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A B S T R A C T   

An explosion in high frequency dissolved oxygen (DO) observations at river network scales is creating new 
opportunities to understand dynamic signals in streams and rivers. Among the most informative metrics obtained 
from DO time series is stream metabolism—comprising gross primary production (GPP) and ecosystem respi
ration (ER)—but its estimation is non-trivial. There is thus interest in simpler metrics that can capture spatio
temporal patterns in stream metabolism and their consequences for critical ecosystem processes. Using hourly 
DO time series from 43 agricultural headwater streams reaches (Strahler order 1–5) across five watersheds and 
two years, we tested the hypothesis that simple DO metrics are useful proxies of stream metabolism, capturing 
key features of its spatiotemporal variation, and predicting attendant patterns in dissolved organic matter quality 
and catchment nitrogen processing via denitrification. Our results suggest the diel DO range scaled by stream 
depth is an excellent proxy for GPP throughout the network, accurately describing its spatial and temporal 
patterns. In contrast, we found that DO metrics were less successful as proxies for ER, with the maximum daily 
DO deficit scaled by depth being a good proxy for ER only in higher order streams. We also observed that DO 
metrics were strongly related to variation in dissolved organic matter quality and denitrification far better than 
GPP or ER. Finally, we found that DO metrics, GPP, and to a lesser extent ER, had power-law relationships with 
watershed area (scaling exponents, β = 0.2–0.5), implying increasing downstream metabolic activity. However, 
because lower order streams occupy ~75% of network benthic area, total network GPP and ER (g O2 d− 1) were 
disproportionately provided by lower order streams, consistent with recent theoretical modeling. These findings 
reveal the rich inference space that simple DO metrics can provide, and support their use as proxies for stream 
metabolism and for inferring network patterns of biogeochemical function.   

1. Introduction 

Dissolved oxygen (DO) in flowing waters is an information-rich 
ecosystem indicator, at once integrating energy dynamics, describing 
aquatic habitat suitability, and constraining biogeochemical processes. 
Rapid increases in reliability and decreasing costs of in-situ DO sensors 
(Pellerin et al., 2016; Rode et al., 2016) have enabled freshwater sci
entists to obtain long time series of high-frequency observations that 
offer deep insights into inland water functions. A key focus has been on 
using these DO time series to estimate stream metabolism as the 

conjoined fluxes of gross primary production (GPP) and ecosystem 
respiration (ER) (Appling et al., 2018; Demars et al., 2015; Odum, 
1956). Although stream metabolism is a fundamental metric of lotic 
ecosystems, accurate calculation is non-trivial, especially in headwater 
and urban streams with noisy DO signals, heterogeneous reaches, and 
where physical gas exchange (K) with the atmosphere is poorly con
strained (Blaszczak et al., 2019). Despite the often dispiriting un
certainties associated with metabolism inferences, much can be learned 
from simple DO metrics (Moatar et al., 2001; Mulholland et al., 2005; 
Wang et al., 2003) that obviate the necessity of modeling assumptions 
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(e.g., reach homogeneity, constant ER, lack of groundwater inputs) and 
gas exchange estimates, which are notoriously difficult and uncertain 
(Demars et al., 2015). Indeed, where broad spatiotemporal patterns are 
of focal interest, and where the exacting precision of metabolism com
putations are not required or the assumptions untenable, DO time series 
attributes may be informative regarding network scale metabolic 
function. 

Network patterns of inland water metabolism have been a central 
focus of limnology since the emergence of the river continuum concept 
(Vannote et al., 1980) with modern investigations focused on spatial 
scaling rules for river networks (Koenig et al., 2019), temporal meta
bolic regimes (Bernhardt et al., 2018; Savoy et al., 2019), and predictive 
frameworks (Segatto et al., 2021). Despite the centrality of spatiotem
poral network variation to our theoretical understanding of metabolic 
patterns and their biogeochemical consequences, few studies have 
empirically evaluated network scale behaviour of metabolism and DO, 
with those that exist focused primarily on first- and second-order 
streams (e.g., catchments 0.3–3.7 km2 in Mulholland et al. 2005). 
Exploring how DO and stream metabolism scale in space and time 
through larger river networks (i.e., up to fifth order streams) thus re
mains an important knowledge gap. 

There are several key predictions of how stream metabolism patterns 
evolve throughout a headwater stream network. The first prediction, 
which is borne out of theoretical (Koenig et al., 2019; Vannote et al., 
1980) and empirical evidence (Finlay, 2011; McTammany et al., 2003; 
Mejia et al., 2019), is that GPP increases along river networks as light 
availability increases with increasing channel widths and reduced 
shading. This prediction implies that the diel range in DO (sometimes 
called DO flux, Jankowski et al., 2021 and references therein) increases 
in similar fashion as light inputs (Wang et al., 2003). In contrast, pre
dictions for how ER may change along a river network diverge. For 
example, ER magnitude may either 1) stay constant or decrease slightly, 
or 2) increase along a river network. Empirical evidence for the former 
derives from studies conducted at the scale of entire river networks from 
headwaters to mouth (Battin et al., 2008; Hotchkiss et al., 2015), 
whereas evidence for the latter is found in headwater networks and is 
attributed to increasing downstream stream temperature (Finlay, 2011; 
Mejia et al., 2019). Previous efforts have identified maximum daily DO 
deficits (i.e., the greatest degree of undersaturation) as a reasonable 
proxy for ER (Mulholland et al., 2005; Wang et al., 2003), implying that 
this metric should behave similarly to ER throughout the network. 
Importantly, GPP and ER are scaled from DO concentration changes (g 
O2 m− 3 d− 1) to areal fluxes (g O2 m− 2 d− 1) using stream depth (m). 
Stream depth thus linearly diminishes the resulting DO flux so that for 
identical GPP or ER, DO diel variation will be greater in headwater than 
in downstream reaches. Hence, depth corrections of observed DO con
centrations are necessary for across order comparisons. 

Stream metabolic regimes characterize GPP temporal patterns, 
integrating primary producer phenology, light availability, timing of 
resource inputs, and disturbance patterns (Bernhardt et al., 2018). 
Metabolic regimes are well-predicted by river size because light and 
temperature tend to increase downstream and larger rivers are less 
frequently disturbed (Savoy et al., 2019). Further variation around these 
principal regimes is related to local conditions in turbidity, color, and 
disturbance which can lead to asynchronous behavior across river net
works (Mejia et al., 2019; Roberts et al., 2007), and high within-network 
variability. How DO signals relate to these network properties remains 
an open question, especially in disturbed systems (Blaszczak et al., 
2019), but temporal patterns in simple DO metrics may prove to be 
useful in characterizing metabolic regimes, even where metabolism as
sumptions are untenable. 

Stream metabolic rates and associated DO patterns are linked to both 
dissolved organic matter (DOM) and nitrogen (N) processing by stream 
biota. For instance, DOM derived from GPP tends to be richer in 
aliphatic structures than allochthonous-derived DOM (Hansen et al., 
2016; Helms et al., 2008; Zhang et al., 2013). On the other hand, 

consumption of DO, and therefore minimum daily concentrations, is 
controlled by biological respiration and decomposition of organic mat
ter that tends to decrease DOM molecular weight (Hansen et al., 2016; 
Helms et al., 2008; Zhang et al., 2013). In turn, large DO deficits affect 
the balance between oxic and anoxic respiration pathways, and are 
therefore linked to increased potential for in-stream denitrification 
(Christensen et al., 1990), which requires low DO. This process inte
gration of oxygen, DOM quality, and denitrification suggests that 
changes in DO concentrations along the stream should both control and 
result from in-stream biogeochemical processes and by-products. 

