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Sizing of a fleet of cooperative robots for the transport of homogeneous loads

We consider the problem of determining the number of robots necessary to transport a set of homogeneous loads in a given time interval from a zone A to a zone B, at minimum cost. The cost is function of the number of robots and of the distance travelled by robots. The operations are divided into several phases: loading, loaded travel, unloading, empty travel and battery charging. We first consider the case of noncooperative robots for which we derive a closed-form expression for the optimal number of robots. We then consider the case of cooperative robots where loads can be carried either by a single robot (mono-robot) or by several robots that cooperate (poly-robot). The fleet sizing problem can be formulated as a mathematical programming. We distinguish several scenarios, depending on the respective carrying capacity of mono-robots and poly-robots. We also address the infinite horizon problem which models a fleet of vehicles operating permanently and leads to simpler results.

I. INTRODUCTION

A warehouse of a manufacturing company today is characterized by dynamic production processes governed by the demands of a rapidly changing global economy, such as the increasing number of product variants, customization of products and responsiveness to changing market conditions. In order to be competitive, companies are forced to seek innovative robotic solutions to operate their warehouses. Thus, certain giants of the online trade organize competitions to develop autonomous robots for the pick-and-place tasks [START_REF] Morrison | Cartman: The low-cost cartesian manipulator that won the amazon robotics challenge[END_REF]. A particular development over the last decade has taken place for AGVs (Automated Guided Vehicles) and AMRs (Autonomous Mobile Robots) [START_REF] Oyekanlu | A review of recent advances in automated guided vehicle technologies: Integration challenges and research areas for 5gbased smart manufacturing applications[END_REF], especially in logistics warehouses and industrial production [START_REF] Andersson | Agv & amr robotics[END_REF]. In our work, we use the term AGV in both cases, considering the robots individually and also in cooperation.

The benefits of cooperation are clearly demonstrated by the animal world. Collaboration can be of different types, for example, the execution of a task by several subordinates under the direction of a leader, or the execution of the same task with the same level of responsibility [START_REF] Dugatkin | Cooperation among animals: an evolutionary perspective[END_REF]. The cooperative approach can be applied not only in nature, but Fig. 1: Different modes of cooperation [START_REF] Chebab | Conception et commande collaborative de manipulateurs mobiles modulaires[END_REF] in industry [START_REF] Le | Coopération dans les systèmes multi-robots: contribution au maintien de la connectivité et à l'allocation dynamique de rôles[END_REF]. Cooperative robots capable of working in parallel on the same task open wide perspectives [START_REF] Noreils | Cooperation between mobile robots and industrial applications: Some perspectives[END_REF]. For example, a large load can be transported by several small robots connected to the load (co-manipulation mode) or one robot can transport the load while connecting to another robot to increase stability (connection mode) [START_REF] Chebab | Conception et commande collaborative de manipulateurs mobiles modulaires[END_REF] as illustrated in the Figure 1.

We use the concepts and terminology developed in [START_REF] Chebab | A method for structural synthesis of cooperative mobile manipulators[END_REF]:

• Mono-robot (m-bot) = An elementary robot, which is designed to work on its own or with others; • Poly-robot (p-bot) = A set of p m-bots, which cooperate on the same task. Different questions arise when operating a fleet of robots, such as the design of the warehouse architecture [START_REF] Van Geest | Design of a reference architecture for developing smart warehouses in industry 4.0[END_REF], trajectory planning with obstacle and collision avoidance [START_REF] Cardarelli | Cooperative cloud robotics architecture for the coordination of multiagv systems in industrial warehouses[END_REF], [START_REF] Lee | Smart robotic mobile fulfillment system with dynamic conflict-free strategies consid-ering cyber-physical integration[END_REF], service policy [START_REF] He | Differentiated service policy in smart warehouse automation[END_REF] and battery charging [START_REF] Zou | Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system[END_REF].

In this article, we are interested in the sizing of a fleet of cooperative robots for the transport of standardized loads that are all identical, which we will refer to as homogenous loads.

AGVs are generally expensive and determining the right type and number of vehicles is crucial. The pioneering work, [START_REF] Egbelu | The use of non-simulation approaches in estimating vehicle requirements in an automated guided based transport system[END_REF] highlights several factors influencing the required number of vehicles, such as system layout, location of load transfer points, trips frequency, vehicle-dispatching strategy, system reliability and speed of travel.

