
HAL Id: hal-03407061
https://hal.science/hal-03407061

Submitted on 28 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-end deep representation learning for time series
clustering: a comparative study

Baptiste Lafabregue, Jonathan Weber, Pierre Gançarski, Germain Forestier

To cite this version:
Baptiste Lafabregue, Jonathan Weber, Pierre Gançarski, Germain Forestier. End-to-end deep rep-
resentation learning for time series clustering: a comparative study. Data Mining and Knowledge
Discovery, 2021, �10.1007/s10618-021-00796-y�. �hal-03407061�

https://hal.science/hal-03407061
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

End-to-end deep representation learning for time
series clustering: a comparative study

Baptiste Lafabregue · Jonathan Weber ·
Pierre Gançarski · Germain Forestier

Received: DD Month YEAR / Accepted: DD Month YEAR

Abstract Time series are ubiquitous in data mining applications. Similar to
other types of data, annotations can be challenging to acquire, thus preventing
from training Time Series Classification (TSC) models. In this context, clus-
tering methods can be an appropriate alternative as they create homogeneous
groups allowing a better analysis of the data structure. Time series clustering
has been investigated for many years and multiple approaches have already
been proposed. Following the advent of deep learning in computer vision, re-
searchers recently started to study the use of deep clustering to cluster time
series data. The existing approaches mostly rely on representation learning
(imported from computer vision), which consists of learning a representation
of the data and performing the clustering task using this new representation.
The goal of this paper is to provide a careful study and an experimental com-
parison of the existing literature on time series representation learning for
deep clustering. In this paper, we went beyond the sole comparison of existing
approaches and proposed to decompose deep clustering methods into three
main components: (1) network architecture, (2) pretext loss, and (3) clus-
tering loss. We evaluated all combinations of these components (totaling 300
different models) with the objective to study their relative influence on the

B. Lafabregue
IRIMAS, Université de Haute Alsace, Mulhouse, France
ICube, Université de Strasbourg, Strasbourg, France
E-mail: baptiste.lafabregue@uha.fr

J. Weber · G. Forestier
IRIMAS, Université de Haute Alsace, Mulhouse, France
E-mail: firstname.lastname@uha.fr

P. Gançarski
ICube, Université de Strasbourg, Strasbourg, France
E-mail: gancarski@unistra.fr

2 Baptiste Lafabregue et al.

clustering performance. We also experimentally compared the most efficient
combinations we identified with existing non-deep clustering methods. Exper-
iments were performed using the largest repository of time series datasets (the
UCR/UEA archive) composed of 128 univariate and 30 multivariate datasets.
Finally, we proposed an extension of the Class Activation Maps (CAM) method
to the unsupervised case which allows to identify patterns providing highlights
on how the network clustered the time series.

Keywords Clustering · Deep Learning · Time series

Acknowledgements The authors would like to thank the creators and providers of the
datasets: Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Eamonn Keogh, and Mustafa
Baydogan. The authors would also like to thank the Mésocentre of Strasbourg for providing
access to the GPU cluster. The authors would also like to thank Hassan Fawaz that gave
free access to his code on time series processing and cd-diagrams. This work was supported
by the ANR TIMES project (grant ANR-17-CE23-0015) of the French Agence Nationale de
la Recherche.

General notations used in this paper

– X: the dataset to cluster
– x: an element of X
– xi: the ith element of X
– N : the number of elements in X
– k: the number of expected clusters
– |.|: the cardinatlity of the set
– f(): the encoder non-linear function
– g(): the decoder non-linear function
– Z: projection of X in the latent space, equals to f(X)
– z: an element of Z
– zi: the ith element of Z

1 Introduction

Automated acquisition systems and the growing storage capacity have made
time series data available in a wide range of domains. It includes a wide range
of applications such as finance stock prices, electrocardiogram measurements,
blood pressure in health, satellite images, earthquake in earth observation,
or even social media (Dau et al., 2019). Similar to other types of data, an-
notations can be challenging to acquire, thus preventing from training Time
Series Classification (TSC) models (Dempster et al., 2020; Fawaz et al., 2019;
Kotsiantis et al., 2007; Wang et al., 2017).

In this context, clustering can be seen as an alternative to partition time
series into homogeneous groups allowing a better analysis of the structure of
the data (Saxena et al., 2017). The specificity of the time dimension makes

End-to-end deep representation learning for time series clustering 3

the use of traditional clustering methods challenging. Indeed, each time step
cannot be seen as an independent feature. Two time series can represent similar
objects but the time signal can be delayed, stretched, or subject to noise. This
may result in high differences in the Euclidean space, even though time series
denote a similar signal. Thus, clustering methods dedicated to time series have
been proposed in the literature (Aghabozorgi et al., 2015; Liao, 2005; Rani and
Sikka, 2012).

Most of the existing methods consist in applying a standard clustering
method but uses either a specific dissimilarity measure or a time series repre-
sentation (Aghabozorgi et al., 2015). The dissimilarity measures are tailored
to take the specificity of the time dimension into account (i.e. stretches or
shifts). Representation learning methods seek to remove the time dimension
while keeping neighbors’ structure or to rectify the comparison by aligning
time series. Some approaches define a stochastic model of the time series, e.g.
Hidden Markov Model (Panuccio et al., 2002), or split time series into charac-
teristic segments, e.g. Symbolic Aggregate ApproXimation (Lin et al., 2007),
or shapelets, e.g. Unsupervised Salient Subsequence Learning (Zhang et al.,
2018). Others aim to apply a transformation operation, e.g. Discrete wavelet
transform (Chan and Fu, 1999), or realign time series, e.g. Dynamic Time
Warping (Sakoe and Chiba, 1978).

Meanwhile, in computer vision, advances in Deep Neural Networks (DNNs)
allowed to make significant progress in clustering domain (Caron et al., 2018;
Ghasedi Dizaji et al., 2017; Guo et al., 2017a; Xie et al., 2016; Yang et al.,
2019). In addition to their high performance, DNNs consist in an end-to-end
system that does not require extra pre-processing steps, resulting in saving
time on designing complex frameworks. We will refer to them as deep clustering
methods. In parallel, DNNs have proved to have the capacity to achieve com-
petitive performance in time series supervised classification (Dempster et al.,
2020; Fawaz et al., 2019). However, to the best of our knowledge, no previous
work has been done to largely adapt state-of-the-art deep clustering methods
from computer vision to the specificities of the time series domain.
The main contributions of this paper are:

– We establish a review of both existing types of neural network architecture
for time series and existing end-to-end clustering methods based on DNNs.

– We detail how these clustering methods can be adapted to process time
series.

– We evaluate all combinations on two standard time series benchmarks, the
UCR (128 univariate data sets) (Dau et al., 2019) and UEA archives (30
multivariate data sets) (Bagnall et al., 2018).

– We provide insight on the advantages and limitations of these methods for
time series.

The rest of this paper is organized as follows. In Sec. 2, we present the
major components used in deep learning for clustering and for time series. In
Sec. 3, we present the different approaches selected in this study and how we
evaluate them. In Sec. 5, we present the results obtained from this evaluation

4 Baptiste Lafabregue et al.

and propose tools to give more insight to the reader on the deep clustering
utility for data mining in Sec. 6. Then, we summarize and discuss the main
observations that we made in this study in Sec. 7 and conclude in Sec. 8.

2 Background

2.1 Clustering, Deep learning and Time series

Let X be a set of N objects :

X = {x1, ..., xN} (1)

and d(xi, xj) a measure of dissimilarity between the objects xi and xj .
The clustering task can be defined as separating X into a partition C =

{c1, ..., ck} of K clusters, that both maximize the similarity between objects of
the same cluster and maximize the dissimilarity between objects of different
clusters.

The use of deep learning methods in clustering usually consists in learning a
new representation of the data and performing clustering on this new represen-
tation instead of the raw data. This representation is obtained from encoding
the data with a deep neural network (DNNs), that is called an encoder. An
encoder is a non-linear mapping fΘ : X −→ Z, where Θ are the learnable pa-
rameters of the encoder. Z is the representation of X as learned by the DNN.
The new space created by the DNN is called the latent space, in opposition to
the original data space. Thus, the task is now to partition the set Z defined
as:

Z = {z1, ..., zN} = {fΘ(x1), ..., fΘ(xN)} (2)

in respect to the dissimilarity measure dz(zi, zj). Most of the methods in
the literature use the Euclidean distance for dz and K-Means as partition-
ing method (Bo et al., 2020; Guo et al., 2017a; Jiang et al., 2016; Ma et al.,
2019; Xie et al., 2016; Yang et al., 2019). Therefore, the objective is to find
the mapping function fΘ that allows to obtain a relevant partition C for time
series data. In the following sections, fΘ() may be referred as f().

Time series is a specific kind of data, where each object can be seen as a
sequence of time steps. Therefore a time series of length T can be noted as:

xi = [xi,1, xi,2, ..., xi,T] (3)

where xi ∈ Rd×T , d being the number of features for each time step. Time
series can be univariate, d = 1 or multivariate, d > 1. In this paper, we will
refer to time series as multivariate and consider univariate time series as a
specific case of multivariate ones where the number of features is equal to one.

In the following sections, we present the main methods proposed in the
literature for deep clustering. We present the different types of layers that can
be used for time series and then the different types of losses used to learn
the model parameters. But first, in the next section, we will introduce the
challenges of clustering time series.

End-to-end deep representation learning for time series clustering 5

2.2 Time dimension and clustering

Usually, classes of a time series dataset represent a view of a phenomenon in
a given period of time (e.g. person’s electrocardiogram, coordinate evolution
of a specific hand gesture). This phenomenon may happen multiple times, on
a shifted time-lapse, or/and on a distorted time lapse. It may be quick (e.g.
a sudden share price increase) or spread over a long period (e.g. the daily
highway traffic). Clustering methods are used in this context to create groups
that contain time series representing the same phenomena.

Classically, the data is studied in the Euclidean space. Hence, the distance
between two objects is computed as:

deucl(xi, xj) = deucl(

xi,1...
xi,T

 ,
xj,1...
xj,T

)

=
√

(xi,1 − xj,1)2 + ...+ (xi,T − xj,T)2

(4)

Therefore, each time step is seen as an independent feature. The use of
this distance as similarity causes different problems with time series due to the
nature of this dimension. Indeed, a simple shift or stretch of the time series
may result in a high distance in the Euclidean space. Examples are shown in
Fig. 1 where CBF is a synthetic dataset designed to discriminate between three
shapes, Cylinder, Bell, and Funnel, and Trace is a synthetic dataset designed
to simulate instrumentation failures in a nuclear power plant.

Clustering method are expected to take into account this possibility and be
able to recognize shifted or stretched patterns. In the literature, each method
uses a different strategy to tackle this issue. For the Symbolic Aggregate Ap-
proXimation method (Lin et al., 2007), this is achieved by dividing the time
series into segments and computing and replacing this segment with a com-
puted approximation, reducing the time series dimension. For the Dynamic
Time Warping metric, it consists in computing a warped path to align time
series and computing the distance in the resulting warped dimension.

For DNNs, this issue can be solved by the non-linear transformation learned
during the training. A specific focus will be given in Sec. 6.3 to evaluate the
DNNs’ capacity to handle stretching and shifting.

2.3 Encoder architecture

DNNs are structured as a set of layers that follow each other. In this paper,
the term architecture only refers to the set of layers used and their hyperpa-
rameters. In a DNN, layers are divided into three types in the following order:
the input layer that corresponds to the actual input, followed by hidden layers,
and then the output layer. For encoders, this last layer is usually called the
embedding layer, lz. Each layer is a non-linear function, and the network, with

6 Baptiste Lafabregue et al.

0 50 100 150 200 250

2

1

0

1

2

3

4

(a) Class 1 sample 1 from Trace

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Cylinder sample 1 from CBF (

0 50 100 150 200 250
2

1

0

1

2

3

(c) Class 1 sample 2 from Trace

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) Cylinder sample 2 from CBF

Fig. 1 Examples of time series belonging to the same class with a shift (Figs. 1a and 1c)
and a stretch (Figs. 1b and 1d)

L hidden layers, can be noted as:

fΘ(x) = lz(θz, lL(θL, lL−1(θL−1, ...(l1(θ1(x)))))) (5)

where θk are the learning parameters of the layer lk. Multiple types of DNNs
layers have been used in the literature to handle time series. They can be
divided into three families: Fully connected layers, Convolutional layers, and
Recurrent layers.

2.3.1 FCNN: Fully Connected Neural Network Layers

This is the simplest form of layers for DNNs (Rosenblatt, 1958). In this type
of layer, every neuron from the layer is connected to every neuron from the
previous layer. The layer’s result can be expressed for the ith layers, li, by the
following equation:

outl0 = x,

∀0 < i < L, outli = ali(Wlioutli−1 + b),
(6)

with Wli ∈ Routm×m being the set of weights, where outm is the dimension
of outli−1 vector and m the number of neurons in layer li, b the bias term and
ali an activation function (e.g. relu, tanh or linear).

End-to-end deep representation learning for time series clustering 7

FCNN layer can be used for any kind of data, regardless of the input
number of dimensions or size, as long as the input has a fixed size. Note that
the input can be padded to reach the fixed input size. This makes them easy
to use in various domain, such as image (Guo et al., 2017a; Xie et al., 2016),
modelization (Sun et al., 2013), or time series (Fawaz et al., 2019). However,
this makes it also difficult for them to capture specific dimension’s relations
such as space or time. Indeed, for a time series, each time step has its own
weight and the link to its time neighbor is lost during the computation of the
layer in Eq. 6.

It has to be noted that FCNN layers are in general used for the embedding
layer lz to get rid of the specific dimensionality of the data, the number of
time steps T , and the number of features d in our case. Thus, we obtain a
representation in the form of a vector of fixed size given by the user. It allows
to use a partitioning method agnostic to data specific structure and uniform
the processing of this data.

2.3.2 CNN: 1D Convolutional Neural Network Layers

Convolutional layers allowed huge progress in DNNs performance, especially
in computer vision (Krizhevsky et al., 2012; LeCun et al., 1998). Contrary to
FCNN layers that treat all time steps independently, they aim to take advan-
tage of hierarchical patterns in the data by learning small and simple patterns
in the first layers and assemble them when going towards the last layers.
For images, 2D-convolutions are used to capture spatial patterns. Identically,
1D-convolutions are used to capture temporal patterns. They have already
demonstrated their good performance in supervised tasks (Fawaz et al., 2019;
Wang et al., 2017).