Here, we used spatiotemporal variation in DO signals along an 
agricultural headwater stream network to evaluate simple inferences of 
spatial and temporal variation in metabolic rates, and as predictors of 
key biogeochemical processes. We hypothesized that metrics based on 
diel variations in DO concentrations would be robust proxies of stream 
metabolism, and thus, could qualitatively capture temporal and spatial 
variation of metabolic activity. In addition, we hypothesized that DO 
metrics would be informative of network patterns of biogeochemical 
processes strongly linked to stream metabolism and DO availability such 
as in-stream DOM cycling and denitrification. Thus, we expected strong 
relationships between DO proxies of stream metabolism and both DOM 
quality and denitrification isotopic N signatures. 

2. Methods 

2.1. Study area 

We studied 43 stream sites ranging from Strahler order 1 to 5 within 
five agricultural watersheds in the Forez plain of the Loire River, France 
from July 2019–October 2020 (Fig. 1). The study area in the headwaters 
of the Loire comprises a valley uplifted during the Tertiary and glaciated 
during the Quaternary, bound by the Monts du Lyonnais to the east and 
the Monts du Forez to the west, with sites spanning an elevation gradient 
of 330 to 627 m.a.s.l. (NGF IGN69 datum). Lithology near the Loire 
River at watershed outlets is typically a thick alluvium with clay and 
sand derived from granite and gneiss rocks. Higher in the watersheds, 
lithology is typically granite and gneiss. Topography is characterised by 
rolling hills with successions of plateaus separated by long steep slopes. 
Drainage networks are dense and valleys are deeply incised. Climate in 
the Forez plain is continental, with mean annual rainfall of approxi
mately 800 mm, and mean annual temperatures of 11 ◦C (mean annual 
minimum–maximum = 6.1–17.2 ◦C). This area has been continuously 
occupied since at least 5750 cal. BP with agricultural activity, damming, 
and water mills growing throughout the Iron Age and Gallo-Roman 
period around 2000 cal. BP (Cubizolle et al., 2012, 2003; Georges 
et al., 2004). 

2.2. Data collection 

We monitored all sites for DO (g m− 3) and temperature (◦C) every 15 
min and supplemented these data with seasonal grab samples of water 
chemistry (up to 5, depending on site) between July 2019 and October 
2020, (Fig. 2); we did not collect DO and temperature data during winter 
(November–February). At each site, DO and temperature were measured 
with an in-situ sensor (HOBO U26-001, Onset Computer Corporation, 
Massachusetts, USA) instrumented with a copper anti-biofouling guard. 
We cleaned these sensors every two weeks to remove biofouling. Prior to 
deployment, we lab-calibrated DO sensors with both 100% water- 
saturated air and with sodium sulphite for 0% saturation. We also 
measured DO and temperature with a calibrated handheld probe (Pro 
Plus, YSI Inc., Ohio, USA) at each field visit to check for sensor drift and 
develop corrections as needed. We placed sensors in the middle of the 
water column, and as close to the thalweg as possible; sites downstream 
of confluences were placed at least 20 stream widths downstream to 
ensure mixing (Siders et al., 2017). 

For use in metabolism modeling, we gathered meteorologic and 
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hydraulic data from several sources. First, we obtained hourly atmo
spheric pressure (kPa), insolation (W m− 2), and rainfall (mm) data from 
Météo France at the nearby St. Etienne-Bouthéon station (site 
42005001; https://publitheque.meteo.fr/). We then obtained instanta
neous discharge (m3 s− 1) data for one downstream location in each of 
the five watersheds from the French Banque Hydro database (http://h 
ydro.eaufrance.fr/; Table 1) and assumed the same specific discharge 
(q [mm d− 1]) across all sites in the same watershed. Daily discharge at 
each site was therefore the q for its watershed multiplied by site 
drainage area. Stream depth was modeled at each site by first mapping 
each site location to its corresponding stream reach from an empirical 
reach-based hydraulic geometry model for France (Morel et al., 2020). 
Model inputs were daily discharges estimated at each site (see above), 
and model outputs included daily values of stream depth (m), velocity 
(m s− 1), and width (m) for the model reach of each site. For the modeled 
region, depth estimates are accurate (RMSE = 1.9 cm) and unbiased 

(bias =+0.6 cm) compared to observations (n = 203; Morel et al. 2020). 
We estimated stream surface light availability using a physical model of 
water temperature (“TNET”) for the Loire River network that operates 
on the same reaches as the hydraulic model (Beaufort et al., 2016). The 
TNET model outputs hourly shade (unitless) for each reach depending 
on riparian vegetation density, riparian tree height, riparian tree 
phenology, solar angle, and azimuth. There are no validation data for 
the shade outputs, but the model had high agreement (R2 = 0.90) with 
observations in its original development (Li et al., 2012). 

To evaluate variation in biogeochemical function and assess the 
explanatory power of DO metrics and metabolism, we took stream water 
grab samples of DOM quality and stable isotopes of NO3

– (N = 156, n =
2–5 per site) in five different seasons (Fig. 2, numbered arrows). We 
characterized DOM molecular features such as aromaticity and weight, 
as these properties reflect DOM source and regulate respiration. Spe
cifically, we measured ultraviolet–visible (200–800 nm) spectroscopy 

Fig. 1. Map of the 43 stream sites measured for dissolved oxygen concentration (DO), temperature, and water chemistry across five watersheds (letters matched in 
inset to aid in identification) in the headwaters of the Loire River (heavy dark blue line), France (inset shaded by elevation above sea level) and Loire River watershed 
shown. Corinne land cover classes shown for each watershed (their location with respect to the main stem is shown in the red-bordered inset). Stream sites are 
coloured according to the timing and length of the measurement period for DO and discharge measurement sites are shown with blue triangles. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(UV–vis) of DOM with Shimadzu UV-1900 spectrophotometer (Shi
madzu Scientific Instrument, Inc., Columbia, MD, USA) at three periods: 
wet summer, low winter flow, and dry summer (Fig. 2). Prior to analysis, 
samples were filtered through 0.45 µm polyvinylidene fluoride mem
branes. We calculated the following UV–vis metrics: 1) specific UV 
absorbance at 254 nm (SUVA in L mg C− 1 m− 1), the absorbance at 254 
nm normalized by DOC concentration (Weishaar et al., 2003), 2) E4:E6, 
the ratio of absorbances at 400 and 600 nm, 3) E2:E3, the ratio of ab
sorbances at 250 nm and 365 nm, and 4) spectral slope (SR), the ratio 
between absorbance slopes (in natural log units) for the wavelength 
regions 275–295 nm and 350–400 nm (Helms et al., 2008). Briefly, 
SUVA is positively correlated with DOM aromaticity (Weishaar et al., 
2003), E4:E6 and E2:E3 are negatively correlated with aromaticity and 
molecular weight (Li and Hur, 2017), and SR is negatively correlated 
with molecular weight but positively with irradiation (Helms et al., 
2008). 

Finally, we measured the isotopic composition of N and O in NO3
– 

(15N-NO3
– and 18O-NO3

–, respectively) with the bacterial denitrification 
method (Pseudomonas chlororaphis subsp. aureofaciens; Casciotti et al., 
2002; Sigman et al., 2001; GasBench-PreCon-IRMS, UC Davis, USA) for 
four grab sample sets: wet summer, high winter flow, low winter flow, 
and dry summer (Fig. 2). Prior to sample analysis, we removed nitrite 
from our samples by acidifying with sulfamic acid and then neutralizing 
with sodium hydroxide (Granger and Sigman, 2009). Isotopic results are 
presented in delta notation as δ15N-NO3

– (‰) and δ18O-NO3
– (‰) rela

tive to international standards. Mean standard deviations of analytical 
sample replicates were half (sdδ15N = 0.11‰; sdδ18O = 0.13‰) that of 
mean standard deviations of reference replicates (sdδ15Nair = 0.23‰; 
sdδ18OVSMOW = 0.26‰). 

