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Abstract

We quantify the robustness of a trained network to input uncertainties with a
stochastic simulation inspired by the field of Statistical Reliability Engineering.
The robustness assessment is cast as a statistical hypothesis test: the network
is deemed as locally robust if the estimated probability of failure is lower than
a critical level. The procedure is based on an Importance Splitting simulation
generating samples of rare events. We derive theoretical guarantees that are non-
asymptotic w.r.t. sample size. Experiments tackling large scale networks outline
the efficiency of our method making a low number of calls to the network function.

1 Introduction

Despite state-of-the-art performances on many Computer Vision and NLP tasks, Deep Neural Net-
works (DNNs) have been shown to be sensitive to both adversarial and random perturbations [Gilmer
et al., 2019, Franceschi et al., 2018]. Concerns about their safety and reliability have come forth as
their applications move to critical fields, such as the defense sector or self-driving vehicles.

Certification A posteriori certification aims at verifying the correct behavior of a trained network
f : Rn → Rm. This expected property is usually defined locally (a.k.a. instance-wise property): the
network performs correctly in the neighborhood V(xo) ⊂ Rn of a particular input xo ∈ Rn. Let
us denote ι(·|xo) : Rn → {0, 1} the function indicating a violation of the expected property. The
network is locally correct if ι(x|xo) = 0 for any x ∈ V(xo).

In classification, the property takes the name of robustness and reads as: the output of the network
remains unchanged over the neighborhood V(xo). It certifies that the network is robust against inputs
corrupted by uncertainties of limited support or adversarial perturbations of constrained distortion.

The certification mechanism has two desired features as defined in [Singh et al., 2018]:

• Soundness: it does not certify the network when the property does not hold.

• Completeness: it does certify the network whenever the property holds.
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Corruption robustness assessment Adversarial robustness corresponds to a worst-case analysis
whereas corruption robustness considers random perturbations of the inputs. The key ingredient is
the introduction of a statistical model π0 of epistemic uncertainties occurring along the acquisition
chain of the input. For instance, Franceschi et al. [2018] take Gaussian and uniform distributions over
the lp ball Bp,ε(xo) of radius ε centered on xo.

This recent trend goes with a quantitative assessment gauging to what extent a given property holds
or does not hold. For instance, Webb et al. [2019] estimate the probability p that a property is
violated under a given statistical model of the inputs. This approach makes no assumption about
the network under scrutiny as it is used as a black box. This grants the scalability to tackle deep
networks. The main difficulty lies in the efficiency, i.e. the computational power needed to estimate
weak probabilities. Their lack of soundness stems from the inability to determine if the probability p
of violation is exactly zero or too small to be estimated.

Section 2 presents a brief overview of robustness assessment procedures outlining the assumptions
made about the network and their limitations.

This work presents a scalable and efficient procedure assessing corruption robustness under a
large panel of statistical models. It provides completeness and theoretical guarantees on the lack of
soundness.

2 Related work

This section reviews the state-of-the-art in certification and corruption robustness assessment.

Assessment by example Distortion constrained adversarial attacks, like PGD, look for property
violations, a.k.a. adversarial examples, inside the ball Bp,ε(xo). In the context of robustness, they take
advantage of the fast computation of the gradient of the network function thanks to back-propagation.
They are fast, complete but unsound a priori. The network is not certified if the attack succeeds, but a
failure says nothing about the property: attacks are empirical processes without guarantees.

Formal certification Using a SMT solver, [Katz et al., 2017] provide a sound and complete
certification method, called ReLUplex, designed for Neural Networks with ReLU activation functions.
However the same paper shows that the problem of sound and complete certification of neural
networks (even restricted to ReLU activations) is NP-complete. Scaling to large modern networks
seems difficult. In addition, although these formal methods are complete in theory, in practice the
procedure might give up, terminating undecided with a ‘timeout’ if the underlying solver is too slow.

Incomplete certification To gain scalability, researchers have proposed sound but by-design in-
complete verification methods resorting to abstract domains which are usually convex approximations
of the input domain. Singh et al. [2019] obtain significant speeding up compared to ReLUplex and
other complete certifiers. They introduce a verification benchmark called ERAN (see Sect. 5). Weng
et al. [2018] design another incomplete certification based on lower and upper linear functional
bounds of Multi-Layer Perceptrons (MLPs) with ReLU activation. It is generalized to MLPs with
general activation functions in [Zhang et al., 2018] and to Convolutions Neural Networks (CNNs)
in [Boopathy et al., 2019, Weng et al., 2019]. All these certifications methods rely on lower bounds
of the minimum distance of adversarial examples. They are thus pessimistic in the sense that they
can reject many valid properties because the lower bound is not always tight enough. In order to be
‘more complete’, Salman et al. [2019] solve the optimal convex relaxation (only for specific problems
on MNIST and CIFAR10 datasets) with extensive computational resources. They conclude that the
tightness of the lower bounds cannot be improved, suggesting that this approach has found its limit.

Statistical assessment Corruption robustness assumes a statistical model π0 of noisy inputs like
Gaussian or uniform distributions over the lp ball Bp,ε(xo). Franceschi et al. [2018] study the
robustness of both linear and deep neural networks. They obtain precise bounds for linear classifiers
which they extend to non-linear classifiers with ‘locally approximately flat decision boundaries’.
Webb et al. [2019] introduce a robustness metric (the lower, the more robust) is defined by:

p := π0(ι(X|xo) = 1) =

∫
Rn

ι(x|xo)π0(dx). (1)
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The quantitative assessment is in stark contrast with the adversarial robustness literature taking a
worst-case analysis. A connection is established when π0 is the uniform distribution over the ball
Bp,ε(xo): the volume of the set of adversarial examples equals p vol(Bp,ε(xo)). Baluta et al. [2021]
name probability p the adversarial density.

