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Abstract

We present measurements of the Minkowski functionals extracted from the SDSS-III BOSS catalogs. After
defining the Minkowski functionals, we describe how an unbiased reconstruction of these statistics can be obtained
from a field with masked regions and survey boundaries, validating our methodology with Gaussian random fields
and mock galaxy snapshot data. From the BOSS galaxy data, we generate a set of four density fields in three
dimensions corresponding to the northern and southern skies of LOWZ and CMASS catalogs, smoothing over
large scales (Gaussian smoothing scale of 35Mpc) such that the field is perturbatively non-Gaussian. We extract
the Minkowski functionals from each data set separately, and measure their shapes and amplitudes by fitting a
Hermite polynomial expansion. For the shape parameter of the Minkowski functional curves a0, that is related to
the bispectrum of the field, we find that the LOWZ-South data presents a systematically lower value of
a0=−0.080± 0.040 than its northern sky counterpart a0= 0.032± 0.024. Although the significance of this
discrepancy is not very high, it potentially indicates some systematics in the data or that the matter density field
exhibits anisotropy at low redshift. By assuming a standard isotropic flat ΛCDM cosmology, the amplitudes of the
Minkowski functionals from the combination of northern and southern sky data give the constraints
Ωch

2ns= 0.110± 0.006 and 0.111± 0.008 for CMASS and LOWZ, respectively, which is in agreement with
the Planck ΛCDM best-fit Ωch

2ns= 0.116± 0.001.

Unified Astronomy Thesaurus concepts: Cosmology (1146); Large-scale structure of the universe (902); Cosmic
web (330)

1. Introduction

The Minkowski functionals (MFs) describe the morpholo-
gical, i.e., geometrical and topological, characteristics of a field.
They have a long and venerable history within cosmology, both
theoretical and computational, as well as observational, starting
with the genus of isodensity excursion sets (Melott et al. 1989;
Gott et al. 1990; Park & Gott 1991; Park et al. 1992; Mecke
et al. 1994; Schmalzing & Buchert 1997; Schmalzing &
Gorski 1998; Park et al. 2001; Park & Kim 2010; Zunckel et al.
2011). Often referred to merely as summary statistics in

cosmological literature, they emerge from topo-geometrical
description of space and manifolds, and together with the
homology characteristics encoded in the Betti numbers (van de
Weygaert et al. 2011; Park et al. 2013; Shivshankar et al. 2016;
Pranav et al. 2017, 2019a, 2019b; Feldbrugge et al. 2019), and
its hierarchical extension persistent homology (Edelsbrunner &
Harer 2010; Pranav et al. 2017), as well as the Minkowski
tensors (Beisbart et al. 2001a, 2001b; Chingangbam et al.
2017a, 2017b; Ganesan & Chingangbam 2017; Appleby et al.
2018a, 2018b; Kapahtia et al. 2018; Joby et al. 2019; Kapahtia

et al. 2019; Wilding et al. 2020; Chingangbam et al. 2021;
Goyal & Chingangbam 2021), present a high-level description
of the topo-geometrical properties of the fields of interest in
cosmology. Extracting information from these statistics
remains an open and challenging program (Park et al. 2001;
Hikage et al. 2001, 2002, 2003; Sheth et al. 2003; Park et al.
2005; Sheth & Sahni 2005; Gott et al. 2008, 2009; James et al.
2009; Choi et al. 2010; Zhang et al. 2010; Petri et al. 2013;
Blake et al. 2014; Parihar et al. 2014; Wiegand et al. 2014;
Wang et al. 2015; Buchert et al. 2017; Wiegand &
Eisenstein 2017; Sullivan et al. 2019; Lippich & Sánchez 2021;
Matsubara & Kuriki 2021; Appleby et al. 2021; Pranav 2021;
Shim et al. 2021).
For D-dimensional sets δ(x1,K,xD), there are (D+ 1) MFs,

which correspond to topo-geometrical properties of the set.
Considering a manifold , in three dimensions, the MFs
correspond to the enclosed volume (W0) of , as well as the
surface area (W1), mean (W2) and Gaussian curvatures (W3) of
the boundary ¶. In our particular setting, the manifolds of
interest are the excursion sets of three-dimensional cosmolo-
gical density fields.
In a recent series of works, we have measured the genus of

two-dimensional slices of the Sloan Digital Sky Survey (SDSS)
III Baryon Oscillation Spectroscopic Survey (BOSS) data,
extracting cosmological information from the genus amplitude,
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and placing constraints on the scalar spectral index ns and dark
matter fraction Ωch

2, assuming a flat ΛCDM cosmology
(Appleby et al. 2020). Given that the BOSS data is spectro-
scopic, we have precise redshift information. Hence it is
possible to extract the MFs from the full three-dimensional
data, which contains more information than two-dimensional
shells.10

With this motivation in mind, in this work, we extract the
MFs from the full, three-dimensional galaxy distribution.
Specifically, we use the SDSS-III BOSS DR12 catalog to
reconstruct four distinct, three-dimensional density fields
corresponding to the LOWZ/CMASS data in the northern
and southern Galactic Planes. After generating smoothed
number density fields from the point galaxy distribution, we
measure the statistics, ensuring that the complex survey
geometry does not impact our results. We then extract
information from the amplitudes of these functions, using
similar methodology to Appleby et al. (2020). We also measure
the bispectrum components from the MFs, although we do not
convert this information into cosmological parameter con-
straints in this work.