For 1D-convolutions each layer consists in applying m filters of kernel size
k to the input sequence outli−1, with outl0 = x. For each time step t we
compute:

outli,t = ali(F.[outli−1,t−b k2 c
, outli−1,t−b k2 c+1, ..., outli−1,t+b k+1

2 c
]) (7)

where outli,t is in Rm and F ∈ Rm×k is a matrix composed of the stacked m
filters. Then we obtain the following output sequence:

outli = (outli,1+b k2 c
, outli,2+b k2 c

, ..., outli,T−b k2 c
) (8)

where outli ∈ Rm×T−(k−1). For 2D-convolutions, different values of stride and
padding are often used. Stride is a parameter that controls the step made by
the filter when sliding through the sequence. The padding defines how the
border of a sample is handled by the filter, by padding the sequence with a
certain number of zeros. This results, for a stride of value s, and a padding
value of p into:

outli = (outli,1+δ+0×s, outli,1+δ+1×s, ..., outli,dT−δs e) (9)

8 Baptiste Lafabregue et al.

where δ = bk2 c − p.
A half padding (padding of half the kernel size) is often used, otherwise,

if the kernel size, k, is larger than 1, the convolution would crop away the
outputted sequence’s border. Even though these parameters are often modified
in image processing, a stride of 1 and a half padding is generally used for
time series (Fawaz et al., 2019; Xiao and Cho, 2016; Wang et al., 2017). In
consequence, the output of each layer conserves its time dimension size.

However, an alternative padding technique is sometimes used for time se-
ries to take into account the specificity of the time dimension, called causal
padding. Instead of padding on both sides of the input sequence, a padding of
k− 1 is added at the beginning of the sequence. In consequence, the time step
t of the outputted sequence is computed/predicted, only based on time step
t or prior to it from the input sequence. Note that in this case the padding
is only added at the beginning, the time dimension size being also conserved
after each CNN layer.

Causal padding is, in general, combined with another parameter called
dilation (Yu and Koltun, 2015). Dilated convolution works like stride, but the
stride effect is applied on the kernel instead of the input sequence. Thus, Eq. 7
can be rewritten with a dilation factor d as:

outli,t = ali(F.[outli−1,t−b k×d2 c+0×d, outli−1,t−b k×d2 c+1×d, ..., outli−1,t+b k×d+1
2 c])

(10)
It can be noted that a dilation factor of 1 corresponds to the vanilla convolu-
tion. Usually, the factor d is set in an exponential manner, the dilation factor
getting multiple by 2 at each layer. Also, the first layer uses a dilation factor
of 1 to preserve the dependency to the previous time step.

2.3.3 RNN: Recurrent Neural Network Layers

Recurrent layers have been proposed specifically to take into account the time
dimension (Hochreiter and Schmidhuber, 1997; Hopfield, 1982). This type of
layer allowed huge progress in speech recognition (Sak et al., 2014) and lan-
guage translation (Sutskever et al., 2014). Contrary to other layer types, the
input sequence is fed to the layer time step by time step to update the hidden
state of the layer. This state can be seen as the memory of the previous steps.
The layer itself consists of applying recursive function g that takes as input the
current step xt and the previous hidden state ht and output the new hidden
state:

ht = g(xt, ht−1) (11)

In general, h0 vector is filled with zero values. Originally, the recursive function
was defined as follow:

ht = tanh(Wxt + Uht−1 + b) (12)

where ht is a vector of size u, also called the number of units, W ∈ Ru×d and
U ∈ Ru×u being the weights and b ∈ Ru the bias vector of the layer that are

End-to-end deep representation learning for time series clustering 9

learned during training. However, this type of recursive function, also called
a cell, often leads to a vanishing gradient (Bengio et al., 1994), making the
training difficult. Other types of cells have been proposed in the literature,
Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU) cells.

An LSTM unit (Gers et al., 2000; Hochreiter and Schmidhuber, 1997)
consists of four sub-unit, usually called gates, that controls the information
to update the hidden state and the output: an input gate, an output gate, a
forget gate, and a candidate memory gate. Each gate is respectively computed
as:

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ft = σ(Wfxt + Ufht−1 + bf)

c̃t = tanh(Wcxt + Ucht−1 + bc)

(13)

where σ is the sigmoid function.
From these gates is computed the memory cell:

ct = ft ◦ ct−1 + it ◦ c̃t (14)

where ◦ denotes the element-wise product. And the hidden state is updated
as follow:

ht = ot ◦ tanh(ct) (15)

A GRU unit (Cho et al., 2014) is similar to LSTM but works with fewer
parameters. The performance of GRU cells has shown to be similar to LSTM,
even though it seems more limited than LSTM on some tasks (Weiss et al.,
2018). It consists of three gates: an update gate, a reset gate, and a candidate
gate, respectively computed as:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Whxt + Uh(rt ◦ ht−1) + bh)

(16)

The hidden state is then updated as follow:

ht = (1− zt) ◦ ht−1 + zt ◦ ĥt (17)

For all these types of units, the hidden state, after all the sequence is fed, hT ,
usually constitutes the learned representation of the sequence.

Some further options are often used within RNNs. The most common one
is the use of bidirectional layers. It consists in training in parallel two identical
RNN layers, but one processes each time step in the time order (1 to T), and
the other one processes them backward (T to 1). Similarly to CNN layers, the
use of dilation has been proposed (Chang et al., 2017), even though it has seen
fewer applications. The declination for RNN layers is simpler than for CNN.
It can be resumed, for a dilation factor d, to the following equation:

ht = cell(xt, ht−d), (18)

10 Baptiste Lafabregue et al.

s xss t

x

x +

c

LSTM

t

+

c
c

x

s

x
s x

ct

ht

xt

ht-1

ct-1 ht-1

xt

ht

GRU

x
element-wise
multiplication

+
elment-wise
addition

c
vector

concatenation

t
tanh

activation
sigmoid
activation

s

1-ft otit c̅t
rt

zt
t

Fig. 2 LSTM and GRU cells with input xt and the computation of the new hidden state
ht, and for LSTM the additional computation of the new cell state ct

where cell() is the computation of the RNN unit hidden state. It is a skip con-
nection to compute the hidden state at time t with respect to the dth previous
hidden state instead of the direct previous state. It is also used with expo-
nentially increasing dilation. Finally, it can be pointed out that RNNs were
originally proposed as a unique layer. However, they can be stacked (Pascanu
et al., 2013). As RNN layers need to be fed a sequence, each additional RNN
layer takes the sequence of previous RNN layer hidden states as input.

2.3.4 Attention mechanism

An attention mechanism, more specifically self-attention in our case, allows to
quantify the interdependence within the input elements in order to focus the
network’s attention only on the elements that are important for the training
task. Attention mechanisms often come as a component or as the basic struc-
ture for new DNN models, with the Transformers (Vaswani et al., 2017). They
have attracted a lot of interest recently due to their very good performances,
surpassing classical convolutions in some cases, but also to their much lower
computation times (Vaswani et al., 2017). Attention mechanisms were first
used in Natural Language Processing (NLP) (Bahdanau et al., 2014; Vaswani
et al., 2017) then in computer vision (Guan et al., 2018; Jaderberg et al.,
2015; Woo et al., 2018). Some methods have been proposed for unsupervised
learning, but mainly on specific cases, like graph clustering (Wang et al., 2019)
or the use of spatial attention (Souza and Zanchettin, 2019). However, a few
works have also been conducted for time series clustering.

One of the main proposition is the DeTSEC method (Deep Time Series
Embedding Clustering). This method, proposed by Ienco and Pensa (2019),
is based on the use of an autoencoder composed of a bidirectional GRU layer
for the encoder and the decoder. However, an attention mechanism is placed
at the output of the forward layer and the backward layer of the bidirectional

End-to-end deep representation learning for time series clustering 11

layer. The attention layer hatt is computed as follows:

va = tanh(H.Wa + ba)

λ = SoftMax(va ◦ ua)

hatt =

T∑
j=1

λj .htj

(19)

where circ denotes the element-wise product, H ∈ RT,l is a matrix constructed
by vertically stacking the set of hidden states htj learned at different T time
steps by the GRU layer, with l the size of the hidden state of the layer. The
matrix Wa ∈ Rl,l and the vectors ba, ua ∈ Rl are parameters learned by the
network. The latent representation is then computed for an input x using the
outputs of theforward (hattforw) attention mechanism layer and the backward

one (hattback), as:

f(x) = gate(hattback) ◦ hattback + gate(hattforw) ◦ hattforw
gate(o) = σ(Wg.o+ bg)

(20)

where σ is the sigmoid function and Wg and bg are parameters learned during
the model’s training. The gate function adds an additional level of decision
in order to better discriminate the information returned by the forward and
backward layers.

We can also mention the method proposed by Jiao et al. (2020). This is
a general method that can handle several tasks, such as anomaly detection
and clustering. It is based on a general model composed of several modules,
which can be activated or not according to certain hyperparameters, the hy-
perparameters being fixed by Bayesian optimization (Shahriari et al., 2015).
However, they do not provide precise information on the implementation used
for the attention mechanism.

2.4 Training Encoder’s parameters for meaningful features

The objective is to train the DNNs to learn a representation that will favor the
data clustering into relevant groups. As labels are unknown in unsupervised
learning, we need to optimize our DNNs on a side objective. To do so, we
use a self-supervised objective, where the data provides the supervision, to
obtain meaningful features. This objective is referred to as a ”pretext” or
”proxy” task (Doersch et al., 2015; Larsson et al., 2017; Xu et al., 2019).
As the term proxy loss is often used to refer to a loss much easier to optimize
computationally than the standard loss function, we will use the term pretext
loss to refer to them in the rest of this paper.

12 Baptiste Lafabregue et al.

2.4.1 Autoencoders (AEs)

AEs were first proposed as a dimensionality reduction method (Kramer, 1991;
Rumelhart et al., 1986) or as a pre-training method (Ballard, 1987), but they
also show to give useful representation for clustering purpose (Becker, 1991).
They are the first use of DNNs for clustering and remain the base of most of
them.

AEs consist of two parts, an encoder, f , and a decoder, g. The encoder
is a non-linear mapping f : X −→ Z that project the data into a latent space
(as described in Sec. 2.1), and the decoder a non-linear mapping g : Z −→ X
that project latent space variables into the data space. In consequence, an
object xi can be passed to the encoder to obtain its representation zi, then
zi can be passed through the decoder to obtain a new object x̂i, called the xi
reconstruction. An AE is evaluated by its capacity to reconstruct faithfully xi
into x̂i. Thus, we expect the encoder to be able to retain the important features
from the data space into the latent space to allow a good reconstruction. To
train the AE weights, we simply minimize the mean square error, also called
the reconstruction loss:

Lr =
1

n

n∑
i=1

‖xi − g(f(xi))‖2 (21)

The decoder is, in general, constructed as a mirror of the encoder (Kramer,
1991; Guo et al., 2017a; Xie et al., 2016) at the exception of the embedding
layer lz.

2.4.2 Regularized autoencoders

The first alternatives to AEs consist of regularized forms of the AE:

– Denoising Autoencoder (DAE) (Vincent et al., 2008): Instead of feeding the
original input (xi) to the AE, a partially corrupted version (x̃i) is used.
The DAE is then trained to reconstruct the original data xi :

Ldae =
1

n

n∑
i=1

‖xi − g(f(x̃i))‖2 (22)

Therefore the objective is to clean the corrupted input, resulting in an
embedding robust to small variations. The corruption, or noise, is generated
randomly for each object and at each iteration. Different methods exist to
generate the corrupted input. Originally, masking noise (a fraction of the
input is set to 0) was used, but other types, like isotopic Gaussian noise or
salt-and-pepper noise (a fraction of the input is set to min or max value),
can be used. Note that the corruption is only applied during the training
phase. No corruption is performed when the representation is computed
for the clustering task.

End-to-end deep representation learning for time series clustering 13

A derived form of DAE, Stacked Denoising Autoencoders (SDAE), was
also proposed and showed good results (Vincent et al., 2008; Xie et al.,
2016). The concept is similar to DAEs but it differs by including a pre-
training phase done one layer at a time. For each step i from 1 to L, the
AEs is composed with only the i first encoder layers and the i last decoder
layers. Then, only the ith encoder layer and ith from the end decoder layer
are trained for the denoising task. This pre-training phase is followed by a
fine-tuning phase similar to the basic DAE.

– Sparse Autoencoder (SAE) (Makhzani and Frey, 2013): SAEs differ from
AEs by only allowing a small number of neurons to be active at once in
the embedding layer. For a k-sparsity, it simply consists in selecting the k
largest hidden units outputted by the encoder and set the others to zero
before passing them to the decoder. Other versions express the sparsity
penalty term directly in the loss function by, for example, take advantage
of the Kullback-Leiber divergence (Zeng et al., 2018).

– Contractive Autoencoder (CAE) (Rifai et al., 2011): Whereas DAEs are
designed to increase the robustness of reconstruction to small modifica-
tions in the input, CAEs are designed to increase the robustness of the
representation itself. The regularization term corresponds to the Frobenius
norm of the Jacobian matrix of the encoder activation, Jf , with respect to
the input xi. We obtain the following loss function:

Lcae = Lr + λ

n∑
i=1

‖Jf (xi)‖2F (23)

where λ is a hyper-parameter that controls the strength of the regulariza-
tion. This regularization allows CAEs to ignore variations present in the
data (e.g. translation or rotation for images) but also more small and rare
variations (present in specific examples), while the reconstruction loss only
ensures that the reconstruction is faithful (Rifai et al., 2011).

2.4.3 Generative methods

Contrary to AEs that rely on the reconstruction task, other methods rely on
generating realistic data to train the encoder:

– Variational Autoencoder (VAE) (Kingma and Welling, 2013): Based on
AEs architecture (an encoder and a decoder), VAEs differ significantly on
their training phase. VAEs want to exploit the capacity of the decoder to
generate data. In AE, the decoder is only used to reconstruct a previously
encoded input, but we could think about take a random point in the latent
space and decode it to obtain new content. However, this supposes that the
latent space is regular enough. VAEs aim to introduce such regularization
by assuming that the data follows a distribution, in practice an isotopic
Gaussian distribution.
The VAEs’ concept is to pass an input set x to the encoder and map it
to a Gaussian distribution q(zg|x). We sample zg from q(zg|x) and pass zg

14 Baptiste Lafabregue et al.

through the decoder to obtain the distribution p(x|zg). To train the network
we use the following loss (Kingma and Welling, 2013), called evidence lower
bound (ELBO):

Lvae =

n∑
i=1

− E
zg∼q(zg|xi)

[log p(xi|zg)] +KL(q(zg|xi)‖p(zg)) (24)

The first term is the reconstruction loss to ensure good reconstruction
from the decoder. The second, is a regularization term that aims to make
converge the expected distribution p(zg) to the observed one generated by
the encoder. p(zg) is constructed as a standard Normal distribution with
mean zero and variance one.
Nonetheless, VAE’s learned representation is not the most fitted to clus-
tering. Some works proposed some slight modifications to that extends.
Jiang et al. (2016) proposed a new version, called Variational Deep Em-
bedding (VADE), that, instead of trying to learn one distribution, learn
as many distributions as expected clusters. This result, for Eq. 24, in re-
placing the single distribution q(zg|x) by a set of distribution q(zg, c|x) for
c ∈ 1, ..,K for K clusters, and the expected distribution p(zg) by p(zg, c).
The set of distributions is initialized from a Gaussian Mixture Models on
the pre-trained latent space with another loss (e.g. AE, or VAE). Li et al.
(2018) proposed a method based on VAE to learn a multi-facet clustering
structure of the latent space instead of a single partition.

inputs

𝑥i 𝑥i
𝑧g ^

Encoder
𝑓() Decoder

𝘨()

latent features

reconstruction
loss

KL
divergence

K-GMM

Fig. 3 VADE method with K clusters: the encoded representations are used to generate
K Gaussian distributions. Samples are generated for each distribution. The DNN is trained
to reconstruct them and fit the generated distribution with the original one.

