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Abstract Additive manufacturing is unquestionably

gaining importance in industry. Due to the layer by

layer deposit process, it usually leads to an anisotropic

material. A question of importance to assess their re-

sistance to fracture is whether Linear Elastic Fracture

Mechanics can be used. In this paper, we investigate

this point on polycarbonate printed by Fused Deposi-

tion Modelling focusing on a criss-crossed deposit pat-

tern. Thanks to tensile and fracture experiments in-

strumented by Digital Image Correlation, the material

is evidenced to be linear elastic until fracture, nearly

isotropic in the 2D printing plane but with a strong

fracture anisotropy, leading to systematic crack kink-

ing along the weakest plane. The Stress Intensity Fac-

tors evolution is measured across the kink and shown

to be in agreement with Amestoy-Leblond’s formula.
The fracture toughness is observed to be larger than

the bulk value, in agreement with irreversible damage

and plasticity that are clearly observable at the scale of

the threads.
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1 Introduction

Additive manufacturing is gaining importance in in-

dustry, in particular among biomedical aerospace or

building industries (Ngo et al., 2018). As layer by layer

process, additive manufacturing induces specific micro-

structures often leading to anisotropic properties whether

the bulk material is a metal, a ceramic or a polymer

(Balit et al., 2020; Nguejio et al., 2019; Kok et al., 2018;

Zareiyan and Khoshnevis, 2017; Ziemian et al., 2012).

Such process can be used to produce composite mate-

rial with tailored heterogeneous or anisotropic proper-

ties, as illustrated by advances in the manufacturing

of material with bioinspired microstructure (Dimas et

al., 2013; Martin et al., 2015). Recent studies took ad-

vantages of these capabilities to investigates the inter-

actions between a crack and such precisely controlled

microstructure made of different materials (Wang and

Xia, 2016) or distributed inclusions (Brodnik et al.,

2020). However, this anisotropy is generally not intended

for conventional structural applications and understand-

ing and controlling its appearance is a focus of additive

manufacturing development (Ngo et al., 2018). In this

case, it is widely analysed in terms of uniaxial prop-

erties - yield strength and strain at break (Zou et al.,

2016; Song et al., 2017) - with few interest in crack prop-

agation properties, in particular in the complex crack

paths that may result from the interaction with the mi-

crostructure.

We aim here to question the propagation of a crack

in those anisotropic materials answering the question

whether the framework of Linear Elastic Fracture Me-

chanics is suitable. Here we investigate this issue on

polycarbonate (PC) printed by Fused Deposition Mod-

elling (FDM) focusing on a criss-cross deposit pattern.

The paper is organized as follows. Section 2 recalls some
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basis of Linear Elastic Fracture Mechanics (LEFM) and

some propagation criterion in the case of anisotropic

fracture properties. Section 3 is devoted to the descrip-

tion of the experimental methods in term of printing,

characterisation tests, fracture experiments and instru-

mentation by Digital Image Correlation. In section 4,

the experimental results are presented and discussed.

Finally, we conclude in section 5 that (i) the material

has isotropic elastic properties but strong anisotropic

fracture properties that systematically guide the crack

along a kinked path corresponding to the nearest weak-

est direction; (ii) Linear Elastic Fracture Mechanics ap-

plies at the scale of the specimen while dissipation marks

are clearly visible at the thread scale.

2 Linear Elastic Fracture Mechanics

2.1 Definition of the Stress Intensity Factors (SIF)
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Fig. 1 Zoom around the tip of a crack embedded in a linear
elastic body and associated notations.

Consider a crack (fig. 1(a)) in an isotropic homo-

geneous elastic solid submitted to some loading (given

displacements and forces). In the vicinity of its tip, the

leading term of the displacement field u takes the fol-

lowing form in polar coordinates (Williams, 1952):

ur =
KI

4µ

√
r

2π

[
(5− 8ν) cos

(
θ

2

)
− cos

(
3θ

2

)]
+
KII

4µ

√
r

2π

[
(−5 + 8ν) sin

(
θ

2

)
+ 3 sin

(
3θ

2

)]
uθ =

KI

4µ

√
r

2π

[
(−7 + 8ν) sin

(
θ

2

)
+ sin

(
3θ

2

)]
+
KII

4µ

√
r

2π

[
(−7 + 8ν) cos

(
θ

2

)
+ 3 cos

(
3θ

2

)]
(1)

It implies a 1/
√
r singularity of the stress field when

r → 0, whose magnitude is given by the Stress Inten-

sity Factors (SIF), KI corresponding to mode I opening

loading, KII to mode II plane shear loading.