The paper will proceed as follows. We define the MFs, and
review their theoretical expectation values for a compact and
boundaryless field in Section 2. In Section 3, we review our
methodology, including the generation of a density field from a
point distribution, and the mock data used to estimate statistical
uncertainties. Time-poor readers can proceed directly to
Section 4, which contains our principle results—MF measure-
ments extracted from the BOSS galaxy samples and cosmo-
logical parameter estimation using their amplitudes. We discuss
our results in Section 5.

Some of the details of our methodology and analysis are
contained in appendices. In Appendix A, we define the MFs for
a generic manifold. In Appendix B, the numerical algorithm for
MF extraction is elucidated, and we confirm that our method is
unbiased by survey boundaries, using masked Gaussian
random fields (GRFs) and mock galaxy snapshot data. The
effect of redshift space distortion (RSD) is briefly reviewed in
Appendix C. Potential systematics that could impact our
analysis are described in Appendix D.

2. Integral-geometry of Manifolds: Minkowski Functionals

In a cosmological setting, we are typically interested in the
properties of a scalar random field u, defined on a manifold,
which will be Euclidean and three-dimensional in this work.
We take u to be mean subtracted and root mean square
normalized 〈u2〉= 1, and Gaussian in this subsection. The MFs
W0,K,W3 are topo-geometric quantifiers that encode the
geometry and topology induced by the fluctuations of the
field, in combination with the geometric characteristics of the
manifold itself. The usual practice is to examine the properties
of the excursion set of the manifold, defined by

n= În  { ( ) } ( )E x u x: , 1

where ν is an isofield threshold value. When dealing with
compact boundaryless manifolds, such as the 2-sphere or the
periodically tiled Euclidean grid (found for example in
cosmological simulation snapshot boxes), the expressions for
the MFs simplify substantially, and the volume-normalized

expressions may be written in terms of curvature integrals
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where G2= (κ1+ κ2)/2 and G3= κ1. κ2 are the mean and
Gaussian curvatures of the boundary of the excursion set ∂Eν.
Here, κ1, κ2 are the principal curvatures of the surface ∂Eν at a
point, and V is the total volume of the space under
consideration. The equations for the 2-sphere were derived
by Doroshkevich (1970), while the generic case including
boundary effects was developed by Adler (1981). The usage of
the Euler characteristic was introduced to cosmology by Gott
and collaborators (Gott et al. 1990; Park & Gott 1991), while
the full set of volume-normalized expressions in three
dimensions was introduced in cosmology by Mecke et al.
(1994), Schmalzing & Buchert (1997).
For a GRF, the ensemble average of these curvature integrals

can be written as (Doroshkevich 1970; Adler 1981; Gott et al.
1986; Hamilton et al. 1986; Tomita 1986; Gott et al. 1987;
Weinberg et al. 1987; Ryden et al. 1989)
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i.e., ω0= 1, ω1= 2, ω2= π, and ω3= 4π/3.
The curvature integrals (Equations (2)–(5)) are equal to the

MFs only when the manifold possesses no boundary. For a
field defined on a generic manifold, the Gaussian Kinematic
Formula (GKF) describes the MFs instead. The GKF is defined
in Appendix A.
Practically, cosmological data sets are always defined on

domains with boundaries. For example the Cosmic Microwave
Background temperature field is measurable over the entire
2-sphere, but realistically foreground masks ensure that only
part of the all-sky data is used. Similarly, galaxy catalogs
possess both angular and radial survey boundaries, and the

10 Shells were analyzed in Appleby et al. (2017, 2018c, 2020, 2021) with the
long-term goal of comparing the results with photometric galaxy catalogs.
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resulting matter density field is measured only over a finite
volume with a boundary. The MFs of these cosmological data
sets are therefore not described by the curvature integrals
defined in Equations (2)–(5). However, it is possible to
generate an unbiased estimate of the curvature integrals from
a field with a boundary, and directly compare the results to the
ensemble expectation values (Equation (6)).

To see this, we take one of the curvature integrals (3) as an
example. By using an integral transform, we can write

ò ò d n= =  -
¶ n 
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We recognise the final term in this equation as the volume
average of the scalar quantityl d nº -( )u u u 6D i

i , where u
is the field, ui are the gradients with respect to some arbitrary
coordinate system (i= 1, 2, 3), and δD is the delta function,
which is defined in a distributional sense as we are taking a
volume average. If we generate a pixelated GRF, W1 can be
estimated as
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where Npix is the number of pixels in the discretized field, and
we discretize the delta function as
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The important point is that the numerical approximation of W1

defined in Equation (11) can be estimated from a finite subset
of a field. That is, we do not require an entire field defined on a
boundaryless manifold to estimate the curvature integral
(Equation (3)); any unbiased sampling of pixels can be used
to generate an unbiased estimator of this quantity.