Different works are interested in the sizing of robot fleets. They can be divided schematically into two categories: the stochastic models [START_REF] Arifin | Determination of vehicle requirements in automated guided vehicle systems: a statistical approach[END_REF], [START_REF] Koo | Estimation of part waiting time and fleet sizing in agv systems[END_REF], [START_REF] Choobineh | Fleet sizing of automated guided vehicles: a linear programming approach based on closed queuing networks[END_REF] and the deterministic models [START_REF] Rjeb | Fleet-sizing of robots in a logistics warehouse -Transport operation between reception area and storage area[END_REF], [START_REF] Egbelu | The use of non-simulation approaches in estimating vehicle requirements in an automated guided based transport system[END_REF]. As in our work we are developing a deterministic mathematical model, we will focus on the last two works in more detail. The work [START_REF] Egbelu | The use of non-simulation approaches in estimating vehicle requirements in an automated guided based transport system[END_REF] proposes four analytical approaches to estimate the number of robots, giving examples for each of them. The author proposes to consider add dispatching rules and then simulate his models with varying incoming material flow. These models are optimistic according to the author. [START_REF] Rjeb | Fleet-sizing of robots in a logistics warehouse -Transport operation between reception area and storage area[END_REF] refines the results of [START_REF] Egbelu | The use of non-simulation approaches in estimating vehicle requirements in an automated guided based transport system[END_REF] in the case of homogeneous loads by providing an analytical formula for the optimal number of robots. In the case of heterogeneous loads, the authors formulate the problem as a bin packing problem.

Different objective functions are considered in the literature. In particular, several works are interested in minimizing the cost or in maximizing the profit. [START_REF] Beaujon | A model for fleet sizing and vehicle allocation[END_REF] maximizes the total profit (difference between revenues and total transportation costs, including penalty costs for unmet demand). [START_REF] Etezadi | Vehicle fleet composition[END_REF] minimizes the cost of a fleet of purchased or leased vehicles. [START_REF] Sinriech | An economic model for determining agv fleet size[END_REF] minimizes the cost by applying penalties if performance is not achieved in terms of quality of service.

Contributions

To our knowledge, this article is the first to focus on the sizing of a fleet of cooperative robots. To simplify, we first consider that the loads are homogeneous. The section II considers the sizing of a fleet of non-cooperative robots and extends the results of [START_REF] Rjeb | Fleet-sizing of robots in a logistics warehouse -Transport operation between reception area and storage area[END_REF] by adding the concept of transport capacity. The section III considers the problem of sizing a fleet of cooperative robots. Finally, the section IV offers a conclusion and research perspectives, in particular concerning the problem with heterogeneous loads.

II. SIZING OF A FLEET OF NON-COOPERATIVE ROBOTS

In this first part, we determine the number of robots necessary to transport a set of loads over a time interval [0, T ] where T is the horizon.

A. Assumptions and notations

We use the following notations: Robot capacity is denoted c. The capacity of a robot is related to the size and mass of the loads, here we assume that capacity represents the number of loads that a robot can carry simultaneously.

We call τ the cycle time that represents the sum of the loaded travel time (d/2v l where v l is the travelling speed of a loaded robot), the empty travel time (d/2v e where v e is Fig. 2: Transport of identical loads by a fleet of homogeneous robots the displacement speed of an empty robot), the loading time (t l )and the unloading time (t u ):

τ = d 2v l + d 2v e + t l + t u (1) 
Over the time interval [0, T ], the robot is immobilized during t b (battery recharge, maintenance, failure, etc.). The remaining available time is then (Tt b ).

The cost per unit of time of a fleet of N > 0 robots traveling a total distance D over the [0, T ] is

f (N) = αN + β D T + γ (2) 
where α represents the fixed cost of a robot per unit of time (cost related to maintenance, purchase or rental), β the cost per meter traveled by one robot and γ the cost per unit of time independent of the number of robots (hardware and software infrastructure). Note that the total distance traveled D is directly related to the number of loads n to be transported. Indeed, it takes n c round trips to transport the n loads, where x is the least integer greater than or equal to x. We then have D = d n c and the cost function is

f (N) = αN + β d T n c + γ. ( 3 
)
The objective is to determine the number of required robots, N * , to transport the set of n loads over time interval [0, T ] at minimum cost, considering A as the starting point and return point of the robots. For this simple problem, it is equivalent to determining the minimum number of robots allowing all loads to be transported over the time interval. To have feasible solutions, we assume that Tt b ≥ τ.

We also make the following assumptions:

• The robot storage place is located at point A. There is no waiting to load in A or to unload in B (the loads are available immediately to be loaded and the robots do not hinder each other).

• The problem of traffic jams for robots is not taken into account. We could nevertheless take into account these different elements by introducing an efficiency coefficient, as proposed in [START_REF] Egbelu | The use of non-simulation approaches in estimating vehicle requirements in an automated guided based transport system[END_REF].

