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Speckle patterns generated in a disordered medium carry a lot of information despite the appar-
ent complete randomness in the intensity pattern. When the medium possesses χ(2) nonlinearity,
the speckle is sensitive to the phase of the incident fundamental light, as well as the light gener-
ated within. Here, we examine the speckle decorrelation in the fundamental and second-harmonic
transmitted light as a function of varying power in the fundamental beam. At low incident powers,
the speckle patterns produced by successive pulses exhibit strong correlations, that decrease with
increasing power. The average correlation in the second-harmonic speckle decays faster than in the
fundamental speckle. Next, we construct a theoretical model, backed up by numerical computations,
to obtain deeper physical insights on the faster decorrelations in the second-harmonic light. Whilst
providing excellent qualitative agreement with the experiments, the model sheds important light on
the contribution of two effects in the correlations, namely, the generation of second-harmonic light,
and the propagation thereof.

Wave transport in a random medium is a universal phe-
nomenon that transcends the boundaries of various sub-
topics such as optics, condensed matter physics, acous-
tics, or quantum matter etc [1]. Among all of these,
transport of optical waves has attracted most attention
due to the sophisticated experimental capabilities offered
by optics. Indeed, the study of photon transport through
disordered media has revealed important facets of trans-
port in all regimes of disorder, from weak scattering oc-
curring in media like fog to strong scattering in dense
powders. With increasing disorder, incident waves ex-
perience multiple scattering where the transport of in-
tensity is described as a diffusion process. Further in-
crease in disorder leads to exotic phenomena such as weak
localization and strong localization are manifest in the
system, which essentially represent reduced or arrested
photon transport [2]. Traditionally, all these phenom-
ena were studied in the linear regime due to the inherent
non-interacting nature of photons. However, interactions
can be created by introducing nonlinearities into the me-
dia. Materials that respond to higher powers of inci-
dent electric fields can be exploited to create disordered
systems that favour nonlinear propagation. The conse-
quences of nonlinearity on the physics of light transport
in disorder have been extensively addressed both in χ(3)

media, that are media exhibiting intensity-dependent re-
fractive index [3–6], and in χ(2) media, that can generate
second-harmonic frequencies of light [7–13]. In the latter
scenario, research efforts have been focused on funda-
mental physics of diffusion and weak localization in χ(2)

disorder [7–10], and on the applicability of disorder in
enhancing nonlinear generation [11–13].
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One of the most fundamental effects in disorder that
depends on the phase of the propagating light is the ap-
pearance of speckle. A speckle pattern is the random
intensity distribution of bright and dark spots developed
due to the interference of many coherent wavelets with
the same frequency and different amplitudes and phases
travelling in a disordered medium [14]. Despite the ap-
parent complete randomness in the intensity distribu-
tion, various correlations [15] are known to exist in the
speckle pattern. For instance, the optical memory effect
’remembers’ the incoming wavefront under slight pertur-
bation in position and angle [16–20], an idea that has
emerged as an efficient tool in imaging through opaque
media [21, 22]. Recent theory and experiments have un-
veiled non-Gaussian and long-range correlations between
transmitted and reflected speckle patterns [23–25]. Not
surprisingly, the rich physics of speckle correlations has
already motivated research in nonlinear systems. For in-
stance, a nonlinear optical memory effect [26] was re-
vealed in a χ(3) medium, namely a silica aerogel, through
a series of pump and probe experiments wherein disor-
dered medium is agitated by an optothermal nonlinear-
ity. Another well-known consequence of χ(3) nonlinear-
ity is the speckle instability, wherein the speckle pattern
fluctuates and becomes unstable when the nonlinearity
surpasses a threshold value [27–29]. In the weak local-
ization regime, the speckle patterns formed by nonlinear
point scatterers exhibit a dynamic instability and lead
to chaotic behavior of the system [30]. Such speckle in-
stabilities in χ(3) nonlinear disordered media have been
experimentally reported [31]. On the other hand, χ(2)

nonlinearity has been employed to primarily investigate
angular correlations in speckles. For example, experi-
ments and calculations have shown that angular correla-
tions in reflected speckle scale with sample thickness for
second-harmonic light, in contrast to scaling with mean
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FIG. 1. Schematic setup of the experiment. Notations, BS: Beam Splitter, PM: Power Meter, L: Lens , SM: Scattering
Medium, HBS: Harmonic Beam Splitter, F1: Laser line filter at λ = 1064 nm, F2: Laser line filter at λ = 532 nm, CCD1:
Charged Coupled Device with InGaAs detector, CCD2: Charged Coupled Device with Silicon detector. Two experimental
speckle patterns for fundamental (hereafter referred to as IR, λ = 1064 nm) and second harmonic generated (hereafter referred
to as SHG, λ = 532 nm) light are shown here while the adjacent color bars indicate the normalized intensity scale.

free path for fundamental light [32]. In another study
[33], angular correlations in second-harmonic speckle un-
der dual-beam excitation were presented in a medium of
LiNbO3 microcrystals.