The property of ergodicity is then used to equate the volume
and ensemble averages of λ. The ensemble average of λ can be
written as
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where P(u, uk) is the joint probability density function of the
field and its derivatives. If we take u, uk to be uncorrelated and
Gaussian distributed, this ensemble average yields the standard
result in Equation (6).

Again, we stress that the volume average in Equation (11)
does not require the field to be complete and boundaryless, and
can be approximated by a subset of pixels of masked data.
Hence we can estimate the curvature integrals from cosmolo-
gical data, but we should understand that these quantities do
not represent the MFs for a field defined on a manifold with a
boundary. This is intuitively obvious, as the curvature integrals
are intrinsically local quantities in the sense that they can be
estimated from the average properties of the field and its
derivatives at points on the manifold. In contrast, the topology
of the manifold is an intrinsically global quantity.

Throughout this work, we will use the terms curvature
integrals and Minkowski functionals interchangeably, but the
reader should understand the distinction made above, and this
work is concerned solely with the curvature integrals.

2.1. Weakly Non-Gaussian Fields

For a weakly non-Gaussian field, the amplitude and shape of
the MFs is modified. To linear order in σ0, the following
Edgeworth expansion has been constructed (Melott et al. 1988;
Matsubara 1994a, 1994b; Matsubara & Yokoyama 1996;
Matsubara & Suto 1996; Matsubara 2000; Hikage et al. 2008;
Pogosyan et al. 2009; Gay et al. 2012; Codis et al. 2013):
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The quantities S(0), S(1), and S(2) are proportional to the three-
point cumulants of the field:
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The amplitude and shape of the MFs contain information
pertaining to the N-point cumulants of the field, which in turn
are sensitive to cosmological parameters.11

Throughout this work, we rescale the isodensity threshold ν
to νA, which is the threshold defined such that the excursion set
has the same volume fraction as a corresponding Gaussian
field:
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where fA is the fractional volume of the field above νA.
Expressing the MFs as a function of νA as opposed to ν

mitigates the non-Gaussianity in the MFs (Gott et al. 1987;
Weinberg et al. 1987; Melott et al. 1988), although obviously
does not completely remove it. Additional non-Gaussian
information is retained in the mapping n n :A A but is not
used in this work. The non-Gaussian expansion of MFs as a
function of νA is (Matsubara 2000; Hikage et al. 2008)
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The amplitude of the MF Wk, which is the coefficient of
Hermite polynomial Hk−1(νA) in the perturbative non-Gaussian
expansion, predominantly contains the Gaussian information of
the field (with second-order corrections s~( )0

2 ). All other

11 See Matsubara et al. (2020) for a recent expansion of 〈Wk〉 at s( )0
2 and Gay

et al. (2012) for a general expansion. For a model-independent approach
applying MFs to the CMB and using general Hermite expansions of the
discrepancy functions with respect to the analytical Gaussian predictions,
together with a generalization of Matsubara’s second-order expansion, see
Buchert et al. (2017).
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Hermite polynomial coefficients contain only higher-point
cumulant information, which are induced by the non-
Gaussianity of the field.

As we have seen in Equations (6), (14), (19), the Hermite
polynomial expansion is useful to extract information from the
MF curves. In particular, one can extract their coefficient by
using the following orthogonality relation:

ò n n n p d=n

-¥

¥
-( ) ( ) ! ( )H H e d n2 , 20n mnm

22

where δmn is the Kronecker delta. Provided we are smoothing
over scales RG such that the σ0 expansion of the MFs is
applicable, we can multiply the measured MF by a Hermite
polynomial and integrate over ν to obtain the coefficient of the
polynomial. Performing the integral in Equation (20) over νA
rather than ν is recommended, as the MFs as a function of ν are
more strongly asymmetric around ν= 0. To reliably utilize the
orthogonality property of the functions, one must integrate over
large |ν| ranges. The extraction of polynomial coefficients
using this method is only formally valid if we have measured
the MF over a sufficiently large threshold range. Any
truncation in the integral will correlate the Hermite polynomial
coefficients obtained using this method.

The intention of this paper is to provide a method of
numerically reconstructing the curvature integrals as in
Equations (2)–(5) from a discretized and masked density field,
and then extracting cosmological information from Ak,G, the
Gaussian amplitude of these functions. We are not measuring
the true MFs of the bounded manifold on which the matter
density field is defined, as explained in the previous section.
We intend to pursue the difference between the curvature
integrals and MFs in detail in future work, as there is additional
information contained within the boundary. The presence of a
mask can profoundly modify the global properties of the
manifold.

3. Methodology

We now review and subsequently validate our methodology.
First, we describe our reconstruction of a smoothed density
field from the point distribution, and introduce the mock galaxy
catalogs used to reconstruct the statistical error of our
measurements. In Appendix B.1, we provide a detailed
explanation for our numerical algorithm for measuring the
curvature integrals, and validate our analysis with mock data.