– Generative Adversarial Network (GAN) (Goodfellow et al., 2014): GAN
is the other major generative type of DNNs. GANs are composed of two
elements, the generator GΘG and the discriminator DΘD , that are both
DNNs. The generator, G : X −→ Z, generates data from a latent space,

End-to-end deep representation learning for time series clustering 15

similarly to the AE’s decoder. The discriminator, D : X −→ R, generates a
real value from the data space that can be seen as the probability of the
data to be real. The two networks are trained in a two-player game. The
two adversaries are trained through the following min-max objective:

min
ΘG

max
ΘD

E
x∼Prx

q(D(x)) + E
z∼Pz

q(1−D(G(z))) (25)

where Prx is the distribution of real data samples, Pz is the prior noise
distribution on the latent space, and q(x) is the quality function. For vanilla
GAN, q(x) = log x, and for Wasserstein GAN q(x) = x. We expect, at the
end of the training, the convergence of Pz towards Prx.
However, one can notice that GANs do not include any encoder part in their
framework. Therefore, they cannot be used as-is for clustering purposes as
no representation can be extracted from our data. Few works have been
proposed in the literature to include an encoder. In Lipton and Tripathi
(2017), they tested to back-propagate the data through G, but the obtained
representation was not suitable for clustering purpose (Mukherjee et al.,
2019). Ghasedi et al. (2019) added a third network, a clusterer E : X −→ Z,
and modified the discriminator to not only discriminate if the data space
example is real or not but if the joint distribution of samples (E(x), x) and
(z, G(z)) is coming from either the generator or the clusterer. This result
in the following objective function:

min
ΘG,ΘE

max
ΘD

E
x∼Prx

q(D(C(x), x)) + E
z∼Pz

q(1−D(z,G(z))) (26)

Mukherjee et al. (2019) also included an encoder, E. But in this case,
they enforce the K last features of the latent space to be a one-hot vector
of the expected cluster. Therefore the latent feature is composed of z =
concat(zn, zc), where zn is sampled from a normal distribution and zc is
a one-hot vector of a cluster selected at random. Then, the networks are
trained with the following objective function:

min
ΘG,ΘE

max
ΘD

Ex∼Prxq(D(x)) + E
z∼Pz

q(1−D(G(z)))+

βn E
z∼Pz
‖zn − E(G(zn))‖22 + βc E

z∼Pz
H(zc, E(G(zc)) (27)

where H() is the cross-entropy loss. The first two equation elements are the
vanilla GAN, the third ensure the reconstruction quality of the re-encoded
features, and the last ensures that the generated one-hot encoded part
is preserved by the encoding. βn and βc are weights to leverage between
continuous and discrete characteristics of the latent space.

2.4.4 Time series triplet loss

Another loss has been proposed to train an encoder specific to time series,
called triplet loss (Franceschi et al., 2019). This loss has the advantage to re-
quire an architecture that only includes an encoder. Removing the decoder

16 Baptiste Lafabregue et al.

𝑥g

inputs

𝑥i

latent features

Generator
G()

Encoder
E()

Discriminator
D()

𝑧n

𝑧c

𝑧c

𝑧n
^

^

Fig. 4 ClusterGAN method: the latent feature is separated into two components, one from
a Gaussian distribution, zn, and the other to one-hot encoded the clustering assignment,
zc. An encoder is added and trained to both preserve zn and zc encoding.

has the advantage of computational gain as we do not need to train its param-
eters, but also to remove the problem of designing the decoder architecture.
This loss is based on a former work (Schroff et al., 2015) that proposed a loss
to obtain similar representation for similar objects while pushing apart repre-
sentation of dissimilar objects. However, it supposes a supervised knowledge
on objects’ similarity. The authors in Franceschi et al. (2019) proposed to solve
this problem by using a time-based sampling strategy.

They do the assumption that if we pick a subseries at random, xref , from
a time series xi, than we can except, with a good probability, two things.
In one hand, xref representation will be close to any of its own subseries xpos

(positive example), xref can be seen as the context of xpos. On the other hand,
xref representation will be distant from any subserie xneg randomly taken in
another time series xj , with j 6= i. They also introduced another parameter
Ktriplet that sets the number of negative samples to use for each training object
to improve stability. The loss is computed with the following equation:

Ltriplet = − log(σ(f(xref)T f(xpos))−
Ktriplet∑
l=1

log(σ(−f(xref)T f(xnegl)), (28)

where σ is the sigmoid function. The first term trains the DNN to minimize the
dissimilarity between xref and xpos representations, whereas the second term
train the DNN to maximize the dissimilarity between xref and the Ktriplet

xneg samples representations.

2.5 Training Encoder’s parameters for clustering task

In the previous section, we have described different objective functions to
obtain meaningful features from the latent space. However, most of these rep-
resentations are not necessarily suitable for clustering as they well describe
the input time series but do not output a discrete latent space. In this case,
discriminate each cluster can be difficult.

End-to-end deep representation learning for time series clustering 17

To this end, multiple methods proposed to add, either in parallel or as post-
processing, a complementary loss to obtain a more separable latent space. We
will refer to them as clustering loss.

2.5.1 Deep Embedded Clustering (DEC)

Proposed in Xie et al. (2016), it is one of the most referred clustering loss,
and it has been the subject of many adaptations (Bo et al., 2020; Guo et al.,
2017a; Ma et al., 2019; Yang et al., 2019). The idea is to learn clusters as we
train the encoder’s parameters. The method is divided into two steps. First,
the encoder’s parameters are initialized through an AE architecture. Then, the
decoder is detached and the encoder’s parameters are optimized by computing
an auxiliary target distribution and minimizing the Kullback–Leibler (KL)
divergence to it.

After the first phase, we obtain an initial estimate of the final latent space.
An initial K-Means clustering is performed on the encoded features that out-
puts as set of k centroids {µj}kj=1. In the second step, we compute a new dis-
tribution of the latent space Q, from Z that uses the Student’s t-distribution
as a kernel to measure the similarity between embedded point zi and centroid
µj :

qij =
(1 + ||zi − µj ||2/α)−

α+1
2∑k

j=1(1 + ||zi − µj ||2/α)−
α+1
2

, (29)

where α is the degree of freedom of the Student’s t- distribution. The authors
set this value to α = 1 as it cannot be directly cross-validated (Xie et al.,
2016). The obtained value qi,j can be seen as the degree of belief that the
object xi belongs to the cluster j. Therefore, for each value xi we obtain a
soft assignment vector qi. The function that computes qij from zi is called
the clustering layer. The objective is now to make this soft assignment qi
harder and, as explained by the authors, that have the following properties: (1)
strengthen predictions (i.e., improve cluster purity), (2) put more emphasis on
data points assigned with high confidence, and (3) normalize loss contribution
of each centroid to prevent large clusters from distorting the latent feature
space. To this extends they used the distribution P defined as:

pij =
q2ij/

∑N
i=1 qij∑k

j=1(q2ij/
∑N
i=1 qij)

(30)

The encoder is then trained with the KL divergence:

Lc = KL(P |Q) =

N∑
i=1

k∑
j=1

pij log
pij
qij

(31)

As the authors wanted a generic method they used a simple architecture with
only fully connected layers.

18 Baptiste Lafabregue et al.

inputs

𝑥i 𝑥i𝑧i ^Encoder
𝑓()

latent features

reconstruction
loss

𝑐i

clustering layer

KL
divergence

Decoder
𝘨()

Fig. 5 IDEC method: The DNN is trained to both reconstruct the data and obtain a more
densely distributed representation with KL divergence.

As it was one of the first clustering method with deep learning proposed to
give significantly good results, many works have extended this clustering loss.

The first one, Improved Deep Embedded Clustering (IDEC) (Guo et al.,
2017a), proposed a simple modification that consists in keeping the decoder
and the reconstruction loss in the second phase. The idea is to keep the fea-
ture’s informativeness acquired from the first phase. It results in the new loss:

LIDEC = (1− γ)Lc + γLr (32)

One can notice that DEC is a particular application of IDEC with γ = 0.
However, this modification seems not relevant for all data sets (Guo et al.,
2017a). It can also be made mention of the IDEC version that uses convo-
lutional AE (Guo et al., 2017b) instead of fully connected layers. This last
adaptation already shows the importance of AE architecture.

More sophisticated variations were also proposed. For example, the method
Structural Deep Clustering Network (SDCN) (Bo et al., 2020), that incorpo-
rate a Graph Convolutional Network (GCN) (Kipf and Welling, 2016), trained
in parallel of the IDEC encoder with the same number of layers. A GCN layer
allows keeping the graph relation of the data. The authors use it to keep neigh-
borhood relations from the data space in the latent space. A KNN-graph is
created from the train set, where an edge is added for each sample with its
kknn nearest neighbors. Each encoder is regularised by a GCN layer to keep
this graph structure.

2.5.2 Other noticeable clustering loss

Many other methods have been proposed in the literature, even though all of
them could not be cited, here are some of the main ones:

End-to-end deep representation learning for time series clustering 19

inputs

𝑥i 𝑧i

KL
divergence

latent features

𝑐i

Encoder
𝑓()

Decoder
𝘨()

𝑥î

clustering layer
GCN layers

graph

reconstruction
loss

Fig. 6 SDCN method: It adds GCN layers to IDEC framework to preserve local structure
from the data space to the latent space.

– DeepCluster (Caron et al., 2018): The authors propose a simple training
solution that consists in alternating between two phases. First, it clusters
the train set in the latent space with K-Means to obtain an assignment for
each object. Then, the encoder parameters are optimized to predict these
pseudo labels. However, the authors only used this method as a pre-training
method to initialize the DNNs weight for supervised classification.

– Deep Embedded Regularized Clustering (DEPICT) (Ghasedi Dizaji et al.,
2017): The DEPICT framework is similar to IDEC work but made further
modifications to DEC method. First, it uses a clustering loss similar to
DEC and also incorporate a clustering layer composed of a Dense layer of
size k, followed, this time, by a softmax layer. In consequence, the distri-
bution Q is defined as:

qij = Q(yi = j|zi, Θsoft) =
exp(θTsoft,kzi)∑k
j=1 exp(θ

T
soft,kzi)

, (33)

where Θsoft = [θsoft,1, .., θsoft,k] are the weights of the clustering layer. P
is computed similarly to DEC by Eq. 30. Then, they use the KL divergence
between P and Q to train the DNN, but also add a regularisation term to
avoid degenerated solution with only a few big clusters:

L = KL(Q|P) +KL(f |u)

= [
1

N

N∑
i=1

k∑
j=1

pij log
pij
qij

] + [
1

N

k∑
j=1

fj log
fj
uj

]

=
1

N

N∑
i=1

k∑
j=1

pij log
pij
qij

+ pij log
fj
uj
,

(34)

20 Baptiste Lafabregue et al.

where fj = 1
N

∑N
i=1 qij is the empirical cluster distribution, i.e. the fre-

quency of the clusters. And uj is a uniform distribution. This implies the
strong assumption that clusters are equally represented in the training set.
Then, they show that this regularization can be approximated by comput-
ing the standard cross-entropy between Q and P

inputs

𝑥i 𝑧i Cross-Entropy

latent features

𝑐i

Encoder
𝑓()

Decoder
𝘨()

𝑥i^

Lr

clustering layer

Lr Lr Lr

Fig. 7 DEPICT method: The DNN is trained to both reconstruct the data at each layer
depth and obtain better confidence into predicting clustering pseudo labels with cross-
Entropy.

Second, they also changed the AE, to use a Denoising version with masking
noise on each layer (i.e. with dropout layers). After a pre-training phase,
the noisy AE is jointly trained with the clustering loss as in IDEC method.
Moreover, they extend the classical reconstruction loss to be computed as
the sum of the reconstruction at each depth of the autoencoder:

Lmulti rec =
1

n

n∑
i=1

L−1∑
l=0

1

|zli|
(zli − ẑli)2 (35)

where zli is the output of the lth layer of the encoder (the input for l = 0),
|zli| its output size, and ẑli the output the lth layer of the decoder from the
end. This loss insure that the reconstruction is kept at all the stages of the
autoencoder.

– Joint Unsupervised Learning (JULE) (Yang et al., 2019): This approach is
highly different from others as it does not use a separated clustering loss.
This is still included in this section because it is often referred to. This
method is an agglomerative clustering approach, at each step two clusters
are merged until reached the desired number of clusters. This merging is

End-to-end deep representation learning for time series clustering 21

done with respect to an affinity matrix computed in the latent space. This
choice is mitigated by considering the local structure of the data, to favor
the merging of clusters that are, at the same time, close to each other and
far from other neighbors.
The encoder f is updated every p steps by the following loss:

LJULE = − 1

Kc − 1

∑
i,j,k

(γA(f(xi), f(xj))−A(f(xi), f(xk))), (36)

where γ is a weight, A() is the affinity measure between two objects. xi and
xj are from the same cluster, while xk is from the Kc closest neighbouring
clusters. A() is equal to the weight of the affinity matrix W from vertex xi
to xj defined by:

W (i, j) =

{
exp(−‖f(xi)−f(xj)‖

2
2

δ), if xi ∈ NKs
i

0, otherwise
(37)

where NKs
i is the set of Ks xi’s nearest neighbors and δ the mean squared

error between xi and its neighborhood NKs
i .

2.5.3 Deep clustering methods for time series

Some deep clustering methods have been also proposed in the specific context
of time series:

– Deep Temporal Clustering (DTC) (Madiraju et al., 2018): This method is
organized as IDEC framework. However, they changed the architecture of
the encoder by replacing the encoder with a 1D-Convolution layer followed
by a MaxPooling layer and two stacked bi-LSTM cells. The decoder consists
of a simple upsampling followed by a 1D-Convolution layer to reconstruct
the data. Moreover, it is not the state of the last bi-LSTM cell that is used
for representation but the reconstructed sequence. Therefore they keep
the time dimension in the embedding. Based on this, they modified the
computation of DEC distribution Q from Eq. 29 by:

qij =
(1 + sim(zi, µj)/α)−

α+1
2∑k

j=1(1 + sim(zi, µj)/α)−
α+1
2

, (38)

where sim(xi, xj) is a measure of similarity between objects xi and xj .
They then used different similarity measures than the Euclidean, the Com-
plexity Invariant Distance giving the best results.

– Deep Temporal Clustering Representation (DTCR) Ma et al. (2019): Sim-
ilarly to DTC, the authors used three stacked bi-directional RNN network
as the encoder. However, they also add exponential dilatation. The decoder
is a single RNN layer, its hidden state is initialized with the concatenation
of the final hidden state of encoder’s layers. For the training objective, the
authors proposed a new loss composed of three parts:

22 Baptiste Lafabregue et al.

– A classical reconstruction loss Lr.
– A real/fake loss Lclassif : the encoder is trained to discriminate if the

input is real or fake, fake samples being generated by randomly shuffling
20 % of the time steps. To this extent, a 2-dim soft-max layer is attached
to the encoder and trained to predict a 2-dim one-hot vector indicating
real or fake with the categorical cross-entropy.