In this article, we report our experimental and the-
oretical studies on intensity-dependent decorrelation in
speckle patterns produced by a second-order nonlinear
disordered medium. Specifically, we show that the funda-
mental and second harmonic speckle patterns produced
by successive incident pulses exhibit strong correlations
at low input power which drop at higher power. The cor-
relation between fundamental speckle patterns remains
high compared to the second harmonic. The decay rate
of the average correlation with increasing power is larger
in the second harmonic speckles than in the fundamen-
tal speckles. To understand the decorrelation process,
we build a theoretical model that traces the propaga-
tion of the linear field, followed by the conversion to sec-
ond harmonic, finally followed by the propagation of the
second harmonic. The model is in excellent qualitative
agreement with the experimental results. The theoret-
ical model is also backed up with a Monte Carlo com-
putation, which sheds light on two contributions to the
decorrelation process, namely, the decorrelation during
the generation of the second-harmonic, and that due to
the propagation thereof.

I. EXPERIMENTS

A. Experimental Setup

Towards the experiment, commercially available KDP
(Potassium Dihydrogen Phosphate, @ EMSURE ACS)
crystal grains were adopted as our nonlinear material.
Initially, the grain sizes ranged from ∼ 2 mm to 3 mm
and were uneven in shape. The grains were subjected to

a ball milling process creating a fine powder of KDP, with
particle sizes ranging from 2 to 8 µm. The distribution
of grain sizes approximately followed a log-normal distri-
bution with a peak at 3.11µm and variance of 1.25 µm.
For the speckle measurement, we prepared two opaque
slabs (thickness ∼ 510 ± 15 µm and ∼ 680 ± 20 µm) of
KDP micro-crystals, and the slabs were sandwiched be-
tween two microscopic slides of thickness ∼ 170 ± 5 µm.
A coherent backscattering (CBS) [34, 35] experiment es-
timated the transport mean free path (ℓt) of the slabs,
and the estimated values were approximately 352µm and
169µm at λ = 1064 nm and λ = 532 nm respectively.
Fig. 1 illustrates the schematic of the experimental setup
for the speckle correlations measurements.

Nd:YAG laser pulses (EKSPLA, PL2143B, pulse width
∼ 30 ps) with the fundamental wavelength of λ =
1064 nm (hereafter referred to as IR), were chosen as our
input beam. A glass wedge was introduced in the incident
path to direct a small fraction (∼ 4 %) of the beam to a
power meter (PM, Ophir Optronics, resolution: 10 µW)
for the input power measurement. The residual beam was
then focused onto the scattering medium (SM) through
a lens (L) of focal length 10 cm. To avoid damage to
the sample, it was placed slightly away from the focus.
The transmitted light consisted of both the fundamen-
tal and second harmonic light (here referred to as SHG,
λ = 532 nm). A harmonic beam splitter (HBS) was em-
ployed to separate out the two components. The trans-
mitted (IR) and reflected (SHG) lights from the HBS
were then directed to the CCD1 and CCD2 respectively.
The CCD1 was an InGaAs detector (SWIR camera, Pho-
tonic Science, UK) with pixel dimension 30 µm × 30 µm
while the CCD2 was a silicon detector (iXon Ultra 897,
Andor technology) with pixel dimension 16 µm × 16 µm.
A laser line filter (F1) at λ = 1064 nm was added in front
of the CCD1 to block any unwanted SHG photon. Simi-
larly, a laser line filter (F2) at λ = 532 nm was placed in
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front of the CCD2. The laser fired at a repetition rate of
1 Hz, and simultaneous measurements of the pulse power
and the corresponding IR and SHG speckle patterns were
made.