3.1. Density Field Reconstruction

We measure the MFs of the SDSS-III BOSS (York et al.
2000). The twelfth data release of the SDSS (Alam et al. 2015)
imaged 9,376 deg2 in the ugriz bands (Fukugita et al. 1996).
The survey was executed with the 2.5 m Sloan telescope (Gunn
et al. 2006) at the Apache Point Observatory in New Mexico.
The extra-galactic catalog contains 1,372,737 unique galaxies,
with redshifts extracted using an automated pipeline described
in Bolton et al. (2012).

The SDSS-III BOSS data is decomposed into two catalogs.
The LOWZ sample is composed of galaxies predominantly at
redshift z< 0.4, and are selected using numerous color–
magnitude cuts that are intended to match the evolution of a
passively evolving stellar population. The purpose is to extend
the bright and red low-redshift galaxy population measured in

the SDSS-II Luminous Red Galaxies to relatively higher
redshift. The CMASS galaxies, on the other hand, are selected
using a set of color–magnitude cuts to identify high-redshift
galaxies at 0.4< z< 0.7. In contrast to the LOWZ data, the
sample is not biased toward red galaxies as some of the color
limits imposed on the SDSS-II sample have been removed. The
color–magnitude cut is varied with redshift to ensure massive
objects are sampled as uniformly as possible over the survey
volume. We direct the reader to Reid et al. (2016) for further
details of the galaxy samples.
Throughout this work, we treat the LOWZ and CMASS

catalogs separately, and also treat the north and south sky data
as independent. Hence we have four practically independent
data sets—CMASS and LOWZ, north/south—from which we
extract the MF statistics. All steps below are repeated
individually for each subset of the data.
The preparation of the data requires some care, so we now

list the steps taken in this work to convert the galaxy data to a
smooth density field.

1. First each galaxy is weighted to account for observational
systematics. Specifically, the following combined weight
was applied to each galaxy in the LOWZ and CMASS
sample:

= + -( ) ( )w w w w 1 , 21tot systot cp noz

where wcp is the correction factor to account for the
subsample of galaxies that are not assigned a spectro-
scopic fiber (cp stands for “close pair”), wnoz is for the
failure in the pipeline to assign redshifts for certain
galaxies, and wsystot represents noncosmological fluctua-
tions in the CMASS target density due to stellar density
and seeing (Reid et al. 2016).

2. We bin the galaxies into redshift shells of thickness
Δz= 0.02 over the range 0.10< z< 0.48 and
0.40< z< 0.68 for the LOWZ/CMASS data, respec-
tively. The redshift bin thickness is ∼85 to ∼60Mpc in
comoving distance over this redshift range. Each galaxy
contributes wtot to its redshift bin. We then select galaxies
in each shell to match the number density as
= ´ - -n̄ 6.25 10 Mpc5 3. The selection is made using a

lower mass cut based on the predicted stellar mass of the
galaxies from the Portsmouth model found in Tinker
et al. (2017). If the total number density in a given
redshift shell is below n̄, it is not used in our analysis. To
generate a number density, which is a dimension-full
quantity, we use the fiducial cosmology presented in
Table 1 to define the volume of the shells. For practical
purposes, the variation of this cosmology will not affect

Table 1
Fiducial Cosmological Parameters Used to Reconstruct Distances in This

Work, and in the Creation of the BOSS Patchy Mocks

Parameter Fiducial Value

Ωm 0.307
h 0.6777
wde −1
ns 0.9611
σ8 0.8288
RG 35 Mpc

Note. RG is the smoothing scale used throughout this work, using a Gaussian
kernel.
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our results as the shells are used only to generate mass
cuts. The number density cut restricts our analysis to the
redshift ranges 0.20< z< 0.40 and 0.45< z< 0.60 for
LOWZ/CMASS, respectively. We could use lower-
redshift data, but the volume over the range
0.1< z< 0.2 is insufficient to affect our results.

The construction of a uniform number density
subset always requires some form of redshift-dependent
selection. However, our tests indicate that the sampling is
robust under reasonable variations of
0.015<Δz< 0.03,12 and in Appendix D, we repeat our
analysis for a randomly selected subset of the galaxies
and find no significant change in our results.

3. The selected galaxies are aggregated into a uniform cubic
grid of size Lbox and resolution Δg along each dimension,
where these values are provided in Table 2 for the four
different data sets. The three-dimensional positions of the
galaxies are generated from their angular positions and
redshifts using the fiducial cosmology in Table 1. Each
galaxy contributes wtot to its nearest pixel, and this
procedure generates a discrete number field nijk, where i,
j, k subscripts run over the lattice in x1,2,3 directions,
respectively.