The next term, proportional to r, involves the T -

stress. It is linked to the dominant non-singular stress

near the crack tip and can be obtained by:

T = lim
r→0

[σrr(r, θ = 0)− σθθ(r, θ = 0)] (2)

2.2 SIF discontinuity across a kink,

Amestoy-Leblond’s formula

Assume that the loading of the body is kept constant

between the two configurations of fig. 1(a) (just before

kink) and fig. 1(b) (same configurations with a kinked

portion of length s in the direction ϕ). Denote Kp and T

the SIF and the T−stress before the kink; Kp(s, ϕ) the

SIF defined in the same manner taking the new tip and

crack direction as reference for the polar parameters

(fig. 1(b)). Then in the limit s→ 0:

Kp(s, ϕ) = Fpq(ϕ)Kq +
√
s TGp(ϕ) +O(s) (3)

In this equation, Fpq(ϕ) and Gp(ϕ) are universal

functions (in the sense that they are independent of

the body geometry and the applied loading), depend-

ing on the sole value of ϕ. This means that knowing

the values of Kq and T before the kink, Kp(s, ϕ) can in

principle be obtained after the kink without the need

to solve the entire elasticity problem. This remarkable

result demonstrated by J.B. Leblond (1989) is valid

whatever the structure considered, for isotropic and

anistropic materials (Leguillon, 1993), in 2D and 3D

situations (Leblond, 1999; Leblond et al., 1999; Lazarus

et al., 2001). However, the value of Fpq(ϕ) and Gp(ϕ)

differs: For an isotropic material, these functions have

been determined by Amestoy and Leblond (1992); For

an anisotropic material, they have not been determined

yet, to the best of our knowledge.

In the case of isotropic elasticity, the values are pro-

vided by Amestoy and Leblond (1992) for any values of
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ϕ, either under the form of some integral equations cou-

pled with Anderson’s formula (equations (34)1, (35)1,

(36), (39) in there) or of a serie (equation (66) in there).

In the sequel, we use the solution of the integral equa-

tions, but it is almost indistinguishable from the series

(see Appendix A for datas and comparison).

Introduce the limit K∗p (ϕ) for s→ 0:

K∗p (ϕ) = lim
s→0

Kp(s, ϕ) (4)

Using equation (3), we get

K∗p = Fpq(ϕ)Kq (5)

Note that despite the continuity of the displacement

and stress fields when s → 0, K∗p (ϕ) is discontinuous

crossing the kink, that is K∗p (ϕ) 6= Kp.

The energy release rate G(s, ϕ) corresponding to a

kinked propagation in the direction ϕ can be obtained

from the Kp(s, ϕ) using Irwin’s formula (Irwin, 1957):

G(s, ϕ) =
1− ν2

E

(
(KI(s, ϕ))2 + (KII(s, ϕ))2

)
, (6)

written here for KIII = 0.

2.3 Propagation criterion

For anisotropic fracture properties, the criterion which

emerges (Takei et al., 2013; Li and Maurini, 2019) is the

Generalization of the Maximum Energy Release Rate

(GMERR) (Palaniswamy and Knauss, 1975; Chambolle

et al., 2009). It is a balance between the elastic energy

available for propagation and the fracture costs, more

precisely between the energy release rate G∗(ϕ) (limit

of G(s, ϕ) for s → 0) and the surface fracture energy

Gc(ϕ). It states

1. that the propagation direction ϕ is selected by the

maximum of the ratio G∗(ϕ′)/Gc(ϕ
′) with respect

to ϕ′;

2. propagation occurs if the loading verifies G∗(ϕ) =

Gc(ϕ), where G∗(ϕ) is the energy released when the

crack propagates in the direction ϕ.

Two cases are usually distinguished (Takei et al.,

2013; Li et al., 2015; Li and Maurini, 2019): weak or

strong anisotropy. Weak anisotropy corresponds to a

convex 1/Gc(ϕ) and strong anisotropy a non-convex

one. In the weak case, the criterion reduces to a configu-

rational torque balance (Hakim and Karma, 2009) and

all material propagation directions may be observed. In

the strong case, only the vicinity of the weakest planes

can be reached and some forbidden directions exists.

