximately at 6.5 or less 190 
[26,27]. The structure of VDE at pH 7 is very different from its structure at pH 5 [28]. VDE 191 
is a monomer at pH 7 and as a dimer at pH 5. At pH 5, a hydrophobic patch, likely to be 192 
involved in the membrane attachment of VDE, becomes surface exposed [28].   193 

(b) The qE-related pH-sensing protein PsbS affects the extent of qE. The protein PsbS 194 
does not contain pigments itself but it is involved in zeaxanthin-dependent quenching 195 
[29,30]. PsbS has been shown to be associated to PSII, and its protonation state is essential 196 
for activating qE. Fan et al. [29] resolved the structure of PsbS, and they discovered struc- 197 
tural differences between the PsbS dimers at pH 7.3 and pH 5.0. According to their data a 198 
conformational change at the luminal site may activate PsbS interaction with LHCII and 199 
induce thereby the quenching event. Kereiche and coworkers [31] proposed that PsbS con- 200 
trols the macro-organisation of the grana membrane. PsbS was not exclusively found in 201 
LHCII-PSII supercomplexes, but was also found in PSI fractions [32]. The PsbS content 202 
seems to affect both, the grana stacks and the organisation of photosynthetic complexes 203 
in the stroma lamellae, as demonstrated in freeze-fracture electron micrographs from iso- 204 
lated chloroplasts from wild type, npq4 (mutant lacking PsbS) and L17 (mutant over-ex- 205 
pressing PsbS) [33]. Haniewicz et al. [34] have shown that PsbS is mainly associated with 206 
monomeric PSII. This observation suggests that PsbS may play, in addition to its involve- 207 
ment in qE, a role in the PSII repair cycle where dimeric PSII dissociates into monomeric 208 
PSII (see below). 209 

(c) According to other models qE is induced by aggregation of LHCII [35]. Quenching 210 
by aggregation can potentially occur in any form of LHCII but more likely it takes place 211 
within the major LHCII. LHCII aggregation is caused by the protonation of the antenna 212 
at the luminal side. Zeaxanthin is not necessary for the quenching, but may be important 213 
to couple LHCII aggregation with a change in ΔpH.. The thylakoid membrane becomes 214 
thinner and hydrophobic in response to decreases in the lumen pH and the increase in 215 
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NPQ [36]. Such changes may increase the probability that part of the LHCII detaches from 216 
PSII and aggregates. The lipid DGDG plays an important role in the macrostructure of the 217 
thylakoid membrane since it contributes to grana stacking [5], and it could favour the 218 
contact between LHCII trimers for excess energy dissipation [7]. Ostroumov et al. [37] 219 
have recently observed a far-red emitting state in isolated aggregated LHCII and in LHCII 220 
crystals. This special state could explain how energy is dissipated. According to these au- 221 
thors, qE is derived from a charge transfer reaction involving a chlorophyll pair caused 222 
by a conformational change in aggregated LHCII [37]. In another model, qE is based on 223 
charge transfer between a chlorophyll-carotenoid pair. This model needs carotenoids such 224 
as zeaxanthin or lutein as the essential component for qE [38,39], and may require a closer 225 
association of PsbS with qE compared to the other models.  In summary, the exact quench- 226 
ing mechanism is still controversial, although it is broadly accepted that qE occurs at the 227 
level of LHCII and involves carotenoids and PsbS. 228 

 229 
qT: State transition 230 

State transition is defined as the migration of LHC from PSII (state 1) to PSI (state 2), 231 
increasing PSI antenna size and lowering excitation pressure in PSII (for reviews see [40- 232 
42]). The mechanism of state transition in plants involves phosphorylation of LHCII and 233 
detachment of phosphorylated LHCII from PSII. In physiological conditions, it takes place 234 
within minutes after a stress, and particularly during fluctuating light [43] or moderate 235 
heat stress [44]. State transitions can also be activated artificially by using specific wave- 236 
lengths that preferentially excite PSII or PSI to change the redox state of the PQ pool (see 237 
below) [55]. In higher plants, state transition mobilizes approximately 15-20% of the 238 
LHCs.  239 

