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UAV Path Planning using Global and Local Map Information with
Deep Reinforcement Learning

Mirco Theile!, Harald Bayerlein?, Richard Nai', David Gesbert?, and Marco Caccamo'

Abstract— Path planning methods for autonomous unmanned
aerial vehicles (UAVs) are typically designed for one specific
type of mission. This work presents a method for autonomous
UAV path planning based on deep reinforcement learning
(DRL) that can be applied to a wide range of mission scenarios.
Specifically, we compare coverage path planning (CPP), where
the UAV’s goal is to survey an area of interest to data harvesting
(DH), where the UAV collects data from distributed Internet of
Things (IoT) sensor devices. By exploiting structured map infor-
mation of the environment, we train double deep Q-networks
(DDQNs) with identical architectures on both distinctly dif-
ferent mission scenarios to make movement decisions that
balance the respective mission goal with navigation constraints.
By introducing a novel approach exploiting a compressed
global map of the environment combined with a cropped but
uncompressed local map showing the vicinity of the UAV agent,
we demonstrate that the proposed method can efficiently scale
to large environments. We also extend previous results for
generalizing control policies that require no retraining when
scenario parameters change and offer a detailed analysis of
crucial map processing parameters’ effects on path planning
performance.

I. INTRODUCTION

Autonomous unmanned aerial vehicles (UAVs) are envi-
sioned for a multitude of applications that all require effi-
cient and safe path planning methods, which necessitate the
combination of a mission goal with navigation constraints,
e.g., flying time and obstacle avoidance. Examples for these
applications are area coverage path planning (CPP) [1], and
data harvesting (DH) from Internet of Things (IoT) sensor
nodes [2]. As its name suggests, covering all points inside
an area of interest with CPP is related to conventional path
planning, where the goal is to find a path between start and
goal positions. In general, CPP aims to cover as much of the
target area as possible within given energy or path-length
constraints while avoiding obstacles or no-fly zones.

In the DH scenario, the UAV’s goal is to collect data
from IoT devices distributed in an urban environment, which
implies challenging radio channel conditions through alter-
nating line-of-sight (LoS) and non-line-of-sight (NLoS) links
between UAV and IoT devices through building obstruction.
DH and CPP are very similar when described as an RL
problem since the path planning problem’s constraints are
mostly identical, and only the goal function changes. In
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previous work, we have looked at CPP [1] and DH [2]
separately. We show that both problems can be solved using
the same deep reinforcement learning (DRL) approach based
on feeding spatial map information directly to the DRL
agent via convolutional network layers. This work’s focus
lies in proposing improvements to existing DRL approaches
to generalized, large-scale UAV path planning problems with
CPP and DH as examples.

Using maps as a direct input becomes problematic for
large map sizes, as the network’s size, trainable parameters,
and training time increase equivalently. We introduce a
global-local map scheme to address the scalability problems
of the standard map-based input. In path planning, the
intuition is that distant features lead to general direction
decisions, while close features lead to immediate actions
such as collision avoidance. Thus, the level of detail passed to
the agent for distant objects can be less than for close objects.
With the global map, a compressed version of the complete
environment map centered on the agent’s position, general
information of all objects on the map is provided to the
agent. In contrast, the local map, uncompressed but cropped
to show only the UAV agent’s immediate surroundings,
provides detailed local information.

While numerous path planning algorithms for both prob-
lems exist, DRL offers the possibility to solve both distinctly
different problems with the same approach. For each prob-
lem, DRL agents can learn control policies that generalize
over a large scenario parameter space requiring no expensive
retraining or recomputation when the scenario changes. How-
ever, previous work usually only focuses on finding optimal
paths for one single scenario at a time. The DRL paradigm
is popular in this context because of its flexibility regarding
prior knowledge and assumptions about the environment,
the computational efficiency of DRL inference, as well as
the complexity of autonomous UAV control tasks, which are
usually non-convex optimization problems and proven to be
NP-hard in many instances [3], [4]. A general summary of
issues in using UAVs as part of communication networks,
including IoT data harvesting, can be found in [3]. A survey
of various applications for UAV systems from a cyber-
physical perspective is offered in [4]. Cabreira et al. [5]
provide a survey of UAV coverage path planning.