B. Results

An intense pulse of laser light impacts the disordered
sample and imparts certain radiation pressure, which
causes the particles to be displaced from their original
position. Overall, the disorder configuration at the input
face is modified, in proportion to the pump power. See
Supplemental Document, Sec. I for details. Since the dis-
order configuration changes with every impacting optical
pulse, it is imperative to avoid cumulative reconfigura-
tions happening through multiple pump pulses. There-
fore, we only grab two successive speckle patterns in two
consecutive pump pulses, and then translate the sample
so as to illuminate a different location on the sample. The
homogeneity of disorder strength was constant across the
total area, as also certified by the systematic variation
in the results. The correlation coefficient between two
speckle patterns A and B (both m × n matrices) was
calculated as

Cexpe =

∑m
i=1

∑n
j=1(Aij −A)(Bij −B)

√

(
∑m

i=1

∑n
j=1(Aij −A)2)(

∑m
i=1

∑n
j=1(Bij −B)2)

.

(1)
where the over-bar represents the mean of the matrix.

Initial two consecutive speckle patterns of IR and SHG
at an input power of 10.5 mW are presented in Fig. 2 (a,b)
and (c,d) respectively. Obvious agreement between (a)
and (b) is seen, with the yellow circles emphasizing the re-
gions of clear similarity. For the SHG wavelength, there
are no similarities in the speckle patterns between two
consecutive pulses, indicating strong decorrelation within
two pulses. The correlation coefficient 〈Cexpe〉 was aver-
aged over 10 sets of speckle patterns, each grabbed at a
different location on the sample at the same pump inten-
sity.

Figure 3 reveals the variant decorrelation with pump
power for the fundamental and second-harmonic light.
A monotonic decrease in the correlation coefficient is ob-
served in both samples of thicknesses L = 510 µm and
L = 680 µm. At low powers, up to about 15 mW, the cor-
relation drops rapidly, where-after the rate reduces with
further increase in power. It can be expected to asymp-
totically approach zero. To compare the qualitative rate
of decorrelation between IR and SHG, we calculate the
slopes of the two curves for each point and plot them in
Fig. 3 (c). For L = 510 µm and IR light, the slope ini-
tially drops indicating a slowing down of the decorrela-
tion with increasing power. Subsequently, it rises mono-
tonically. For the SHG light, an initially static slope is
seen to rise monotonically and then saturate at highest
power. For the thicker sample, the trends are very sim-
ilar. The intersection between the blue and red curves
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FIG. 2. Initial two consecutive speckle patterns of IR [(a) and
(b)] and SHG [(c) and (d)] scattered from a 510 µm thick sam-
ple at an input power of 10.53 mW. IR speckle shows higher
correlation (0.71), and the marked regions with yellow circles
emphasize the agreement. On the contrary, the correlation
for SHG light is observed to be low (0.23), and any regions
arbitrarily chosen in the pattern (yellow circles) do not show
visible agreement. Color bar indicates normalized intensity.
The scale bar represents 600 µm.

indicates the pump power where the decorrelation rates
are same. Evidently, the two curves intersect at a lower
pump power for the thicker sample. The slopes of the
two curves represent the valuable diagnostic for compar-
ing with the theoretical model, which is discussed later.

The source of the fluctuating speckle pattern can be
traced to the radiation pressure of the incident pulses,
which induces displacements in the scatterers in random
directions. This was experimentally verified in our earlier
study wherein we showed the decrease in speckle contrast
with pump power [36]. A given absolute displacement
of the scatterers amounts to a smaller relative displace-
ment with respect to the wavelength for the IR light, as
compared to the SHG light. However, the origin of the
behavior of decorrelation seen in Figure 3 is not obvious,
and needs to be rigorously evaluated. This is carried out
in the next section.

II. THEORETICAL MODEL

In parallel to the experiment, we have developed a
theoretical model based on coupled transport equations
for the linear (λ = 1064 nm) and second harmonic (λ =
532 nm) lights. This model provides physical insights on
the origin of the faster decorrelation for the second har-
monic speckle compared to the decorrelation of the linear
speckle. Before deriving the model, we first focus on the
correlation function defined in Eq. (1). It can also be
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FIG. 3. Correlation coefficient between first two consecutive
speckle patterns of IR (red markers) and SHG (blue markers)
light as a function of input power of the fundamental light,
calculated from measured speckle patterns. The solid lines are
obtained after smoothing the experimental data. The data are
measured on two different samples with thickness L = 510 µm
(a) and L = 680 µm (b). Slopes of 〈Cexpe〉IR and 〈Cexpe〉SHG

calculated on each power value for the two samples are shown
in (c) for L = 510 µm and (d) for L = 680 µm.