4. We also generate a mask lattice Mijk by projecting the
angular selection function ωℓ into the same cubic grid and
applying the radial boundaries. The angular selection
function ωℓ is a Healpix

13 (Gorski et al. 2005) Nside= 512
map that takes value ωℓ= 0 if the ℓ pixel lies outside the
survey boundary, and 0� ωℓ� 1 if ℓ is within the mask
( ´ ℓ N1 12 side

2 is the pixel identifier). The angular
mask is projected into a three-dimensional cube such that
Mijk= ωℓ if the (i, j, k) pixel lies inside the survey
geometry, andMijk= 0 otherwise. We then apply a binary
mask to nijk by setting nijk= 0 if Mijk<Mcut, where we
set Mcut= 0.9. Note that wtot is a weight applied directly
to the galaxies, so it is not used for the mask lattice.

5. We define n̄ as the average number of galaxies within the
unmasked pixels, and define a mean-subtracted number
density as  -( ¯ )n n n 1ijk ijk . The remaining masked
pixels have an arbitrary bad pixel value δb and are
not used.

6. We smooth both the field nijk and mask Mijk with a
Gaussian kernel µ -( ) [ ]W kR k Rexp 2G

2
G
2 , where

RG= 35Mpc is selected such that the field is expected
to be in the weakly non-Gaussian regime (Matsubara
et al. 2020). We denote the smoothed field and mask as

d̃ijk and M̃ijk, respectively. We make a second mask cut
and set d d=˜

ijk b if M̃ Mijk cut, where Mcut= 0.9. This
second masking procedure cuts regions of the density
field close to the survey boundary.

7. Finally, we calculate the average μ and root mean square
σ of all unmasked pixels, and define a mean-subtracted,
unit variance field d d m s= -(˜ )ijk ijk .

Having constructed a smoothed, discretized density field δijk,
we next extract the MFs from the unmasked pixels in the
following section using the method described in Appleby et al.
(2018b) but accounting for the presence of a mask. A
discussion of how we adjust our algorithm to account for the
mask can be found in Appendix B.1.
In this work, we smooth on a relatively large scale

RG= 35Mpc. Such a large smoothing is chosen because we
intend to compare our measurements to the perturbative
Edgeworth expansion derived in Matsubara (1994a, 1994b);
Matsubara & Suto (1996). If we smooth on smaller scales, the
amplitude of the MFs contains information on higher-point
cumulant contributions and nonlinear RSD. An alternative
approach is to smooth on small scales and correct for nonlinear
gravitational interactions using simulations (Li et al. 2016;
Appleby et al. 2021). This method has the advantage of
yielding much stronger constraining power, but requires more
careful analyses to remove nonlinear systematics and to take
into account their dependence on cosmological models.
Throughout this work, we follow Appleby et al. (2020) and
avoid (as far as possible) correcting the measured MFs using
simulations. We do correct for RSDs using simulations, but this
is a ~( )1% effect.
In what follows, we extract the W0,1,2,3 MFs from the

masked, smoothed galaxy density fields at N= 41, νA threshold
values, equi-spaced over the range −3< νA< 3. To determine
the magnitude of the statistical fluctuations on these measure-
ments, we repeat our analysis on a set of mock galaxies with
similar properties to the data. The mock analysis is
described next.

3.2. Mock Galaxy Catalogs

To estimate the statistical uncertainty of the Wk(νA)
measurements, we use Nr= 250 Multidark-Patchy mocks
(Kitaura et al. 2016; Rodríguez-Torres et al. 2016). A detailed
explanation of their construction can be found in Kitaura et al.
(2016). Briefly, the mocks were generated using an iterative
procedure to mimic a reference galaxy catalog using gravity
solvers and statistical biasing models (Kitaura et al. 2014). The
reference catalog is the Big-MultiDark N-body simulation,
which used Gadget-2 (Springel 2005) to gravitationally evolve
38403 particles in a -( )h2.5 Gpc1 3 volume. Halo abundance
matching was utilized to reproduce the clustering of galaxy
data. The Patchy code (Kitaura et al. 2014, 2015) matches the
two- and three-point clustering statistics with the reference
simulation in multiple redshift bins. Stellar masses are
estimated and mock lightcones are generated, including masks
and other selection effects. The mock catalogs accurately
reproduce the number density, two-point correlation function,
selection function, and survey geometry of the SDSS-III BOSS
DR12 observational data. The simulations adopted a Planck
standard ΛCDM cosmology with Ωm= 0.307, Ωb= 0.048,
ns= 0.961, H0= 67.77 km s−1Mpc−1, the same as the fiducial
cosmology adopted in this study.

Table 2
Size of Box That We Enclose the Four Data Sets in, and the Resolution of

Each Box

Data Set Lbox (Mpc) Δg (Mpc)

CMASS N 4200 8.2
CMASS S 3330 6.5
LOWZ N 3050 6.0
LOWZ S 2400 4.7

Note. We use Gaussian smoothing with scale RG = 35 Mpc to mitigate any
discrete pixel effects.