The main difficulty lies in the estimation of this integral, in particular when the event {ι(X|xo) = 1}
is rare under distribution π0. Baluta et al. [2021] use a crude Monte Carlo simulation. Webb et al.
[2019] use Importance Splitting (a.k.a. multi-level splitting) with a rejuvenative mechanism based on
the Metropolis-Hastings algorithm. These two last works make no assumption about the network
as their procedure uses it as a black box. This grants scalability (in the sense that it tackles deep
networks). The efficiency of the statistical test/estimation procedure is measured by the runtime or
the number of calls to the black-box model.

The quantitative assessment falls back to certification by taking a final decision: the network is
deemed reliable if the probability of violation is smaller than pc > 0, a critical probability set by the
user. It strikes the trade-off between the lack of soundness and the efficiency: a low pc increases the
soundness but requires estimating probabilities as low as pc which is computationally demanding.

3 Our approach to corruption robustness assessment

Our approach uses statistical hypothesis testing as a certification surrogate. As in [Baluta et al., 2021],
the user sets a low critical probability pc and the test assesses whether p is lower or larger. However,
rather than a testing approach powered by crude Monte Carlo simulations, our workhorse is a more
efficient Sequential Monte Carlo algorithm [Naesseth et al., 2019]. This so-called ‘Last Particle’
simulation was invented by Guyader et al. [2011] and is a variant of the Adapative Multi-Level
Sampling employed by Webb et al. [2019]. We show that, with a carefully chosen termination
condition, it is advantageous both in terms of computational efficiency and theoretical guarantees.

Sect. 3.1 presents the ‘Last particle’ simulation that Sect. 3.2 applies to statistical hypothesis testing
in the framework of robustness assessment. Alg. 1 gives the pseudo-code of our procedure.

3.1 The Last Particle simulation

The goal of the Last Particle simulation is to efficiently generate samples drawn according to a
reference probability distribution π0 but in a regionR := {y : h(y) > 0} ⊂ Rn where h : Rn → R,
is the so-called the score function. Efficiency is the ability to perform this task using few calls to the
score function, even when probability π0(R) is small.

The simulation manages a set of N particles (i.e. samples) which are initially i.i.d. with respect to π0.
The name ‘Last Particle’ comes from the fact that the simulation ‘kills’ the sample with the lowest
score at each step. The score of this last particle becomes the intermediate level Lk at iteration k
(Alg. 1, line 6). Then, that particle is refreshed by sampling according to π0 but conditioned on the
event {h(X) > Lk}. This sampling procedure is performed by Gen(Lk, 1) in line 11 and is detailed
in Sect. 4. Gen(−∞, N) then simply means sampling N random vectors according to π0 (line 3).

The algorithm stops when the number of iterations reaches integer m or at any iteration k if the
intermediate threshold Lk is positive which means the simulation has generated samples as required.

Consider the function Λ : R→ R+ defined as

Λ(`) := − log π0(h(X) > `). (2)

This function is unknown in practice, but one can easily see that it is non decreasing.

During one run of Alg. 1, the intermediate levels are random variables following an increasing order
by construction: L1 < L2 < · · · < Lk. We here copy the main result of the Last Particle simulation:
Theorem 1 ([Guyader et al., 2011]). The variables Λ(L1),Λ(L2), · · · are distributed as the succes-
sive arrival times of a Poisson process with rate N : Λ(Lk) = 1/N

∑k
j=1Ej , where Ej ∼

i.i.d.E(1).

As the sum of i.i.d. exponential random variables is distributed1 as a Gamma random variable, this
theorem states that Λ(Lk) ∼ Γ(k,N) (i.e. scale k and rate N ).

1Here and after, ∼ denotes distributional equality between random variables.
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Algorithm 1 Robustness assessment with Last Particle simulation

Require: Number of particles N , critical probability level pc, confidence interval level α
Ensure: Cert

1: Initialize: p← 1− 1/N , k ← 1, Cert← False, Stop← False
2: m← Comp_m(pc, α,N) . See Sect. 3.3
3: {xi}Ni=1 ← Gen(−∞, N) . See Sect. 4
4: while k ≤ m & Stop = False do
5: i? ← arg mini∈1:N h(xi)
6: Lk ← h(xi?)
7: if Lk > 0 then
8: Stop← True
9: Pest ← pk−1

10: end if
11: xi? ← Gen(Lk, 1) . See Sect. 4
12: k ← k + 1
13: end while
14: if Stop = False then
15: Cert← True
16: Pest ← pc
17: end if
18: return Cert, Pest

3.2 Corruption robustness assessment as a statistical test

In the framework of robustness assessment of classifiers, the score function is related to the usual loss
in the adversarial example literature:

h(x) := max
k 6=c(xo)

fk(x)− fc(xo)(x), (3)

where f(x) represents the predicted probabilities (or logits) vector and c(x) := arg maxk fk(x) is
the predicted class for input x. Note that h(xo) < 0 and that the violation indicator function of Sect. 1
is simply ι(x|xo) = 1(h(x) > 0). The input π0 models the corruption distribution around xo. The
probability of robustness violation defined is (1) writes as p := π0(h(X) > 0).

Our approach establishes a hypothesis test parametrized by a low probability pc given by the user.