The composition in Lhcb proteins of LHCII is complex. Arabidopsis has nofewer than 240 
18 Lhcb proteins [46]; here only the role of Lhcb1 to Lhcb6 is described. Lhcb 4 to 6 are 241 
known to be monomeric and interact directly with the PSII core whereas Lhcb 1 to 3 can 242 
form different combination of trimers interacting with monomeric Lhcbs, and these com- 243 
plexes are able to migrate differently during state transition. Three types of trimers are 244 
currently defined depending on their interaction with PSII: S-LHCs (strongly), M-LHCs 245 
(moderately) and L-LHCs (loosely bound). The latter are known to migrate more easily 246 
due to their composition of Lhcb1 and 2 [46]. They are defined as antennas shared between 247 
PSI and PSII. It has been shown that L-LHCs constitute almost 50% of the total trimers in 248 
plants cultivated in non-saturating light [40]. On the contrary, due to the presence of 249 
Lhcb3, M-LHCs are less mobile but their absence affects LHCII reorganization during 250 
state transition [48]. S-LHCs seem to be tightly associated with PSII facilitating light har- 251 
vesting at the periphery of PSII and ensuring efficient energy capture and transfer to the 252 
reaction centre [49]. 253 

 The specific thylakoid-bound transmembrane kinase responsible for state tran- 254 
sitions, Stt7, was first discovered in C. reinhardtii [50]. Two years later, STATE TRANSI- 255 
TION 7 (STN7) serine/threonine kinase, the homologue of Stt7 in A. thaliana, was identi- 256 
fied [51]. Activation of the kinase involves both the reduction state of the plastoquinone 257 
pool and the Cyt b6f complex. When PSII is preferentially excited, over-reduction of the 258 
plastoquinone pool leads to the docking of a plastoquinol molecule to the Qo site of the 259 
Cyt b6f complex. This activates the transmembrane kinase that phosphorylates LHCII [52- 260 
54]. Mutant analysis revealed that the activation of Stt7 depends on its interaction with 261 
the stromal side of Cyt b6f complex, whereas its release for LHCII phosphorylation is con- 262 
trolled by plastoquinol occupancy and turnover at the Qo site [53]. In addition, redox reg- 263 
ulation via the reduction of a disulfide bridge plays a role in controlling the activity the 264 
Stt7/STN7 kinases [55]. Recently, Wu and coworkers [56] showed that STN7 interacts with 265 
the Lumen Thiol Oxidoreductase 1 (LTO1), a transmembrane protein with a luminal thi- 266 
oredoxin domain. This interaction likely helps to keep STN7 in its oxidized active state 267 
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required for LHCs phosphorylation. These data demonstrate a link between state transi- 268 
tions and the redox state of the chloroplast and especially that of the lumen.  For a long 269 
time, phosphorylation of LHCIIs was the only known factor required for migration of 270 
LHCII. The STATE TRANSITION 8 kinase (STN8), an STN7 isoform, had been shown to 271 
be mainly involved in the phosphorylation of PSII core subunits such as D1, D2 and CP43 272 
[57–59]. However, recent investigations have demonstrated that STN8 is also secondarily 273 
involved in LHCII phosphorylation at the same phosphorylated sites as the STN7 kinase, 274 
with a notable preference for Lhcb1 compared to Lhcb2 [60]. This is consistent with, STN7 275 
and phosphorylated Lhcb2 being more abundant in stroma lamellae, whereas STN8 and 276 
phosphorylated Lhcb1 locate preferentially in the grana core [61]. Recently, Koskela and 277 
coworkers [62,63] have discovered that phosphorylation of LHCII is not sufficient to in- 278 
duce its migration alone. Plants lacking the acetyltransferase NUCLEAR SHUTTLE IN- 279 
TERACTING (NSI) are locked in state 1, despite phosphorylation of LHCII. NSI acetylates 280 
lysins of several proteins including subunits of PSI, PSII and LHCII. Taking together, these 281 
findings demonstrate that post-translational modifications that increase the negative 282 
charges of the LHC proteins are key elements for state transition. The return to state 1 is 283 
initiated by LHCII dephosphorylation mediated by THYLAKOID-ASSOCIATED PHOS- 284 
PHATASE 38/PROTEIN PHOSPHATASE 1 (TAP38/PPH1) phosphatase [64,65]. 285 