B. Optimal number of robots (finite horizon)

One The number of robots being an integer, the minimum number of robots to transport n loads during the time interval [0, T ] is then

N * = n c (T -t b )/τ (4) 
The minimum cost is then 

f * = f (N * ) = αN * + β d T n c + γ (5) = α n c (T -t b )/τ + β d T n c + γ (6 

C. Optimal number of robots (infinite horizon)

We are also interested in the limit case where the time horizon T tends to infinity. This allows, on the one hand, to avoid side effects (if horizon T is not a multiple of cycle time τ) and, on the other hand, to model a fleet of vehicles operating permanently.

We denote by µ = c/τ the maximum flow rate of loads per robot (maximum number of loads that a robot can carry per unit of time), by λ = n/T the demand flow of loads to transport and by δ = t b /T the immobilization rate.

If we make T tend to infinity, keeping λ and δ constant, we get:

N * = λ µ(1 -δ ) (7) 
f * = α λ µ(1 -δ ) + β d λ c + γ (8) 
A detailed proof of this result is provided in the Appendix.

III. SIZING OF A FLEET OF COOPERATIVE ROBOTS

In this section, we assume that robots can cooperate to transport loads. We remind that a m-bot is an elementary robot which can work on its own or with others while a p-bot is a set of p m-bots that cooperate together.

A. Assumptions and notations

We use the following notations: We will make the following additional assumptions:

• τ m ≤ τ p as a p-bot may waste time in cooperation.

• There is no additional cost associated to a p-bot. The costs of a p-bot are simply those induced by the m-bots constituting it. • There is no possible reconfiguration . A p-bot always remains a p-bot and a m-bot that is alone always remains alone.

B. Optimal fleet (finite horizon)

The fleet sizing problem can then be modeled by the following mathematical program which aims at minimizing the cost function [START_REF] Le | Coopération dans les systèmes multi-robots: contribution au maintien de la connectivité et à l'allocation dynamique de rôles[END_REF] :

min α(N m + pN p ) + β d T n m c m + p n p c p + γ (9) 
subject to:

N m c m T -t b τ m + N p c p T -t b τ p ≥ n (10) n m ≤ N m c m T -t b τ m (11) n p ≤ N p c p T -t b τ p ( 12 
)
n = n m + n p (13) n m ∈ IN, n p ∈ IN, N m ∈ IN, N p ∈ IN ( 14 
)
Constraints interpretation :

• Constraint ( 9): the fleet of robots must have enough capacity to carry the n loads over the interval [0, T ]; • Constraint ( 11): the number of loads carried by m-bots must be less than or equal to the maximum number of loads that m-bots can transport on interval [0, T ]; • Constraint ( 12): the number of loads carried by p-bots must be less than or equal to the maximum number of loads that p-bots can transport on interval [0, T ]; • Constraint ( 13): the sum of the number of loads carried by m-bots and p-bots must be equal to the total number of loads to be transported.

When β = 0, the problem comes down to determining the minimum number of robots allowing all loads to be transported. When α = 0, the problem comes down to achieving the smallest number of round trips to transport all the loads (a round trip from a p-bot counts as p round trips).

We will distinguish three cases linked to the respective capacities of m-bot and p-bot.

a) c m = 0 : In this first case, we assume that a m-bot can't carry a load on its own (c m = 0). This scenario may appear for a load of great mass, great volume or even great length. For example, as shown in Figure 4, the robot cannot transport a load much larger than itself for stability reasons. The problem then consists in determining the number of p-bots needed to carry all the loads and the results of Section II can be re-used. So we have:

N * p = n c p (T -t b )/τ p , N * m = 0.
b) c m ≥ c m : In this second scenario, a single m-bot has a greater capacity than a m-bot in p-bot configuration. Let us give a first example where this scenario occurs. If the capacity constraint is related to the transported mass and an additional pallet is needed in p-bot mode, then we lose mass capacity in p-bot mode. Another example would be the case where the load is transported by manipulator arms installed on the mobile platform in p-bot mode. Figure 5 shows the case when the robot loses its mass capacity due to the pallet, and thus the m-bots transport more than the p-bots. We can then use again the results from the previous section. So we have

N * p = 0, N * m = n c m (T -t b )/τ m . c) 0 < c m < c m :
In this 3rd case, a single m-bot has a lower capacity than a m-bot in p-bot configuration. This scenario may arise for the transport of long objects (for example tubes) or even objects of large volumes but of low density. Figure 6 shows an example where a p-bot can have a capacity greater than a m-bot, when we can not stack loads on top of each other. Figure 7 shows the Gantt diagram of the optimal solution when both configurations are allowed. 