Wulff plot inspired from cristallography can be used

to conveniently describe the fundamental difference be-

tween both (Takei et al., 2013; Ibarra et al., 2016). It

consists on the comparison of the polar plots of 1/Gc(ϕ)

and 1/G∗(ϕ), propagation occurring at intersection points

of both. Let us illustrate this under some assumptions

that are relevant for our experiments: (i) KII = 0 and

(i) a material with 4-fold cubic symmetry, the weak-

est plane being oriented in the directions θ0, θ0 + 90,

θ0 + 180, θ0 − 90 degrees, θ0 = 0 corresponding to

the case where this orientation is aligned with the pure

mode I direction. In this case, the energy release rate is

G∗(ϕ) =
E

1− ν2
K2
I

(
F 2
I,I(ϕ) + F 2

II,I(ϕ)
)

(7)

In Figure 2, 1/G∗(ϕ) is plotted adjusting the loading

to intersect the convex 1/Gc(ϕ) corresponding to weak

anisotropy; an example of non-convex strong anisotropy

is also given. In Figure 2(a), θ0 = 0 and the crack prop-

agates in the weakest plane (ϕ = θ0 = 0) for both weak

and strong anisotropy. In Figure 2(b), θ0 = 35 degrees,

the crack propagates with ϕ < θ0 for weak anisotropy

and ϕ close to θ0 for strong anisotropy as 1/G∗ cannot

reach the non-convex part of 1/Gc. In this second case,

the fracture plane is always close to the weakest plane.

1/Gc Strong
1/Gc Weak

1/G*

(a) θ0 = 0

1/Gc Strong
1/Gc Weak

1/G*

(b) θ0 = 35 degrees

Fig. 2 Wulff diagram: polar plot of 1/G∗(ϕ) versus 1/Gc(ϕ)
for strong or weak anisotropy, given here under dimension-
less form. The equilibrium point is located at the intersection
1/G∗(ϕ) and 1/Gc(ϕ), that gives the propagation direction
corresponding to the arrows. (a) θ0 = 0, the weakest plane
is aligned with the notch, the crack propagates straight in
both cases. (b) θ0 6= 0, crack advance results from a balance
between elastic and fracture energies. The green arrow is for
the equilibrium in the weak case, the purple in the strong one
(note that 1/G∗(ϕ) is not plotted in this case for the sake of
clarity, it would be a line parallel to the blue one passing
through the tip of this arrow). When θ0 varies, this direction
can be located anywhere for weak anisotropy, but only close
to the weakest plane for strong anisotropy.
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3 Experimental methods

3.1 Sample preparation

Fused deposition modelling is a widely used additive

manufacturing technique for thermoplastic polymers.

In this process, the sample is built layer by layer: a feed-

stock filament is extruded into a heated nozzle at semi-

liquid state and deposited over the previously build

layer (see Figure 3(a)). The extruded thread cools down,

outer shell

infill

notch

nozzle

printing head

polycarbonate

current layer

previous layer

a

infill angle: 105°

c

infill angle: 15°

outer shell
b

Fig. 3 (a) Representation of the trajectories of the printing
head to build a CT sample (software: IdeaMaker). Details of
the thread deposit around the notch: successive layers with a
raster angle of (b) 15o and (c) 105o.

solidifies and bonds to the adjacent ones. The diameter

of the extrusion nozzle and the layer thickness, respec-

tively 0.4 mm and 0.15 mm in our case, provides the

approximate dimensions of the thread.

All specimens where produced in polycarbonate (PC-

Plus™ from Polymaker) using a FDM 3D-printer (Raise

3D N2 plus). Each layer is filled up to 100% follow-

ing a raster pattern : the threads form straight lines

in the (x,y) plane. Successive layers are orthogonal to

each other forming a criss-cross pattern, as illustrated

on Fig 3(b,c). Compact Tensile (CT) samples are used

to study fracture properties and flat tensile specimens

to study the material constitutive behaviour. Their ge-

ometry is detailed on Figure 4. The pattern angle is

measured with respect to the notch for the Compact

Tension (CT) and with respect to the loading direction

for the tensile specimens. In the following, the smallest

deposit angle will be referred to as the raster angle and

used to identify each specimen. Thus, a specimen with

a 0o raster angle is build with a 0o / 90o layup (see

Fig 4(a)).