written as

Cexpe =

∫

CCD δI(r)δĨ(r)dr

[

∫

CCD
δI2(r)dr

∫

CCD
δĨ2(r)dr

]1/2
(2)

where δI = I − Ī, I being the intensity and Ī =
∫

CCD
I(r)dr. Ĩ denotes the intensity once the scatterers

have moved due to radiation pressure. It is important to
note that this correlation function does not correspond
to the correlation of speckle patterns at different times
but measures the correlation between the speckles pro-
duced by two slightly different disorder configurations,
the scatterer displacements being induced by the radia-
tion pressure effect. Assuming ergodicity, we can replace
the integration over the pixels of the CCD camera by
a statistical average over all possible disorder configura-
tions which is denoted by 〈·〉. Moreover, we consider that
the statistical properties of the medium are the same af-

ter the displacements of the scatterers, i.e. 〈I〉 =
〈

Ĩ
〉

.

Next, we assume that the field has Gaussian statistics
(or equivalently that the speckles are fully developed),
which is valid in the regime k0ℓs ≫ 1, k0 = ω/c = 2π/λ
being the wave number and ℓs the scattering mean-free
path. This implies that

〈

δI2
〉

= 〈I〉
2
. The correlation

function in Eq. (2) becomes Cexpe ∼ CI − 1 where

CI(r) =

〈

I(r)Ĩ(r)
〉

〈I(r)〉
2 . (3)

Finally, we also have CI = 1 + |C|2 where C is the field-
field correlation function given by

C(r) =

〈

E(r)Ẽ∗(r)
〉

〈E(r)E∗(r)〉
, (4)

E being the electric field and the superscript ∗ denot-
ing the complex conjugate. It is important to note that
we make the assumption of a scalar field for the sake of
simplicity. This can be justified in the multiple scatter-
ing regime where the field can be considered to be fully
depolarized [37]. We finally have

Cexpe ∼ |C|2. (5)

The problem of estimating theoretically Cexpe now re-
duces to the computation of C for two different frequen-
cies, i.e. ω for the linear beam and 2ω for the second
harmonic one. The purpose of the next subsections is to
develop a transport model for C. We present only the
important steps, the full derivation from first principles
being described in the Supplemental Document, Sec. II.

A. Disorder model

The real samples are composed of packed KDP crys-
tal grains of different sizes and shapes. Thus the most
relevant and simple disorder model consists in a fluctu-
ating continuous and real (no absorption) permittivity
ǫ(r). The disorder microstructure is then characterized
by a spatial correlation function chosen to be Gaussian,
in the form

Cǫ(|r − r
′|, ω) = 〈δǫ(r, ω)δǫ(r′, ω)〉

= |∆ǫ(ω)|2 exp

[

−
|r − r

′|2

2ℓ2

]

. (6)

In this equation, δǫ(r, ω) = ǫ(r, ω)−〈ǫ(r, ω)〉 is the fluctu-
ating part of the permittivity, |∆ǫ(ω)|2 is the amplitude
of the correlation and ℓ is the correlation length. |∆ǫ(ω)|2

depends on frequency since the permittivity ǫ is disper-
sive. However, ℓ involves only the geometrical structure
of the disorder and thus does not depend on frequency.
The χ(2) nonlinearity is supposed to be correlated in a
similar way.

B. Linear regime

We first consider the linear regime (λ = 1064 nm) cor-
respnding to propagation at the fundamental frequency
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ω. We use an approach similar to that in Ref. [38] devel-
oped in the context of the Diffusing-Wave Spectroscopy
(DWS). The most important point concerns the selec-
tions of the scattering paths followed by the field E and
its complex conjugate Ẽ∗ that dominate in the expression
of the correlation function C. In a dilute medium such
that k0ℓs ≫ 1, the leading contribution corresponds to E
and Ẽ∗ following the same scattering sequences. These
sequences can be represented by the diagram

E(r, ω)

Ẽ∗(r, ω)