– A K-Means loss LK−Means: this loss is based on the spectral relaxation
for k-means clustering proposed in Zha et al. (2002). It consists in
minimizing the following function:

min
F

Trace(HTH)− Trace(FTHTHF), s.t.FTF = I, (39)

where H ∈ Rm×N is the data matrix, with m the latent space dimen-
sions. And F ∈ RN×k is the cluster indicator matrix. F is fixed when the
DNNs are trained but it is updated every 10 iterations by computing
the k-truncated singular value decomposition of H.

We obtain the combined loss:

LDTCR = Lr + Lclassif + λLK−Means, (40)

where λ is a regularization coefficient. One can notice that this loss is not
specific to time series and could be used for other data types.

3 Evaluated methods and implementations

All of the methods presented in Sec. 2.5 have their specific framework, with
their own architecture (i.e. types and number of layers, optimizer, etc.) their
own clustering loss and often their own pretext loss. Thus, the comparison
is often difficult to do, as we cannot be sure which parts or combinations of
elements in the method are explaining the performance difference. Moreover,
comparing a generic method that can handle various types of data types to
a tailored method to a specific set of data may be seen as unfair, especially
when the generic method can be easily adapted.

This study aims to cover the different elements available to cluster time
series in deep learning and highlight the influence of each element on the clus-
tering performance. However, given the high number of approaches proposed
in the literature, we only studied a selection of methods. In this section, we
first explain how we decomposed the analysis of the clustering methods, then
we give more details on the selected elements.

All the methods were implemented in TensorFlow 2 based on the existing
code when available. A reference to the authors’ code is added in this case.
The code used for the study is available online1.

1 https://github.com/blafabregue/TimeSeriesDeepClustering

End-to-end deep representation learning for time series clustering 23

Table 1 Summarize of loss and architecture compatibility. For each pretext and clustering
loss, we list the compatible architecture types. *: indicates that it is with the exclusion of
the Dilated-RNN architecture

Clustering loss
DEPICT SDCN DTCR DEC IDEC ClusterGAN VADE

P
re

te
x
t

lo
ss

Multi rec
FCNN FCNN FCNN FCNN FCNN
CNN CNN CNN CNN CNN All All
RNN RNN RNN RNN RNN

Reconstr.
FCNN

All CNN All All All All All
RNN

Triplet
FCNN

All CNN All All All All All
RNN

VAE
FCNN

All CNN All All All All All*
RNN

GAN All All All All All All* All

3.1 The deep clustering method’s decomposition

End-to-end deep clustering methods are usually decomposed into two phases.
A pre-training phase, where the network is trained to retain meaningful fea-
tures with a pretext loss. And a clustering phase, where the network is trained
to output features suitable for the clustering task. Therefore, DNNs for clus-
tering are often the combination of three elements: an architecture (i.e. the set
of layers in this paper), a clustering loss, and a pretext loss.

For example, the DEC method presented in Xie et al. (2016) can be de-
composed as follow:

1. A FCNN auto-encoder as architecture of the DNN.
2. The reconstruction loss is used as pretext loss in the pre-training phase.
3. The clustering loss based on the KL divergence is used as clustering loss

in the clustering phase.

The list of all combinations used is summarized in Table 1.

3.2 Architectures

As explained in Sec. 2.3, three DNNs architecture families can be used for
time series, Fully Connected Neural Networks (FCNN), Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN). However, various con-
figurations can be made for each type depending on a lot of hyperparameters,
like the number of layers, the size of each layer (number of neurons in FCNN,
number of filters in CNN, and number of cells in RNN), the addition of specific
layers (e.g. pooling layers in CNN, use of bidirectional layers in RNN). Hence,
we decided to follow the configurations used in other articles for our experi-
ments as detailed below. By default, we fixed the size of the embedding layer
to Dls = 320, the effect of this parameter will be investigated in Sec. 5.2.2.

24 Baptiste Lafabregue et al.

FCNN: for this type, we used the configuration proposed in DEC and IDEC
papers (Xie et al., 2016; Guo et al., 2017a). The encoder is composed of three
FCNN layers of dimensions d-500-500-2000-Dls, where d is the data-space
dimension. The decoder is constructed as a mirror of the encoder architecture
excluding the embedding layer.

CNN: for convolutional networks, we use three configurations:

– ResNet : This architecture was proposed in Wang et al. (2017). Residual
DNNs use skip connections to jump over some layers (i.e. residual blocks).
The use of skip connections is mainly motivated to avoid the problem of
vanishing gradient when the number of layers increases (He et al., 2016).
The encoder’s implementation used is composed of three residual blocks
followed by a global average pooling layer and the embedding layer as an
FCNN layer. Each residual block is first composed of three convolutional
layers with a fixed filter size of 64. The filter’s length is set to 8, 5, and 3
respectively for the first, second, and third convolution. A ReLU activation
function, preceded by a batch normalization operation, is then added at
the end of the block. Finally, the FCNN embedding layer is added at the
end of size Dls.

– Simple-CNN (SCNN): It is a simplified version of the ResNet architecture
composed of only one residual block, without the skip connection. This
choice is motivated to evaluate if it is justified to use the deep ResNet
architecture.

– Dilated-CNN (DCNN): This architecture was proposed in Franceschi et al.
(2019). It uses two particular hyperparameters, causal padding, and expo-
nential dilated convolutions.
The encoder is composed of a set of dilated causal convolutional layers
followed by the embedding layer as an FCNN layer. The number of filters
is fixed to 40 for all layers with a filter length of 3. In the original version,
the number of layers was arbitrarily fixed to 10 with an exponential factor
for the dilation rate of 2. However, we modified this parameter by comput-
ing the number of layers and dilation rate with the function described in
algorithm 1. It gives better results and it is faster to compute. Finally, an

Algorithm 1 Compute layers’ dilation size
1: procedure (Time series length ts length)
2: last dilation = 1
3: dilation list = []
4: if ts length > 50 then
5: rate = 2
6: else
7: rate = 4
8: while last dilation < ts length/2 do
9: last dilation∗ = rate

10: dilation list+ = last dilation

11: return dilation list

End-to-end deep representation learning for time series clustering 25

FCNN embedding layer of size Dls is added at the end. This architecture
is based on the authors’ code available online 2

For these three architectures, the decoder is constructed as the mirror of the
encoder architecture excluding the embedding layer.

RNN : for recurrent networks, we use three configurations:

– Deep Temporal Clustering (DTC): This architecture was proposed in Madi-
raju et al. (2018). The encoder is first composed of a convolutional layer
followed by a max-pooling layer of size 10 to reduce the number of time
steps, especially for long series. Then, the output is fed to two stacked
bidirectional LSTM (Bi-LSTM) layers of size 50. For the latent space, the
output of the Bi-LSTM is retrieved as the hidden state sequence. This is
motivated to keep the time dimension in the latent space. Therefore the
size of the latent space is not fixed as it depends on the input’s dimensions.
The decoder is composed of a single deconvolutional layer (an upsampling
layer followed by a convolutional layer) with kernel size 10 and a number
of filters equal to the number of features in the inputted time series.

– Bidirectional LSTM (BLSTM): It is a simple architecture composed of
two stacked Bi-LSTM layers. The first layer has a fixed size of 50 and the
second one of bDls/2c. For the latent space, we use the final hidden state
of the last Bi-LSTM layer. The decoder is constructed as the mirror of the
encoder architecture.

– Bidirectional GRU (BGRU): This architecture is identical to the BLSTM
architecture but use GRU cells instead of LSTM cells.

– Dilated-RNN (DRNN): This architecture was proposed in Ma et al. (2019).
It is composed of three stacked bidirectional dilated RNN encoder, with
respectively a dilation rate of 1, 4, and 16. It uses the GRU cells in the
model’s layers. In the article, the number of units of each layer is either 100-
50-50 or 50-30-30. However, as no indication is given on how to make this
choice, we fixed it to 100-50-50 for all datasets as it results in better result
on average. The final hidden state of the last layer (of size 50 × 2 = 100)
is used as the latent space.
The decoder is composed of a single RNN layer with GRU units of size
(100+50+50)×2 = 400. Its initial state is initialized with the concatenation
of all encoder layers’ final hidden states. Then, the decoder iteratively
predicts the reconstructed sequence from the output at t − 1, where the
output at time t = 0 is a zero vector. This architecture is based on the
authors code available online 3

– Bidirectional GRU with attention mechanism (Attention): This architec-
ture is based on the one presented in Ienco and Pensa (2019). It is composed
of a Bi-GRU layer a size 64 if there are less than 250 sample in the train
set, and 512 otherwise. This layer followed by a temporal attention mech-
anism on both the forward and backward layer of size of Dls. However,

2 https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
3 https://github.com/qianlima-lab/DTCR

26 Baptiste Lafabregue et al.

the decoder differs from the one used in Ienco and Pensa (2019) as they
use a double reconstruction loss (one for the forward layer and one for the
backward layer). To make the architecture closer to other methods we used
a simple Bi-GRU layer of size bDls/2c. This architecture is based on the
authors code available online 4.

3.3 Pretext losses

For the pretext loss, we use four losses:

– Reconstruction loss (rec): It is the classical autoencoder’s reconstruction
loss that consists in computing the mean squared error between the in-
putted sequence and its reconstruction (see Eq. 21).

– DEPICT reconstruction loss (multi rec): This pretext loss is the one used
in Ghasedi Dizaji et al. (2017). It extended the reconstruction loss by
computing the mean square error between each encoder’s layer and its
corresponding decoder’s layer (see Eq. 35). One can notice that this loss
requires that the decoder is constructed as the mirror to the encoder, it
excludes all RNN architecture in our case.

– VAE loss (vae): It is the classical VAE loss that balances between re-
construction and the normalization of the latent space distribution (see
Eq. 24):

– Triplet loss (triplet): This is the loss proposed in Franceschi et al. (2019)
that aims to obtain similar representation between a time subseries and its
neighborhood (see Eq. 28). For this loss, we used four values of Ktriplet, 1,
2, 5, and 10. We also computed the result with the combined version (the
concatenation of representation on the four different Ktriplet values). It is
based on the authors code available online 5

We also used the GAN pretext loss, but as GAN does not involve an encoder
it can only be used with DNNs designed for the clustering purpose. Therefore
it is only used in combination with the ClusterGAN clustering loss (see next
section).

3.4 Clustering losses

Many losses have been proposed to simplify the clustering task in the latent
space, especially for images (Caron et al., 2018; Ghasedi Dizaji et al., 2017;
Guo et al., 2017b; Xie et al., 2016; Yang et al., 2019). We selected a subset of
them by covering the different types of approaches. We favored the one where
the code was available to ensure that the validity of our implementation. The
selected losses are presented bellow, but were already further explained in
Sec. 2.1:

4 https://gitlab.irstea.fr/dino.ienco/detsec
5 https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries

End-to-end deep representation learning for time series clustering 27

– DEC (Xie et al., 2016) and IDEC (Guo et al., 2017a): The DEC loss use
the KL divergence to improve assignment confidence of an object to its
cluster. The IDEC loss extended the latter by keeping the pretext loss
(the reconstruction loss in the article) in the clustering phase (see Eq. 32).
Following the default parameters, we use a γ value set to 0.1. It is based
on the authors code available online 6

– DEPICT (Ghasedi Dizaji et al., 2017): This loss is similar to IDEC loss.
However, they use the standard cross-entropy to train the DNN parameters.
We also use a γ value of 0.1.

– SDCN (Bo et al., 2020): This loss is also based on IDEC loss. They use
Graph Convolutional Networks to regularize the training to keep the local
structure of the data based on a KNN graph. We used a number of neigh-
bors equals to 3 given the small size of some datasets. We also changed
the KNN algorithm to use DTW instead of Euclidean distance, as DTW
give better results on this benchmark (Dau et al., 2019). It is based on the
authors code available online 7

– VADE (Jiang et al., 2016): This loss is based on ELBO loss, and therefore
is only compatible with VAEs. They extend the ELBO loss by learning one
distribution by expected clusters instead of one. It is based on the authors
code available online 8

– ClusterGAN (Ghasedi et al., 2019): This loss is based on GAN loss, and
therefore is only compatible with it. They add an encoder that is trained
to reproduce the generated latent feature. It is based on the authors code
available online 9

– DTCR (Ma et al., 2019): This loss is the only proposed for time series,
even though it is generic. It combines three components, the pretext loss,
a K-Means loss (see Eq. 39), and real/fake loss. We use a λ value of 0.5. It
is based on the authors code available online 10

– None: We also evaluate the result obtained without using any clustering
loss.

For all configurations, we use the Adam optimizer with a learning rate of
0.001 (Bo et al., 2020; Franceschi et al., 2019; Madiraju et al., 2018; Mukherjee
et al., 2019) at the exception of the DRNN architecture where we use the SGD
optimizer with exponential decay, a learning rate of 0.1, and a decay rate of
0.1. The batch size used is set to 10 at the exception of the SDCN and DTCR
losses that require a batch size equals to the train set size.

6 https://github.com/XifengGuo/IDEC
7 https://github.com/bdy9527/SDCN
8 https://github.com/slim1017/VaDE
9 https://github.com/sudiptodip15/ClusterGAN

10 https://github.com/qianlima-lab/DTCR

28 Baptiste Lafabregue et al.

4 Evaluation setup

4.1 UCR and UEA archives

To validate our result we used two benchmarks, the UCR univariate archive (Dau
et al., 2019) and the UEA multivariate archive (Bagnall et al., 2018). Even
though the archives were designed to evaluate supervised classification meth-
ods, no benchmark is available yet to evaluate specifically clustering methods.
Moreover, these archives are already often used in the time series clustering
context (Ma et al., 2019; Madiraju et al., 2018; Paparrizos and Gravano, 2015)

We used the extended version of the UCR archive with 128 datasets and
the UEA archive with 30 datasets, both available online11. They contain a
large number of datasets from different domains. The datasets are grouped into
different categories with the main ones being Image outlines, Sensor Readings,
Motion Capture, Spectrographs, ECG, Electric Devices, Audio, and Simulated
Data. All datasets are split into train and test sets. The number of sequences
in train sets goes from 3000 to 12 sequences and from 20000 to 15 in test
sets. Some datasets have different time series lengths, however, we use the
equaled length versions provided in the archive. In this version, all series are
zero-padded at the end. The length varies from 3000 to 2 time steps but with
a median length of 218. Also, for each dataset, a reference data is provided.
The number of classes per dataset varies from 2 to 60, with a median at 4 (49
of them have only 2 classes). For multivariate datasets, the number of features
varies between 2 and 1345. Previously, all UCR datasets were z-normalized but
some are now provided without any preprocessing. To simplify the evaluation
we decided to perform a z-normalization on all datasets.

Besides offering a variety of datasets, these two archives have been subject
to numerous use (Fawaz et al., 2019; Franceschi et al., 2019; Ma et al., 2019;
Madiraju et al., 2018; Xiao et al., 2020; Zhang et al., 2018). It allows a better
comparison with other methods.