2.3. Data processing 

Prior to analysis, we conducted quality control on the DO data (n =
986,349). We first averaged DO data to hourly resolution to reduce file 
sizes and processing time (n = 246,947), and then flagged data that were 
extremely noisy or otherwise of suspect quality (e.g., negative values, 
sensor out of the water), reducing sample size by 4%. We then compared 
in situ sensor measurements to hand-held probe observations and 
removed data where clear, uncorrectable sensor drift, sensor burial, or 
biofouling had occurred, accounting for approximately 6% of the 
remaining data. Finally, when in situ and hand-held observations dis
agreed (n = 10 cases), but indicated linear drift, we corrected these data 
with a linear model (p < 0.001), influencing approximately 1% of the 
data. For data that passed quality control (n = 222,339), we calculated 
hourly DO saturation (DOsat) using water temperature and barometric 
pressure at sea level corrected for site elevation, and derived hourly DO 
saturation deficit (=DO minus DOsat), with a negative deficit indicating 
measured DO is below saturation. We calculated four daily DO metrics 
for each site as potential proxies of stream metabolism following the 
logic of Mulholland et al. (2005) and Wang et al. (2003):  

1. Daily DO range (g m− 3), measured between 04:00 and 03:00 the next 
day, in solar time (i.e., solar noon is always 12:00). 

2. Maximum DO deficit (g m− 3), defined as the greatest negative de
parture from DOsat in each 24-hr period; values were negative for 
98% of days.  

3. Daily DO range multiplied by daily average water depth (g m− 2), to 
account for depth dependency (vis-à-vis benthic surface area to 
volume effects). 

Fig. 2. Representative daily hydroclimatic conditions 
showing discharge (blue line), insolation (black dots), 
and precipitation (blue vertical bars) in the Coise 
catchment (site code = K0663310) during monitoring 
period. Specific discharge was assumed to be the same 
for all sites within each watershed. Timing and 
magnitude of q shown here was similar across wa
tersheds. The five study periods (wet summer, 
autumn, winter, spring, and dry summer) are denoted 
with shaded color bands. Red arrows indicate grab 
sampling events. (For interpretation of the references 
to color in this figure legend, the reader is referred to 
the web version of this article.)   

Table 1 
Drainage area range and number of study sites in each watershed (n), discharge code*, N surpluses** (mean ± sd), and riparian land use† within a 100 m linear 
upstream buffer‡ of each site (mean ± sd) by watershed.  

Watershed Area (km2) Discharge site code N surplus (kg ha− 1 y− 1) Crops (%) Pasture (%) Forest (%) Urban (%) 

Loise 1–132 (n = 21) K0714010 31.5 ± 14.1 8 ± 6 59 ± 27 37 ± 25 6 ± 5 
Toranche 55–76 (n = 3) K0704510 46.0 ± 16.8 51 ± 8 19 ± 3 24 ± 13 7 ± 2 
Coise 6–305 (n = 11) K0663310 57.7 ± 25.4 8 ± 5 80 ± 14 25 ± 15 16 ± 5 
Lignon 62–664 (n = 4) K0773220 16.8 ± 3.8 27 ± 22 27 ± 18 61 ± 30 0 ± 0 
Mare 62–233 (n = 4) K0643110 17.8 ± 4.1 60 ± 42 14 ± 9 27 ± 25 7 ± 4 

*Banque Hydro site codes. 
**CASSIS–N database (Poisvert et al., 2017), https://geosciences.univ-tours.fr/cassis. 
†2018 CORINE dataset (CLC 2018). 
‡Buffers are 100 m wide on both sides of the upstream stream reach length defined for each site 
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4. Maximum DO deficit multiplied by the daily average water depth (g 
m− 2). 

2.4. Stream metabolism modeling 

We estimated stream metabolism at each site using a single-station 
open channel method (Odum, 1956). The approach is a mass-balance 
representation of DO as a function of insolation-dependent inputs 
from GPP (g O2 m− 2 d− 1), constant ER (g O2 m− 2 d− 1), and temperature- 
and concentration-dependent gas exchange (K600 [d− 1]) between the 
water and air. We simultaneously estimated GPP, ER, and K600 using 
inverse fitting of DO dynamics with a state space approach (i.e., 
including process and observation error) and Bayesian inference with 
Markov chain Monte Carlo sampling (MCMC) (Appling et al., 2018). We 
developed site-specific hyperpriors for K600 as lognormal distributions of 
the daily means from equations 1, 3, 4, and 5 Raymond et al. (2012), 
which relate K600 to velocity, slope, and depth. We then constrained K600 
by pooling its estimates based on site-specific discharge, where days 
with similar discharge are more likely to have similar K600; this corre
sponds to the b_Kb_oipi_tr_plrckm.stan model in the streamMetabolizer R 
package (version 0.10.9) (Appling et al., 2018). Four MCMC chains were 
run in parallel on four cores, with 1000 warmup steps and 500 saved 
steps on each chain. We evaluated model fits with the Gelmin-Rubin 
convergence diagnostic, R (Gelman and Rubin, 1992), ensuring that 
all parameters had an R value less than 1.1 (Brooks and Gelman, 1998). 
When this criterion was not met, indicating poor MCMC model 
convergence, we excluded metabolism estimates from further analyses. 
Model outputs included daily posterior probability distributions for 
GPP, ER, K600. We used the means of these distributions as the best daily 
estimates, the variances as uncertainty measures, and the 95% credible 
intervals (Bayesian confidence intervals) to test if the estimates were the 
correct sign (i.e., GPP > 0, ER < 0). 

2.5. Data analyses 

We evaluated proposed DO metrics as prospective proxies of GPP and 
ER by comparing 1) DO diel ranges (with and without depth scaling) to 
estimated daily GPP, and 2) maximum daily DO deficits (with and 
without depth scaling) to ER at each site. To do so, we used: 1) an 
iteratively reweighted least squares regression (IRLS), 2) multiple 
regression with Strahler order as a second fixed effect. By accounting for 
Strahler order, we were able to test if there were predictable network 
scale effects on the efficacy of the potential proxies. Residuals from 
model fits were normal and homoscedastic, but did exhibit autocorre
lation. However, model performance was not improved using auto
correlated variance structures, so we opted to keep the models simple. 
To simplify interpretation of all analyses, we used absolute values of ER 
and maximum daily DO deficit. All statistical analyses were performed 
in R (R Core Team, 2020). 

We evaluated the coherence of metabolism and DO proxy patterns 
through the fluvial network with log–log linear regression of site means 
versus watershed area. Log-log regression relates relative, not absolute, 
changes in variables, and thus allows comparison of area scaling effects 
on metabolism and DO proxies (via comparison of power –law slopes), 
providing direct assessment of the coherence of their spatial patterning. 
To compute means of metabolic rates, we used inverse variance 
weighting to account for uncertainty in metabolism measurements such 
that measurements of GPP or ER with greater uncertainty were assigned 
lower weights. Means of DO proxies were simple averages. We compared 
regression slopes of DO proxies and metabolism (seasonally and annu
ally) against watershed area, and considered them equal if their 95% 
confidence intervals overlapped. 

We evaluated whether DO proxies captured the temporal regimes of 
metabolism using Kendall τ correlation and visual inspection. We 
compared mean weekly values (weeks 10–44) across sites within each 
Strahler order (orders 1–5) to account for any scale-dependence of (i.e., 

effects of watershed area on) temporal patterns. Similar to our spatial 
analysis, we used weighted means for stream metabolic rates (GPP and 
ER), simple means of DO proxies, and absolute values of ER and 
maximum daily DO deficit. We calculated Kendall τ values and their 
respective p-vales for relationships between 1) GPP and diel DO range ×
depth, and 2) |ER| and |maximum daily DO deficit| x depth. When p- 
values <0.05 and τ > 0.2, we considered the two time-series to have the 
same temporal regime. 