 286 
How exactly LHCIIs migrate from PSII to PSI along the thylakoid membrane is still 287 

unknown. Several hypotheses can be found in the literature: 1) LHCIIs are transferred 288 
from grana stacks to stroma lamellae or 2) PSI approaches grana margins where, after a 289 
reorganization of the margin domain, an association of the PSI-LHCI-LHCII supercom- 290 
plex takes place [66,67]. Phosphorylation of Lhcb1 could increase its mobility and the re- 291 
moval of peripheral antenna from PSII complexes. Furthermore, it could permit unstack- 292 
ing of grana [68-70]. However, other experiments revealed that phosphorylated Lhcb1 is 293 
not included in LHCII trimer binding to PSI [71,72]. Further characterization of a protein 294 
discovered 15 years ago gives new insights. CURVATURE THYLAKOID1 (CURT1) B pro- 295 
tein, also known as TMP14, was identified by the same phosphoproteomic approaches as 296 
STN7. Initial experiments have shown that CURT1B is only localized in PSI fractions, and 297 
that it interacts with PsaL, H and O subunits [73]. Furthermore, CURT1B is present in 298 
specific regions of grana margins, i.e., the curvature of the grana edges where it is respon- 299 
sible for changes in grana dimensions according to light quality and quantity. CURT1B 300 
phosphorylation correlates with LHCII phosphorylation and PSI-LHCII interaction and, 301 
according to Trotta and coworkers [74], is key to modulation of thylakoid lateral hetero- 302 
geneity and/or the decrease in grana diameter. 303 

The interaction between PSI and LHCII was shown to be as strong as the binding of 304 
LHCII to PSII [75]. Structural analysis has highlighted that PSI-LHCI-LHCII complex is 305 
composed of a unique LHCII trimer, which binds to the PSI core on the opposite side of 306 
LHCI. However, it has also been reported that supercomplexes with a second LHCII tri- 307 
mer can bind to PSI to another site involving LHCI [76–79]. Pan and coworkers [80] re- 308 
cently published a structure showing interaction of PSI-LHCII of maize, involving the PSI 309 
subunits PsaO, L, H and potentially PsaK. According to this structure, PsaO, H and par- 310 
ticularly PsaL interact directly with phosphorylated Lhcb2. PsaO seems to be involved in 311 
light energy transfer from Lhcb2 to PSI core, while PsaK could function similar for Lhcb1. 312 

 313 
qI: Photoinhibition 314 

Photoinhibition is characterized by a loss of maximum chlorophyll fluorescence and 315 
a loss of water-splitting activity in PSII. Photoinhibition is a process that occurs when the 316 
photo-oxidative damage to PSII is greater than its repair [81]. This phenomenon takes 317 
place when plants are facing stressful conditions, such as higher light intensities than re- 318 
quired for photosynthesis. In the most drastic cases, it is characterized by a sharp decrease 319 
in the photosynthetic capacity of the plant due to loss of linear electron transport. The D1 320 
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protein of PSII is considered in the literature to be the principal protein damaged under 321 
photoinhibitory conditions [82–84]. It is known for having a very rapid turnover in the 322 
order of 20 min [85,86], thanks to a very efficient repair system. Under photoinhibitiory 323 
conditions, the acceptor side of the PSII is over-reduced, which results in the production 324 
of reactive oxygen species and, in particular, singlet oxygen that is responsible for the 325 
damage of D1 [87]. In addition, photoinhibition can also take place at the donor side of 326 
PSII inhibiting the [Mn4CaO5] cluster, thereby limiting electron donation to TyrZ+ and 327 
P680+ [88]. 328 