• H0: The probability of robustness violation p > pc. The network should not be certified.
• H1: The probability of robustness violation p < pc. The network can be certified.

For a given true probability of violation p, we establish the following properties.
Proposition 1. The probability of false positive Pfp(p) equals:

Pfp(p) := P(Cert = True|p > pc) =

∫ −N log p

0
tme−tdt∫ +∞

0
tme−tdt

=
γ(m,−N log p)

Γ(m)
. (4)

Proof. Certification means that, according the Alg. 1, even after m loops, the intermediate threshold
Lm is still lower than 0. This happens with probability:

Pfp(p) = P(Lm < 0) = P(Λ(Lm) < Λ(0)) =
γ(m,−N log p)

Γ(m)
, (5)

since Λ(Lm) ∼ Γ(m,N) and Λ(0) = − log p ; γ(s, x) being the lower incomplete gamma function.

Proposition 2. The probability of false negative Pfn(p) equals:

Pfn(p) := P(Cert = False|p < pc) =

∫ +∞
−N log p

tme−tdt∫ +∞
0

tme−tdt
=
γ(m,−N log p)

Γ(m)
. (6)
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Proof. The certification failed because LK > 0 for some K ≤ m, or equivalently Λ(LK) > Λ(0).
Note that this was not true at iteration K − 1 (otherwise the while loop would have be broken earlier).
In other words, K − 1 = sup{i :

∑i
j=1Ej < −N log p,Ej ∼

i.i.d.E(1)}, so that K − 1 follows the
Poisson distribution P(−N log p). The probability of false negative is the c.d.f. of K − 1 at m− 1:

Pfn(p) = P(K ≤ m) = P(K − 1 ≤ m− 1) =
γ(m,−N log p)

Γ(m)
, (7)

where γ(s, x) is the upper incomplete gamma function.

This shows that Pfn(p) is an increasing function and the worst case happens when p converges to pc:

∀p < pc, Pfn(p) ≤ Pfn(pc) = 1− Pfp(pc). (8)

Remark that the trade-off between false positive and false negative probabilities is hard at p = pc.
Yet, Eq. (7) tells that Pfn(p) is quickly vanishing as p→ 0, especially when N is large.

3.3 Corruption robustness assessment as a certification problem

In the context of certification, we show that that i) our procedure is complete but not sound, ii) false
positive probability drives the lack of soundness.

A false negative is not a bad event since it avoids us to certify when the probability p of violation
is not zero. At the same time, our procedure always certifies whenever the property holds since
Pfn(0) = 0. On the contrary, a false positive remains an error since we certify when p > pc > 0. Let
us quantify the lack of soundness by

Pns(p) := P(Not Sound |p) =

{
1− Pfn(p) if p < pc
Pfp(p) otherwise

(9)

Let us recall that in our case it holds simply 1− Pfn(p) = Pfp(p).
Proposition 3. A suitable choice of the maximum number of iterations m in Alg. 1 can control the
lack of soundness by the critical probability pc and a required significance level α ∈ (0, 1) s.t.

Pns(p) ≤ α,∀p ≥ pc. (10)

Proof. This amounts to enforce that Pfp(p) ≤ α, ∀p > pc. Since − log p is a decreasing function,
the worst case occurs in (5) when p → pc. It is thus safe to ensure Pfp(pc) = α. This is done by
carefully selecting m s.t. the α-quantile of the r.v. Γ(m,N) equals − log pc. The routine Comp_m
in Alg. 1 solves this numerically with a line search (see Appendix A for some approximations).

If we assume a Bayesian approach where the p.d.f. of p is denoted by fP : [0, 1] → R+, then the
probability of not being sound is given by

P(Not Sound) =

∫ pc

0+
(1− Pfn(p))fP (p)dp+

∫ 1

pc

Pfp(p)fP (p)dp (11)

≤
∫ pc

0+
fP (p)dp+ α

∫ 1

pc

fP (p)dp = α+ (1− α)P(p < pc). (12)

The lack of soundness decreases if both α and pc are small. This makes the point with the state-of-
the-art. Baluta et al. [2021] are unable to set pc to a low value because their simulation is based on a
crude Monte Carlo, whereas Webb et al. [2019] do not give any guarantee similar to our level α.

Efficiency Appendix A proposes approximated closed forms outlining that m scales as log 1/pc.
This is also visible in the typical values given in Table 1. A lower significance level moderately
increases the number of iterations. Section 4 details how to sample a new particle at each iteration as
needed in line 11, Alg. 1. This method consumes a fixed number of calls to the network. In total,
the maximum number of calls scales as O(log 1/pc). This is in stark contrast with [Baluta et al.,
2021] where the number of calls is proportional to 1/pc. Note that this is a maximum: our procedure
makes an early stop whenever Lk > 0 (line 8, Alg. 1) and outputs Cert = False as well as failure
probability estimate Pest.
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Table 1: Maximum number of iterations m and its approximation m̃1 (see App. A)

N pc α = 0.1 α = 0.01 α = 0.001

m m̃1 m m̃1 m m̃1

20 10−10 489 489 512 514 529 532
20 10−30 1430 1431 1470 1471 1499 1502

10 10−10 251 251 267 269 280 283
10 10−30 726 726 754 755 774 777

2 10−10 56 56 64 65 69 73
2 10−30 154 155 167 169 177 180

4 Sampling procedures

This section details the crucial ingredient of our procedure: sampling a new input X whose score h(X)
is above a given level L. This random generator is called Gen(L, 1) in line 11, Alg. 1. Appendix B
considers a case where the statistical model π0 and the network are so simple that this sampling is
easy. This section details more general scenarios making no assumption about the score function.
Our sampling is a rejection procedure relying on reversible proposals and transformations.