Previous works in UAV path planning have already made
use of convolutional map processing for DRL agents. In the
drone patrolling problem presented in [6], a local relevance
map of the patrolling area showing the agent’s vicinity
cropped to a fixed size is fed into a DDQN agent. No in-
formation of the physical environment is included, and there



is no consideration for navigation constraints like obstacle
avoidance or flying time. In [7], fixed-wing UAVs are tasked
with monitoring a wildfire propagating stochastically over
time. Control decisions are based on either direct observa-
tions or belief maps fed into the DRL agents. The focus
here is the inherent uncertainty of the problem, not balancing
a mission goal and navigation constraints in large complex
environments. Wildfire surveillance is also the mission of the
quadcopter UAVs in [8], which is set in a similar scenario
without navigation constraints and makes use of uncertainty
maps to guide path planning. Their approach is based on an
extended Kalman filter and not the reinforcement learning
(RL) paradigm. To monitor another natural disaster situation,
Baldazo et al. [9] present a multi-agent DRL method for
flood surveillance using the UAVs’ local observations of the
inundation map to make control decisions. All mentioned ap-
proaches focus on solving a single class of UAV missions in
simple physical environments and do not consider combining
local and global map information.

Missions, where UAV's provide communication services to
ground users or devices, include the work in [10] set in a
complex urban environment where the UAV path planning
is based on exploiting map information with a method
combining dynamic and sequential convex programming. In
[11], data is collected simultaneously with ground and aerial
vehicles on a small map with obstacles. Due to the small
map size, the full global map information can be fed into the
DRL agents. Another scenario is investigated in [12], where
a cellular-connected UAV has to navigate from a start to an
end position maintaining connectivity with a ground network
exploiting a radio map. The approach includes global radio
map compression to reduce computational complexity but is
not based on RL and includes no higher precision local map
or hard navigation constraints. To the best of our knowledge,
no dual global-local map processing method applicable to
multiple mission types for autonomous UAVs has been
suggested previously.

The main contributions of this paper are the following:

o Establishing the presented DRL approach as a general
method for UAV path planning by demonstrating its ap-
plicability to two distinctly different mission scenarios:
coverage path planning and path planning for wireless
data harvesting;

o Introducing a novel approach' to exploit global-local
map information that allows DRL for path planning to
scale to large, realistic scenario environments efficiently,
with an order of magnitude more grid cells compared
to earlier works [1], [2];

e Overcoming the limitation of fixed target zones in
previous DRL CPP approaches [1] by extending con-
trol policy generalization over scenario parameters to
randomly generated target zones;

o Analyzing and discussing the effects of key map pro-
cessing parameters on the path learning performance.

Uhttps://www.github.com/theilem/uavSim.git

II. PROBLEM FORMULATION

In the following, we show that a universal problem de-
scription of coverage path planning and path planning for
data harvesting can be established through separation into
two parts: the environment and the target.

A. Environment and UAV Model

We consider a square grid world of size M x M € N?
with cell size ¢, where N is the set of natural numbers.
The environment contains designated start/landing positions,
regulatory no-fly zones (NFZs), and obstacles. The map
can be described through a tensor M € BM*MX3 where
B = {0,1} and with the start/landing zones in map-layer
1, the union of NFZs and obstacles in map-layer 2, and the
obstacles alone in map-layer 3.

The UAV moves through this environment at a constant
altitude h occupying one cell of the environment. Its position
can thus be defined through p(t) € N2. The movement
of the UAV is constrained through collision avoidance with
obstacles and not entering NFZs. Additionally, the UAV must
start and end its mission in any cell belonging to the start and
landing zones while staying within its maximum flying time
determined by its initial battery level. The battery level of the
UAV b(t) is set to by € N at time ¢ = 0 and is decremented
by 1 per action step.

B. Target and Mission Definitions

1) Coverage Path Planning: In coverage path planning,
the mission is to cover a designated target area by flying
above or near it, such that it is in the field of view of a
camera-like sensor mounted underneath the UAV. The target
area can be described through T'(t) € BM*M in which each
element describes whether a cell has to be covered or not.
The current field of view of the camera can be described with
V(t) € BM*M indicating for each cell whether it is in the
current field of view or not. In this work, the field of view
is a square of 5 x 5 surrounding the current UAV position.
Additionally, buildings can block line-of-sight, which is also
incorporated in calculating V (¢). This prohibits the UAV
from seeing around the corner.