The movement of proteins within the thylakoid membranes and the association of 329 
proteins with the membrane/photosystems are important for not only qE and qT, but also 330 
for the PSII repair process. Active PSII dimers are located in grana stacks, whereas the PSII 331 
repair cycle occurs in grana margins. First, damaged PSII centres are phosphorylated by 332 
STN8 leading to the disassembly of LHCII-PSII complexes and PSII dimers [57,58,89]. 333 
However, a study of the stn8 mutant has highlighted that the repair is not completely 334 
dependent on phosphorylation [57] but that the later facilitates lateral mobility and, there- 335 
fore, the transport of damaged PSII from the grana stacks to the margins [66]. A study of 336 
fluorescence recovery in a confocal laser-scanning microscope suggested that a limited 337 
population of chlorophyll-containing proteins can move within a 10-min time scale [90]. 338 
The population of mobile proteins increased after PSII photoinhibition in wild type but 339 
not in stn8 mutant of A. thaliana. This suggests that migration of damaged PSII depends 340 
on phosphorylation of certain subunits. In the grana margins photoinhibited PSII is 341 
dephosphorylated again in order to allow partial disassembly of PSII monomers and to 342 
trigger degradation [91,92]. Upon arrival at grana margins, only the intermediate PSII 343 
complex RC47 remains, which is recognized by the protease FtsH [93,94]. FtsH is a com- 344 
plex of metalloproteases anchored to the thylakoid membrane, and it is important for the 345 
formation of thylakoid membranes during chloroplast development as well as in their 346 
impomaintenance [95,96]. In addition to FtsH, stromal and lumenal Deg proteases act in 347 
a cooperative manner allowing the endopeptidase cleavage of the D1 protein. It is as- 348 
sumed that the action of both stromal and lumenal Deg proteases makes it possible to 349 
increase the number of D1 recognition sites for FtsH, and to facilitate the dissociation of 350 
the water-oxidizing complex [97-99]. 351 

A new quenching component, qH, active during photoinhibition and completely in- 352 
dependent from the other mechanisms cited so far, has recently been reported [100,101]. 353 
qH has been described as a slowly relaxing quenching with photoprotective action which 354 
acts in concert with other quenching mechanisms involved in qI. The site of qH has been 355 
localized in the peripheral antenna of PSII. Until now, three proteins have been identified 356 
to be involved in qH: LCNP, a plastid lipocalin protein, is necessary for qH activation 357 
while for the relaxation of qH two proteins were identified so far: SOQ1 for SUPPRESSOR 358 
OF QUENCHING 1 and the protein RELAXATION OF QH1 (ROQH1). LCNP-mediated 359 
modification of a thylakoid membrane lipid was proposed to change the conformation of 360 
LHCII and thus create a quenching site [100]. SOQ1 is a transmembrane protein that con- 361 
stitutively inhibits qH. LCNP is located in the thylakoid lumen and may interact with the 362 
SOQ1 domains responsible for regulating qH. ROQH1 is an atypical short-chain dehydro- 363 
genase-reductase and functions as a qH-relaxation factor. It may either directly remove 364 
the quenching conformation of the antenna or m modify the hydrophobic environment at 365 
the LHCII. An A. thaliana soq1roqh1 double mutant shows constitutive qH [101]. 366 

Proteins with Dynamic Changes in Oligomerization State and Localization at the 367 
Thylakoid Membrane 368 

In the following, we introduce two proteins (PTOX, VIPP) that are related to the re- 369 
sponse to high light stress. These proteins are activated by perturbation of the redox poise 370 
of the photosynthetic electron transport chain. They permit a protection of the photosyn- 371 
thetic electron transport chain against over reduction (PTOX), or play a role in the repair 372 
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of damaged PSII (VIPP). The common point of these proteins is changes in their oligomer- 373 
ization state and their association with the thylakoid membrane, depending on the phys- 374 
iological condition. 375 