Fig. 4 (a) CT specimen with 0o raster angle (without paint).
Sample Geometry : (b) CT, (c) CTS and (d) tensile specimen
with a speckle pattern sprayed with black and white paint.

For CT specimens, each layer is surrounded by a

one-filament outer shell to ensure dimension accuracy of

the 0.3 mm notch. However, this outer shell is removed

from the notch extremity in an attempt to sharpen it.

The position of the raster is adjusted so that the notch

faces immediately a weld line between two threads in

each layer of small raster angle, as shown on Fig 3(b). In

practice, the pattern in front of the notch is disrupted

by the numerous movement of the nozzle is this area.

The resulting microstructure is inevitably much more

complex than the theoretical one.

3.2 Tensile tests

The microstructure of FDM printed parts with layers

made of aligned threads can induce anisotropic mechan-

ical behaviour, as often observed (Dizon et al., 2018).

The criss-cross layup exhibit 3 symmetry planes and

can be described as an orthotropic material. In our case,

the two deposit directions are equivalent and provide

two additional symmetry planes. We consider the case

of 2D plane stress elasticity in the (x, y) plane. The

compliance matrix then relies on 3 independent param-

eters, Young’s modulus E, Poisson’s ratio ν and the

shear modulus µ. Using Voigt notation, the generalized

Hook’s law with the compliance matrix S in the mate-
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rial basis reads: ε1
ε2
ε1,2

 =

 1
E
−ν
E 0

−ν
E

1
E 0

0 0 1
µ

 σ1
σ2
σ1,2

 . (8)

Following Ting (1996), the change of basis for the com-

pliance matrix in Voigt notation can be expressed as:

S′ = K−1SK−T. (9)

For a rotation of the material about the third coordi-

nate of an angle Θ, the transformation matrix reduces

to:

K−1 =

 cos2Θ sin2Θ −2 cosΘ sinΘ

sin2Θ cos2Θ 2 cosΘ sinΘ

cosΘ sinΘ − cosΘ sinΘ cos2Θ − sin2Θ

 ,

(10)

The elastic modulii are then identified with tensile tests

with different material orientation. Two orientations

suffice in our case and experiment with 0o and 45o

raster angle are preferred to avoid shear-coupling. Tests

with 0o raster angle provide E and ν while tests with

45o raster angle provide µ.

If we further suppose that the material is isotropic

in the (x, y) plane (i.e. the third axis is an axis of sym-

metry making the material transversely isotropic), the

compliance matrix keeps the form in eq. 8 in any basis

and the shear modulus is related to the other parame-

ters by the equation:

µiso =
Eiso

2(1 + νiso)
. (11)

In this case, tests with different material orientations

are assumed to be equivalent.

Tensile tests are performed with 6 tensile specimens

for each raster angle (0o and 45o) until breakage. Plane

Stress hypotheses used in formula (8) is justified by the

small thickness of the specimen (2.4 mm for a 48 mm

length specimen). The test are performed with a uni-

versal tensile machine Instron 3342 (30 kN load cell)

imposing a 0.5 mm.min−1 crosshead speed (tests up to

3 mm.min−1 show no clear difference). The tests are

monitored with DIC to measured the longitudinal and

transverse deformation of the sample (local strains av-

eraged over the working area of the sample). The elas-

tic modulii are measured with a linear fit of the data

up to 1% longitudinal deformation: nominal stress ver-

sus longitudinal deformation for Young’s modulus and

transverse strain versus longitudinal strain for Poisson’s

ratio. The ultimate tensile stress σc is obtained from the

nominal stress at break.

3.3 Fracture experiments

3.3.1 Compact Tensile test

Compact Tensile sample are broken on an Instron 3342

tensile machine by imposing a 0.5 mm.min−1 crosshead

speed. A speckle pattern is sprayed over the surface of

the sample using black and white paint (see Fig. 4(b-

d)). The test is monitored with a Nikon D300s taking

greyscale images of 4288×2848 pixel every 4 s to 6 s.

The camera is mounted with an AF-S Micro NIKKOR

60mm lens, resulting in a physical pixel size of 20 µm.

The displacement field is measured with the open-source

DIC code UFreckels (Réthoré, 2018) using a finite el-

ement formulation of DIC with bi-linear Q4 elements

(Besnard et al., 2006). The element size is set to 16×16

pixel (320×320 µm2). As shown on Figure 5(a), the dis-

continuity in the displacement field highlights the crack

path.