E0

E∗
0

(7)

with an arbitrary number of scattering events [39]. In
these so-called ladder diagrams, the circles represent the
scattering events, the thick solid lines correspond to the
Green functions modelling the field propagation between
scattering events and the thick dashed lines denote the
incident field. The upper (bottom) line describes the

propagation of E (Ẽ∗) respectively and the thin dashed
vertical lines represent the disorder correlation C. It is
important to note that in the model of continuous disor-
der, the circles do not represent real scatterers (grains)
but scattering events connected by the correlation func-
tion C. The width ℓ of the correlation function C is how-
ever on the order of the grain size. The ladder shape of
this dominant diagram implies that there is always con-
structive interference between the field E and its com-
plex conjugate Ẽ∗. Thus the problem of computation of
C reduces to the problem of solving a radiative transport
equation [40]

[

u ·∇r +
1

ℓs(ω)

]

Ĩ(r,u, ω)

=
1

ℓs(ω)

∫

p(u,u′, ω)g(r,u,u′, ω)Ĩ(r,u′, ω)du
′. (8)

where Ĩ(r,u, ω) is the specific intensity, that can be seen
as the radiative flux at position r, in direction u and at
frequency ω. More precisely, it can be shown from first
principles that it is given by the Wigner transform of the
field. In our context (scatterer displacements), it reads

δ(k− k0)Ĩ(r,u, ω) =

∫

〈

E
(

r +
s

2
, ω

)

Ẽ∗
(

r −
s

2
, ω

)〉

× e−iku·sds. (9)

Thus, solving for Ĩ gives a direct access to the field-field
correlation function C. Equation (8) is very similar to the
standard Radiative Transfer Equation (RTE) [41] except
that it includes an additional function g(r,u,u′, ω) that
represents the decorrelation of the field at each scattering
event due to the motion of scatterers. It is given by

g(r,u,u′, ω) =

∫

e−ik0(u−u
′)·∆f(r,∆)d∆ (10)

where u and u
′ are unit vectors representing the scattered

and incoming directions for a given scattering process.
f(r,∆) is the probability density to have a displacement
∆ of a scatterer at the position r. The position depen-
dence is required since this displacement is induced by
the radiation pressure that can be heterogeneous inside
the medium (in particular at small depths). Eq. (10)
can be interpreted as follows: the decorrelation is due to
the phase shift (Doppler shift) averaged over all acces-
sible displacements for a scatterer. As a simple model,
we consider that the amplitude of the displacement is
proportional to the specific intensity which leads to

f (r,∆) = δ

[

∆ − βI

(

r,
∆

∆
, ω

)]

×

[

β2

∫

I (r,u, ω)2 du

]−1

(11)

where β is factor taking into account the link between the
displacement and the value of the specific intensity. In
the following β will be considered as a scaling parameter.
In Eq. (11), I (r,u, ω) is the specific intensity without any
displacements. Finally p(u,u′, ω) is the phase function
representing the part of energy incident from direction u

′

and scattered into direction u. For the Gaussian disorder
considered here, it is given by

p(u,u′, ω) ∝ p(k0|u − u
′|) where p(q) = exp

[

−
q2ℓ2

2

]

(12)
and normalized such that

∫

p(u,u′, ω)du
′ = 1. Equa-

tion (8) can easily be interpreted using a random walk
approach. Indeed, light undergoes a random walk whose
average step is given by the scattering mean-free path
ℓs(ω) and whose angular distribution at each scattering
event is given by the phase function p(u,u′, ω). A phase
shift is introduced between the fields at each scattering
event due to the displacement of the scatterers as de-
scribed by the function g(r,u,u′, ω).

C. Second harmonic regime

We now address the question of the generation and
propagation of the second harmonic light. As it is usu-
ally done in homogeneous materials, we use a perturba-
tive approach in order to compute the field at 2ω from
the field at ω. The full process can be broken down into
three steps. First the linear field at ω propagates inside
the material. Second, it is converted to second harmonic
on an arbitrary scatterer. And finally, this process is fol-
lowed by the propagation of the second harmonic field.
The same sequence of processes also applies to the com-
plex conjugate of the field. From this sequence, the most
important point is still here the identification of the lead-
ing diagram taking into account the non-linearity. It is
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given by

E(r, 2ω)

Ẽ∗(r, 2ω)