Plastid Terminal Oxidase (PTOX) 376 

The plastid terminal oxidase (PTOX), a plastohydroquinone:oxygen oxidoreductase 377 
of the thylakoid membranes, contains a catalytic centre similar to that of the alternative 378 
oxidases of the mitochondria (AOXs), and the two enzymes share structural similarities 379 
[102]. PTOX is involved in carotenoid metabolism, it protects the photosynthetic electron 380 
transport chain against over-reduction, it participates in chlororespiration, and it may be 381 
important for setting the redox poise for cyclic electron transport. PTOX has been localized 382 
in the region of the stroma lamellae in spinach chloroplasts of non-stressed leaves [103]. 383 
It was recently demonstrated that PTOX can relocalize within the membrane [104], or can 384 
even reversibly associate to the membrane depending on the proton motive force [105]. 385 
Stepien and Johnson [104] showed that PTOX overexpressed in the halophile Eutrema 386 
salsugineum moved from the stroma lamellae to the grana stacks upon exposure of the 387 
plants to salt stress. Using confocal fluorescence microscopy, Bolte and coworkers [105] 388 
investigated PTOX localization in A. thaliana overexpressing green fluorescent protein 389 
(GFP)-PTOX. They observed a relatively homogeneous distribution of the GFP fluores- 390 
cence over the whole chloroplasts when leaves had been pre-illuminated with high light 391 
intensities, a condition generating a high proton motive force. In contrast, when leaves 392 
were treated with uncouplers, or had been adapted to the dark, the GFP fluorescence was 393 
localized in spots. The spots were interpreted as PTOX oligomers. These results show that 394 
PTOX localization within the chloroplast is highly dynamic and depends on the pH in the 395 
stroma, or on the ion concentration. Membrane association with the grana lamellae is re- 396 
quired to allow PTOX the access to its lipophilic substrate plastoquinol. In vitro, purified 397 
PTOX associated at slightly alkaline pH-value to liposomes composed of a lipid mixture 398 
similar to thylakoid membranes. Enzymes of the carotenoid biosynthesis pathway may 399 
behave in a similar manner like PTOX. As mentioned above, at low pH in the lumen VDE 400 
changes its conformation, dimerizes and attaches to the membrane, thereby gaining access 401 
to the lipophilic violaxanthin. Furthermore, the phytoene desaturase that requires PTOX 402 
activity for the regeneration of its electron acceptor, plastoquinone, seems also to change 403 
its oligomeric state and thereby its activity. Gemmecker et al. [106] reported that phytoene 404 
desaturase exists in vitro in rings or stacks. The rings were composed of tetramers, which 405 
assembled into highly ordered stacked tubular structures of a length between 15–30 nm. 406 
The oligomeric stacks were soluble, while the form attached to liposomes was assigned to 407 
a single tetrameric ring. It is likely that the same distribution for phytoene desaturase is 408 
found inside the chloroplasts: a soluble form organized in stacks in the stroma and the 409 
smaller tetramers attached to the thylakoid membrane allowing access to its substrate 410 
phytoene. Similar changes in the oligomerization state as described for the phytoene de- 411 
saturase may also take place for PTOX. The catalytically functional unit of PTOX consists 412 
most likely of a dimer as it is the case for AOX [107]. Recombinant maltose-binding protein 413 
(MBP)-PTOX of rice tends to form different oligomeric states depending on the detergent 414 
used. In the presence of n-octyl β-D-glucopyranoside MBP-PTOX was found mainly as a 415 
tetramer [108], while it was mainly in a dimeric form in the presence of β-dodecyl-malto- 416 
side [105]. Angiosperms contain one PTOX isoform, while other phylae mostly contain 417 
two isoforms; a plant-type PTOX and an algal-type PTOX [109]. The algal-type PTOX has 418 
a longer N-terminal extension that probably allows a stronger anchoring of this protein to 419 
the membrane. A dynamic association of PTOX with the thylakoid membrane may be 420 
important to permit PTOX activity only under conditions of a highly reduced electron 421 
transport chain, thereby preventing competition between PTOX and Cyt b6f complex for 422 
platoquinol under optimal conditions for photosynthesis. The same holds for the VDE, 423 
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permitting the formation of antheraxanthin and zeaxanthin only under certain physiolog- 424 
ical conditions. The activity of other carotenoid biosynthesis enzymes, such as phytoene 425 
desaturase, may be regulated in a similar way. 426 