4.1 Reversible proposals

We call a (parametric) proposal any a random function K : Rn × R+ → Rn. Iterations of i.i.d.
proposal generate a Markov chain which is said to be reversible (detailed balance) with respect to the
distribution π0 if the following assertion holds:

∀s > 0, X ∼ π0 ⇒ (X,K(X, s)) ∼ (K(X, s),X). (13)
A simple example for π0 = N (0n;σ2In) is given in [Guyader et al., 2011]:

K(X, s) :=
X + sN√

1 + s2
with N ∼ N (0n;σ2In). (14)

The rejection method described in Alg. 2 takes as input a set X of particles whose score is larger than
L. It randomly picks one particle in X and applies t times a fresh proposal, followed by a rejection
based on the score. If the selected sample is a realization of the distribution π0 conditioned by a score
larger than L, then one application of the proposal keeps π0 invariant while the rejection ensures that
the score remains above L. By induction, iterating maintains these two properties, and in fact leaves
invariant the conditional distribution thanks to reversibility (see [Guyader et al., 2011] and App. E).

Alg. 1 uses the procedure of Alg. 2 as follows. At iteration k, L is indeed Lk, i.e. the score of the
‘last’ particle xi? , and X = {xi}i 6=i? which contains (N − 1) particles whose score is larger than L.
The output is one ‘fresh’ particle and the number of particles equals N from one iteration to another.

The parameter s plays the role of strength: s = 0 implies that the proposal just copies the input,
while s→ +∞ means that K(x, s) does not depend on x. The proposal strength s is thus important.
With a small value, the proposal makes small moves. A large value explores faster but leads to higher
rejection rate. Appendix D presents a strategy to automatically control its value depending on the
past behavior of the algorithm in order to maintain a given rejection rate.

Theoretically, under some irreducibility assumption, an infinity of iterations in Alg. 2 provides a fresh
particle statistically independent of the particles in X as needed in Alg. 1:
Proposition 4. Assume that, the proposal K(x, s) has a density bounded from below uniformly in
x and s ≥ s0. Then the distribution of Λ(Lm) converges towards the Gamma distribution Γ(N,m)
exponentially fast with the number t of proposal applications.

Proof and Remarks. The proof is given in Appendix E and uses a classical probabilistic coupling
argument. It requires the lower bound assumption which is a form of strong irreducibility of the
proposal. This is compliant with the proposals used in this work. In particular all the formulas given
in Prop. 1 and after hold true asymptotically for large t.
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Algorithm 2 Sampling one particle Gen(L, 1)

Require: threshold L, finite set X of particles whose score is larger than L
Ensure: new particle X

1: X← U(X ) . Draw uniformly a particle in X
2: for k = 1 : t do
3: Z← K(X, s) . π0 reversible proposal. See Sect. 4.1
4: if h(Z) > L then . Rejection
5: X← Z
6: end if
7: end for
8: return X

In practice, we choose the number t of iterations approximately proportional to the inverse of rejection
rate, maintained approximately constant by tuning the proposal strength s (see App. D).

Refreshing a particle consumes t calls to the score function. This is done once per iteration of Alg. 1.
Therefore, our method globally consumes O(t log 1/pc) calls. This means that the figures in Table 1
are to be multiplied by t. Webb et al. [2019] also manage a sample of size N , but all the particles are
separately refreshed at each iteration by applying t Metropolis-Hasting transitions. Their number
of calls per iteration is N times larger than our. Moreover, their typical setup is N ≈ 1000 and
t ≈ 1000, while ours is N ≈ 2 and t ≈ 50. Our complexity is thus smaller by 4 orders of magnitude.

4.2 Isoprobabilistic transformation

The proposal (14) is simple but reversible only w.r.t. the normal distribution. The transformation
method is well known in the field of Statistical Reliability Engineering [Melchers and Beck, 2018].
It amounts to work with a latent random vector G ∼ N (0d; Id) and to apply the transformation
X = T (G,xo) mapping the normal distribution to the reference model π0. Some well known
examples are:

• X ∼ N (xo, σ
2In): d = n and T (G,xo) = xo + σG

• X ∼ U (B+∞,ε(xo)): d = n and T (G,xo) = xo + ε(2Φ−1(G)− 1) (component-wise)
• X ∼ U(B2,ε(xo)): d = n+ 2 and T (G,xo) = xo + εG(1 : n)/‖G‖2

More complex examples are inverse Rosenblatt or Nataf transformations [Melchers and Beck, 2018].

This transformation is composed with h to redefine the score function hG = h ◦ T that applies on
latent vector G, i.e. random vectors suitable for the proposal (14). This amounts to use Alg. 1 directly
on the latent variable with score function hG and in conjunction with Alg. 2 and proposal (14).

5 Experimental evaluation

This section presents experimental results on ACAS Xu, MNIST, and ImageNet datasets with some
trained classifications networks listed in App. F.3 together with implementation details. Experiences
were run on a laptop PC (CPU=Intel(R) Core(TM) i7-9750H, GPU=GeForce RTX 2070) except for
experiences on ImageNet which were run on a Nvidia V100 GPU.

5.1 Idealized case

This section considers a setup where π0 = N (xo;σ
2In) and score function h is linear. This setup is

ideal because sampling a fresh particle is straightforward (i.e. without Alg. 2) as shown in App. B.