12 We repeated our analysis using Δz = 0.015 and Δz = 0.03, and found no
significant change to our results.
13 http://healpix.sourceforge.net
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For each mock catalog, we repeat our methodology. We
begin by sorting the galaxies into redshift shells, applying a
mass cut, then projecting the surviving galaxies into a uniform
lattice. We then apply our masking and smoothing procedure
and use the marching tetrahedra to extract the MFs from the
density field n( )Wk

p
A , where p represents the pth mock

realization. As for the actual data, we measure the MFs at 41
values of νA over the range −3< νA< 3. The method is
repeated separately for mock CMASS/LOWZ north (“N”) and
south (“S”) data. From these measurements, a set of covariance
matrices Sk

m n, can be generated as

åS =
-

- á ñ - á ñ
=

( )( ) ( )
N

W W W W
1

1
, 22k

m n

p

N

k p
n

k
n

k p
m

k
m,

r 1
, ,

r

where Wk p
n
, is the value of the kth MF at the nth threshold value

νA,n in the pth mock realization, and á ñWk
n is its average. Since

we use a transformation to write the MFs as a function of νA,
there is no information in the W0 volume fraction,14 and we
restrict our analysis to k= 1, 2, 3. Hence there are a total of
three covariance matrices Sm n

1,2,3
, , for each of our four data sets:

LOWZ/CMASS N/S. We present these covariance matrices in
Figure 1; these are Wm n

k
, for the mock CMASS N catalogs. The

other three sets are very similar and not exhibited. It is clear
that the values of the MFs are strongly correlated between the
different threshold bins, and can also be anticorrelated. The
correlation is largest for k= 1 and lowest for k= 3. When we
utilize the covariance matrices for the parameter estimation, we
follow Hartlap et al. (2007) and correct their inverses with a
factor of (Nr− Nb− 2)/(Nr− 1), where Nb= 41 is the number
of νA bins.

In Figure 2 (left panels), we present the MFs obtained from
the patchy mock data, treating the LOWZ/CMASS N/S data
separately. We exhibit them as a function of νA, and present
W1,2,3. The solid gold/green/blue/red lines are the mean
values extracted from Nreal= 250 mock realizations from the
four different data sets, and the solid gray region is the standard
deviation of the LOWZ S realizations. The mean values of all
statistics are consistent within the statistical error of the
measurements, which confirms the insensitivity of our analysis
to the data mask. Each of the four subsets of data have very
different survey geometries and volumes.

4. Results

We now present theW1,2,3 statistics extracted from the BOSS
galaxy data. We first present the results of our numerical
analysis, and in Appendix D, we test their robustness under
variation of the assumptions implicit within our methodology.

4.1. Minkowski Functionals of BOSS Data

In Figure 2 (right panels), we present the MFs of the four
BOSS data sets—CMASS/LOWZ N/S—as a function of νA.
We again plot the 1σ standard deviation of the LOWZ-South
patchy mock realizations as gray filled regions, to provide a
visual guide of the statistical errors on the measurements. The
LOWZ S data have the largest uncertainties of the four, as it
encompasses the smallest volume. The gold/green/blue/red

solid lines represent the CMASS N/S and LOWZ N/S data,
respectively. The right-hand panels show much larger statistical
fluctuations than the left, because the left panels present the
mean of N= 250 mock realizations whereas the right constitute
a single data realization. In contrast to the mock data, in the
right panels, one can observe some discrepancy between the
MF curves in the northern and southern skies, with the LOWZ
S (red lines) in particular presenting anomalously low values.
The difference is most clearly observed in W1 but is present in
all three panels. The CMASS N and LOWZ N data occupy the
largest volumes, and are consistent with the patchy mock
realizations (blue/yellow lines).
From the covariance matrices presented in Figure 1, it is

clear that W1,2,3 are correlated between νA threshold bins. For
this reason, care should be taken not to perform the statistical
analysis by eye, using Figure 2. To proceed, we fit the
following functions to each curve,

n

n n

=

+ +
-

n-
-

- }
˜ { ( )

( ) ( ) ( ) ( )

W A e H

k
a H

k k
a H

3

1

6
, 23

k k k

k k

,G
2

1 A

0 A 2 2 A

A
2

by minimizing the ck
2 functions

åc = - S --( ˜ )( ) ( ˜ ) ( )W W W W , 24k
n m

k n k n k
n m

k m k m
2

,
, ,

1 ,
, ,

assuming a Gaussian likelihood. In Equation (24), Wk
n is the

measured value of the kth MF at the nth, νA threshold, andSk
m n,

is defined in Equation (22). The parameters varied are Ak,G, a0,
and a2. The quantities a0, a2 contain information pertaining to
the bispectrum, which can be explicitly written as (Matsu-
bara 2003)

s= -( ) ( )( ) ( )a S S , 250
1 0

0

s= -( ) ( )( ) ( )a S S , 262
2 0

0

where S(0), S(1), S(2) are given in Equations (15)–(17). We do
not use a0 and a2 for the cosmological parameter estimation in
this work, but each MF W1,2,3 should measure consistent a0, a2
values when extracted from the same data set. This provides a
consistency check of our methodology, assuming that
Equation (23) is a viable fitting function. Furthermore, if the
galaxy distribution is isotropic, then we should expect that the
north and south data in each catalog will yield consistent Ak,G