Finally, we evaluated the relative performance of DO metrics and 
metabolism estimates for predicting variation in stream C quality and N 
processing using regression and Spearman correlation. We correlated 
mean daily DO metrics and metabolism (GPP and ER) with DOM UV–vis 
properties and NO3

– stable isotope values from grab samples. For DO 
proxies and metabolism, we used the mean of the three prior days to the 
grab sample date (including day of sampling, n = 3). Specifically, we 
calculated IRLS and Spearman correlations (ρ) of a) DO proxies (with 
and without depth-scaling) and b) metabolism with 1) DOM UV–vis 
metrics indicative of aliphatic vs. aromatic compounds (E4:E6, SUVA, 
E2:E3) and molecular weight (SR), and 2) indicators of in-stream deni
trification (enriched δ15N and δ18O of NO3

–). 

3. Results 

3.1. General observations for DO and stream metabolism 

We observed seasonal variation in DO concentration patterns 
through the river network. Larger streams exhibited daily means more 
consistently near saturation than smaller streams, except in spring 
(Fig. 3a). In the spring, diel DO ranges and DO deficits increased with 
stream order, but these patterns were not consistent throughout the year 
(Fig. 3a). During the wet summer and autumn, lower order streams 
exhibited greater DO deficits than higher order streams, but diel DO 
ranges were similar throughout the network (Fig. 3a). In contrast, dur
ing the dry summer (with lower q; Fig. 3b), low order streams exhibited 
larger diel DO ranges than large streams, but much higher average DO 
deficits. 

Across sites and seasons, estimated GPP ranged from 0.1 to 4.3 g O2 
m− 2 d− 1 (0.7 ± 0.6 g O2 m− 2 d− 1, mean ± sd) and estimated ER ranged 
from − 0.5 to − 21.0 g O2 m− 2 d− 1 (-4.0 ± 2.2 g O2 m− 2 d− 1). Notably, 
credible intervals for ER (2.6 ± 1.5 g O2 m− 2 d− 1, mean ± sd) were 3–4 
times the width of intervals for GPP (0.7 ± 0.4 g O2 m− 2 d− 1), with the 
greatest discrepancies in autumn, indicating poorly constrained esti
mates. Days with successful metabolism estimates varied widely by site 
(114 ± 64 days, range = 4–241 days, overall n = 8,800 site-days). There 
were 69 ± 18% fewer days with metabolism estimates than the total DO 
data available. Data losses resulted from poor model fits, with Gelmin- 
Rubin R values for parameters greater than 1.1 (indicating poor model 
convergence) 12% of the time, and incorrect signs for estimated GPP and 
ER 54% of the time. We also observed obvious equifinality in ER esti
mates as indicated by ER covariance with K600 (Appling et al., 2018) 
(Fig. S1a). Poor estimates occurred principally in smaller order streams, 
and on days when DO signals were noisy, especially during drying pe
riods in the summer or storm events. Overall, K600 was well within the 
range of reported values in the literature (Raymond et al. 2012) for 
streams of this size range (median = 11.9 d− 1; interquartile range =
6.6–23 d− 1), and correlated positively with discharge, particularly in 
spring (Fig. S1b). 

3.2. Simple DO metrics as proxies of stream metabolism 

When data were pooled across sites and dates, both DO range metrics 
(with and without depth scaling) were strongly correlated with stream 
GPP estimates (Fig. 4a,b). Depth-scaled DO diel range yielded the 
strongest relationship, explaining 70% of estimated variation in GPP 
according to the IRLS model (Fig. 4b). Goodness-of-fit was marginally 
improved by considering the interaction effect of Strahler order (R2

adj =
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0.73), although none of interaction effects were different from each 
other (p = 0.05; Table 2) 

Ecosystem respiration was uncorrelated with the daily maximum DO 
deficit metrics, regardless of depth scaling (Fig. 4c,d). However, the 
goodness-of-fit was improved by considering the fixed interaction effects 
of Strahler order (R2

adj = 0.09), showing a large directional increase in 
both slope and intercept with Strahler order (Table 2). This is visually 
apparent as well in the horizontal sorting of Strahler orders in the 
ER–daily max. DO deficit relationship (Fig. 4d). 

3.3. Spatial patterns of DO and stream metabolism 

Spatial patterns of stream metabolism were similar to those of DO 
metrics, in many cases increasing with watershed area (Figs. 5 and 6). 
When scaled by depth (blue points, Figs. 5 and 6), DO metrics exhibited 
strong spatial coherence with GPP estimates during most seasons as 

indicated by nearly identical best-fit slopes (β). This was true for the diel 
DO range metric across all seasons, and for the maximum daily DO 
deficit metric during the dry summer and, to a lesser extent, autumn. 
When metrics were not depth-corrected (red points, Figs. 5 and 6), their 
spatial patterns were at times inverted to estimated metabolic patterns, 
with the exception of the diel DO range in spring. We observed that the 
magnitude of depth-indexed daily DO range (Fig. 5a–d) and maximum 
daily DO deficit increased with stream order (Fig. 6a–d), a finding that 
was consistent across seasons. Moreover, the slopes of these increases 
were similar between the two metrics. This pattern emerged largely 
because depth increased with increasing watershed area (ln(depth) = ln 
(area)2, β = 0.27 ± 0.02, R2 = 0.88, p < 0.001), such that, for a similar 
DO concentration, DO mass increases with distance downstream. For the 
depth-scaled maximum DO deficit, a consistent trend of increasing 
magnitude with area contrasted with both the absence of any clear 
pattern (spring and wet summer), and the decreasing magnitude (dry 

Fig. 3. Network patterns of stream DO and 
discharge for exemplary periods across sea
sons. a) Hourly DO in percentage saturation 
averaged across all sampled reaches (n = 43) 
within their respective Strahler orders (for 
Strahler orders 1–5, n = 4, 11, 16, 8, and 3, 
respectively); dark colors are the lowest 
Strahler orders and light colors are higher 
Strahler orders. The dotted line shows 100% 
percent saturation. b) Exemplary hourly q in 
the Coise catchment for each season; other 
catchments exhibited similar patterns and 
magnitude. Winter data were not collected.   

Fig. 4. Gross primary production (GPP) and 
ecosystem respiration (ER) (expressed in 
absolute terms) versus DO metrics for all 
days when stream metabolism could be 
estimated. a) GPP versus daily diel DO range 
and b) same relationship as in a) accounting 
for depth effects on the DO metric; c) ER 
versus maximum daily DO deficit (expressed 
in absolute terms) and d) same relationship 
as in c) accounting for depth on the DO 
metric. Colored circles indicate different 
stream Strahler orders. The blue line is the 
linear regression obtained with the IRLS 
model across-sites; the corresponding equa
tion and goodness of fit (adjusted R2) are 
shown in each case where p < 0.05. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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summer and autumn) observed when depth adjustments were not 
considered. This was also true for daily DO diel ranges. 

Stream GPP consistently increased with watershed size during all 
seasons, with an order of magnitude difference between the smallest and 
largest streams (Fig. 5e-h). Across seasons, GPP increased by 0.28–0.52 
% for every 1% increase in watershed area (power law slopes), with the 
greatest increases in spring. This is likely due increasing light avail
ability at the stream surface in larger streams (Fig. S2). Stream ER 
showed no consistent pattern with increasing watershed size (Fig. 6 e,f), 
except during the dry summer of 2020 and autumn when ER increased 
by 0.13–0.2% for every 1% increase in watershed area (Fig. 6g,h). Log- 

log slopes were all less than one, indicating marginal watershed size 
effects on GPP and ER with increasing watershed size. 