Fig. 1 shows the impact of N . In terms of hypothesis testing (see Sect. 3.2), a larger N yields steeper
functions: Pfp(p) (resp. Pfn(p)) quickly vanishes to zero as p gets larger (resp. smaller) than pc. In
terms of certification (see Sect. 3.3), a small N is not a bad choice: the probability Pns(p) of not
being sound takes lower values in the range p < pc. For p > pc, Pns(p) is lower than α (as stated by
Prop. 3) but converges to 0 more slowly. Last but not least, the procedure makes only 167 calls to the
score function for N = 2, instead of 1470 for N = 20.
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Table 2: ACAS Xu – Confusion matrix comparing ERAN [DeepPoly+MILP] and Last Particle
[N = 2, pc = 10−50, t = 40]

ERAN

Certified Uncertified Infeasible TimeOut

Last Particle Certified 107 9 1 1
Uncertified 0 103 4 0

5.2 ACAS Xu

We evaluate our method on the ACAS Xu (Airborne Collision Avoidance System X for unmanned
aircrafts) case study [Owen et al., 2019]. It consists in 45 neural networks used to approximately
compress a large lookup table (2GB) containing discrete decisions (’Clear-of-conflicts’, ’weak right’,
’strong right’,’weak left’, or ’strong left’) as well as 5 input/output properties. This makes 45∗5 = 225
cases. We compare our method with the complete certification based on DeepPoly [Singh et al.,
2019] and Mixed-Integer Programming from the ERAN benchmark.

Table 2 contains the confusion matrix taking into account the cases for which the ERAN complete
certification fails because the Gurobi optimizer either outputs an ‘infeasible’ status or reaches a
timeout (set to 600 seconds). Unsurprisingly, our method is complete in the sense that it certifies
all cases certified by ERAN. It is not sound as it admits 9 false positives. This is due to the critical
probability pc which is not low enough (the decisions were exactly the same over 10 runs). Yet, our
method takes a decision on the 6 unsolved cases by ERAN. In addition our method is faster for all
ACAS Xu properties except for the property 4, confer figure 2.

5.3 MNIST

We compare our procedure with with the DeepPoly incomplete certification on MNIST [LeCun et al.,
1990] with 4 neural networks from the ERAN benchmark (see App. F.3). We focus on L∞ uniform
robustness since the implementation provided for DeepPoly cannot deal with L2 norms. We run
our algorithm with N = 2, pc = 10−35 and t = 40. As in ACAS Xu experiment, our method runs
faster than the ERAN method as shown in table 3. Interestingly, the average runtime of our method
decreases with larger ε since the probability p of violation is bigger, whereas DeepPoly computation
time increases with the size of the input space tested. On the one hand DeepPoly provides an efficient
lower bound to both corruption and adversarial robustness, on the other hand our method provides a
fast upper bound. 10 independent LP simulations (runs) on the same image always give the same
output and the standard deviation is thus empirically negligible in our setting.
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Figure 1: Estimated probabilities of false positive, false negative, and not sound certification, vs. true
violation probability p in the ideal setup where pc = 10−30, α = 0.01. Estimation over 1000 runs.
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Table 3: MNIST – Comparison ERAN [DeepPoly] and Last Particle [N = 2, pc = 10−35,t = 40]

ERAN Last Particle

ε Certified (%) runtime (sec.) Certified (%) runtime (sec.)

0.015 82 5.69 99 1.04 ± 0.005
0.03 62 5.92 97 1.03 ± 0.01
0.06 28 8.13 93 1.00 ± 0.01
0.1 22 8.84 85 0.96 ± 0.02

Table 4: ImageNet - Last Particle [N = 2, pc = 10−15, t = 20]

Network ε Avg. runtime (in sec. ±std) Avg. number of calls Certified (%)

MobileNet
0.02 20.78± 0.74 1388 71
0.03 18.74± 0.18 1274 64
0.06 14.5± 0.11 1037 50

ResNet50
0.02 33.86± 1.14 1537 81
0.03 31.38± 0.48 1434 71
0.06 25.51± 0.67 1160 59

5.4 ImageNet

For the last experiment, our method analyses 2 neural networks (ResNet50 et MobileNet) with 100
test images from ImageNet dataset [Deng et al., 2009] correctly classified by each network. These
experiments were run on a Nvida V100 GPU. The average number of calls reported is rounded up
and the average runtime is for a pass over one image. The robustness is again defined against noise
uniformly distributed over L∞ of radius ε. As one can notice, the compute time increases reasonably
the input space dimension and network size.

6 Conclusion

The paper proposes a statistical simulation to make assessment on corruption robustness. It looks
at this problem from a hypothesis testing (false positive/ false negative) and from a certification
(completeness / soundness) points of view. The procedure is scalable, efficient, complete and comes
with guarantees on the lack of soundness. There are two limitations: 1) The Last Particle simulation is
sequential, which is not GPU friendly. Yet, we provide a code processing several inputs xo in parallel.
2) Our procedure is general as it uses the network as a black-box classifier. But, it does not exploit
its gradient easily computed thanks to backpropagation. More sophisticated mixing kernels using
gradients information (e.g. Langevin Monte Carlo, Hamiltonian MC) can accelerate convergence.
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Figure 2: ACAS Xu – runtimes in sec. of ERAN (Deep Zonotope) and Last Particle algorithm
[N = 2, pc = 10−50, t = 40]
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Broader Impact

As deep learning applications move to the physical world it is crucial to understand to what extent
and in which situations their predictions can be trusted. Both adversarial and corruption robustness
assessment methods are a key step towards building trustworthy deep-learning based cyber-physical
systems. At the same time limits of such methods should always be clearly established and their
dependence on data explicit.