4.2 Evaluation protocol

All combinations are trained with 1000 batch iterations for the training phase
and also 1000 for the clustering phase. After the training phase, a first DNN
is obtained (the clustering loss None). This DNN is then used as initialization
for all other clustering losses, with the exception of ClusterGAN and VADE
that are trained from scratch.

The DNNS are trained (training phase + clustering phase) on the train
set, and the clustering is performed on the test set, following the choice made
in Ma et al. (2019) and Xiao et al. (2020) for time series deep clustering. This
protocol insure that the latent space learned can be generalized.

11 https://timeseriesclassification.com/index.php

End-to-end deep representation learning for time series clustering 29

To cluster the test set, most of the clustering loss models directly provides
a clustering assignment. For the others, the clustering is performed with a K-
Means on the test set projected in the latent space (i.e. the encoded features).

To evaluate the clustering performance, we use the Normalized Mutual
Information (NMI), as it is the most common metric used for deep cluster-
ing (Ghasedi Dizaji et al., 2017; Guo et al., 2017b; Ma et al., 2019; Xie et al.,
2016; Yang et al., 2019; Zhang et al., 2018) and as it also takes in consideration
the expected distribution contrary to measure such as the Rand Index or the
Clustering Accuracy.
The NMI is computed between a partition of M groups A = {A1, . . . , AM}
and a partition of M ′ groups B = {B1, . . . , BM ′} by the following formula:

NMI =

∑M
i=1

∑M ′

j=1Nij log
N.Nij
|Ai||Bj |√

(
∑M
i=1 |Ai|log

|Ai|
N)(

∑M ′

j=1 |Bj |log
|Bj |
N)

, (41)

where Nij = |Gi
⋂
Aj |. The value varies between 0 and 1, where the distribu-

tions are identical when the value is equal to 1.
Each DNN combination is trained 5 times. We use the NMI score mean

of these 5 runs for the evaluation. These processes were run on a cluster of
more than 60 GPU composed of GTX 1080Ti, Tesla P100, K20, K40, and
K80. Furthermore, it should also be mentioned that some combinations have
some convergence problems that led to vanishing or exploding gradients. These
combinations are essentially leading to poor results. However, some combina-
tions were excluded from the evaluation when too many datasets without any
results were obtained. A limit of 10 datasets without results for the univariate
archive and 3 for the multivariate archive was set. It only happened for combi-
nations with FCNN architecture and triplet pretext losses on the multivariate
archive (a note is added in the reported result). All the detailed results with
NMI but also Adjusted Rand Index (ARI) and Clustering Accuracy measure
are also reported on our git repository 12.

Finally, we want to evaluate the overall performance of each combination
and evaluate if the difference with other combinations is significant or not.
For the comparison, we use the average win/loss rank. Following the recom-
mendation in Dau et al. (2019), we use the pairwise Wilcoxon signed-rank
tests (Wilcoxon, 1992) and form cliques using the Holm correction (Holm,
1979) to determine the critical difference between each combination with a
significant level α = 0.05. To visualize these comparisons we use a critical
difference diagram proposed by Demšar (2006), where a thick horizontal line
shows the clique computed previously. This method of comparison has some
limitations as the rank may not reflect the overall robustness of a method, es-
pecially when the number of datasets and compared methods is high. However,
in our experiments, the results gave information that was correlated to the ob-
served individual results. Note also that both the ranking and the Wilcoxon
test handle missing values without skewing the outcome.

12 https://github.com/blafabregue/TimeSeriesDeepClustering

30 Baptiste Lafabregue et al.

5 Results

In this section, we present the results obtained by running all valid combi-
nations. We first present the evaluation between all combinations in Sec. 5.1,
then we show the effect of other parameters on performances in Sec. 5.2. Fi-
nally, we compare the best combinations to standard non-deep approaches in
Sec. 5.3.

5.1 Cross-comparison on deep combinations

In order to better compare the performance of each choice, we compare each
element (architecture, pretext loss, and clustering loss) separately. For each
element, we pick the best combination that includes it (e.g. the best combina-
tion that use FCNN architecture) according to the average win/loss rank on
the train set. Then, we compare the best candidates for the architecture, the
pretext loss, and the clustering loss separately on the test set.

The results for the univariate archive are reported in Figs. 8 and 9 for the
multivariate. The best average NMI score is obtained by the ResNet-mulit rec-
None combination with an average NMI score of 0.349 for the univariate
archive and by the DCNN -mulit rec-SDCN for the multivariate with 0.356
(this last value is approximated because two datasets could not be clustered
with this combination).

The first thing that comes out of these results is that no method outper-
forms others with a critical difference, especially if we take into account both
archives. However, the following observations can be made:

– On architectures: when looking at the univariate results, the CNN based
architectures outperform all other types. On the multivariate datasets, the
DRNN architecture gives also good results, but the DCNN and SCNN are
also performing well.

– On pretext losses: the reconstruction based loss (rec and multi rec) and the
triplet loss combined are the one that give the best results on univariate
archive. However, the triplet loss seem to be not consistent on multivari-
ate archive. Moreover, if we report the average NMI over all univariate
datasets, we obtain for the DCNN architecture respectively 0.328, 0.329
and 0.339 for the triplet combined, multi rec and rec losses. But the dif-
ference greatly increase with 0.137, 0.343 and 0.339 for the multivariate
ones.

– On clustering losses: surprisingly, no addition of a clustering loss results in a
gain in performance at the exception of the SDCN loss for the multivariate
archive. Therefore, the obtained results tend to not justify the additional
computational time and complexity required by the use of a clustering loss.

It can also be pointed out that every element, taken separately, achieves to
obtain the best NMI score on at least one dataset. For example, the BGRU
architecture obtains the best score on the univariate CBF dataset (with 0.71

End-to-end deep representation learning for time series clustering 31

123456789

BGRU-tripletKcombined-None
BLSTM-tripletKcombined-None

DRNN-rec-None
Attention-rec-None

FCNN-rec-None
DTC-tripletKcombined-None
DCNN-tripletKcombined-None
SCNN-multi rec-None
ResNet-multi rec-None

(a) Best for each architecture

12345678

ResNet-tripletK1-None
SCNN-tripletK2-None
DCNN-tripletK5-None

SCNN-tripletK10-None DCNN-vae-SDCN
DCNN-rec-None
DCNN-tripletKcombined-None
ResNet-multi rec-None

(b) Best for each pretext loss

12345678

DTC-vae-VADE
DCNN-tripletK10-DEC

DCNN-rec-DEPICT
DCNN-vae-DTCR DCNN-rec-IDEC

DCNN-rec-GAN
SCNN-multi rec-SDCN
ResNet-multi rec-None

(c) Best for each clustering loss

Fig. 8 Results for univariate time series with NMI measure

average NMI) even so this architecture obtains the lower win/loss rate. Hence,
it can be interesting to look for relations between some element types and
their performance on datasets.

However, if each combination achieves some good results on some dataset,
the global comparison of individual combinations shows that the best combi-
nation clearly outperforms the others on most of the datasets. For example,
we have plot the pairwise NMI score comparison of different combination in
Fig. 10. These three plots show that, even if one combination performs signifi-
cantly better than the other, the performance differences for each dataset only
spread on one side of the identity line (the low performing combination per-
forms poorly compared to the best preforming one). Therefore, it seems that
there are no “specialisations”, i.e. best performing combinations get better
results on all datasets, not only on a subset of them. Note that we have only
plot pairwise comparison for the univariate archive, as the limited number of
datasets makes it less significant.

Furthermore, we conducted a more in depth analysis that did not lead to
any correlation, more details are reported in Sec. 6.3.

It should also be mentioned, that clustering is often considered to be an
ill-posed problem (Jain, 2010). Multiple partitioning for each dataset may
be considered relevant. This issue is particularly illustrated in the univariate
archive, where some datasets have identical data but with different labeling.
For example, the datasets GunPointAgeSpan, GunPointMaleVersusFemale,

32 Baptiste Lafabregue et al.

123456789

DTC-tripletKcombined-None
FCNN-multi rec-None

BGRU-tripletKcombined-None
Attention-rec-None

ResNet-rec-SDCN
DCNN-multi rec-None
SCNN-rec-None
BLSTM-rec-None
DRNN-rec-None

(a) Best for each architecture

12345678

DRNN-tripletK5-None
SCNN-tripletK1-None

DTC-tripletK2-DEC
DTC-tripletK10-DEPICT BGRU-tripletKcombined-None

SCNN-vae-SDCN
DCNN-multi rec-SDCN
DRNN-rec-None

(b) Best for each pretext loss*

12345678

DTC-vae-VADE
DTC-vae-DTCR

DTC-tripletK10-DEPICT
ResNet-rec-GAN BGRU-rec-IDEC

DRNN-rec-DEC
DCNN-multi rec-SDCN
DRNN-rec-None

(c) Best for each clustering loss

Fig. 9 Results for multivariate time series with NMI measure (*: the FCNN combined with
triplet based losses were excluded because they result in too many error of computation).

0.0 0.2 0.4 0.6 0.8 1.0

DCNN-rec-None

0.0

0.2

0.4

0.6

0.8

1.0

B
G

R
U

-t
ri

pl
et

K
co

m
bi

ne
d-

N
on

e

DCNN-rec-None is better here

W: 104, T: 24, L: 29

BGRU-tripletKcombined-None is better here

0.0 0.2 0.4 0.6 0.8 1.0

SCNN-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

B
L

S
T

M
-t

ri
pl

et
K

co
m

bi
ne

d-
N

on
e

SCNN-multi rec-None is better here

W: 106, T: 18, L: 33

BLSTM-tripletKcombined-None is better here

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

D
R

N
N

-r
ec

-N
on

e

ResNet-multi rec-None is better here

W: 98, T: 23, L: 36

DRNN-rec-None is better here

Fig. 10 Pairwise NMI score comparison of different deep clustering combination on both
univariate and multivariate archives with win, loss, and tie scores. From left to right : BGRU-
tripletKcombined-None vs DCNN-tripletKcombined-None, BLSTM-tripletKcombined-None
vs SCNN-multi rec-None, DRNN-rec-None vs ResNet-multi rec-None

and GunPointOldVersusYoung, that record actors’ motions, refer to the same
records but are respectively aiming to discriminate between the gesture type,
the gender of the actor, and the older versus recent record. Identically, the
DodgerLoopGame and DodgerLoopWeekend use the same data on traffic con-
centration but aim to discriminate between a day with a game at a stadium
and no game for the former, and between weekday and weekend for the latter.
Hence, no unsupervised method can perform well on a dataset without having
poor results on the other(s). Moreover, the observed standard deviation over

End-to-end deep representation learning for time series clustering 33

all methods is non-negligible. The NMI standard deviation goes from 0.010 to
0.170 with a median at 0.060. This can be observed with all combinations. This
may suggest that all methods tend to fall in local minima. More insight will
be given in Sec. 6.1 where we discuss the NMI evolution through the training
process.

Finally, another point of comparison is the number of failure encountered
by the different combinations. This led to exclude the FCNN -triplet com-
binations for the multivariate comparison on clustering losses. Overall, any
architecture and the pretext loss are robust and lead to almost no failures
(with 1% failure rate for the univariate archive, and 6% for the mutivariate
one), at the exception of the FCNN -triplet combinations on both archives
(with 35% failure rate for the univariate archive, and 82% for the mutivariate
one). For the use of clustering loss, most of the clustering losses give robust
results, with almost no difference with the pre-trained model. However SDCN
(with 12% failure rate for the univariate archive, and 24% for the mutivariate
one) and DTCR (with 5% failure rate for the univariate archive, and 18% for
the mutivariate one) methods lead to more failures. This is explained by the
batch size that is fixed to the size of the dataset, which leads to memory errors.
Detailed statistics are available on our github repository 13.

5.2 Other parameters influence

Even though the previous results cover different variations of DNNs, other
parameters are used in the literature when training DNNS for clustering. It is
standard in supervised classification to tune the choices of these parameters,
with grid search for example, especially for the hyperparameters (e.g. the size
and number of layers, the optimizer, the learning rate, etc). Unfortunately, it
is impossible to conduct such optimization for each dataset in an unsupervised
context as no train set can be used.

In this section, given the high number of compared methods, we have
decided to report the effect of a small selection of these parameters. We have
selected parameters or additional processing that are often used in clustering
methods.

However, note that multiple other parameters have shown to greatly influ-
ence the performance of deep clustering methods (e.g. type of optimizer, size
of layers, etc.).

5.2.1 Denoising

Denoising autoencoders (DAE) are often used as pretext loss (Ghasedi Dizaji
et al., 2017; Guo et al., 2017b; Xie et al., 2016) (see Sec. 2.4.2 for more de-
tails). We used masking noise as it is the most used in the selected meth-
ods (Ghasedi Dizaji et al., 2017; Guo et al., 2017a; Xie et al., 2016). The

13 in https://github.com/blafabregue/TimeSeriesDeepClustering/blob/main/paper results/
folder

34 Baptiste Lafabregue et al.

123456

DCNN-rec-SDCN
Denoising-DCNN-rec-SDCN

SCNN-rec-SDCN Denoising-SCNN-rec-SDCN
Denoising-DCNN-rec-None
DCNN-rec-None

(a) Best of denoising combinations on univariate archive

123456

Denoising-DRNN-rec-None
Denoising-ResNet-multi_rec-None
Denoising-SCNN-multi_rec-None ResNet-multi_rec-None

DRNN-rec-None
SCNN-multi_rec-None

(b) Best of denoising combinations on multivariate archive

Fig. 11 Comparison of performance for DNNs trained with denoising and without with
NMI measure

masking noise is generated with dropout layers with a dropout rate of 20%.
Note that this method is designed for AE frameworks and therefore will only be
applied with rec and multi rec losses. We have reported the three top-ranked
combinations with denoising and compared them to their version without it
in Fig. 11.

The reported results show that the denoising either degrades the results
or has a really small effect on the performance. When looking at individual
results on each dataset it can also be noticed that the improvements tend to
be very small. But at the opposite it may also lead to important performance
degradation. This may be explained by the effect of the noise on time series,
where a high variation of the signal may more easily create confusion between
classes. Moreover, for 1D-convolution DNNs the information on the neighbor-
hood may be more limited than 2D-convolutions due to the filters’ size and
their 1D nature. Indeed we only have 2 immediate neighbors in 1D for 8 in
2D. This may alter the DNNs’ capacity to discriminate between noise and real
signal.

5.2.2 Size of the latent space

It is often recommended to have a latent space with a significantly smaller
number of dimensions than the one in the original data space. This aims to
force the DNN to retains only meaningful features for the reconstruction or
the selected pretext task. Therefore, we want to test the effect on time series
data.

Given the computation time required to launch all combinations we only
launched three different options of clustering size. The latent space’s number
of features is fixed to either 10, 320, or 10% of the time series length (noted
perc). Thus, we can compare the effect of a small latent space, a large latent
space, or one adapted to the dataset. The results are displayed in Fig. 12.