Consequently, the target area evolves according to

T(t+1) = T(t) A-V(t), (1)

in which A and — are the cell-wise logical and and negation
operators, respectively. In our mission definition, obstacle
cells in the environment cannot be a coverage target, while
start and landing zones and no-fly-zones can be. The goal
is to cover as much of the target area as possible within the
maximum flying time constraint.

2) Data Harvesting: Conversely, the mission in path plan-
ning for wireless data harvesting is to collect data from K &
N stationary IoT devices spread throughout the environment
at ground-level, with the position of device k£ € [1, K]
given through u;, € N2, Each device has an amount of data
Dy (t) € R to be collected by the UAV. The data throughput
C(t) between the selected device k and the UAV is based
on the standard log-distance path loss model with Gaussian



shadow fading and whether they can establish a line-of-
sight connection or are obstructed by obstacles. The UAV
is communicating with one device at a time and selects the
device with remaining data and the highest possible data rate.
A detailed description of the link performance and multiple
access protocol can be found in [2]. The data at each device
evolves according to

Dy (t+1) = Dy(t) — Ci(t) (2

Devices can be located in every cell except for the starting
and landing zones or inside obstacles. The goal of the data
harvesting problem is to collect as much of the devices’ data
as possible within the maximum flying time.

3) Unifying Map-Layer Description: Both problems can
be described through a single target map-layer D(¢) €
RM>*M n CPP, the target map-layer is given through T'(t)
evolving according to (1). In DH, the target map-layer shows
the amount of available data in each cell that one of the
devices is occupying, i.e. the cell at position u; has value
Dy (t) and is evolving according to (2). If a cell does not
contain a device or the device data has been collected fully,
the cell’s value is 0. Since the two problems can be described
with similar state representations, both can be solved through
deep reinforcement learning with a neural network having the
same structure.

III. METHODOLOGY

While a variety of methods exist to solve the CPP and
DH problems separately, the approach presented in the fol-
lowing can be directly applied to both distinct path planning
problems. In most classical CPP approaches, individual target
zones are extracted through segmentation and then connected
with distance costs into a graph, while each segment is
covered with a boustrophedon path. This reduces the CPP
problem to an instance of the travelling salesman problem
(TSP), which is NP-hard and can be solved by classical
methods, e.g. as demonstrated in [13] at the price of an
exponential increase in time complexity with the number of
target zones.

In principle, the DH problem can also be converted into
a TSP with the IoT devices as nodes in the graph and
the distances between the devices as edge costs. However,
the conversion neglects that communication with the device
happens while traveling to and from it. In general, the
optimal behavior in DH problems is not a sequential visit
of all devices, as data can already be efficiently collected by
establishing a LoS link from farther away, or a large amount
of data waiting to be collected might require the drone to
hover for an extended period of time near the device. These
constraints in conjunction with stochastic communication
channel models and the various possibilities for the choice
of multiple access protocol are non-trivial to model and
solve with classical approaches. For both problems, the UAV
battery constraint adds another complication for classical
approaches, as full coverage or full collection are not always
feasible. The following DRL methodology allows us to
combine all goals and constraints of the respective path

planning problems directly without the need for additional
approximations.

A. Partially Observable Markov Decision Process

To address the aforementioned problems we formu-
late them as a partially observable Markov decision pro-
cess (POMDP) [14] which is defined through the tuple
(S, A, P,R,Q,0,7). In the POMDP, S describes the state
space, A the action space, and P : S x A X § — R the
transition probability function. R : § x A x § — R is the
reward function mapping state, action, and next state to a real
valued reward. The observation space is defined through 2
and O : § — ( is the observation function. The discount
factor v € [0, 1] varies the importance of long and short term
rewards.