References
Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. Adversarial examples are a natural

consequence of test error in noise. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2280–2289. PMLR, 09–15 Jun 2019. URL http://
proceedings.mlr.press/v97/gilmer19a.html.

Jean-Yves Franceschi, Alhussein Fawzi, and Omar Fawzi. Robustness of classifiers to uniform
`p and gaussian noise. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the
Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, pages 1280–1288. PMLR, 09–11 Apr 2018. URL
http://proceedings.mlr.press/v84/franceschi18a.html.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and
effective robustness certification. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
f2f446980d8e971ef3da97af089481c3-Paper.pdf.

Stefan Webb, Tom Rainforth, Yee Whye Teh, and M Pawan Kumar. A statistical approach to assessing
neural network robustness. In International Conference on Learning Representations, 2019.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak,
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A Approximations for the computation of m

Providing a very low critical probability pc means that certification occurs when the simulation
ends after a large number of iterations m. Λ(Lm) follows a Gamma distribution Γ(m,N) which
can be then approximated by the Gaussian law N (m/N;m/N2) (application of the Central Limit
Theorem). We introduce `c the threshold associated to pc s.t. pc = P(h(X) > `c), and mc =
log(pc)/ log(1− 1/N).

Under this assumption:

P(Λ(Lm) < Λ(`c)) = α→ Λ(`c) =
m

N
− zα

√
m

N
(15)

with zα = Φ−1(1− α) > 0 for α < 1/2 and Λ(`c) = − log(pc). We find a first approximation of m
by solving this second order polynomial in

√
m:

m ≈ m̃1 =

⌈
1

4

(
zα +

√
z2α − 4N log(pc)

)2⌉
. (16)

This clearly shows that the dependence on pc is approximately logarithmic. Table 1 shows that this
approximation is excellent even for large pc.

Moreover, if N is large enough, then N log(pc) = Nmc log(1− 1/N) ≈ mc and m approximately
satisfies

m− zα
√
m−mc = 0, (17)

producing

m ≈ m̃2 =

⌈
1

4

(
zα +

√
z2α + 4mc

)2⌉
=

⌈
mc

(√
1 + z2α/4mc +

zα
2
√
mc

)2
⌉
. (18)

This shows that m is a little larger than mc = log(pc)/log(1−1/N).

B Experiments in the idealized case

This appendix details the experimental results of Sect. 5.1. This section assumes that X = xo + σX̃
with X̃ ∼ N (0n; In) and that h(x) = x>g− τ with g ∈ Rn and ‖g‖ = 1 (w.l.o.g.). In this textbook
case, the true probability p = π0(h(X) > 0) depends on τ by

p = 1− Φ

(
τ − x>o g

σ

)
. (19)

We now explain how to ‘directly’ sample a new particle as required by line 11, Alg. 1 for this
particular case, without resorting to Alg. 2.

The projection of X̃ onto g is Gaussian distributed. By linearity of the score function, conditioning
on the event E := {h(X) > L} means that the c.d.f of Z := X̃>g equals:

FZ(z) = 1(z > L0).
Φ(z)− Φ(L0)

1− Φ(L0)
with L0 := (L−x>o g)/σ. (20)

On the other hand, the projection of X̃ onto any other direction orthogonal to g remains normal
distributed. This justifies the following construction:

Z = F−1Z (U) = σΦ−1 ((1− Φ(L0/σ))U + Φ(L0/σ)) with U ∼ U[0,1] (21)

X = xo + σ
(
Zg + (In − gg>)N

)
with N ∼ N (0n; In), (22)

In a nutshell, (In − gg>) is the projection onto the (n − 1)-dimension subspace orthogonal to g.
This operator resets the projection of N onto g, which is then set to Z. Section 5.1 uses this toy
example to illustrate our procedure in the idealized case.
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C Choice of N and T

Most experiences are run with N = 2 which is counter-intuitive. In this section we elaborate on the
choice of N and T using experiments in case of linear decision function and X follows a Gaussian
law. More precisely we take X ∼ N (0, Id) and the score function s : Rd 3 x 7→ xTn with n ∈ Rd
defining the normal vector of the decision hyperplane. For simplicity, we take n = e1 i.e. the first
vector of the canonical basis of Rd. With this toy model the probability of failure for a threshold level
L is given by,

p = P(s(X) > L) = P(X1 > L) = 1− Φ(L) (23)

We now apply the last particle algorithm 1 to the statistical test with null hypothesisH0 : p ≥ pc and
alternative hypothesisH1 : p < pc. For numerical experiments below, we take p = pc and α = 0.05.
We let vary the number of particles N in the range {2, 20, 100} and the parameter T in the range
{25, 50, 100, 150, 200}. For each couple of parameters (N,T ) we make 1000 runs and count the
number of false positive (i.e. the number of times the algorithm wrongfully asserted that p < pc).
The results are presented in the table 5 below.