E0

E0

E∗
0

E∗
0
(13)

where the squares represent the second harmonic gener-
ation process. We could assume the non-linear processes
for E and Ẽ∗ to occur at two positions with an arbi-
trary distance between them. However, this would lead

to the propagation of the correlations
〈

E(r, ω)Ẽ∗(r, 2ω)
〉

or
〈

E(r, 2ω)Ẽ∗(r, ω)
〉

which are supposed to vanish since

they involve fields at two different frequencies. The gen-
erations of the second harmonic sources for E and Ẽ∗ are
then confined in a small volume with typical size ℓ. The
relevance of the dominant diagram responsible for the
second harmonic correlation has to be carefully checked.
For that purpose, we have performed ab initio numerical
simulations that are presented in the Supplemental Doc-
ument, Sec. III. Finally, the diagram of Eq. (13) can be
interpreted the following way: the right part represents
the propagation of two specific intensities at frequency ω
obeying Eq. (8) and the left part represents the propaga-
tion of the specific intensity at frequency 2ω. It is given
by the following non-linear RTE

[

u ·∇r +
1

ℓs(2ω)

]

Ĩ(r,u, 2ω)

=
1

ℓs(2ω)

∫

p(u,u′, 2ω)g(r,u,u′, 2ω)Ĩ(r,u′, 2ω)du
′

+ α

∫∫

pSHG(u,u′,u′′, ω)gSHG(r,u,u′,u′′, ω)

× Ĩ(r,u′, ω)Ĩ(r,u′′, ω)du
′du

′′. (14)

This equation is the main theoretical result of this work.
It shows that the second harmonic specific intensity fol-
lows a similar transport equation as the fundamental in-
tensity [Eq. (8)], but with a source term describing the
non-linear conversion process. Its physical interpreta-
tion is very simple: Light propagates first at frequency
ω which is described by the specific intensity Ĩ(r,u′′, ω)
solution to Eq. (8). Then a SHG process occurs which
creates a source at frequency 2ω, the amplitude of which
is given by the product of two specific intensities at ω. Fi-
nally, propagation at 2ω is described by the specific inten-
sity Ĩ(r,u′′, 2ω) that follows Eq. (14). In this expression,
α is a factor that takes into account all constants involved
in the SHG process such as χ(2). pSHG(u,u′,u′′, ω) is the
SHG phase function. It involves three units vectors. u

′

and u
′′ corresponds to the incoming directions of the two

specific intensities at ω and u is the outgoing direction of
the specific intensity at 2ω. In the case of the correlated

disorder we consider here, we have

pSHG(u,u′,u′′, ω) ∝ p(k0|2u − u
′ − u

′′|) (15)

with
∫

pSHG(u,u′,u′′, ω)du
′du

′′ = 1. u appears with a
factor two since it corresponds to the non-linear specific
intensity direction. gSHG(u,u′,u′′, ω) is the decorrelation
function given by

gSHG(r,u,u′,u′′, ω) =

∫

e−ik0(2u−u
′−u

′′)·∆f(r,∆)d∆.

(16)
It still corresponds to the decorrelation induced by a
Doppler shift involving three beams, i.e. two incoming
beams at frequency ω in directions u

′ and u
′′ and one

outgoing beam at frequency 2ω in direction u.

D. Numerical simulations

In order, to solve the system of Eqs. (8) and (14), we
have developed a Monte Carlo scheme which can be seen
as a random walk process inside the material [42]. Three
Monte Carlo simulations are performed in a slab geome-
try of thickness L under plane-wave illumination at nor-
mal incidence. The first is used to compute I (r,u, ω),
the specific intensity in the absence of displacement of
the scatterers. This is required in order to compute the
probability density f(r,∆) to have a displacement ∆ at
position r. The second Monte Carlo simulation is used
to compute Ĩ (r,u, ω), the specific intensity associated
with the correlation function at ω. Finally, a last simu-
lation is performed in order to compute Ĩ (r,u, 2ω), the
specific intensity associated with the correlation function
at 2ω. More precisely, the correlation functions are com-
puted from the energy density at the output interface in
transmission, i.e.