We unify the UAV path planning problems by describing
their state space with

S:IBMXMX?)XR]WXJWX N2 %x N , (3)
~— =~
Environment Target Position  Flying
Map Map Time

in which the elements s(t) € S are
s(t) = (M, D(t), p(t), b(t))- @)

The four components of the tuple are
e« M the environment map containing start and landing
zones, no-fly zones, and obstacles;
o D(t) the target map indicating remaining data at device
locations or remaining cells to be uncovered at time ¢;
o p(t) the UAV’s position at time ¢;
o b(t) the UAV’s remaining movement budget at time ¢;
Action a(t) € A of the UAV at time ¢ is given as one of the
possible actions

A = {north, east, south, west, hover, land}.

The generalized reward function R(s(t), a(t),s(t+ 1)) con-
sists of the following elements:

e 7. (positive) the data collection or cell covering reward
given by the collected data or the amount of newly
covered target cells, comparing s(¢ + 1) and s(t);

e 7. (negative) safety controller (SC) penalty in case the
drone has to be prevented from colliding with a building
or entering an NFZ;

e Tmoy (negative) constant movement penalty that is ap-
plied for every action the UAV takes without completing
the mission;

e Tcrash (negative) penalty in case the drone’s remaining
flying time reaches zero without having landed safely
in a landing zone.

B. Map Processing

To aid an agent in interpreting the large state space given in
(3), two map processing steps are used. The first is centering
the map around the agent’s position, shown in [2] to improve
the agent’s performance significantly. The downside of this
approach is that it increases the representation size of the
state space even further. Thus, the second map processing
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Fig. 1: DQN architecture with map centering and global and local mapping, showing differences of layer size in blue for

the "Manhattan32’ and orange for the *Urban50’ scenario.

step, the main contribution of this work, is to present the
centered map as two inputs: a full-detail local map showing
the agent’s immediate surroundings and a compressed global
map showing the entire environment with less detail. The
mathematical description of the three functions is presented
in the following. Fig. 1 indicates where the functions are
used within the data pipeline.

1) Map Centering: Given a tensor A € RM*XMxn de.
scribing the map layers of the environment, a centered tensor
B € RMcxMexn with M, = 2M — 1 is defined through

B= fcenter(A7 P, Xpad); )
with the centering function defined as
fcemer :RMXMX’I’L XN2 XRTL HRMCXMCXn' (6)

The elements of B with respect to the elements of A are
defined as

M <i+po+1<2M
AM<j+p+1<2M
otherwise,

QAit+po—M+1,j+p1—M+1,
bi,j =
Xpad,

@)
effectively padding the map layers of A with the padding
value x,q. Note that a; ;, b; j, and xp,q are vector valued of
dimension R™. For both problems, the map layers are padded
with [0,1,1,0]", i.e. NFZs and obstacles. A qualitative
description of centering with an example can be found in
[2].

2) Global-Local Mapping: The tensor B € RMcxMexn
resulting from the map centering function is processed in
two ways. The first is creating a local map according to

X = flocal(B7 l) (8)
with the local map function defined by
flocal :RJVICXMCXH % NI—HRZXIXH. (9)

The elements of X with respect to the elements of B are
defined as
Xi,j = By L), j+m—r41- (10)

This operation is effectively a central crop of size [ x [.

The global map is created according to

Y = faoba(B, 9) (11)
with the global map function defined by
Fatobar : RMexMexn o Ny RLTG I 172 I xn (12)

The elements of Y with respect to the elements of B are
defined as

g—1g-1

Yij = 9*12 YD byitugite

u=0v=0

13)

which is an operation equal to average pooling.

The functions fioca and fgiobar are parameterized through
l and g, respectively. Increasing [ increases the size of the
local map, whereas increasing g increases the size of the
average pooling cells, decreasing the size of the global map.

C. Observation Space

The observation space €2, which is the input to the agent,
is given as
Q=0 xQyxN

containing the local map ; = B*3 x RI*! and the
[ %= x [ 2= %3 L35 I x [ %= ]

global map Q, = R'™s 9 xR 9 1. Note that

the compression of the map layers through average pooling

transforms the environment layers from boolean to real. The

observations o(t) €  are defined through the tuple

o(t) = (My(£), Du(t), M, (1), Dy (1), (1) (14)
In the observation, M (¢) and M, (¢) are the local and global
observations of the environment, and D;(t) and D,(¢) are
the local and global observations of the target, respectively.
b(t) is the remaining flying time of the UAV and is equal
to the one in the state space. Note that the local and global
observations of the environment are time-dependent, as they
are centered around the time-dependent position of the UAV.