3.3.2 Measure of Kp using Digital Image Correlation

Following various studies on fracture mechanics param-

eters extraction with DIC (Besnard et al., 2006; Roux

et al., 2009; Réthoré, 2015), the post-processing method

consist in projecting the displacement field measured

around the crack tip onto the Williams series. For a

straight crack in a 2D elastic body, the displacement

field around the crack tip takes the form of a symmet-

ric (mode I) and an anti-symmetric (mode II) series

(Williams, 1952):

u(r, θ) =

∞∑
n=−∞

anI r
1
2ψI(θ) + anIIr

1
2ψII(θ), (12)

with anI and anII the asymptotic coefficients (the terms

for n = 1 are detailed in eq. 1). In practice, a trunca-

tion between n = −3 and n = 7 is enough to extract

accurately the low order coefficients such as the stress

intensity factors (Roux-Langlois et al., 2015; Réthoré,

2015). The extraction is done on a disc-like area centred

around the tip of radius rext. A small band of width rint
is removed from the extraction domain around the tip

and along the crack lips as shown on Fig 5(b). This will

reduce the influence of potential non-linear behaviour

around the tip on the SIF identification. In our case,

plane strain conditions are assumed since the sample

width is 10 mm. The tests are processed as systemati-

cally as possible. The extraction domain parameters are

rext = 160 pixels and rint = 32 pixels.

Following the method proposed by Hamam et al.

(2007), we proceed in two steps to define the crack tip

position accurately. First, using the DIC results which

highlights the displacement discontinuity (Fig. 5a), we
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Fig. 5 (a) Vertical displacement field computed from DIC
on the reference configuration of sample. The discontinuity
underlines the crack path and is used to propose a crack path
on which the successive positions of the tip are searched. Pixel
size 20µm, raster angle 25o. Extraction domain (rext = 3.2
mm) and proposed crack path for raster angle of (b) 25o

and (c) 0o. The displacement field (norm) without rigid body
motion is represented on the extraction domain.

propose a crack path. This proposed path is always

composed of two segments: the first one is the hori-

zontal extension of the initial notch and the second one

follows the weld line between the thread which is fol-

lowed by the crack as shown on Fig 6(b). As this last

line is not necessarily the first one to the notch tip, the

intersection of these two lines pinpoints the kink rather

arbitrarily considering the complexity of the fracture

process in the area ahead of the notch. However its ex-

act location is not crucial since no SIF extraction can

be done at this point : the Williams series being defined

for a straight crack, the presence of a kink in the ex-

traction domain prevent any accurate identification of

the asymptotic coefficients. Second, the n = −1 term

is used to detect more precisely the equivalent elastic

crack tip position along the proposed line.

4 Results

4.1 Elastic properties

Table 4.1 presents the elastic moduli identified from

the tensile tests under the assumption of orthotropic

and isotropic material behaviour. The elastic parame-

orthotropic isotropic
mean std mean std ratio

E (MPa) 1994 69 1982 86 1.01
ν 0.25 0.03 0.30 0.06 0.81

µ (MPa) 727 37 762 45 0.95

Table 1 Elastic material parameters and ratio between the
mean values obtained under orthotropic and isotropic as-
sumptions. In the isotropic case, µ is computed from eq.11

.

ters are very close between the two models. In partic-

ular, the shear modulus in the anisotropic case is only

5% lower than the shear modulus expected from an

isotropic modelling. Young modulii are equivalent and

the larger discrepancy in Poisson’s coefficient may come

from the dispersion of the measurements. Thus, a sim-

ple isotropic model seems adequate enough to charac-

terise the apparent 2D elastic behaviour of our polycar-

bonate layup. This result is consistent with previous ob-

servations on ABS (Zou et al., 2016) and polycarbonate

samples printed with a criss-cross pattern (Domingo-

Espin et al., 2015). The isotropic material model will

be used in the following. The ultimate tensile stress av-

erage is 43 MPa with a standard deviation over every

raster angle is 2.7 MPa. We noticed a dependance on

the raster orientation as commonly reported (Domingo-

Espin et al., 2015). However we didn’t deepen this point

since this mean value is sufficient for our discussion in

this study.