Table 5: Estimation of false positive rates and number of calls in function of T and N for a toy model

N T Estimated false positive rate Avg. number of calls

2 25 0.038 1.05e+03
2 50 0.041 2.08e+03
2 100 0.033 4.14e+03
2 150 0.026 6.19e+03
2 200 0.040 8.28e+03

20 25 0.034 1.04e+04
20 50 0.050 2.07e+04
20 100 0.048 4.15e+04
20 150 0.043 6.20e+04
20 200 0.043 8.29e+04

100 25 0.036 5.19e+04
100 50 0.052 1.04e+05
100 100 0.049 2.07e+05
100 150 0.033 3.11e+05
100 200 0.050 4.15e+05

D Automatic control of kernel strength

In practice the strength parameter s of the kernel is adapted at each iteration using an heuristic. More
precisely we choose a acceptance ratio threshold a∗ ∈ [0, 1] and at iteration k, after the line 11 of
Algorithm 1, decrease the s by a decay rate 0 < γ < 1. Conversely if the acceptance ratio is high but
progress, as measured by the relative gain between the old and the new level, is too slow we increase
s by the same parameter γ. This tuning mechanism is further outlined in algorithm 3. Experimentally
we find that, with well chosen parameters (a∗,g∗, γ) this adaptive tuning speeds up the algorithm
drastically keeping both acceptance ratio and level-wise progress under control.

E Proof of proposition 4

π0 denotes the reference probability distribution. The proof applies to the last particle algorithm
describes in Alg.1 in the case where the refreshed particle state Gen(l, 1) is given for each l ∈ R by
Alg.2. We recall that in Alg.2, Gen(l, 1) is obtained by t iterations of a proposal K with score-based
accept /reject; starting from a uniformly chosen other (surviving) particle with score strictly greater
than l.

The proof is based on a (instructive and explicit) probabilistic coupling between this last particle
algorithm and the ’idealized algorithm’ counterpart. The latter is obtained by taking for Gen(l, 1) the
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Algorithm 3 Adaptive Sampling for one particle AdaptGen(L, 1)

Require: threshold L, finite set X of particles whose score is larger than L, input strength parameter
sin, scaling parameter γ < 1, acceptance ratio threshold a∗, gain threshold g∗

Ensure: new particle X, new strength parameter sout
1: Initialize Count← 0, sout ← sin, X← U(X ) . Draw uniformly a particle in X
2: for k = 1 : t do
3: Z← K(X, sin) . π0 reversible proposal. See Sect. 4.1
4: if h(Z) > L then . Rejection
5: X← Z
6: Count← Count + 1
7: end if
8: end for
9: if Count < t× a∗ then

10: sout ← γ × sin . Decrease s if acceptation rate is too low
11: else
12: L∗ ← min(h(X),minx∈X h(x))
13: Gain← L∗−L

|L|
14: if Gain < g∗ then
15: sout ← sin

γ . Increase s if the progress is too low
16: end if
17: end if
18: return X, sout

exact conditional distribution π0(dx|h(x) > l). The underlying idea (see Guyader et al. [2011]) is that
the Markov chain generated by Gen(l, 1) in Alg.2 leaves invariant the distribution π0(dx|h(x) > l),
so that the idealized algorithm is formally the limit of the simulated algorithm when t→ +∞.

Step 0: Checking the lower bound assumption

The lower bound assumption can be rewritten as follows:

∃ p∗ > 0, s0 > 0, ∀x, s ≥ s0, Law(K(x, s)) ≥ p∗π0 (Doeblin)

where inequality between two measures simply means that their difference is a non-negative measure.
(Doeblin) is a well-known irreducibility condition coined ’Doeblin condition’ in the probabilistic
literature on Markov chain.

Let us check that the lower bound condition is compliant with some very minor variants of the
transformation method detailed in Sect. 4.2.

Consider for instance the transformation: X ∼ U(B2,ε(xo)), T (U,xo) = xo + εU(1 : n) where U
is n+ 2-dimensional with uniform distribution on the unit sphere of Rn+2.

On the other hand, consider the proposal on the unit sphere of Rn+2 obtained by composing the
Gaussian proposal (14) in Rn+2 with an additional orthogonal projection. This proposal on the sphere
has the following two properties: i) it is reversible with respect to the uniform distribution on the
sphere (by a symmetry argument), ii) its density satisfies (Doeblin) (by lower bounding (14) with
initial condition on the unit sphere by a centered Gaussian distribution).

Combining the latter proposal with T we obtain again a proposal reversible w.r.t. U(B2,ε(xo))
and satisfying (Doeblin). See below for possible (slight but technical) generalizations to proposals
satisfying weaker versions of (Doeblin).

Step 1: Uniform rejection rate

The acceptance rate of a proposal satisfying (Doeblin) with accept rule given by score h(x) > l is
bounded from below by:

p∗P(h(X) > l),

which is, in turn, uniformly bounded from below if l ≤ l0 with P(h(X) > l0) > 0.

Note that the proof is thus compliant with the tuning of the proposal strength s w.r.t. a constant
rejection rate (App. D), since that latter can be carried out while ensuring (Doeblin).
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Step 2: Coupling of proposals

Let us define the ‘local’ coupling between proposals that will enable the coupling between algorithms.
Let x,x′ be given, as well as a proposal satisfying (Doeblin). A coupled proposal K((x, s),K(x, s))
is generated as follows: i) with probability p∗, generate a successful coupling K(x, s) = K ′(x′, s)
with distribution π0; ii) else, generate independent proposals K(x, s) and K ′(x′, s) with respective
distributions Law(K(x, s))− p∗π0 and Law(K(x′, s))− p∗π0.

Clearly, the associated two marginal distributions of K(x, s) and K ′(x′, s) are respectively
Law(K(x, s)) and Law(K(x′, s)).