C(ω) =

∫

Ĩ (z = L,u, ω) du
∫

I (z = L,u, ω) du
, (17)

C(2ω) =

∫

Ĩ (z = L,u, 2ω) du
∫

I (z = L,u, 2ω) du
. (18)

This computations are performed for different incident
intensities I0 (or different incident powers 〈P 〉) meaning
different probability density f(r,∆) which correspond
to different radiation pressures. Regarding the numer-
ical parameters, it is important to keep in mind that the
KDP powder used in the experiment has crystal grains
of different sizes ranging from 2 µm to 8 µm. This makes
difficult the choice of the correlation length ℓ. However
we have tested several values showing that this is not
a crucial parameter. Since the particles are large com-
pared to the wavelength, we have chosen k0ℓ = 3 for
the results presented in Fig. 4. This gives the anisotropy
factors g(ω) = 0.89 and g(2ω) = 0.97. The thickness
of the medium L as well as the transport mean-free
paths ℓt = ℓs/(1 − g) take the values measured exper-
imentally, which gives k0L = 4016, k0ℓt(ω) = 2079 and
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k0ℓt(2ω) = 998. This finally leads to the normalized scat-
tering mean-free paths k0ℓs(ω) = 229 and k0ℓs(2ω) = 30.
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FIG. 4. Monte Carlo (MC) simulated correlation functions
|C|2 for the linear (red solid line) and second harmonic (blue
solid line) beams as a function of the incident intensity I0 in
arbitrary units. (a) L = 510 µm, (b) L = 680 µm. The range
of I0 is chosen such that the extreme values of the linear corre-
lation |C(ω)|2 are in agreement with the experimental values
Cexpe(ω) presented. Slopes of |C(ω)|2 and |C(2ω)|2 calculated
on each power value for the two samples are shown in (c)
L = 510 µm and (d) L = 680 µm. A qualitative agreement is
immediately seen with the experimental behavior in Fig. 3

We can observe that the results shown in Fig. 3 are
reproduced qualitatively. The second-harmonic beam
decorrelates faster than that of the fundamental fre-
quency. The slopes of the decorrelation curves also re-
produce the same trends seen in experiments, for most
part of the input power range. The IR light shows a re-
ducing slope followed by a rise at a certain pump power,
while the frequency-doubled light shows a steady rise fol-
lowed by a saturation region. Barring a minor difference
at low powers, the experimental data exhibit the same
behavior. The crossing of the two slope curves also hap-
pens at a lower pump power in the thicker sample, as
seen in the experiments. The agreement with the experi-
ments is very clear qualitatively, but is not quantitative.
The main reason should probably be investigated in the
dependence of the probability density f on the specific
intensity I. Building this relationship is not a trivial
task and is out of the scope of the present work. A sec-
ond potential effect that has been neglected so far, is the
role of the refractive index mismatch at the interfaces of
the slab. In the Monte Carlo simulation we have verified
that this does not change substantially the results up to
a refractive index n = 2.

The faster decorrelation of the second harmonic

speckle can be explained through two different mecha-
nisms: The first one corresponds to the decorrelation
when the second harmonic light is generated which is rep-
resented by gSHG(r,u,u′,u′′, ω). Its dependence on the
three different directions through the relation 2u−u

′−u
′′

favors a faster decorrelation. The second mechanism is
due to the propagation of the second harmonic field. The
factor of two in g(r,u,u′, 2ω) also makes the correlation
vanish faster than for the linear beam. For a small optical
thickness, both effects play a role and have to be taken
into account properly. This comes from the fact that pho-
tons experience few scattering events before escaping the
medium and thus the decorrelations due to gSHG and to
g are of the same order of magnitude. On the other hand,
for large optical thicknesses, many scattering events are
involved and the contribution of gSHG is negligible com-
pared to that of g. Figure 5 illustrate this statement
using the Monte Carlo simulations. This simple conclu-
sion will also be easily observed in the more simple case
of statistically homogeneous and isotropic displacements
discussed in the next section.

E. Statistically homogeneous and isotropic

displacements

Beyond the effect of radiation pressure that has been
examined in this study, it is also interesting to consider a
displacement probability for the scatterers that is homo-
geneous and isotropic, i.e. f(r,∆) = f(∆)/(4π∆2). In-
deed, considering large medium thicknesses compared to
the transport mean-free paths, i.e. L ≫ {ℓt(ω), ℓt(2ω)},
we can derive diffusion equations for the linear and sec-
ond harmonic correlation functions. The derivation is de-
tailed in the Supplemental Document, Sec. IV and leads
to analytical expressions given by

C(ω) =
κ(ω)L

sinh[κ(ω)L]
, (19)

C(2ω) =
6D(ω)

κ(2ω)L sinh[κ(ω)L]2 sinh[κ(2ω)L]

×
κ(2ω)2 {1 − cosh[2κ(ω)L]} − 4κ(ω)2 {1 − cosh[κ(2ω)L]}

κ(2ω)2 − 4κ(ω)2

(20)

where

κ =

√

3

ℓ̃tℓ̃a
, ℓ̃t =

ℓs
1 − g̃

, (21)