3.4. Temporal patterns of DO and stream metabolism 

Temporal alignment of stream metabolism and DO metrics depended 
strongly on Strahler order (Fig. 7). GPP and depth-scaled diel DO range 
were most temporally aligned, with strong correlations (τ > 0.2) in 
Strahler orders 2–5 (Fig. 7a–e). In Strahler orders 1 and 2, GPP was 
relatively constant over the year, whereas in orders 3 and 4, GPP peaked 
in spring and declined nearly an order of magnitude over the remaining 
growing season; GPP signals in order 5 exhibit a weak summer peak, 
though our record is shorter. In contrast, ER and maximum daily DO 
deficit × depth, were inversely correlated for Strahler orders 1–3, and 
only exhibited temporal coherence in Strahler order 4 (Fig. 7f–j). 
Maximum daily DO deficit × depth was the most temporally dynamic of 
the metrics, increasing an order of magnitude from spring to summer, 
where they could then remain constant, increase, or decrease from 
summer to autumn. ER temporal patterns contrasted with those for GPP, 
decreasing over summer, but exhibiting spring and autumn peaks, 
especially in orders 2–5 (Fig. 7f–j). 

3.5. DO metrics and in-stream C and N biogeochemical processing 

DOM characteristics differed across sampling campaigns (Table 3; 
Fig. 8), with wet and dry summers differing on every UV–vis metric 
(t22–52 = − 25.6–11.1, p < 0.001). Of particular note was our observation 
that dry summer DOM was more similar to winter than to wet summer 
DOM (Table 4 and Fig. 8c,f), with winter and dry summer exhibiting no 
difference in E2:E3 (t62 = − 1.6, p = 0.15) or E4:E6 (t47 = − 0.3, p =
0.76), and only modest differences in SR (t35 = − 3.7, p = 0.002) and 
SUVA (t75 = − 3.2, p = 0.01) (Table 4). 

DO metrics consistently outperformed metabolism estimates in pre
dicting variation in DOM quality (Fig. 8). The E4:E6 index of aliphatic 
structure increased with increasing daily DO diel range × depth, but was 
uncorrelated with GPP, especially during the wet summer (blue circles, 
Fig. 8a). Likewise, GPP exhibited no correlation with E4:E6 patterns 
during the wet summer, and yielded equivalent predictions as the DO 
metric during the dry summer (red circles; Fig. 8b). SR (an indicator of 
molecular weight) correlated far more strongly with maximum daily DO 
deficit (Fig. 8d) than with ER (Fig. 8e) in the dry summer, but was 

Table 2 
Multiple regression results for metabolism fluxes versus DO metrics (n = 3823). 
The GPP and ER columns separate the two model response variables, with scaled 
model parameter estimates (confidence interval) and their p-values reported. 
GPP models relate GPP to daily diel range × depth with a Strahler order inter
action and ER models relate maximum daily DO deficit × depth with a Strahler 
order interaction.  

Predictors GPP ER 

Estimates p* Estimates p 

(Intercept) 0.23 (0.11–0.34)  <0.001 5.34 (4.56–6.12)  <0.001 
DO metric ×

depth 
1.12 (0.27–1.98)  0.010 − 7.24 (− 11.79 to 

− 2.70)  
0.002 

strahler [2] 0.02 
(− 0.10–0.14)  

0.710 − 1.08 (− 1.88 to 
− 0.27)  

0.009 

strahler [3] − 0.08 
(− 0.20–0.04)  

0.196 − 1.79 (− 2.59 to 
− 0.99)  

<0.001 

strahler [4] 0.04 
(− 0.09–0.16)  

0.564 − 1.96 (− 2.78 to 
− 1.13)  

<0.001 

strahler [5] 0.07 
(− 0.06–0.19)  

0.296 − 3.71 (− 4.56 to 
− 2.85)  

<0.001 

DO * strahler 
[2] 

0.10 
(− 0.76–0.97)  

0.814 8.05 (3.46–12.65)  0.001 

DO * strahler 
[3] 

0.75 
(− 0.11–1.60)  

0.086 7.92 (3.34–12.49)  0.001 

DO * strahler 
[4] 

0.33 
(− 0.52–1.19)  

0.446 8.73 (4.16–13.29)  <0.001 

DO * strahler 
[5] 

0.40 
(− 0.45–1.25)  

0.358 9.38 (4.82–13.94)  <0.001 

R2
adj 0.73  

0.075 

*p-values less than 0.05 are bolded. 

Fig. 5. Spatial patterns in mean daily GPP 
and mean diel DO range by season and 
watershed area. a–d) Red points are raw 
values of diel DO range and blue points are 
indexed by stream depth (note change in 
units on y-axis). e-h) GPP follows a nearly 
identical spatial pattern to diel DO range ×
depth. Vertical bars indicate standard errors; 
note that many SE values smaller than the 
plotted point. Best fit lines are ordinary least 
square regressions and text indicates slope 
coefficients ± 95% confidence intervals and 
coefficients of determination (R2); best fit 
lines only shown for p < 0.05. Note log–log 
scale. (For interpretation of the references to 
color in this figure legend, the reader is 
referred to the web version of this article.)   
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uncorrelated with either in the wet summer. Interestingly however, the 
direction of correlation for the maximum daily DO deficit and SR 
differed between the two summers: wet summer SR decreased with 
increasing deficit magnitude, while dry summer SR increased with 
increasing deficit magnitude (Fig. 8d). 

The high values of δ15N-NO3 (11.3 ± 4.6‰; mean ± sd) and low 
isotope ratios (δ18O/δ15N = 0.38 ± 0.17) indicate stream nitrate is 
derived primarily from animal manure (Kendall, 2012). During winter, 
δ15N-NO3 was constrained across catchments (Fig. 9a). However, during 
both summers, δ15N-NO3 was enriched at all sites compared to winter. 
The maximum daily DO deficit and δ15N-NO3 both peaked during the 
dry summer, and the relationship between δ18O-NO3 and δ15N-NO3 
followed the characteristic denitrification slope of 0.5 (Fig. 9b). We 
observed no influence of catchment size or DOC concentration on the 
distribution of isotopic values (p > 0.1). However, NO3–N was 

negatively correlated with δ15N-NO3 (r = − 0.48, p < 0.001), as were 
DOM SR (r = − 0.68, p < 0.001) and SUVA (r = − 0.5, p < 0.001); E2:E3 
was positively correlated with δ15N-NO3 (r = 0.7, p < 0.001). Most 
importantly, δ15N-NO3 was strongly positively correlated with the 
magnitude of maximum daily DO deficit (Fig. 8c, F45 = 43.1, p < 0.001, 
R2 = 0.49). In contrast, neither δ15N-NO3 nor δ18O-NO3 were correlated 
with ER (Fig. 9d). 