The mapping from state to observation space is given by
O : S — Q, with the elements o(t) € O defined as:

M; (1) = fiocat(feemer(M, (1), [0, 1,1]1), 1) (152)
Dy (t) = fiocal (feenter (D (%), P(t),0),1) (15b)
Mg (t) :fglobal(fcenter(Ma p(t), [Ov 17 1]T)a g) (]50)
D, (t) =faiobat (feenwer (D (), P(2),0), 9) (15d)

By feeding the observation space {2 into the agent instead
of the state space S, the problem is artificially converted into
a partially observable MDP. The partial observability results
from the restricted size of the local map and the averaging
in the global map. With the following results, we show that
partial observability does not make the problem infeasible for
memory-less agents and that the compression greatly reduces
the size of the neural network, yielding significantly less
training time.

D. Double Deep Reinforcement Learning - Neural Network

To solve the aforementioned POMDP, we use rein-
forcement learning, specifically double deep Q-networks
(DDQNs) proposed by Van Hasselt et al. [15]. DDQNs
approximate the Q-value of each state-action pair given as

T
Q" (s(t),a(t)) =Ex [ > " "R(s(k),a(k),s(k+1))|, (16)
k=t
describing the discounted cumulative reward of an agent
following policy w. To converge to the optimal Q-value
the agent explores the environment, collecting experiences
(s(t),a(t),r(t),s(t + 1)) and storing them as (s, a,r,s’) in
a replay memory D, omitting temporal information. Two Q-
networks parameterized through 6 and 6 are used, in which
the first Q-network is updated by minimizing the loss

L(@) = Es,a,S’ND[(Q9(87 a) - Y(S, a, s/))Q]

given by experiences in the replay memory. The target value
is given by

Y(s,a,s') =r(s,a) + 7Qq(s', argmax Qy(s',a’)).  (18)

a

a7

The parameters of the second Q-network are updated as 6 <
(1 —7)0 + 76 with the soft update parameter 7 € (0, 1]. To
address training sensitivity to the size of the replay memory
we make use of combined experience replay proposed by
Zhang and Sutton [16].

The neural network architecture used for both Q-networks
is shown in Fig. 1. The environment map and target map are
stacked and centered around the UAV position and then con-
verted into global and local observation components. After
being fed through two convolutional layers each, the resulting
tensors are flattened and concatenated with the remaining
flying time input and passed through three hidden layers
with ReLU activation functions. The output layer with no
activation function represents the Q-values directly, passed
through a softmax function to create an action distribution
for exploration or an argmax function for exploitation.

Parameter 32 x 32 50 x 50  Description
6] 1,175,302 978,694  trainable parameters
l 17 17 local map size
g 3 5 global map scaling
Ne 2 number of conv. layers
Nk 16 number of kernels
Sk 5 conv. kernel width

TABLE I: Hyperparameters for 32 x 32 and 50 x 50 maps.

The relevant parameter for scalability is the size of the
flatten layer. It can be calculated through

N =ny <(l—ncL82kJ)2+ (L]\ZCJ —ncLs;J>2> +1 (19

with ny being the number of kernels, n. the number of
convolutional layers, and s; being the kernel size. Setting
the global map scaling parameter to g = 1 and the local map
size to | = 0 deactivates global-local map processing, i.e.,
no downsampling and no extra local map. The parameters
used in evaluation are listed in Table I.

IV. SIMULATIONS
A. Simulation Setup

The UAV is flying in two different grid worlds. The
’Manhattan32’ scenario (Fig. 2a and 2c¢) with 32 x 32 cells
with two starting and landing zones in the top left and
bottom right corners. Besides regular building patterns, some
irregularly shaped buildings and additional NFZs are present.
The *Urban50’ scenario (Fig. 2b and 2d) contains 50 x 50
cells and one starting and landing area around the center
building. Buildings are generally larger and spaced out, and
an additional large NFZ is present on the bottom of the
map. Note that the number of cells in the *Urban50’ map
is roughly one magnitude larger than in the previous works
[1] and [2]. The cell size for the scenarios is 10m x 10m
with Table II providing a legend for the plots.