1

ℓ̃a
=

1

ℓs

[

1 −

∫

p(u,u′)g(u,u′)du
′

]

, (22)

and g̃ =

∫

p(u,u′)g(u,u′)u · u
′du

′

∫

p(u,u′)g(u,u′)du′
, (23)
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FIG. 5. Monte Carlo (MC) simulated correlation functions |C|2 for the second harmonic speckles taking into account all
decorrelation effects (i.e. effect of g and gSHG, green dashed line) and only the decorrelation occurring during beam propagation
(i.e. effect of g, blue solid line). The computations are performed for (a) k0L = 40, (b) k0L = 3129 and (c) k0L = 4172. The
other parameters are the same as in Fig. 4.

all these four quantities being defined at ω and 2ω. We
also have

D(ω) =

∫

pSHG(u,u′,u′′, ω)gSHG(u,u′,u′′, ω)dudu
′du

′′

∫

pSHG(u,u′,u′′, ω)dudu′du′′
.

(24)
We clearly see from these expressions that the effect of
the decorrelation during the propagation of the waves
at ω or at 2ω can be seen as an absorption effect and
are encoded in the κ functions. The decorrelation pro-
cess taking place during the generation of the second
harmonic light is encoded in the D function. Finally
these analytical expressions can be simplified in the even
more particular case of isotropic scattering such that
p(u,u′) = 1/(4π) and pSHG(u,u′,u′′, ω) = 1/(16π2)
and of a constant displacement amplitude d such that
k0d ≪ 1 and f(∆) = δ(∆ − d). This gives

κ(ω)L = b(ω)k0d, κ(2ω)L = 2b(2ω)k0d (25)

and D(ω) =
1

8π

∫ 2π

φ=0

∫ 1

µ=−1

∫ 1

µ′=−1

sinc

[

k0d

×

√

6 − 4µ− 4µ′ + 2µµ′ + 2
√

1 − µ2
√

1 − µ′2 cosφ

]

× dµdµ′dφ (26)

where b = L/ℓs is the optical thickness. These last
expressions are very useful to get more insights on the
decorrelation effects encoded in functions κ(ω), κ(2ω)
and D(ω). In particular, as already noticed in the nu-
merical simulations, we clearly see that the decorrelation
during propagation is stronger when the optical thick-
nesses b(ω) and b(2ω) increase which reduces the effect
of D(ω). In the diffusive regime considered here, D(ω)
can thus be replaced by its limit when k0d → 0, i.e.
D(ω) ∼ 1.

III. DISCUSSION AND CONCLUSION

In summary, we have experimentally investigated the
decorrelation of speckle patterns with increasing pump
power in a second-order nonlinear disordered medium.
Simultaneous speckle measurements at the fundamental
and second harmonic wavelengths reveal a varying rate of
decorrelation under the same incident power. The decor-
relation arises from the microscopic displacements in the
disorder configuration induced by the radiation pressure
produced by the pump beam. In addition, the second
harmonic correlation decreases faster than the fundamen-
tal. We laid the foundations of a theoretical model that
accurately describes the synergy of second-order nonlin-
earity and light diffusion. The model demarcates the con-
tribution of two components in the decorrelation, namely,
one arising from the generation of second-harmonic light,
and the other arising from the propagation thereof. For
the samples and input powers employed in our experi-
ments, the former seems to be the stronger contributor.
Wider investigations of the model show that the relative
strengths of the two components depend upon the degree
of disorder. Towards the differences in the experimental
and computed results, we have discussed qualitatively
the origins as follows. The actual displacement at a lo-
cation r is dependent on the specific intensity at that
location, and the size and shape of the particle at that
location. This is too intricate a parameter to calculate,
and we did not venture into it. In the theory, the sam-
ple is homogeneously disordered, and particle size is not
a parameter in computing the displacement under radi-
ation pressure. At a future stage, a distribution in the
displacements may be invoked in the theory. We believe
these unavoidable differences in the experimental sam-
ples and theoretical assumptions limit the agreement in
the respective results. This study shades light on the
subtle mechanism of non-linear conversion in disordered
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media, with expected outcomes in fundamental studies
in mesoscopic wave transport, as well as the design of
efficient materials for non-linear generation of light.
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