4. Discussion 

4.1. DO metrics are better proxies of GPP than ER 

The allure of DO metrics emerges from their simplicity and appli
cability in all settings and dates, but our data make clear that while 
simple DO metrics serve as robust proxies for stream GPP, their 

Fig. 6. Spatial patterns in mean daily |ER| 
and mean maximum daily DO deficit by 
season and watershed area. a–d) Red points 
are raw values of maximum daily DO deficit 
and blue points are indexed by stream depth 
(note change in units on y-axis). e-h) ER di
verges from spatial pattern to maximum 
daily DO deficit × depth, except in the dry 
summer and autumn (g). Vertical bars indi
cate standard errors; non-visible standard 
errors are smaller than the plotted point. Best 
fit lines are ordinary least square regressions 
and text indicates ordinary least squares 
slope coefficients ± 95% confidence intervals 
and coefficients of determination (R2); text 
and best fit lines only shown for p < 0.05. 
Note log–log scale. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 7. Weekly time series of metabolism 
(black points) and DO metrics (blue points) 
by Strahler order (columns). Temporal pat
terns in mean diel DO range × depth corre
spond with temporal patterns in GPP across 
Strahler orders (a-e), whereas maximum 
daily deficit × depth was anti-correlated 
with ER for Strahler orders 1–3 (f-j). To 
visualize temporal patterns, loess fits are 
shown with shaded confidence intervals. 
Kendall τ values are shown when p < 0.05, 
and asterisks indicate p-value < 0.05 (*), <
0.01 (**), and < 0.001(***). Vertical bars 
indicate standard errors. Note log y-axis. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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performance for capturing spatial and temporal variation in ER is far 
weaker. Specifically, the depth-scaled diel DO range was an excellent 
proxy for GPP, accounting for 70% of GPP variation (Fig. 4b) throughout 
the network, capturing both spatial and temporal patterns in stream 
primary production. Indeed, a multiple regression model that consider 
stream order interactions suggests that depth-scaled diel DO range is, by 
itself, sufficient to predict network variation in GPP, with no variation in 
fitted intercepts or slopes at different stream orders. In contrast, the 

Table 3 
Summary of stream grab sample results for DOC and DOM UV–vis (mean ± sd) 
for the five study catchments for the winter, dry summer, and wet summer 
seasons (number of samples).  

Watershed Season DOC (mg 
C L− 1) 

SR (-) E2: 
E3 (-) 

E4: 
E6 (-) 

SUVA (L 
mg C-1 

m− 1) 

Loise Winter (21) 4.2 ± 2.0 1.6 
± 0.1 

2.6 
± 0.3 

1.1 
± 0.0 

3.6 ± 0.9 

Dry 
summer 
(13) 

3.9 ± 1.0 2.0 
± 0.5 

2.8 
± 0.3 

1.1 
± 0.0 

4.1 ± 0.4 

Wet 
summer 
(10) 

5.1 ± 0.9 0.9 
± 0.0 

5.3 
± 0.2 

5.6 
± 2.0 

2.7 ± 0.1 

Toranche Winter (3) 7.1 ± 0.9 1.4 
± 0.0 

3.3 
± 0.0 

1.1 
± 0.0 

3.1 ± 0.1 

Dry 
summer (3) 

5.3 ± 0.7 1.9 
± 0.2 

3.1 
± 0.1 

1.1 
± 0.1 

3.3 ± 0.2 

Wet 
summer (3) 

7.6 ± 2.0 0.9 
± 0.1 

5.7 
± 0.0 

4.7 
± 2.0 

2.9 ± 0.2 

Coise Winter (9) 4.7 ± 0.4 1.5 
± 0.1 

2.9 
± 0.1 

1.1 
± 0.0 

3.4 ± 0.1 

Dry 
summer (9) 

3.6 ± 0.7 1.9 
± 0.5 

2.8 
± 0.3 

1.1 
± 0.0 

4.2 ± 0.3 

Wet 
summer (3) 

6.5 ± 0.8 0.9 
± 0.0 

5.8 
± 0.1 

6.5 
± 0.7 

2.6 ± 0.2 

Lignon Winter (7) 4.9 ± 1.0 1.4 
± 0.0 

2.9 
± 0.2 

1.2 
± 0.0 

4.0 ± 0.4 

Dry 
summer (4) 

5.1 ± 3.0 1.7 
± 0.2 

3.0 
± 0.4 

1.1 
± 0.0 

4.1 ± 1.0 

Wet 
summer (4) 

5.4 ± 2.0 0.9 
± 0.1 

5.0 
± 0.1 

4.7 
± 2.0 

3.0 ± 0.6 

Mare Winter (4) 7.0 ± 2.0 1.3 
± 0.2 

3.2 
± 0.1 

1.2 
± 0.1 

3.9 ± 0.8 

Dry 
summer (4) 

8.6 ± 1.0 1.3 
± 0.2 

3.6 
± 0.1 

1.3 
± 0.1 

3.8 ± 0.2 

Wet 
summer (4) 

6.2 ± 0.9 1.0 
± 0.0 

5.3 
± 0.4 

2.8 
± 0.4 

3.2 ± 0.3  

Fig. 8. Relationship between DO metrics 
and UV–vis of DOM from grab samples 
collected in the wet summer, dry summer, 
and winter across the five watersheds. a) E4: 
E6 versus mean diel DO range × depth; 
higher values of E4:E6 typically indicate 
more aliphatic DOM compounds. b) E4:E6 
versus GPP. c) Kernel density plot of E4:E6 
values for winter grab samples (February 
2020); y-scale is the same as in (a) and (b). d) 
SR versus mean maximum daily DO deficit; 
note flipped x-axis. Higher SR values typi
cally indicate lower molecular weight DOM. 
e) SR versus ER. f) Kernel density plot of 
winter grab samples for SR; y-scale is the 
same as in (d) and (e). Points in a,b,d,e 
indicate mean values for the three days sur
rounding grab sample measurement with 
points filled by summer period (blue =

August 2019, red = July 2020) and standard 
error shown as horizontal error bars. Note 
log scales on y-axes. Text indicates Spear
man’s rho and associated p-value. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   

Table 4 
Comparison of watershed scaling relationships for mean annual stream meta
bolism fluxes.  

Metabolic 
flux 

slope 
(std. err.) 

range of areas 
[km2] (n) 

p-value R2 Reference 

GPP 0.30 
(0.04) 

2–664 (42)  <0.001 0.52 This paper 

1.46 
(0.22) 

128–1722 (10)  <0.001 0.84 (Mejia et al., 
2019) 

0.26 
(0.06) 

7–17551 (47)  <0.001 0.32 (Savoy et al., 
2019) 

0.18 
(0.04) 

0.1–6860 (78)  <0.001 0.26 (Finlay, 2011) 
* 

0.54 
(0.07) 

0.1–10010 
(103)  

<0.001 0.59 (Finlay, 2011) 
* 

0.22 
(0.07) 

0.8–35900 (8)  0.02 0.64 (Minshall 
et al., 1992) 

ER 0.01 
(0.1) 

2–664 (42)  0.8 0 This paper 

0.81 
(0.15) 

128–1722 (10)  <0.001 0.78 (Mejia et al., 
2019) 

0.23 
(0.05) 

0.1–6860 (103)  <0.001 0.38 (Finlay, 2011) 
* 

0.03 
(0.04) 

0.1–10010 (86)  0.345 0 (Finlay, 2011) 
* 

0.19 
(0.09) 

0.8–35900 (8)  0.08 0.43 (Minshall 
et al., 1992) 

*The two slopes in this reference correspond to “natural” (1st line) and human- 
dominated systems (2nd line). No information was given on the overall fit across 
system types. 
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maximum daily DO deficit (with and without depth-scaling) was a poor 
proxy for ER, exhibiting limited predictive power (<10% of ER variation 
explained), except in higher order streams (Fig. 4c,d). Notably, while its 
global ER predictions were weak, this DO metric did capture key aspects 
of network variation, with systematically increasing depth-scaled DO 
deficits in higher order streams (monotonic changes in fitted intercepts 
with increasing order in Table 2), and increasing fitted slopes for orders 
2 through 5, indicating that greater DO deficits imply increasing ER in 
larger rivers. 

Our general finding that DO metrics require depth-adjustment to be 
effective does not comport with results in Mulholland et al. (2005) who 
observed no improvement in the association between GPP and the DO 
diel range with depth adjustment. That study also reported clear re
lationships between ER and maximum DO deficit, in stark contrast to 
our findings. This discrepancy is likely attributable to the larger range of 
catchment areas in our study (1–664 km2 vs 0.3–3.7 km2) with attendant 
greater range in stream physical attributes (e.g., depth, gas exchange). 
We note that within any given order, the GPP vs. diel DO range rela
tionship is very strong (Fig. 4a) but with contrasting slopes for different 
stream orders. We also note the DO proxies used in Mulholland et al. 
(2005) were strongly predicted by drainage area disturbance, a finding 
our observations failed to replicate, possibly because of the comparative 
severity and ubiquity of human impacts in our catchments (Fig. S3). 