α(N m + pN p ) + β d λ m c m + p λ p c p + γ (15) 
s.t. N m µ m (1 -δ ) + N p µ p (1 -δ ) ≥ λ (16) 
λ m ≤ N m µ m (1 -δ ) (17) 
λ p ≤ N p µ p (1 -δ ) (18) 
λ = λ m + λ p (19) 
λ m ∈ IR, λ p ∈ IR, N m ∈ IN, N p ∈ IN (20) 
In two cases, we can re-use the results of Section II-C. a) c m = 0 :

N * m = 0, N * p = λ µ p (1 -δ ) b) c m ≥ c m : N * m = λ µ m (1 -δ ) , N * p = 0 IV. CONCLUSION
This paper describes a deterministic mathematical framework for the sizing of a fleet of identical robots, named mbots, with have the possibility to cooperate. A set of p m-bots that cooperate on a given task constitute a p-bot.

When cooperation is not allowed, we obtain a closed-form expression for the optimal number of m-bots. When cooperation is allowed and reconfiguration forbidden, we formulate the fleet sizing problem by a mathematical program with linear constraints and non-linear objective function.

Our mathematical model allows us to determine the most profitable number of robots that should cooperate. If the capacity of p m-bots is smaller than the capacity of a single p-bot, then using exclusively p-bots or a mix of m-bots can lead to a significant cost decrease. Otherwise, it is optimal to use exclusively m-bots.

The next step of our work will be to consider the case where a p-bot can be reconfigured as a m-bot, leading to higher utilization of robots. We will also consider the case of heterogeneous loads in mass and dimensions, where a mbot can be used for a small load and a p-bot for a large load.

APPENDIX

Using the fact that x-1 < x ≤ x, we can limit the optimal number of robots obtained in ( 4 

•

  d: round trip distance from A to B • τ: cycle time • v l : travelling speed of a loaded robot • v e : travelling speed of a empty robot • t l : loading time • t u : unloading time • D: total distance traveled by a robot • α: fixed cost per unit of time of a robot • β : cost per meter traveled by a robot • γ: fixed cost per unit of time, independent of the number of robots • N: number of robots for loads transportation • n: number of loads transported • T : planning horizon In this paper, we consider a fleet of N identical mobile robots which must transport a set of n identical loads unload in B and return empty to A, as shown in Figure 2.

  robot can make at most Tt b τ round trips over the time interval [0, T ] where x denotes the greatest integer less than or equal to x. Thus N robots with capacity c can carry at most Nc Tt b τ loads over the time interval. To transport the n loads, it is therefore necessary that Nc Tt b τ ≥ n and therefore that N n c (Tt b )/τ .

)

  Consider the following example: n = 5, c = 2, τ = 0.4, t b = 0, T = 1α = 10, β d = 2, γ = 1.Then N * = 2, f * = 27 and a possible scheduling is represented as a Gantt diagram in Figure 3.

Fig. 3 :

 3 Fig. 3: Gantt diagram for optimal transport of 5 loads

•

  p: number of m-bots constituting one p-bot • c m : m-bot capacity • c p : p-bot capacity • c m = c p /p: virtual m-bot capacity when it evolves as part of a p-bot • τ m : m-bot cycle time • τ p : p-bot cycle time (including possible cooperation time) • α m : fixed cost per unit of time of a m-bot • β m : cost per meter traveled by a m-bot • γ m : fixed cost per unit of time, independent of the number of m-bots • N m : number of m-bots working alone • N p : number of p-bots • n m : number of loads transported by m-bots working alone • n p : number of loads transported by p-bots The other assumptions remain unchanged from Section II: • T : planning horizon • n: number of loads to be transported from A to B n = n m + n p • N: number of robots N = N m + pN p

(a) 1 2 Fig. 4 :

 124 Fig. 4: Illustration for case c m = 0

  Fig. 5: Illustration for case c m ≥ c m

Fig. 6 :

 6 Fig. 6: Illustration for case 0 < c m < c m

Fig. 7 :

 7 Fig. 7: Gantt diagram of the optimal solution of 4 loads

  the notations λ , µ, δ , this frame is re-writtenλ µ(1δ ) ≤ N * < λ µ 1δ -c T (23)If we tend T to infinity, keeping λ and δ constant, we get --------→T →+∞ α λ µ(1δ ) + β d λ c + γ(27)

Table I

 I presents the optimal solution according to the type of authorized robots.

TABLE I :

 I Optimal solutions according to the types of authorized robots

		N m	N p	n m	n p	total cost
	m-bots only	2	0	4	0	42
	p-bot only	0	1	0	4	42
	Mix of m-bots and of p-bots	1	1	1	3	33
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