4.2 Fracture of the CT sample

4.2.1 Description

The crack paths in two CT tests with different raster

angles are presented on Figure 6(a-b). In every case, the
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Fig. 6 Crack propagation sample with a raster angle of (a)
0o and (b) 35o (with zoom on the kink). (c) Typical load-
displacement curve of the CT test, corresponding to the sam-
ple shown in (b). The approximate kinking point is high-
lighted in red. The initiation arrow indicates when the equiv-
alent elastic crack tip is found about 200 µm (10 pixels) away
from its initial position.

same general behaviour is observed : the crack always

propagates along the thread deposit direction making

the smallest angle with the notch, i.e. the crack kinks

with an angle equal to the raster angle. A straight crack

is observed for test with a 0o raster. Because of the or-

thogonal layup, the crack propagates along the weld line

between two threads in half of the layers and perpendic-

ularly to the threads in the other half. The fracture plan

is then always the same from a microstructure point of

view.

More specifically, the fracture starts with the pro-

gressive formation of a sharp crack from the printed

notch. This phenomenon appears as a non-linear be-

haviour on the load-displacement curves, as indicated

by the arrows on Fig 6(c). This initiation process is sim-

ilar to a short straight propagation ahead of the notch

before kinking. Accordingly, the crack plane after the

kink does not correspond to the weld line that starts

right ahead of the notch as noticeable on the inset on

Fig 6(b)(also see Fig. 5(b)). In the following, the crack

length refers to the distance traveled by the crack tip

starting from the notch tip, including the short straight

propagation (Fig. 1(b)).

4.2.2 Displacement field around the tip

The hypothesis of isotropic elasticity is further con-

firmed by the good agreement between the measured

displacement field and the theoretical displacement pro-

vided by the Wiliams extension (eq. (1)). Indeed, the

mean relative difference for each test range from 5 % to

15 % (displacement without rigid body motion). These

global values hide to different cases: since the Williams

extension (eq. (1)) is defined for a straight crack, the

agreement between measured and theoretic displace-

ment field highly depend on the presence of the kink in

the extraction domain. Figure 7 shows the typical evo-

lution of the relative difference along the crack path:

the number of elements with a large relative difference

decreases and remain constant once the kink left the

extraction domain. Then, the difference remains low ex-

cept around the lips of the crack (see inset in Fig. 7).

In this case, we plot the proportion of the extrac-

tion domain with a relative difference superior to 10 %

(which corresponds to an absolute difference of about

10 µm) to reduce the sensitivity to extremes values.

This threshold is also used to evaluate the quality of

extraction: the SIF measured on an image are not taken

into account if more than 10 % of the extraction domain

exhibit a relative difference superior to 10 %.

4.2.3 Evolution of Kp during propagation for one

given experiments

The SIF for mode I and mode II, Kexp
I and Kexp

II , are

represented along the crack path for a specific CT test
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Fig. 7 Proportion of the extraction domain where the rel-
ative difference between the displacement measured and
Williams extension is higher than 10 %. Insets show the ab-
solute difference in two cases: just after the kink and at the
end of propagation. Test with a 25o kink angle (see Fig 5).

on Figure 8 for the particular cases corresponding to a

raster angle of 5, 25 and 45 degrees.

The SIF measured before the kink are marked in

blue: the mode I loading is retrieved with Kexp
I rising

andKexp
II approximately null. The crack length at which

the crack kinks is highlighted by the jump in the value

of Kexp
II (for tests with non-zero raster angle of course).

As detailed before, this kinking point is located slightly

away from the notch tip (Fig. 6(b)).

Since the SIF extraction is made under the assump-

tion of a straight crack, the kinking point has to be

outside the extraction domain to obtain reliable mea-

sures. Thus, the measure of Kexp
p cannot be accurate

before the crack has travelled a distance rext =3.2 mm

as indicated on Fig. 8.

4.2.4 Comparison with Amestoy and Leblond Formula

We aim here to compare the evolution of the SIF cross-

ing the kink position, to Amestoy and Leblond formula

(Eq. 5). This equation assumes that the SIF K∗p and

Kp are taken at constant loading. But the evolution

of Kexp
p depicted in fig. 8 is due to changes in both the

loading (fig. 6c) and the crack geometry (fig. 6b), hence

can not be compared straightforwardly to Eq. 5. More-

over, Eq. 5 relies on the value of the SIF just before

the kink, that are impossible to obtain with a reason-

able precision, since the evolution of Kexp
I in this zone

is sharp and the precise location of the kink is difficult

to catch (see blue points located before the kink in fig-

ure 8). We circumvent these difficulties thanks to linear

elasticity, by considering the ratio Kexp
II /K

exp
I , which is

independent of (i) the SIF just before the kink and (ii)

of the loading.