and a0,2 values. However, CMASS and LOWZ will not
necessarily yield consistent results, as they constitute two
distinct galaxy samples with different selection criteria and
redshifts.
We minimize the function (Equation (24)) for each of the

four data sets and eachWk function separately, to obtain a set of
twelve measurements of Ak,G, a0, and a2. The prior ranges used
are −1< a0,2< 1 and − < <[ ]A18.5 log k G, −10, and a
variation of these limits does not affect our results. When fitting
Equation (23) to W3, we multiply the functions extracted from
the data (see Figure 2, bottom panels) by −1, as the convention
in cosmology is to present W3 in terms of −H2.
In Figures 3 and 4, we present the best fit and marginalized

1σ limits of the parameters Ak,G and a0,2, respectively, for each
of the four data sets. The gold/green/blue/red diamonds and
solid error bars are the best fit and 1σ uncertainties obtained by
minimizing the ck

2 function (Equation (24)) for CMASS N/S
and LOWZ N/S data, respectively. In Figure 4, the light-to-

14 The information in W0 has been transferred to the n n :A A mapping,
which we do not use here.

6

The Astrophysical Journal, 928:108 (23pp), 2022 April 1 Appleby et al.



dark points/error bars are the values of a0 and a2 obtained from
each MF W1,2,3 within the same subset of data. Note that W1 is
independent of a2 due to the (k− 1) factor in the expansion
(Equation (23)), so it is not included in the lower panel of
Figure 4.

For comparison, the small points and dashed error bars in the
figures are the mean and rms values of Ak,G and a0,2 obtained

from the patchy mock catalogs, obtained using the expressions

òp
n n n

- -
-

( )!
( ) ( ) ( )A

k
W H d

1

2 1
, 27k k k,G

4

4

A 1 A A

òp
n n n

-


!
( ) ( ) ( )a

k k A
W H d

3

2
, 28

k
k k0

,G 4

4

A A A

òp
n n n>

-
-∣

!
( ) ( ) ( )a

k A
W H d

6

2
, 29k

k
k k2 1

,G 4

4

A 2 A A

where Wk are the MFs extracted from the mocks. Finally, the
dark/light gray horizontal dashed lines in Figure 3 are the
Gaussian expectation values (Equation (8)) for the MF
amplitudes, assuming the cosmological parameters in Table 1
and = ´ - -n̄ 6.25 10 Mpc5 3, and the linear galaxy bias b= 2.
The power spectrum adopted is = +( ) ( ) ¯P k z b P k z n, , 12

m ,
where Pm(k, z) is the linear matter power spectrum at redshift
z= 0.3 and 0.5 (light/dark dashed lines). We correct
Equation (8) from real- to redshift-space by applying a constant
factor a=A Ak k k,G

rsd
,G, where αk= 0.99, 0.98, 0.97 for k= 1, 2,

3, respectively. This correction factor is derived from mock
catalogs and is discussed further in Appendix C.
The patchy mock results (small points and dashed error bars)

are entirely self-consistent, in the sense that the four data sets
yield values of Ak,G and a0,2 that are in agreement within 1σ.
Furthermore, W1,2,3 as measured within each data set yield
consistent values of a0,2, which serves as a check that the three-
point cumulants are being correctly measured. The amplitudes
Ak,G are in close agreement with the Gaussian expectation
values (Equation (8)), except the systematically high values of
A2,G from the patchy mocks (middle panel in Figure 3). We can
provide no compelling explanation for this discrepancy, other
than our estimator for W2 might be marginally biased by the
presence of the mask. Although the mean values are practically
consistent with the Gaussian prediction at 1σ, the reconstructed
values are systematically high.
The BOSS data results (diamond points, solid error bars)

present some peculiarities. The amplitudes Ak,G of W1,2,3

extracted from the LOWZ S data are systematically lower than
the other three data sets. The statistical significance of this
discrepancy is low, due to the large smoothing scales adopted
in this work. The bispectrum term a0 is also large and negative
in LOWZ S, which suggests that the discrepancy in the data is
not restricted to the two-point cumulants. In addition, the data
reconstruction of a2 presents a mild discrepancy in the CMASS
S data (see Figure 4, bottom panel). The reconstructed value of
a2 obtained from W2 is high compared to the same quantity
extracted from W3. Some weak systematic offset is also
observed in the mock reconstruction, which could again
indicate some effect of the mask on the W2 estimation.
Extracting cosmological information from the bispectrum terms
a0 and a2 will be considered in future work, and here we simply
report the anomalous behavior of the southern sky data. The
marginalized best fit and 1σ uncertainties on the parameters a0,2
for each of the measurements in Figure 4 are presented in
Table 3.
So far, we have proceeded under the assumption that the

perturbative expansion (Equation (19)) can be applied to the
data, and we truncated the expansion at order s( )0 . At order
s0