 427 

Vesicle-inducing proteins in plastids (VIPP)  428 

Another example of a stroma protein that changes its oligomerization state, and its 429 
membrane association, is the Vesicle-inducing protein in plastids (VIPP). Plants contain 430 
only one isoform, VIPP1, while Chlorophyceae have a paralog of VIPP1, called VIPP2. In 431 
chloroplasts, VIPP1 has been found at different location within the chloroplast: in a solu- 432 
ble form in the stroma, and in a membrane-associated form at the chloroplast envelope 433 
and at the thylakoids.  In vitro, VIPP1 and VIPP2 form large oligomeric rod-like structures 434 
[110,111]. Fluorescence microscopy in vivo revealed high oligomerization states of VIPP1 435 
as punctae, indicating that VIPP1 may assemble into higher-order oligomers not only in 436 
vitro but also in vivo [112,113]. The chloroplast chaperone system, with HSP70B-CDJ2- 437 
CGE1 being interaction partners of VIPP, plays a role in controlling the oligomerization 438 
state of VIPP [110]. A role in membrane vesicle traffic and in the biogenesis of the lipid 439 
part of thylakoid membranes had been originally attributed to VIPP1 [114] while it was 440 
later shown to be also involved in high light stress response [112,113,115]. In cyanobacte- 441 
ria, VIPP1 punctae dynamically form at or close to highly curved thylakoid membranes. 442 
At high light intensities, the membrane-bound form of VIPP1 was favoured compared to 443 
lower light intensities when more of the cytosolic form was present [112,113]. In C. rein- 444 
hardtii, both VIPP1 and VIPP2 accumulate under photoinhibitory conditions and likely 445 
play a role in the PSII repair cycle [115]. A certain level of VIPP1 proteins was present in 446 
all light conditions, while VIPP2 was only detectable after high light stress [116]. In C. 447 
reinhardtii, VIPP1 knock-down lines showed defects in PSII biogenesis and in repair of 448 
photoinhibited PSII [115]. These results indicate that VIPP1 has an important role in cre- 449 
ating membrane domains that favour disassembly and repair of photoinhibited PSII. 450 

Conclusions and Perspectives 451 

In the present review, we give examples that show the physiological importance and 452 
the complexity of dynamic changes of protein associations to and within the thylakoid 453 
membrane. The photosynthetic electron transport components (PSII, PSI, LHCII, etc.) are 454 
heterogeneously distributed in the thylakoid membrane. The protein composition of su- 455 
percomplexes changes depending on the physiological situation. Protein movements play 456 
a role in short-term regulatory mechanisms that protect the photosynthetic apparatus 457 
against photo-oxidative damage. Protein-membrane associations are required for the PSII 458 
damage-repair cycle and for the biogenesis of the photosynthetic apparatus in general. 459 
Dynamic changes of membrane association of VDE, phytoene desaturase and PTOX allow 460 
a regulation of their enzymatic activity by allowing access to their lipophilic substrates. In 461 
addition, local differences in pH and in ion concentrations are likely, creating domains 462 
which may favour membrane association of proteins. At present, it is unknown to which 463 
degree such local domains with differences in proton or ion concentration are separated 464 
or shared, and how much (how fast) changes in these heterogeneities are associated with 465 
the regulation of photosynthetic electron transport. 466 

Many questions remain open like the effects of ions and pH on the relocalization of 467 
proteins, factors that determine the oligomerization state of proteins, associated lipids or 468 
protein partners that allow changes in oligomerization states and in the association of pro- 469 
teins to the membrane. Recent development of super resolution microscopy, and fluores- 470 
cence lifetime imaging on plants expressing fluorescent proteins, will allow better charac- 471 
terisation of dynamic protein localizations and structural rearrangements of the thylakoid 472 
membrane upon exposure of plants to changes in the environment.  473 
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