From Eq. 4 and Eq. 5, the limit of this ratio for

s→ 0 is:

lim
s→0

Kexp
II

Kexp
I

=
K∗II
K∗I

=
FII,I(ϕ)

FI,I(ϕ)
. (13)

A straightforward application of this equation is impos-

sible experimentally since it would require measures of

Kexp
p as close as possible to the kink. Instead we make

the following approximation:

K∗II
K∗I
∼ 1

ssup − sinf

∫ ssup

sinf

Kexp
II

Kexp
I

ds. (14)

We choose sinf = rext to eliminate the points located

at a distance smaller than rext of the kink position, for

which the SIF can not be measured by DIC. The value

of ssup has to be small enough so that the infinite do-

main assumption that is implied in the formula remains

valid1. It has also to be small enough so that the next

term in the expansion (3) of Kp(s, ϕ) can be neglected.

In practice, it is the case (Mesgarnejad et al., 2020)

if s � L ≡
(
KI

T

)2
, where KI and T are the values

of the SIF and T− stress before kink (fig. 1(a)). We

choose ssup = 10 mm as a small value in comparison

to L ≡ KI

T ∼ 200 mm corresponding to our CT sample

geometry (fig. 4)2.

The values of K∗II/K
∗
II obtained in this way for dif-

ferent kink angle are displayed on Figure 9, together

with its theoretical value
FII,I(ϕ)
FI,I(ϕ)

. We observe an overall

good agreement in the whole range of kink angles stud-
ied. This further confirms the validity of the isotropic

elasticity assumption and the relevance of the SIF mea-

surements, even if several points deserves further dis-

cussion:

1. While estimation of the error of the displacement

field by DIC is well known, it is not a straightfor-

ward task to report it on the values of SIF (Hamam

et al., 2007). An alternative is also to take the stan-

dard deviation among the points considered in the

interval, but their number is too small to make sense.

2. A natural idea to come closer to the limit s→ 0 is to

reduce rext. But this decrease comes inevitably with

1 In other words, the crack tip must be far enough of the
sample boundary.
2 For dimensional reasons and linearity of the problem with

the loading, the value of L depends only on the sample ge-
ometry and can be estimated quite straightforwardly by Fi-
nite Elements. The value we obtained in this way, has been
checked to be in agreement with the literature (Leevers and
Radon, 1982).
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∗
I for various kink angle com-

pared to the theoretical ratio computed from Eq. 5.

a decrease of accuracy since the extraction domain

becomes smaller. It is thus not a pertinent option.

We checked however that varying rext between 120

and 180 pixels has a negligible effect on the values

of Kexp
p and does not change the conclusion drawn

from fig. 9.

3. The tensile stress measured on tensile specimens is

43 MPa. The cohesive zone size can be estimated

(Mesgarnejad et al., 2020) to be around 0.4 GcE/σ
2
c =

2.7 mm. This is a second obstacle to use smaller val-

ues of rext.

4. The choice of the value of ssup may also be ques-

tioned. We estimated that ssup = 10 mm is rea-

sonable so that the crack tip does not “feel” the

boundaries. We checked that moderately changing

this value doesn’t modify the fair agreement found

in fig. 9.

5. We made a tentative to look at the second term (in√
r) of the expansion of Kp(s) (Eq. 3). But it ap-

pears that our setup is not suitable for this purpose.

We are currently investigating this point further. It

will be the purpose of another paper.

4.2.5 Value of Gc

The energy release rate G∗, for every crack tip position

after the kink can be computed with Irwin’s formula

eq.(6) using previous values of K∗p and elastic constants

of table. 4.1. Since crack propagation occurs Griffith

threshold is reached and G∗ = Gc. The fracture energy

Gc obtained this way shows no clear dependency to

the raster angle (Figure 10(a)). This result is consistent

with the crack propagating on the same fracture plan

(one of the raster direction).