End-to-end deep representation learning for time series clustering 35

123456789

DCNN-rec-None-10
DCNN-rec-None-perc

SCNN-multi_rec-None-perc
DCNN-rec-None-320

SCNN-multi_rec-None-320
SCNN-multi_rec-None-10
ResNet-multi_rec-None-10
ResNet-multi_rec-None-perc
ResNet-multi_rec-None-320

(a) Best of latent dimension size on univariate archive

123456789

DCNN-rec-SDCN-10
DCNN-rec-None-10

DCNN-rec-None-perc
DRNN-rec-None-10

DCNN-rec-None-320
DCNN-rec-SDCN-perc
DRNN-rec-None-perc
DRNN-rec-None-320
DCNN-rec-SDCN-320

(b) Best of latent dimension size on multivariate archive

Fig. 12 Comparison of DNNs’ performance trained with different size of latent dimension,
10, 320 or perc (10% of time series length) with NMI measure

The choice of a large latent dimension seems more relevant, especially for
the DCNN -rec-None architecture for univariate and DCNN -rec-SDCN mul-
tivariate. For the latter, it manages to obtain the best average ranking for the
320 features version and the worst with its 10 version with a significant dif-
ference. The difference between the 10 and 10% features versions seems more
relative as the 10% version mostly tends to have a latent dimension size around
20. Hence, this version is more related to a small latent dimension size.

However, these general observations hide a highly variable behavior among
datasets. In the case of the DCNN -rec-None architecture and the Chinatown
dataset, the 10 features version obtains the best score with 0.69 against 0.53
for size 320. This can also be observed for other datasets like GesturePebbleZ2
or Trace, with respectively an NMI gain of 0.13 and 0.10. Hence, even if a
large latent dimension size seems a good choice by default, it may strongly
minimize the DNN performance in some cases.

This limited comparison already highlights that hyperparameters modi-
fication may result in major modification of the DNNs’ capacity to extract
features. In a non-supervised context, this may strongly mitigate the applica-
tion of such methods. It is even more problematic if we take into consideration
the number of possible hyperparameters combinations for DNNs (e.g. number
of layers, size and number of filters for CNN, learning rate options, ...).

5.2.3 Dimension reduction

This section is motivated by the work presented in McConville et al. (2019).
The authors propose to use a dimension reduction method on the latent space
before applying the clustering method. The reduction dimension methods pro-
posed are Isomap (Tenenbaum et al., 2000), t-SNE (Maaten and Hinton, 2008),
Linear Embedding (LLE) (Roweis and Saul, 2000) and UMAP (McInnes et al.,

36 Baptiste Lafabregue et al.

12345

DCNN-rec-None
ResNet-multi_rec-None

ResNet-multi_rec-None-GmmUMAP
DCNN-rec-None-KUMAP
ResNet-multi_rec-None-KUMAP

(a) Best of reduction dimension with comparison to only K-Means on univariate archive

123456

SCNN-multi_rec-None
DRNN-rec-None

DCNN-multi_rec-SDCN DCNN-multi_rec-SDCN-GmmUMAP
DCNN-multi_rec-SDCN-KUMAP
SCNN-multi_rec-None-KUMAP

(b) Best of reduction dimension with comparison to only K-Means on multivariate archive

Fig. 13 Comparison clustering performance performed either directly on the learnt repre-
sentation or after a dimension reduction (UMAP) with different clustering methods (GMM
an K-Means) with NMI measure.

2018). They set the number of outputted dimensions to the number of searched
clusters, K. They also propose to replace the K-Means method with either
Spectral clustering or Gaussian Mixture Model (GMM) approaches. Note that
in the reported results, the combination of K-Means method with the UMAP
is noted as KUMAP. We have tested the different combinations and reported
the three top-ranked combination with reduction dimension and compared
them to their version without it in Fig. 13. We have also added the best
ranked combination without dimension reduction for the multivariate archive
(DRNN -rec-None) in the two diagrams for comparison. For the univariate
archive, the DRNN -rec-None is already in the top three. The results were
obtained based on the author’s code 14.

In McConville et al. (2019), the authors observed that the UMAP reduction
dimension in combination with the GMM clustering method reaches the best
performance. In our case, UMAP also improves the clustering performance.
For all the other dimension reduction methods we observe a degradation of
the results. In our case, K-Means gave slightly better results than GMM but
without a critical difference. However, it still tends to confirm the observations
in McConville et al. (2019). It should also be mentioned that no critical differ-
ence is reported between results with and without reduction dimension with
the Holms correction. But the Wilcoxon test reports a difference with p < 0.02
between clustering with and without UMAP when compared individually. On
the global NMI average the ResNet-multi rec-None-KUMAP combination ob-
tain 0.399 against 0.356 without UMAP. For the multivariate, this goes from
0.417 for DRNN -rec-None-KUMAP to 0.348 without UMAP. Overall, the use
of UMAP seems to be a consistent tool to improve clustering performance.

14 https://github.com/rymc/n2d

End-to-end deep representation learning for time series clustering 37

5.3 Comparison to non-deep methods

Even if this paper aims to evaluate different deep clustering against each other,
we also want to position these methods among other classical clustering meth-
ods for time series. To do so, we have selected the following non-deep methods:

– KEucl : K-Means method with Euclidean distance and arithmetic mean to
compute centroids. We use the tslearn implementation 15 with a maxi-
mum iteration of 200.

– KDBA: K-Means method with DTW (Dynamic Time Warping) (Sakoe and
Chiba, 1978) measure and DBA (DTW Barycenter Averaging) Petitjean
et al. (2011) to compute centroids. We used the tslearn implementation 15

with a maximum iteration of 200.
– KPCA: K-Means method with Euclidean distance and arithmetic mean to

compute centroids. However, in this case, we perform a Principal Compo-
nent Analysis (PCA) with a reduction to K dimensions before applying
the K-Means algorithm. We used the tslearn implementation for the K-
Means, and sklearn for PCA 16.

– KUMAP : K-Means method with Euclidean distance and arithmetic mean
to compute centroids. However, in this case, we perform a UMAP with a re-
duction to K dimensions before applying the K-Means algorithm. We used
the tslearn implementation for the K-Means with a maximum iteration
of 200, and umap-learn for UMAP 17.

– Kshape (Paparrizos and Gravano, 2015): k-shape is a method that relies
on a scalable iterative refinement procedure to extract cluster base on the
cross-correlation measure. We used the author’s Python implementation.18

– USSL (Zhang et al., 2018): Unsupervised Salient Subsequence Learning
is a method that extracts shapes to obtain some characteristics. For this
method, we use the results reported in the supplementary materials of Ma
et al. (2020) on the 85 datasets UCR version.

The comparison is showed in Fig. 14. For both archives, we have selected the
best candidate based on NMI results on the train set with and without UMAP,
note that the displayed diagram are still computed on the test set and result
in similar ranking. We have also added the UMAP best candidate of each
archive in the other archive’s plot to evaluate the robustness of these methods
on the two archives. For the USSL and Kshape methods, we did not report
the multivariate results as it was not included in Ma et al. (2020) for USSL
and as the Kshape authors’ code does not support multivariate time series.

For both archives, the deep clustering best candidate with the use of UMAP
is ranked first. It should also be noted that the KUMAP is in the top three
ranked methods on both archives. This highlights the benefit of using UMAP
before the clustering task independently of the use of a deep transformation

15 https://tslearn.readthedocs.io/en/stable/gen modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
16 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
17 https://pypi.org/project/umap-learn/#description
18 https://github.com/johnpaparrizos/kshape

38 Baptiste Lafabregue et al.

123456789

KEucl
DCNN-multi rec-SDCN-KUMAP

KDBA
USSL

KPCA
Kshape
KUMAP
ResNet-multi rec-None
ResNet-multi rec-None-KUMAP

(a) Baseline comparison on univariate archive

12345678

KEucl
Kshape
KPCA

DRNN-rec-None KDBA
KUMAP
ResNet-multi rec-None-KUMAP
DCNN-multi rec-SDCN-KUMAP

(b) Baseline comparison on multivariate archive

Fig. 14 Results of deep clustering methods compared to non-deep methods with NMI
measure

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

K
D

B
A

ResNet-multi rec-None is better here

W: 67, T: 26, L: 64

KDBA is better here

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

K
E

uc
l

ResNet-multi rec-None is better here

W: 93, T: 33, L: 31

KEucl is better here

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0
R

es
N

et
-m

ul
ti

re
c-

N
on

e-
K

U
M

A
P

ResNet-multi rec-None is better here

W: 44, T: 20, L: 93

ResNet-multi rec-None-KUMAP is better here

Fig. 15 Pairwise NMI score comparison of deep and non-deep clustering combinations on
both univariate and multivariate archives with win, loss, and tie scores. From left to right
: KDBA vs ResNet-multi rec-None, KEucl vs ResNet-multi rec-None, ResNet-multi rec-
None-KUMAP vs ResNet-multi rec-None

KEucl KDBA KPCA KUMAP Kshape USSL Deep Deep+KUMAP
KEucl 6.3e-3 0* 0* 1.5e-5 0* 0* 2.6e-5
KDBA 6.3e-3 0.600 0.184 0.750 0* 0.317 2.8e-3
KPCA 0* 0.600 0.090 0.794 0* 0.118 5.6e-3
KUMAP 0* 0.184 0.090 0.420 0* 0.478 0.018
Kshape 1.5e-5 0.750 0.794 0.420 0* 0.528 0.012
USSL 0* 0* 0* 0* 0* 0* 0*
Deep 0* 0.317 0.118 0.478 0.528 0* 7.4e-3
Deep+KUMAP 2.6e-5 2.8e-3 5.6e-3 0.018 0.012 0* 7.4e-3

Table 2 p-values obtained on the Wilcoxon test on univariate archive. The method “Deep”
correspond to the ResNet-multi rec-None combination. Red indicats that the methods did
not pass the Wilcoxon test with Holms correction. *: values bellow 1e-5 are rounded to 0.

or not. However, the deep latent space seems to benefit more from UMAP
than the original space. Even though KUMAP is ranked before other non-
deep methods, it remains lower than the best deep clustering candidate with a
confidence p < 0.02 at the Wilcoxon test for the univariate archive . However,

End-to-end deep representation learning for time series clustering 39

for the multivariate archive, the difference does not pass the Wilcoxon test
(with p = 0.10). Moreover, for the multivariate archive, the deep clustering
combination alone performs significantly worse than KUMAP method, con-
firming that it is the combination of UMAP and the deep embedding that
allows obtaining this score on the multivariate archive. Note that the average
NMI score for KUMAP is 0.352 for the univariate archive and 0.390 for the
multivariate one.

Overall the ResNet-multi rec-None-KUMAP combination obtains the best
ranking if we take in consideration both archive. But the gain obtained from
using DNNs remains small and difficult to generalize as it does not pass most
of the Wilcoxon test with the Holms correction (see Tab. 2).

Moreover, when analyzing pairwise comparison plotted in Fig. 15, we can
observe a large spread of performance indicating that each method is relevant
to some datasets. For example, KDBA obtains a number of wins when com-
pared to the ResNet-multi rec-None combination, even the KEucl performs
better on a fifth of the datasets. Consequently, current deep clustering meth-
ods should be seen as alternative methods and not as replacements to other
non-deep methods.

5.4 Execution time

In this final evaluation’s section, we have reported the average, the median,
the minimal and the maximal execution times of deep clustering combinations’
training compared to other non-deep methods in Fig. 3. We have only reported
one combination per architecture, as it is the only one that have a major impact
on the execution time. The choice of pretext loss has a really minor impact
(less than a factor of 1.4 on all combinations). The execution time addition
from the clustering loss is on average very small (less than 20% of the pre-
training execution time), at the exception of the SDCN loss that results in a
similar execution time (doubling the total execution time). The deep clustering
methods were trained on a GPU 1080Ti (with 11.1Go RAM) and non-deep
methods on an Intel Skylake (2x12 cores, with 96 Go RAM).

The reported results in Fig. 3 show that deep clustering methods take a
considerably larger amount of time to execute compared to non-deep methods.
The training process can go up to a full day for some combinations with only
considering the pre-training (so around two days with SDCN clustering loss).
However, the execution time can be reduced by decreasing the number of batch
iterations. In general, RNN models result in longer execution time compared
to CNN models and even more when compared with the FCNN model. The
time series’ length is the main factor that increases the execution time, as the
number of batches is fixed. Finally, it can be noted that KShape and KDBA
can also lead to memory usage problems when dealing with large datasets.
For example, the KDBA method took around two days to execute on the
EigenWorms multivariate dataset on a Intel Xeon E7-8891 (38 cores with
250Go of RAM).

40 Baptiste Lafabregue et al.

Method Median Average Minimal Maximal Standard deviation
Attention-rec-None 3160 6958 278 45391 8710
BGRU-rec-None 2156 3101 245 39391 4503
BLSTM-rec-None 2912 3956 251 45391 5125
DTC-rec-None 1987 2787 208 38666 4141
DRNN-rec-None 3442 9276 946 85043 85043
DCNN-rec-None 1647 4086 294 34196 5746
SCNN-rec-None 848 1927 171 15561 2552
RestNet-rec-None 1619 3430 279 26963 4303
FCNN 638 1708 139 9217 2092
KEucl < 1 <1 < 1 20 2
KPCA < 1 < 1 < 1 2 < 1
KUMAP 9 12 5 75 10
KDBA 39 658 1 9247* 1700
KShape 2 36 < 1 433* 75

Table 3 Execution time comparison between some selected combinations of deep clustering
methods and non-deep methods in seconds on univariate and multivariate archives. *: 3
datasets could not be clustered with KDBA and KShape because of memory usage

6 Analysis of DNNs

In this section, we aim to give more insight into the DNNs training and the
latent space obtained through different aspects.

6.1 DNNs training and clustering task

As we do not train the DNNs to directly predict labels, the correlation be-
tween the loss and the clustering performance evolution may not be verified.
In Fig. 16, we have plotted the evolution of the NMI score on the test set
compared to the evolution of the pretext and clustering losses.

For recall, the first 1000 batches are trained without the clustering loss,
for the ShapeletSim dataset this corresponds to 500 epochs and 334 for CBF.
The combination of the clustering and pretext losses are also launched with
1000 batches but, for both DEC and IDEC they include a stopping criterion
that fires when the clustering does not change from one iteration to the other,
explaining the early stop.