Our finding of global utility for depth-scaled diel DO range, but 
order-specific utility for depth-scaled maximum DO daily deficit implies 
two possible conclusions. First, temporal variation in DO is nearly 
entirely due to GPP, with this relationship only weakly influenced by 
spatial scale (increasing R2

adj by 3% when considering order effects). 
The unexplained variation in this proxy relationship (~25%) may be 
attributed to measurement error or site-specific conditions like local re- 
aeration hotspots that erase GPP signals. The second conclusion is that 
ER is poorly constrained, especially in low order streams (Fig. 4d), 
where rapid gas exchange (Fig. 3a) can induce equifinality in ER and 
K600 estimates when diel ranges are small. In higher order streams, the 
depth-scaled maximum daily DO deficit served as a reasonable proxy for 
ER (e.g., in 5th order streams, we observed R2 = 0.54, β = 2.1, F1,469 =

557, p < 0.001). Moreover, ER may be more strongly influenced than 
GPP by local heterogeneity in stream properties such as relative distri
butions of pools, eddies, DOM quality, and inflows of limiting nutrients 
and carbon sources from confluences and groundwater (Lupon et al., 

2019). 

4.2. Clear network patterns for GPP, but not ER 

Our results strongly support predictable network patterns of stream 
GPP in agricultural headwaters, and further support the use of diel DO 
range as a proxy for that spatial network variation. GPP clearly increases 
with catchment size (Fig. 5), with the scaling of this increase aligned 
closely with concomitant patterns in depth-scaled diel DO range 
(Fig. 5a–d). The most plausible explanation for this is increasing light 
availability with increasing stream order and width. Indeed, GPP 
exhibited positive relationships with stream surface light availability for 
all stream orders, with regression intercepts increasing with order 
(consistent with Kirk et al. 2020; Fig. S2). We estimated light use effi
ciency as the ratio of GPP and stream light availability (after both are 
normalized to kJ m− 2 d− 1 using methods from Kirk et al. 2020), and 
found it to range from 0.06 to 1.4% (mean = 0.5%), considerably lower 
than those observed in (Kirk et al., 2020), which were closer to 2–3%. 
We attribute this to large light reduction effects of geomorphic shading 
(Fig. S4) and water depth, reflectance, and color that were not taken into 
account. 

In contrast, ER exhibited no clear trends with watershed size (Fig. 6), 
in agreement with previous work indicating complex, non-monotonic 
change in ER through river networks (cf. Battin et al., 2008; Hotchkiss 
et al., 2015). Substantial spatial heterogeneity in ER was matched by the 
depth-adjusted maximum daily DO deficit, which exhibited similar 
order-of-magnitude network variation within each season (Fig. 6a–d). 
We note, however, that uncertainties in ER estimates were large (3–4 
times those for GPP), and its estimates were considered poor for 54% of 
days, challenging strong inference on ER spatial patterns. Using the DO 
deficit metric instead, we observe a clear network pattern aligned with 
the patterns observed for GPP (Fig. 6a–d). Indeed, if we take the DO 
deficit metric as a reasonable proxy for ER, the patterns observed sug
gest that ER increased at rates similar to GPP along the river network. 
This should be expected given the importance of autotrophic respiration 
to ER in headwater networks (Segatto et al., 2021). 

While GPP increased nearly an order-of-magnitude through our 
study networks, the contribution of small streams to GPP at the whole 
network scale was larger. Using mean GPP by Strahler order for every 
reach across all five watersheds, and scaling for variation in benthic 

Fig. 9. Nitrate isotopes and their relation to 
maximum daily DO deficit and ER for the dry 
and wet summer periods. a) Kernel density 
plot of δ15N–NO3 values for all sites for both 
winter samples (December 2019 and 
February 2020) with axis values identical to 
those in (b). b) δ18O–NO3 versus δ15N–NO3 
with points filled by their season (dark fill =
wet summer, no fill = dry summer) and sized 
by stream NO3–N concentration. The fitted 
line is a linear regression. Red points indicate 
samples taken from the Mare watershed that 
were identified as outliers and not included 
in the regression. c) δ15N–NO3 versus the 
mean maximum daily DO deficit for the three 
days surrounding the grab sample; horizontal 
error bars indicate the standard error for the 
three days. The fitted line is a linear regres
sion with text reporting regression results. d) 
δ15N–NO3 versus the mean ER for the three 
days surrounding the grab sample; horizontal 
error bars indicate the standard error for the 
three days.   
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surface area (m2), leads to the estimate that Strahler orders 1–3 pro
duced 81 ± 2% more DO than Strahler orders 4–5 (in g O2 d− 1). Given 
that low order streams represent 76% of total stream benthic area, this 
result indicates that cumulative river network GPP is dominated by 
headwaters, which aligns well with recent theoretical modeling (Koenig 
et al., 2019). We further estimate that benthic area-scaled ER (g O2 d− 1) 
was 337 ± 2% higher in orders 1–3 than orders 4–5. This far more 
dramatic importance of low-order steams in networks suggests that 
these reaches are hotspots for internally derived CO2 efflux to the at
mosphere. Yet, we cannot determine the importance of this source in 
relation to terrestrial derived CO2, which is typically considered larger 
in headwaters (Hotchkiss et al., 2015),. 

Depth adjustments to our DO metrics were critical for producing 
network-scale DO patterns that resemble those from metabolism. 
Indeed, the patterns of non-depth-scaled DO metrics with increasing 
watershed area were ambiguous for much of the year (Fig. 5a–d), while 
depth scaling led to consistent spatial patterns. This underscores the 
dominant role of stream depth on benthic (i.e. 2-dimensional) processes 
altering water column (i.e., 3-dimensional) DO concentrations, much 
like the reasoning of surface area to volume ratio for explaining 
disproportionate reactivity of headwater streams (Alexander et al., 
2000). Hence, as depth increases downstream, DO signals should 
dampen under the same metabolic fluxes. On the other hand, atmo
spheric gas exchange tends to decrease downstream as slopes and ve
locities diminish in higher orders (Raymond et al., 2012), which 
amplifies the DO signals driven by metabolic fluxes. Hence, there are 
two opposing physical drivers controlling DO network patterns in the 
downstream direction: 1) an increasing depth-effect that reduces DO 
response to areal fluxes, and 2) a decreasing gas-exchange effect that 
increases DO response to areal fluxes. This implies that with constant 
stream network metabolism, the balance between these hydraulic con
trols should create spatially constant diel DO ranges through the 
network. Our observations to the contrary (Figs. 5 and 6) necessarily 
imply increasing metabolism along the river network (see Fig. S5). 

We observed power-law scaling of stream metabolism with water
shed area, with scaling exponents typically greater than those for stream 
depth vs. area in most instances (i.e., β = 0.30–0.50 compared to 0.27). 
This was clearest for GPP across seasons (β = 0.28–0.52), and ER in the 
dry summer and autumn (β = 0.13–0.20), although the depth-scaled 
maximum daily DO deficit also exhibited clear power law scaling 
across seasons (Figs. 5 and 6). In spring, the fitted exponents for GPP and 
DO metric vs. area were 93% and 74% greater than the fitted depth vs. 
area exponents, respectively, clearly indicating a biological DO signal 
above that expected from hydraulics alone. These scaling values appear 
to hold remarkably well at larger scales in the Loire River network. 
Using the fitted scaling function (β = 0.4 based on the mean of spring 
and summer), mean growing season GPP in the Loire at Dampierre 
(watershed area = 35,000 km2) is predicted to be 7.6 g O2 m− 2 d− 1, 
which is well within the range of recent estimates of 6.2–8.0 O2 m− 2 d− 1 

(Diamond et al., n.d.). GPP scaling values in the literature range from 0.2 
to 0.5 (Table 4), suggesting convergence in network spatial patterning. 
Scaling exponents for ER are more variable, but consistently lower than 
those for GPP (Table 4) and also lower than for depth-area. This likely 
arises because ER is relatively constant through networks, with GPP:ER 
scaling behavior emerging as the difference between GPP and ER slopes 
(0.30 in our case; across site GPP:ER range = 0.06–0.54). 