1) Coverage Path Planning: For the CPP problem, the
UAV is flying at a constant altitude of 25m with a camera
mounted underneath that has a field of view angle of 90°.
Consequently, the UAV can cover an area of 5 x5 cells simul-
taneously, as long as obstacles do not block line of sight. The
target areas are generated by randomly sampling geometric
shapes of different sizes and types and overlaying them,
creating partially connected target zones. For evaluation, a
traditional metric for the CPP problem is the path length.
However, this metric only offers meaningful comparison
when full coverage is possible. In this work, we investigate
flight time constrained CPP, in which full coverage is often
impossible. Therefore, the evaluation metrics used are the
coverage ratio (CR), i.e. the ratio of covered target cells to
the initial target cells at the end of the episode, and coverage
ratio and landed (CRAL), which is zero if the UAV did not
land successfully and equal to CR if it did. The benefits
of the CRAL metric are that it combines the two goals,
achieving high coverage and returning to the landing zone
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Fig. 2: Example trajectories from the Monte Carlo simulations for CPP (a)+(b) and DH (c)+(d) on 32 x 32 Manhattan map

(a)+(c) and 50 x 50 Urban map (b)+(d).

Symbol  Description

Start and landing zone

Regulatory no-fly zone (NFZ)

Buildings blocking wireless links and FoV
DH: IoT device

CPP: Remaining target zone (yellow also NFZ)

DQN Input

DH: Summation of building shadows

DH: Movement while comm. with green device
DH: Hovering while comm. with green device
CPP: Not covered and covered

Starting and landing positions during an episode
Actions without comm.

Visualization

OBy H W
$SEx L} "onmm

TABLE II: Legend for scenario plots, DH and CPP are only
applicable in data harvesting and coverage path planning
scenarios, respectively.

within the flight time constraint. By normalizing performance
to a value in [0, 1], it enables performance comparisons over
the changing scenarios with randomly generated target zones.

2) Data Harvesting: In the DH problem, the UAV is
flying at a constant altitude of 10m communicating with
devices on ground level. The achievable data rate is calcu-
lated based on distance, random shadow fading, and line-
of-sight condition with the same communication channel
parameters used in [2]. As in CPP, the path length is not
an applicable metric. It is impossible to collect all data in
all scenarios depending on the randomly changing locations
of IoT devices, data amount, and maximum flying time.
Therefore, the evaluation metric used is the collection ratio
(CR), describing the ratio of collected data from all devices
to the initially available data summed over all devices. Like
in CPP, we also use collection ratio and landed (CRAL) in
this context, showing the full data collection and landing
performance in one normalized metric.

B. General Evaluation

The CPP agents were trained on target zones containing
3-8 shapes covering 20-50% of the available area. The move-
ment range was set to 50-150 steps for the ’Manhattan32’
scenario and 150-250 for the *Urban50’ scenario. For the DH
scenarios, 3-10 devices are placed randomly in free cells and

Metric  Manhattan32 Manhattan32  Urban50  Urban50
CPP DH CPP DH
Landed 98.5% 98.2% 98.1% 99.5%
CR 71.0% 83.6% 81.5% 74.5%
CRAL 70.3% 82.5% 80.1% 74.2%

TABLE III: Performance metrics averaged over 1000 random
scenario Monte Carlo iterations.

contain 5.0-20.0 data units. The movement range was set to
50-150 steps for the ’Manhattan32’ scenario and 100-200
for the *Urban50 scenario. Four scenarios are evaluated in
detail.

In the CPP scenarios, the agents in Fig. 2a and 2b show
that they can find trajectories to cover most of the target
area. Even the area in the NFZs is mostly covered. It can be
seen that small areas that would require a detour are ignored,
leading to incomplete coverage. However, most of the target
area is covered efficiently.