Step 3: Coupling of the two algorithms

Let us denote by Lk and L′k the two levels of the last particle at iteration k in Alg. 1 for the real and
idealized algorithms, respectively. If Lk = L′k, we sample independently X′k, the new, refreshed
particle of the idealized algorithm, according to the exact conditional distribution π0(dx|h(x) > Lk)
(this replaces line 1 in Alg. 2). X′k is then modified in parallel with the new particle of the real
algorithm according to Alg. 2 by iterating t times the coupled proposal transition of Step 2; K being
used for the real and idealized algorithms, respectively.

After t iterations one has thus obtained a successful coupling with probability (conditional on Lk)
1− (1− p∗P(h(X) > Lk))t −−−−→

t→+∞
1.

Moreover, since Alg. 2 leaves invariant the conditional distribution π0(dx|h(x) > Lk), it does not
modify the distribution of the refreshed particle in the idealized algorithm.

Step 4: Conclusion by induction

Let l0 be any critical level such that π0(h(X) > l0) > 0. We consider the following induction
hypothesis at iteration k:

Hk On the event, Lk ≤ l0, The probability that the two particle systems are equal tends
exponentially fast to 1 when t→ +∞.

Assume Hk is true. The probability that the two particle systems are equal at iteration k + 1
is the probability conditioned by equality at iteration k multiplied by probability of equality at
iteration k. If the score level is below l0, the former conditioned probability is bounded below by
1− (1− p∗P(h(X) > l0))t by Step 3 so that using Hk the induction on Hk+1 is complete.

We deduce that P(Lm ≤ l0) converges exponentially fast with t large towards P(L′m ≤ l0) for each
l0. Using in addition Theorem 1 on the idealized algorithm, we conclude the proof.

Possible Generalizations: It is possible to relax the irreducibility condition (Doeblin) so that it is
verified by most practical proposals, see Sec. 4.2. This requires using so-called Lyapounov functions,
as well as an extra (but mild) assumption on the shape of h ’at infinity’.

For instance, consider the Gaussian proposal (14) in Rn+2. It satisfies the Doeblin condi-
tion (Doeblin), but only locally, for all x in a ball, p∗ depending now of the size of the ball.

The extra assumption on the shape of the score function h at infinity is then necessary to check that
the rejection rate is again uniformly bounded from below.

Finally, one can remark that the following so-called Lyapounov condition E[|K(x, s)|2] ≤ ρ|x|2 + c

holds true (with ρ = 1
1+s2 < 1 and c = s2

1+s2 < +∞). It ensures that the proposal cannot be stuck at
infinity, in areas where the ’local’ Doeblin condition is poor.

One can then couple proposals using (Doeblin) as above, but only when the coupled initial states are
in a given ball, and use the Lyapounov condition (see Hairer and Mattingly [2011]) to nonetheless
obtain a successful coupling with a lower bounded success rate.

The proof then works as above.

Final remarks: Note that the exponential convergence rate obtained in the proof of Proposition 4 is
too sub-optimal to be suitable for practical purpose. Practical estimation of this rate is left for future
work although estimating the mixing rate of such Markov chain is known to be difficult and widely
dependent on the geometry of h.
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F Implementation details of the experiments

This section gives further details on the implementation available at
https://github.com/karimtito/efficient-statistical
The source code provided can be used to re-run experiments or run different experiments (see
README file for more information).

F.1 ACAS Xu

In the experiments on the ACAS Xu DNN compression case study we used the 45 neural networks
from the VNNLIB website (in ONNX format), which do not require normalizing the inputs. We
only tested the 5 first properties since they apply to all networks. We use an adaptive procedure
to tune the strength parameter s as explained in D. Experiments main parameters are set to: N =
2, pc = 10−50, T = 40, α = 10−3. We initialize the strength s at 1.5 and use the adaptive sampling
procedure of section D with γ = 0.99, a∗ = 0.90, g∗ = 0.01. In addition we ran experiments with
the ERAN complete certification method using DeepPoly and Mixed Integer programming on the
same benchmark.

F.2 MNIST

We selected 4 neural networks from the ERAN benchmark: 3 architectures of varying complexity
trained with pytorch named ’convMedGRELU__PGDK_w_0.1’,’ffnnRELU__PGDK_w_0.1_6_500’ &
’ffnnRELU__Point_6_500’ and a simpler model trained with tensorflow ’mnist_relu_9_200’.
We use batched version of the Last Particle algorithm where we test the local robustnes aroung 100
images in parallel. For each image we create a system of N(= 2) particles and we call the score at
each iteration (line 6 in Algorithm 1) with a batch consisting of all lower-scored particles. This trick
accelerates the computations by taking advantage of the GPU. We also used the adaptive tuning of
the strength, initializing s at 1.5 and with γ = 0.999, a∗ = 0.90, g∗ = 0.01.

F.3 ImageNet

Similarly to MNIST we used a batched version of the Last Particle algorithm presented in section
3. Again we also used a automatic control mechanism (see section D, initializing s at 1 and taking
γ = 0.999, a∗ = 0.90, g∗ = 0.01. For ImageNet we could not run the ERAN certification methods
unfortunately since these methods barely scale to such high input dimension and management of
ImageNet is not implemented for now on the ERAN GitHub repository.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] Efficiency and scalability are experimentally
demonstrated in Sect. 5. Non-asymptotic guarantees are proven in Prop. 1 to 4.

(b) Did you describe the limitations of your work? [Yes] We did in the conclusion
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We did in

the ‘Broader Impact’ Section.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
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Prop. 4.
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Prop. 4 is in App. E
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
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the implementation details to reproduce the experimental results. The code is available
on github: https://github.com/karimtito/efficient-statistical

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In App. F.3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For run-times of the Last Particle algorithm, since the
method is stochastic.
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benchmark suite.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]
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