On both plots, it can be observed that the NMI is not stable and may
finish below its maximum value. Also, we can see that the addition of the
clustering loss tends to highly disturb the latent representation. This often
results in lowering the performance of the learned representation, resulting in
a 0.0 score of NMI in Fig. 16a. This observation can be generalized to almost
all datasets and DNN combinations. This can be confirmed by measuring the
gap between maximal and final NMI at each run. For both archives this gap is
significant. For the univariate archive, the average gap among all combinations
ranges from 0.029 to 0.256 points of NMI score. For the two best methods, it
is of 0.078 for ResNet-mulit rec-None and 0.073 for DCNN -rec-None. For the
former, this implies a drop of the NMI average score from 0.434 to 0.356. Even

End-to-end deep representation learning for time series clustering 41

0 100 200 300 400 500

number of epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Clustering loss

Pretext loss

NMI Introduction of
the clustering loss

(a) ResNet-rec-IDEC on ShapletSim

0 50 100 150 200 250 300 350

number of epochs

0.0

0.2

0.4

0.6

0.8

1.0
Clustering loss

Pretext loss

NMI

Introduction of
the clustering loss

NMI gap after the
pretraining phase

(b) DCNN -rec-DEC on BME

Fig. 16 Evolution of NMI and losses in the parameters training (the last epochs correspond
to the addition of the clustering loss)

(a) UMAP (b) t-SNE

Fig. 17 Projection to two dimensions of CBF dataset using different methods between
Raw (left) and DNN’s Latent space (right) with either UMAP or t-SNE. The latent space
is obtained with DCNN -rec-None.

though it does not seem realistic to find a way to reach this maximum score,
it still shows the potential DNNs’ capacity to create representation suitable
for the clustering task. Moreover, we can see in Fig. 16a that if we stop the
process around epoch 250, we can have a highly different result from one epoch
to the other.

On some datasets, this capacity can be visually confirmed. To do so, we
project the datasets into 2 dimensions. To perform the projection we use two
dimension reduction methods, UMAP, and t-SNE. For each method, we have
plotted the projection with the original data (without any preprocessing) and
the data in the latent space learned by the DNNs. The projections are reported
in Figs. 17, 18 and 19.

The representation learned on both CBF and ShapletSim datasets clearly
illustrates the gain to use the DNNs on them. This is even clearer for the latter
where the clusters could not be distinguished with the raw data. However,
DNNs does not always lead to such good representations. For the TwoPatterns
dataset, even though the data form more distinguishable groups, each class
remains split into multiple groups, making the clustering task difficult. The
K-Means clustering on both the original space and the latent space resulted

42 Baptiste Lafabregue et al.

(a) UMAP (b) t-SNE

Fig. 18 Projection to two dimensions of TwoPatterns dataset between Raw (left) and
DNN’s Latent space (right) with either UMAP or t-SNE. The latent space is obtained with
DCNN -rec-None.

(a) UMAP (b) t-SNE

Fig. 19 Projection to two dimensions of ShapeletSim dataset between Raw (left) andDNN’s
Latent space (right) with either UMAP or t-SNE. The latent space is obtained with ResNet-
multi rec-None.

in a poor result (around 0.02 NMI score). From the plots that we analyzed,
the DNNs’ latent space tends to create more dense and separable groups in
the data, but these groups may not necessarily match the expected partition.

6.2 DNNs types and datasets correlations

Find correlations between an element type (e.g. the use of RNN DNNs) and
some datasets characteristics would greatly help the user to select the best
combination for its dataset.

To do so, we have plotted all archives’ datasets into a two-dimensional
projection. Each dataset is represented by a vector composed of the perfor-
mance obtained by a set of DNN combinations on this dataset (indicated by
”Data:“ in Fig. 20). We have tested different combinations (e.g. the top com-
binations of each architecture/pretext loss/clustering loss, all combinations,
all architectures with a specific pretext loss and without clustering loss). This
representation is then projected with the UMAP method along two dimensions
and is colorized with another dataset property (indicated in by ”Coloring:“
in Fig. 20). With this process, we aim at identify some groups/clusters with
homogeneous coloring and therefore identical behavior. We have tested the fol-
lowing datasets’ properties: the time series length, the dataset category (e.g.
ECG, Spectrography, Image, etc.), the size of the train set, the size of the test

End-to-end deep representation learning for time series clustering 43

set, and the number of classes. However, the results were not conclusive. Some
of the plots are reported in Fig. 20. For example, in Fig. 20b the datasets are
represented by the set of performance obtained on all architectures combined
with the reconstruction loss and without clustering loss, and colorized with
the time series length (a lighter color meaning a longer length, and a darker
one a shorter length).

(a) Coloring: clustering, Data: all ar-
chitecture with reconstruction loss and
no clustering loss

(b) Coloring: time series length, Data:
all architecture with reconstruction
loss and no clustering loss

(c) Coloring: dataset category, Data:
top 3 combination for each architec-
ture with and without UMAP

(d) Coloring: Size of training set,
Data: DCNN and ResNet with all pre-
text losses and no clustering loss

Fig. 20 Each plot shows univariate datasets projected into two dimensions obtain with
UMAP. The value of each dataset is computed from the performance of a set of combination
described in Data and colorized using the criterion described in Coloring

Overall, we can see that no trend can really be observed in the plots. For all
plots, the main factor of separation corresponds to the average performance
across all combinations. In Fig. 20a, we applied a clustering with K-means
method on the set of datasets to try to see some similar behavior among some

44 Baptiste Lafabregue et al.

dataset. Most of the clusters regroup homogeneous results, with good, bad,
or average performance on all selected combinations. Therefore it is difficult
to find trends and to decide which combination will be the most adapted for
a new dataset. Some clusters, like the number 8 and 6 group datasets where
CNN architectures perform significantly better than others. However, they are
totaling only 5 datasets (over 128) with no particular similarity.

The actual conclusion from this data is the difficulty to find a consistent
correlation between models’ performance and datasets’ properties. However, it
should be recalled that these two archives regroup a large variety of datasets
that may have highly unrelated features/patterns types.

6.3 What patterns are learned by the DNNs ?

Even though the users desire to find relevant clusters, they often want to
know how the method took its decision and also what are the discriminating
patterns in the data. To achieve this, we used both the decoder to reconstruct
the clusters’ centroids and the Class Activation Map (CAM), introduced in
Zhou et al. (2016). But first, we need to explain how we use CAM in an
unsupervised framework.

6.3.1 CAM for clustering

CAMs are used for supervised DNNs to highlight which part of the data is used
to identify an object’s (i.e. a time series in our case) class. This method relies
on the presence of a Global Pooling and the classification softmax layer, but
softmax layers are not used in our case. However, another version proposed in
Selvaraju et al. (2017) used the gradient computation to compute the CAM.

For this method, the heatmap is computed with respect to a class, c. It
uses the cth value of the softmax layer, yc, to compute the gradient value at
the last convolutional layer’s feature map A. The heatmap is computed for
each A’s weights ack:

ack =
1

D

w∑
i=0

h∑
j=0

∂yc

∂Aki,j
(42)

where D = h × w is the input dimension. Note that in our case the input
has only one dimension (i.e. the time dimension), but the equation is given
for 2D-convolutions. Thus, we obtain the degree of activation for each layer’s
filter at each part of the input. The heatmap consists of the weighted sum of
all the filter’s output with their degree of activation:

LcGradCAM = ReLU(
∑
k

ackA
k) (43)

End-to-end deep representation learning for time series clustering 45

0 20 40 60 80 100 120

1

0

1

2

3

(a) sample class 1

0 20 40 60 80 100 120
2

1

0

1

2

(b) sample class 1

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) sample class 2

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) sample class 2

0 20 40 60 80 100 120

1

0

1

2

3

(e) sample class 3

0 20 40 60 80 100 120

2

1

0

1

2

3

(f) sample class 3

Fig. 21 Examples of CBF dataset classes

We have modified this version, to not use the softmax layer and replaced
the CAM’s derivative computation with the following equation:

ack =
1

Z

∑
i

∑
j

∂ 1
z∗‖weightz,c‖1
∂Aki,j

, (44)

where ‖.‖1 is the normalization between 0 and 1, . ∗ . is the element wise
multiplication, and weightz,c is computed as follow:

weightz,c =

∣∣∣∣ 1

‖z‖z − ‖µc‖z

∣∣∣∣ , (45)

where |.| is the absolute value, ‖.‖z is the z-normalization, z is the latent
representation and µc is the centroid of the time series’ cluster.

6.3.2 Does DNNs capture temporal patterns ?

As explained in Sec. 2.2, we also want to evaluate the DNNs’ capacity to take
into consideration the specificity of the time dimension when clustering the
data. It means recognize temporal patterns, even if they may be shifted or
stretched. To illustrate that, we selected two datasets, CBF, which contains
both stretched and shifted patterns, and Trace, which contains shifted pat-
terns. They are illustrated in Figs 21 and 22. For recall, CBF is a synthetic
dataset designed to discriminate between three shapes, Cylinder (class 2), Bell
(class 1), and Funnel (class 3). Trace is a synthetic dataset designed to sim-
ulate instrumentation failures in a nuclear power plant, but we only have the
class number.

For comparison, we have plotted the centroids learned by K-Means with
DTW metric and DTW Barycenter Averaging (DBA) in Fig. 23 for CBF

46 Baptiste Lafabregue et al.

0 50 100 150 200 250

2

1

0

1

2

3

4

(a) sample class 1

0 50 100 150 200 250
2

1

0

1

2

3

(b) sample class 1

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(c) sample class 2

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(d) sample class 2

0 50 100 150 200 250
1.5

1.0

0.5

0.0

0.5

(e) sample class 3

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(f) sample class 3

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

(g) sample class 4

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

(h) sample class 4

Fig. 22 Examples of Trace dataset classes

0 20 40 60 80 100 120
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) Centroid cluster 1

0 20 40 60 80 100 120
2.0

1.5

1.0

0.5

0.0

0.5

1.0

(b) Centroid cluster 2

0 20 40 60 80 100 120
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) Centroid cluster 3

Fig. 23 Centroids learned by K-Means with DTW and DBA on CBF dataset

0 50 100 150 200 250

2

1

0

1

2

3

4

(a) Centroid cluster 1

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(b) Centroid cluster 2

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(c) Centroid cluster 3

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

(d) Centroid cluster 4

Fig. 24 Centroids learned by K-Means with DTW and DBA on Trace dataset

dataset and in Fig. 24 for Trace dataset. DBA, and DTW are designed to be
less sensitive to time distortions as they realign time series to minimize the
distance between them. These two methods proved to work well on catching
temporal patterns (Petitjean et al., 2011). For the CBF, we can observe that
the DBA method clearly extract the three patterns. For the Trace dataset,
DBA centroids also clearly identify the main patterns. However, confusion can
be observed between the 3rd and 4th class. In the reference data, the two classes
are distinguished by the presence of a final perturbation or not. The clustering
actually discriminates the two clusters by the level of the first plateau, bellow
1.5 for the 3rd cluster and over for the 4th cluster.

End-to-end deep representation learning for time series clustering 47

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3 (d) sample cluster 4

(e) Reconstruction
centroid 1

(f) Reconstruction
centroid 2

(g) Reconstruction
centroid 3

(h) Reconstruction
centroid 4

Fig. 25 Grad-CAM heatmap on Trace dataset with ResNet-multi rec-None combination,
where 25a, 25b, 25c and 25d are samples of each cluster and 25e, 25f and 25g are centroids
reconstruction of each cluster. Red regions corresponds to high contribution and blue to
almost no contribution to matching the centroid (colors are smoothed for visual clarity and
better reflect filters’ size)

In Fig. 25 to 28 we have displayed the heatmap obtained for each cluster on
respectively CBF and Trace datasets. We have also added the reconstruction
of the centroids.

For the Trace dataset, the main patterns are identified by the heatmap
with the exception of the final variation that discriminates between classes 3
and 4. Actually, the confusion is identical to the DTW/DBA one as it also
focuses on the level of the first plateau as shown by the heatmap. Note that
they obtain a similar NMI score (around 0.75). However, the reconstructed
centroids for the DNNs do not render the detected patterns. This is especially
the case for the class 1, even if the encoder perfectly distinguish the class 1 and
2 as the clustering obtain a perfect score on these two classes. Therefore, it is
likely that the decoder fails to obtain a good reconstruction. For the decoder,
it may be more optimal to not render the spike for the class 1. Indeed, when
computing the mean square error, omit the spike in the reconstruction may
give a better result than render it but at the wrong time step. In the first case,
the spike will affect the error once. However, it is likely to affect it twice in the
second case. Similarly, between the class 3 and 4, it might be more effective to
focus on rendering the two plateaus correctly than render the small variation
at the end.

In Fig. 26 we have also displayed the Trace Grad-CAM plots but with
another combination, DCNN -rec-None. This combination obtains a lower NMI
score (0.55). The heatmap activation is actually spread along the whole time
series. When observing the clustering result carefully, it can be noticed that
all the clustering is based on when the variation occurs but not its shape.
The cluster 1 regroups the classes 1 and 2 when the variation happens late

48 Baptiste Lafabregue et al.

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3 (d) sample cluster 4

(e) Reconstruction
centroid 1

(f) Reconstruction
centroid 2

(g) Reconstruction
centroid 3

(h) Reconstruction
centroid 4

Fig. 26 Grad-CAM heatmap on Trace dataset with DRNN -rec-None combination, where
26a, 26b,26c and 26d are samples of each cluster and 26e, 26f, 26g and 26h are centroids
reconstruction of each cluster. Red regions corresponds to high contribution and blue to
almost no contribution to matching the centroid (colors are smoothed for visual clarity and
better reflect filters’ size)

(around the 100th time step) and the cluster 2 when it happens earlier (around
them 60th time step). This is similar for classes 3 and 4 with clusters 3 and 4.
On this dataset, this combination behaves as the Euclidean distance (with a
similar NMI score of 0.52) and completely misses the temporal patterns. One
can notice that, in this case, rendering the pick may seem more relevant for
the reconstruction, which may explain why it is visible here.

In Fig. 27, we now focus on the CBF dataset, which comprises time shifts
but also time stretches and noise. Contrary to the Trace dataset, the Grad-
CAM’s heatmap activations are more spread along the whole series for CBF.
They do not necessarily focus on the main parts but also partially on some
noisy variations. On the other hand, the centroids’ reconstruction is clearer,
but it also shows that it can result in a partial confusion of classes 2 and 3.
It results in an NMI score of only 0.35, mainly explained by the confusion
of classes 2 and 3. This particular case shows that in order to obtain a good
reconstruction, the encoder may need to add unnecessary information that
will interfere with the clustering task.

To strengthen this first observation, we have plot again the grad-CAMs on
CBF but we stopped the DNN’s training after only a small number of iterations
(10 epochs versus 334 before) in the Fig. 28. It can be observed that the
heatmap is concentrated on the discriminating part of the time series on class
1 and 2. However, the centroids reconstruction is poor but it seems normal that
the decoder struggles to immediately obtain a good reconstruction. However,
the encoder seems able, in this case, to discriminate between the main signal
and the noise in the times series. This DNN obtains an NMI score of 0.68, far

End-to-end deep representation learning for time series clustering 49

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3

(d) Reconstruction centroid 1 (e) Reconstruction centroid 2 (f) Reconstruction centroid 3

Fig. 27 Grad-CAM heatmap on CBF dataset with DCNN -rec-None combination, where
27a, 27b and 27c are samples of each cluster and 27d, 27e and 27f are centroids reconstruc-
tion of each cluster. Red regions corresponds to high contribution and blue to almost no
contribution to matching the centroid (colors are smoothed for visual clarity and better
reflect filters’ size)

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3

(d) Reconstruction centroid 1 (e) Reconstruction centroid 2 (f) Reconstruction centroid 3

Fig. 28 Grad-CAM heatmap on CBF dataset with DCNN -rec-None combination but with
only 10 epochs, where 28a, 28b and 28c are samples of each cluster and 28d, 28e and 28f
are centroids reconstruction of each cluster. Red regions corresponds to high contribution
and blue to almost no contribution to matching the centroid (colors are smoothed for visual
clarity and better reflect filters’ size)

50 Baptiste Lafabregue et al.

better than the previous one. In this case, the reconstruction task seems again
not entirely appropriate.