The agents in the DH scenarios in Fig. 2c and 2d perform
very well. In the "Manhattan32’ scenario, the agent leaves
small amounts of data at the orange and purple devices
totaling a collection ratio of 99.1%. However, the agent finds
a concise path, using only 92 of the allowed 150 movement
steps. In the *Urban50’ scenario, the agent manages to collect
all the data and return with some movement steps in spare.

All four agents were trained for 2 million steps. When
analyzing their performance in all four missions using 1000
Monte Carlo generated scenarios (see Table III), it can be
seen that all agents’ landing performances are good, with
the *Urban50’ DH agent being slightly better.

C. Global-Local Parameter Evaluation

To establish the performance sensitivity to the new hyper-
parameters, global map scaling g, and local map size [, we
trained multiple agents with different parameters on the CPP
and DH problems. We chose four values for [ and four for
g and trained three agents for each possible combination.
Additionally, we trained three agents without the usage of
global and local map processing, which is equivalent to
setting ¢ = 1 and | = 0. The resulting 51 agents for the



Global map Local map scaling [
scaling g 9 17 25 33
2 8,481 | 9,761 | 13,089 | 18,465
3 2,721 | 4,001 | 7,329 | 12,705
5 273 1,553 | 4,881 | 10,257
7 33 1,313 | 4,641 | 10,017

TABLE IV: Flatten layer size for "Manhattan32’ with differ-
ent global map scaling and local map sizes; Without global-
local map processing the size is 48,401 neurons.

Global Local map scaling !
map 9 17 25 33
scaling g || CPP | DH | CPP | DH | CPP | DH | CPP | DH
2 27 122123 (20| 1.8 | 16| 1.3 | 1.1
3 35 130( 30 [25]22 19| 16 |14
5 42 |36 | 34 30| 25 |22] 19 | 1.6
7 47 |38 ] 3.6 | 3.0 | 25 |22 ] 25 |21

TABLE V: Training time speedup for the CPP and DH
problem relative to without global-local map processing.

CPP and DH problems were trained for 500k steps each
and evaluated on 200 Monte Carlo generated scenarios. The
difference to the previous evaluation is that the movement
budget range was set to 150 — 300.

Table IV shows the selected parameters and the resulting
flatten layer size according to (19). A significant speedup of
the training process compared to agents without global and
local map processing can be observed in Table V.

The resulting CRAL values from the Monte Carlo sim-
ulations for each agent with respect to the agent’s flatten
layer size are shown in Fig. 3a and 3b for the CPP and DH
problem, respectively. It can be seen that the DH problem
is more sensitive to the parameters than the CPP problem.
Generally, a larger flatten layer yields better performance up
to a point. For both problems, it can be seen that a large
flatten layer can cause the learning to get unstable, resulting
in a CRAL of zero for some runs. This is caused by the
agent’s failure to learn how to land. The DH agents, which
are not using the global-local map approach, never learn how
to land reliably and thus have a CRAL score near zero.

In both cases, the agents with [ =17 and g=3o0org=>5
show the best performance with respect to their flatten layer
size, justifying the selection in Table I. Besides these two
parameter combinations, it is noteworthy that the agents with
Il =9 and g = 7 also perform well in both scenarios, despite
their small flatten layer size of only 33 neurons.

V. CONCLUSION

We have presented a method for generalizing autonomous
UAV path planning over two distinctly different mission
types, coverage path planning and data harvesting. Through
the flexibility afforded by combining specific mission goals
and navigation constraints in the reward function, we trained
DDQNs with identical structures in both scenarios to make
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Fig. 3: Parameter grid search for CPP and DH with param-
eters from Table IV; the black stars correspond to agents
without global-local map processing.

efficient movement decisions. We have introduced a novel
global-local map processing scheme that allows to feed large
maps directly into convolutional layers of the DRL agent
and analyzed the effects of map processing parameters on
learning performance. In future work, we will investigate
still existing hindrances for applying our method to even
larger maps, namely avoiding small-scale decision alternation
through the use of macro-actions or options [17]. Combining
the presented high-level path planning approach with a low-
level flight dynamics controller will also make it possible
to conduct experiments with realistic open-source UAV sim-
ulators in the future. Additionally, we will investigate the
effect of irregularly shaped, non-convex obstacles on the path
planning performance.
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