A critical energy release rate can be define for this

plan as the mean value of 6.5 kJ.m−2 (standard de-

viation 600 J.m−2). This value seems superior to the



10 Thomas Corre, Véronique Lazarus

Fig. 10 (a) Energy release rate measured from every pictures
used to estimate K∗. Black symbols presents first, second and
third quartiles for each kink angle. Blue line is tlhe mean over
every tests. (b) Close-up on threads broken along the crack
path in the first orthogonal layer. Necking of the threads and
cracks in the paint reveal large local plastic deformations.
(×200, opto-numerical microscope, Keyence).

energy release rate usually reported for moulded poly-

carbonate varying usually from 1 kJ.m−2 to 5 kJ.m−2

(Ashby, 1989; Kim et al., 1994). The difference might

come from the large plastic deformation that polycar-

bonate threads undergo in layers perpendicular to the

crack. A closer look at these threads on Fig 10(b) in-

deed reveals some necking (and some small cracks on

the paint they received), which suggest plastic deforma-

tion and micro-damages. Crack trapping by voids may

be another fracture toughening mechanism. Indeed, al-

though a 100% infill is requested to the printer, optical

microscopy views of the surface show incomplete adhe-

sion between the threads. This yields some significant

porosity (estimated by weighing and rough volume es-

timation to be around 10-15 %).

This observation recalls the inherent multi-scale frac-

ture behaviour of these structured materials in spite of

the relevant LEFM continuous description at the sam-

ple scale.

4.2.6 Strongly anisotropic fracture toughness

Anisotropic tensile properties of FDM printed poly-

mers, such as the tensile strength, are well documented

(Ziemian et al., 2012). However, fracture experiment

often exhibit the crack path expected for isotropic ma-

terial, that is for instance, straight propagation in pure

mode I case. As an example, Gardan et al. (2018) ob-

served straight crack path in CT specimen made of ABS

with two different deposit layups, including a criss-cross

pattern similar to ours. On the contrary, we observe a

strong influence of the raster angle on the crack path

for our printed polycarbonate: the crack always follow

the nearest weak plane in the material corresponding to

a weakly welded interface between the threads. In the

framework introduced in section 2.3, it means that we

have strong fracture anisotropy in our experiments. It

implies that in any direction but the weakest one, the

anisotropic fracture toughness is too high to be over-

come by the elastic energy release rate (Li and Maurini,

2019). This hinders the possibility to propagate a crack

in any other direction and implies that the critical en-

ergy release rate can only be estimated experimentally

in this direction as already noticed by (Takei et al.,

2013).

5 Conclusion

In this paper, the elastic properties and the fracture be-

haviour of FDM printed polycarbonate with criss-cross

pattern have been studied. Compact tension tests are

performed for different pattern orientation and anal-

ysed by digital image correlation. A peculiar behaviour

is highlighted: the crack consistently follows a weak

plane of the material corresponding to a thread de-

posit direction, resulting in kinked crack paths. This be-

haviour is the outcome of a strong anisotropic fracture

toughness (Takei et al., 2013; Li and Maurini, 2019).

While strongly departing from the fracture behaviour

of the isotropic bulk material, this material may be de-

scribed with a careful analysis in the linear fracture

mechanics framework. According to tensile tests, an

isotropic elastic model seems to be accurate enough to

model the behaviour of the printed material. The good

agreement of the displacement field with William’s ex-

pansion, used to measure the stress intensity factors,

further validates this model. Leblond’s formula (Leblond,

1989; Amestoy and Leblond, 1992) is retrieved exper-

imentally in spite of the strong hypothesis necessary

to estimate the close-kink limit of the stress intensity

factors.

Despite the validity of LEFM observed at the con-

tinuum sample scale, polycarbonate threads orthogonal

to the crack undergo large plastic deformations. This

leads to surface fracture energy higher than the one

usually measured for the bulk polycarbonate highlight-

ing the inherent multi-scale fracture behaviour of these

structured materials.
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A Numerical values of the function Fpq(ϕ) for

an isotropic material

The paper of Amestoy and Leblond (1992) provides two meth-
ods to obtain the values of Fpq(ϕ): the first is a semi-analytical
method in which their values can be obtained by solving some
integral equations coupled with Anderson’s formula (equa-
tions (34)1, (35)1, (36), (39) in there); the second is to use
their expression under the form of a 21 terms-serie of m =
ϕ/π (equation (66) in there).

The values we used here are those obtained by the first
method. They can be downloaded as supplemental material.
But the series provided in Amestoy and Leblond (1992) should
have been used as well without any change in our final conclu-
sions, as both methods yield (without surprise) quiet exactly
the same values (see figure 11).
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Fig. 11 Universal Functions Fpq(ϕ) obtained by two differ-
ent methods from Amestoy and Leblond (1992)