7 Summary and perspectives

The main observations of this study can be listed as follow:

1. The use of deep representation leads to improvements in the clustering
performance.

2. There is a high variability of the results depending on the different archi-
tecture, pretext losses, and clustering losses used.

3. The CNN based architectures seem the most appropriate for learning rel-
evant features.

4. The use of existing clustering losses does not seem relevant for time series.
5. The classical reconstruction loss, and its variation multi rec, remain the

most consistent way to obtain a suitable representation for the clustering
task.

6. Despite the previous observation, the reconstruction loss seems not com-
pletely fit to extract temporal patterns.

7. Multiple parameters can influence the clustering performance of DNNs’
learned representation. Among them, the use of UMAP reduction dimen-
sion method results in a significant and consistent performance gain.

8. No significant correlation could be established between datasets character-
istics DNNs’ parameters or elements (architecture, loss type).

All the image-specific clustering frameworks proposed in the literature
turned out to be less effective than a classical autoencoder on time series.
These methods seem to highly disturb the DNNs which may lead to degen-
erated clustering, e.g. only one cluster. It clearly seems not possible to apply
them as-is on time series. It would require some further adaptations or new
propositions to take into account the particularities of the time dimension.
Moreover, even the reconstruction loss does not seem particularly adapted to
time series.

However, this put aside, the best deep clustering candidate manages to
obtain good results and to rank first among all methods when combined with
UMAP with a reduction to K (number of clusters) dimensions. Nevertheless,
it is important to note that UMAP, when applied to original data with the
K-Means method, ranks before the best deep clustering candidate (without
UMAP). As UMAP search for a low dimensional projection of the data that
preserve both local and global structure, it preserves indirectly the most dis-
criminating features. Therefore it may suggest that DNNs manage to capture
important features or patterns but also noisy features which may lead to poor
clustering results. The UMAP helps to extract the relevant features, at least
the most discriminating ones. The grad-CAM heatmap plots lead to the same
conclusion as they show that DNNs have the capacity to extract temporal
patterns but also that it can be partially disturbed by the training loss.

End-to-end deep representation learning for time series clustering 51

Hence, this analysis leads to the conclusion that deep clustering for time
series lacks suitable pretext losses. The new losses should better take into ac-
count the specificities of the time dimension (i.e. stretched or shifted patterns)
and be less sensitive to small or rare variations.

8 Conclusion

In this paper, we have conducted a large study to compare different time
series clustering methods based on deep learning. We have shown that deep
clustering methods can be separated into three components: the architecture
(i.e. the type, number, and configuration of layers), the pretext loss, and the
clustering loss. Based on this taxonomy, we have conducted a cross-comparison
to evaluate the influence of each component separately. It results that the
best combinations are based on a simple autoencoder architecture that uses
reconstruction-based pretext losses. The more advanced frameworks, mostly
proposed for image clustering, do not seem to improve the performance while
processing time series.

However, even if the advances from the image domain does not translate
directly to time series, deep clustering methods still appears as promising.
When compared to state-of-the-art methods, the best candidates obtained
competitive results. Moreover, grad-CAM and centroid reconstruction can be
used to extract and identify learned patterns. However, two main limitations
remain. First, the choice of the best combination and the best configuration
for a new dataset is still a tedious task. A few guidelines can be retrieved from
our observations, but they remain limited. Second, even though deep clus-
tering methods have shown their ability to detect and discriminate temporal
patterns, some examples show that is it not consistent over all combinations
and datasets. This second limitation is at least partially explained by the use
of the reconstruction loss that do not seem adapted to the time domain, even
if it performs better than other losses proposed specifically for time series.
Finally, it should also be mentioned that the UCR and UEA archives may
not be completely fit as-is to evaluate the clustering ability of a method as we
defined it. Indeed we showed that some methods that clearly fail to catch time
patterns may still lead to average or good results.

To conclude, deep clustering methods gives promising results but research
in time domain tailored losses is still required to significantly increase the
performance of deep time series clustering.

References

Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering–a
decade review. Information Systems 53:16–38

Bagnall A, Dau HA, Lines J, Flynn M, Large J, Bostrom A, Southam P, Keogh
E (2018) The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:181100075

52 Baptiste Lafabregue et al.

Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:14090473

Ballard DH (1987) Modular learning in neural networks. In: AAAI, pp 279–284
Becker S (1991) Unsupervised learning procedures for neural networks. Inter-

national Journal of Neural Systems 2(01n02):17–33
Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks 5(2):157–
166

Bo D, Wang X, Shi C, Zhu M, Lu E, Cui P (2020) Structural deep clustering
network. In: Proceedings of The Web Conference 2020, pp 1400–1410

Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep clustering for unsu-
pervised learning of visual features. In: Proceedings of the European Con-
ference on Computer Vision (ECCV), pp 132–149

Chan KP, Fu AWC (1999) Efficient time series matching by wavelets. In:
Proceedings 15th International Conference on Data Engineering (Cat. No.
99CB36337), IEEE, pp 126–133

Chang S, Zhang Y, Han W, Yu M, Guo X, Tan W, Cui X, Witbrock M,
Hasegawa-Johnson MA, Huang TS (2017) Dilated recurrent neural net-
works. In: Advances in Neural Information Processing Systems, pp 77–87

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H,
Bengio Y (2014) Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:14061078

Dau HA, Bagnall A, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanama-
hatana CA, Keogh E (2019) The ucr time series archive. IEEE/CAA Journal
of Automatica Sinica 6(6):1293–1305

Dempster A, Petitjean F, Webb GI (2020) Rocket: Exceptionally fast and
accurate time series classification using random convolutional kernels. Data
Mining and Knowledge Discovery pp 1–42

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets.
Journal of Machine learning research 7(Jan):1–30

Doersch C, Gupta A, Efros AA (2015) Unsupervised visual representation
learning by context prediction. In: Proceedings of the IEEE international
conference on computer vision, pp 1422–1430

Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller PA (2019) Deep learning
for time series classification: a review. Data Mining and Knowledge Discov-
ery 33(4):917–963

Franceschi JY, Dieuleveut A, Jaggi M (2019) Unsupervised scalable represen-
tation learning for multivariate time series. In: Advances in Neural Informa-
tion Processing Systems, pp 4652–4663

Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual
prediction with lstm. Neural Computation 12(10):2451–2471

Ghasedi K, Wang X, Deng C, Huang H (2019) Balanced self-paced learning
for generative adversarial clustering network. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp 4391–4400

Ghasedi Dizaji K, Herandi A, Deng C, Cai W, Huang H (2017) Deep clustering
via joint convolutional autoencoder embedding and relative entropy mini-

End-to-end deep representation learning for time series clustering 53

mization. In: Proceedings of the IEEE international conference on computer
vision, pp 5736–5745

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,
Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in
neural information processing systems, pp 2672–2680

Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y (2018) Diagnose
like a radiologist: Attention guided convolutional neural network for thorax
disease classification. arXiv preprint arXiv:180109927

Guo X, Gao L, Liu X, Yin J (2017a) Improved deep embedded clustering with
local structure preservation. In: IJCAI, pp 1753–1759

Guo X, Liu X, Zhu E, Yin J (2017b) Deep clustering with convolutional au-
toencoders. In: International conference on neural information processing,
Springer, pp 373–382

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 770–778

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural compu-
tation 9(8):1735–1780

Holm S (1979) A simple sequentially rejective multiple test procedure. Scan-
dinavian journal of statistics pp 65–70

Hopfield JJ (1982) Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences
79(8):2554–2558

Ienco D, Pensa RG (2019) Deep triplet-driven semi-supervised embedding clus-
tering. In: International Conference on Discovery Science, Springer, pp 220–
234

Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K (2015) Spatial trans-
former networks. arXiv preprint arXiv:150602025

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern recognition
letters 31(8):651–666

Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2016) Variational deep embedding:
A generative approach to clustering. CoRR

Jiao Y, Yang K, Dou S, Luo P, Liu S, Song D (2020) Timeautoml: Au-
tonomous representation learning for multivariate irregularly sampled time
series. arXiv preprint arXiv:201001596

Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint
arXiv:13126114

Kipf TN, Welling M (2016) Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:160902907

Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: A
review of classification techniques. Emerging artificial intelligence applica-
tions in computer engineering 160(1):3–24

Kramer MA (1991) Nonlinear principal component analysis using autoasso-
ciative neural networks. AIChE journal 37(2):233–243

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep
convolutional neural networks. In: Advances in neural information process-

54 Baptiste Lafabregue et al.

ing systems, pp 1097–1105
Larsson G, Maire M, Shakhnarovich G (2017) Colorization as a proxy task for

visual understanding. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 6874–6883

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11):2278–2324

Li X, Chen Z, Poon LK, Zhang NL (2018) Learning latent superstructures in
variational autoencoders for deep multidimensional clustering. In: Interna-
tional Conference on Learning Representations

Liao TW (2005) Clustering of time series data—a survey. Pattern recognition
38(11):1857–1874

Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing sax: a novel sym-
bolic representation of time series. Data Mining and knowledge discovery
15(2):107–144

Lipton ZC, Tripathi S (2017) Precise recovery of latent vectors from generative
adversarial networks. arXiv preprint arXiv:170204782

Ma Q, Zheng J, Li S, Cottrell GW (2019) Learning representations for time
series clustering. In: Advances in Neural Information Processing Systems,
pp 3776–3786

Ma Q, Li S, Zhuang W, Wang J, Zeng D (2020) Self-supervised time series
clustering with model-based dynamics. IEEE Transactions on Neural Net-
works and Learning Systems

Maaten Lvd, Hinton G (2008) Visualizing data using t-sne. Journal of machine
learning research 9(Nov):2579–2605

Madiraju NS, Sadat SM, Fisher D, Karimabadi H (2018) Deep temporal clus-
tering: Fully unsupervised learning of time-domain features. arXiv preprint
arXiv:180201059

Makhzani A, Frey B (2013) K-sparse autoencoders. arXiv preprint
arXiv:13125663

McConville R, Santos-Rodriguez R, Piechocki RJ, Craddock I (2019) N2d:(not
too) deep clustering via clustering the local manifold of an autoencoded
embedding. arXiv preprint arXiv:190805968

McInnes L, Healy J, Melville J (2018) Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:180203426

Mukherjee S, Asnani H, Lin E, Kannan S (2019) Clustergan: Latent space
clustering in generative adversarial networks. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol 33, pp 4610–4617

Panuccio A, Bicego M, Murino V (2002) A hidden markov model-based ap-
proach to sequential data clustering. In: Joint IAPR International Work-
shops on Statistical Techniques in Pattern Recognition (SPR) and Struc-
tural and Syntactic Pattern Recognition (SSPR), Springer, pp 734–743

Paparrizos J, Gravano L (2015) k-shape: Efficient and accurate clustering of
time series. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, pp 1855–1870

Pascanu R, Gulcehre C, Cho K, Bengio Y (2013) How to construct deep re-
current neural networks. arXiv preprint arXiv:13126026

End-to-end deep representation learning for time series clustering 55

Petitjean F, Ketterlin A, Gançarski P (2011) A global averaging method for
dynamic time warping, with applications to clustering. Pattern Recognition
44(3):678–693

Rani S, Sikka G (2012) Recent techniques of clustering of time series data: a
survey. International Journal of Computer Applications 52(15)

Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-
encoders: Explicit invariance during feature extraction. In: Icml

Rosenblatt F (1958) The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65(6):386

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally lin-
ear embedding. science 290(5500):2323–2326

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
back-propagating errors. nature 323(6088):533–536

Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In: Fifteenth Annual
Conference of the International Speech Communication Association

Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for
spoken word recognition. IEEE transactions on acoustics, speech, and signal
processing 26(1):43–49

Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, Ding
W, Lin CT (2017) A review of clustering techniques and developments.
Neurocomputing 267:664–681

Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for
face recognition and clustering. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 815–823

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017)
Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In: Proceedings of the IEEE international conference on computer
vision, pp 618–626

Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015) Taking the
human out of the loop: A review of bayesian optimization. Proceedings of
the IEEE 104(1):148–175

Souza TV, Zanchettin C (2019) Improving deep image clustering with spatial
transformer layers. In: International Conference on Artificial Neural Net-
works, Springer, pp 641–654

Sun D, Wulff J, Sudderth EB, Pfister H, Black MJ (2013) A fully-connected
layered model of foreground and background flow. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp 2451–
2458

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with
neural networks. In: Advances in neural information processing systems, pp
3104–3112

Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework
for nonlinear dimensionality reduction. science 290(5500):2319–2323

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN,
Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv preprint

56 Baptiste Lafabregue et al.

arXiv:170603762
Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and com-

posing robust features with denoising autoencoders. In: Proceedings of the
25th international conference on Machine learning, pp 1096–1103

Wang C, Pan S, Hu R, Long G, Jiang J, Zhang C (2019) Attributed
graph clustering: A deep attentional embedding approach. arXiv preprint
arXiv:190606532

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with
deep neural networks: A strong baseline. In: 2017 International joint confer-
ence on neural networks (IJCNN), IEEE, pp 1578–1585

Weiss G, Goldberg Y, Yahav E (2018) On the practical computational
power of finite precision rnns for language recognition. arXiv preprint
arXiv:180504908

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Break-
throughs in statistics, Springer, pp 196–202

Woo S, Park J, Lee JY, Kweon IS (2018) Cbam: Convolutional block attention
module. In: Proceedings of the European conference on computer vision
(ECCV), pp 3–19

Xiao Y, Cho K (2016) Efficient character-level document classification by com-
bining convolution and recurrent layers. arXiv preprint arXiv:160200367

Xiao Z, Xu X, Xing H, Chen J (2020) Rtfn: Robust temporal feature network.
arXiv preprint arXiv:200807707

Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for cluster-
ing analysis. In: International conference on machine learning, pp 478–487

Xu J, Xiao L, López AM (2019) Self-supervised domain adaptation for com-
puter vision tasks. IEEE Access 7:156694–156706

Yang X, Deng C, Zheng F, Yan J, Liu W (2019) Deep spectral clustering
using dual autoencoder network. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp 4066–4075

Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolu-
tions. arXiv preprint arXiv:151107122

Zeng N, Zhang H, Song B, Liu W, Li Y, Dobaie AM (2018) Facial expres-
sion recognition via learning deep sparse autoencoders. Neurocomputing
273:643–649

Zha H, He X, Ding C, Gu M, Simon HD (2002) Spectral relaxation for k-
means clustering. In: Advances in neural information processing systems,
pp 1057–1064

Zhang Q, Wu J, Zhang P, Long G, Zhang C (2018) Salient subsequence learn-
ing for time series clustering. IEEE transactions on pattern analysis and
machine intelligence 41(9):2193–2207

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 2921–2929