4.3. Temporal patterns in DO metrics and metabolism align, especially in 
larger streams 

Our DO metrics qualitatively captured temporal patterns in stream 
metabolism, supporting their use as metabolic proxies. As with spatial 
metabolism patterns, the temporal patterns were best aligned between 
GPP and depth-scaled diel DO range, which exhibited strong temporal 
coherence (Kendall τ > 0.2) for stream orders 2–5 (Fig. 7a–d). This result 
further supports that depth adjusted diel DO range can effectively 

capture GPP regimes (Bernhardt et al., 2018), with our streams exhib
iting the “spring peak” productivity regime (Savoy et al., 2019). In 
contrast, ER was temporally aligned with depth adjusted maximum 
daily DO deficit only in stream order 4 (though p = 0.06 in stream order 
5, Fig. 7j). Surprisingly, our temporal patterns in this DO proxy were 
negatively-correlated with ER for low order streams, suggesting con
trasting information content regarding in-stream functioning in network 
headwaters. All interpretations of ER patterns are perilous, especially in 
our lower order reaches, because of significant uncertainties and equi
finality in the streamMetabolizer estimates (Fig. S1). When we consider 
effects of temperature variation (Figs. S6), which can impact ER far more 
than GPP (Song et al., 2018), we observe a counterintuitive inverse 
pattern for our ER estimates, but a clear and theoretically compelling 
temperature effect on the depth adjusted maximum deficit (β = 0.02, R2 

= 0.90, p < 0.001; Fig. S7). Given the known positive thermal control on 
ER (Allen et al., 2005; Demars et al., 2011; Yvon-Durocher et al., 2012), 
our results indicate that when stream metabolism is poorly estimated, as 
we observe most acutely in our headwater streams, DO metrics may 
provide complementary utility for inferring spatiotemporal patterns in 
ecosystem processes. 

4.4. DO metrics outperform metabolic rates for inferring stream DOM 
quality and denitrification 

In line with our expectations, DO metrics consistently outperformed 
metabolism in inferring DOM quality (i.e., weight, size, and aromaticity) 
and denitrification (inferred from δ15N-NO3 enrichment patterns) 
(Fig. 8). Aliphatic content of DOM was highest with high GPP (Fig. 8ab), 
but the depth-scaled DO diel range provided a more consistent predictor 
than GPP across the two summer periods (Fig. 8a). Contrary to our ex
pectations of lighter DOM molecules with increasing ER, we observed 
strong seasonally contrasting patterns between depth-scaled maximum 
DO deficit (our ER proxy) and SR (Fig. 8c), which corresponds to DOM 
molecular weight (Helms et al., 2008). Only during the dry summer did 
DOM molecular weight decrease (SR increase) with increasing DO def
icits as expected; during the wet season this pattern was reversed, albeit 
changes in SR were small (Fig. 8d). 

The high values of SR (e.g., >2) in the dry summer are atypical in 
flowing freshwater systems (Hansen et al., 2016; Hosen et al., n.d.). 
However, the striking contrast in SR (Fig. 8c), E4:E6 (Fig. 8a), SUVA, and 
E2:E3 (Table 4) between the wet and dry summer periods has some 
precedent in other drying systems (Guarch-Ribot and Butturini, 2016). 
Moreover, the strong similarity in DOM quality metrics between dry 
summer values and winter values suggests a common DOM source that is 
distinct from the wet summer. During the dry summer, we observed 
clear and cool water at our sites (Fig. S5), indicative of deeper 
groundwater inputs. Previous work suggest that SR values like those we 
observed may imply a groundwater source for both dry summer and 
winter samples (Messetta et al., 2018), although other biological in
teractions may be involved, complicating interpretations (Guarch-Ribot 
and Butturini, 2016; Harjung et al., 2018). This source effect is likely to 
override the importance of internal processes affecting DOM, although 
we also note that dry summer SR values are similar to those observed in 
highly irradiated systems (Helms et al., 2008). Thus, the observed SR 
signals for the dry summer could also result from increasing hydrologic 
disconnection, pool formation, and increased light exposure. 

The maximum daily DO deficit strongly covaried with denitrification 
proxies in our catchments, explaining nearly 50% of the variation in 
δ15N-NO3

–. In contrast, ER was uncorrelated with stable isotopes of NO3
– 

(Fig. 9d), as was the depth-scaled maximum daily DO deficit (F45 = 0.27, 
p = 0.606). This finding suggests that water column DO concentration 
closely reflects denitrification potential in flowing water systems. The 
poor performance of ER as a covariate of denitrification likely arises 
because ER estimates partially obscure site information about ambient 
DO concentration, which ultimately controls the favourability of this 
particular N reaction pathway. Further, denitrification, and likely all 

J.S. Diamond et al.                                                                                                                                                                                                                             



Ecological Indicators 131 (2021) 108233

12

other stream anaerobic reactions, are likely to have small effects 
compared to aerobic reactions that comprise oxygen-derived measure
ments of ER (Mulholland et al., 2009). As such, the linear relationship 
between δ15N-NO3

– and the maximum DO deficit may arise as a 
consequence of high NO3

− availability in this agricultural catchment 
(Kreiling et al., 2019), and further, it suggests that denitrification in 
these N-enrich flowing waters was progressive rather than an abrupt 
process. 

4.5. Benefits of DO metrics as metabolism proxies 

Scientists, government agencies, and stakeholders are increasingly 
turning to high-resolution DO data to understand, regulate, and manage 
freshwater resources (Jankowski et al., 2021). This alone animates the 
utility of simple DO metrics that balance the competing requirements of 
information density, uncertainty, and computational complexity. 
Building on previous efforts (Moatar et al., 2001; Mulholland et al., 
2005; Wang et al., 2003), we suggest that two simple DO proxies for 
ecosystem metabolism - the diel range and the maximum daily DO 
deficit - can inform large scale patterns of GPP and ER along river net
works. We show that these metrics reveal similar spatiotemporal pat
terns, and even similar magnitudes for GPP (Fig. 3). In addition to the 
strong spatial and temporal concordance between metabolism and these 
DO metrics, their advantages are multiple. They allow use of the entirety 
of recorded DO datasets, foregoing the frustrating data losses normally 
associated with metabolism measurements (60–70% in our study). They 
are simple and require no specialized inference tools, rendering them 
more widely applicable. They align directly with existing water quality 
protection frameworks. And finally, they are more directly informative 
than metabolism about DOM quality and denitrification potential in 
small stream networks. When conditions are sub-optimal for metabolism 
estimates, such as storm events or low flow periods, and reaches with 
high groundwater inputs or near confluences, these DO metrics provide 
useful inference tools for managers. Our results make clear that while 
estimating stream metabolism wherever possible is a foundational facet 
of river network ecosystem science, the use of simple DO metrics cap
tures much of the meaningful information about space and time varia
tion with far fewer assumptions and yields important insights on 
biogeochemical controls. These metrics can and should be an important 
complement in our efforts to use increasingly massive sensor data sets to 
effectively characterize flowing water systems. 
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