2, multiple new terms are introduced that are related to the
four-point cumulants d s~á ñ4

0
4, and the amplitude Ak,G also

Figure 1. The covariance of the W1, W2, W3 MFs (top–bottom) as a function of
νA threshold. There are large correlations between threshold values for W1

(red), and some anticorrelation in W2, W3 (blue regions). W3 (bottom panel)
exhibits the lowest level of cross-correlation between threshold values.
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receives a correction (Matsubara et al. 2020). Although we do
not pursue higher-order terms in this work, it is instructive to
introduce a single additional Hermite polynomial coefficient to
the fitting procedure, and check if it does not significantly alter
our conclusions. We end this section by fitting the following

functions to the data:

⎛
⎝

⎞
⎠

= + +n-˜ ( )W A e H
a

H h H
3

, 301 1,G
2

0
0

1 2 2A
2

Figure 2. Left panels: the MFs extracted from Nrea = 250 Patchy mock catalogs as a function of volume fraction threshold νA. The gray filled region is the ±1σ
variation ofW1,2,3 (top/middle/bottom panels) from the LOWZ S realizations. The gold/green/blue/red solid lines are the mean values of the MFs extracted from the
mock CMASS N/S and LOWZ N/S realizations, respectively. All data sets exhibit close agreement. Right panels: the same statistics, extracted from the BOSS data.
The color schemes are the same as in the left panel. The LOWZ S data (red solid line) exhibits lower values than the other three data sets. All data sets have been
smoothed with smoothing scale RG = 35 Mpc.

8

The Astrophysical Journal, 928:108 (23pp), 2022 April 1 Appleby et al.



⎛
⎝

⎞
⎠

= + + +n-˜ ( )W A e H
a

H
a

H h H
2

3 3
, 312 2,G

2
1

0
2

2
0 3 3A

2

= + + +n-˜ ( ) ( )W A e H a H a H h H , 323 3,G
2

2 0 3 2 1 0 0A
2

where h0,2,3 are additional free parameters. We select these
terms as they correspond to coefficients of the lowest-order
Hermite polynomials introduced at order s0

2 for each MF.
Additional higher-order polynomials should also be included,

but they require increasing the information from the large |νA|
tails to accurately measure.
We again minimize the ck

2 functions (Equation (24)), but
with the additional parameters free to vary over the range
−1< h0,2,3< 1. In Figure 5, we present the marginalized one-
dimensional probability distribution functions for h2, h3, h0
(top/middle/bottom panels). The vertical filled bars are the 1σ
ranges of these parameters obtained directly from the patchy

Figure 3. The best fit and 1σ uncertainties on the amplitudes Ak,G of the MFs
W1,2,3 (top/middle/bottom panels) for the four distinct BOSS data sets
CMASS N/S and LOWZ N/S (gold/green/blue/red diamonds and solid error
bars). The small points and dashed error bars are the mean and rms values of
Ak,G extracted from the patchy mock catalogs. The dark/light gray dashed lines
are the Gaussian expectation values (Equation (8)) based on the patchy mock
cosmological parameters and power spectrum at z = 0.5 and 0.3, respectively.

Figure 4. The best fit and 1σ uncertainties on a0 (top panel) and a2 (bottom
panel) extracted from the BOSS data (diamonds and solid error bars), and the
mean and rms value of these quantities from the patchy mocks. Gold/green/
blue/red points correspond to CMASS N/S and LOWZ N/S, respectively. The
light-to-dark range of colors represent the values of a0, a2 extracted from W1,
W2, W3, respectively, from the same data set.
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mocks, using
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There is slight evidence that the northern and southern sky
data exhibits a dichotomy in h2 [top panel], although, again, the
statistical significance is low. The introduction of h0,2,3 does
not move the best-fit values of the other parameters Ak,G, a0,2
outside of their 1σ ranges, indicating that our results are stable
under the addition of the higher-point cumulants. The
parameter values Ak,G, a0,2 with and without the h0,2,3 terms
are provided in Table 6 of Appendix D.

4.2. Cosmological Parameter Estimation from the Minkowski
Functional Amplitudes

Finally, we repeat our ck
2 minimization procedure of the

previous section, but now fit the function
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to the MF curves extracted from the BOSS data. This is the
same function as Equation (23), but now we fit a cosmological
model to the amplitudes rather than treating Ak,G as arbitrary
constants. Cosmology enters via the ratio of two-point
cumulants σ1 and σ0, which is given by
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Table 3
Marginalized Best Fit and 1σ Uncertainties on the Parameters Fit by

Minimizing the χ2 Function (Equation (24)) for the Data Sets

Data/MF Ωch
2 ns a0 a2 cr

2

CMASS 0.110 ± 0.006 0.006 ± 0.012 0.183 ± 0.021 1.32
LOWZ 0.111 ± 0.008 0.007 ± 0.020 0.082 ± 0.036 1.07

CMASS N 0.104 ± 0.008 0.008 ± 0.014 0.191 ± 0.023 1.35
CMASS S 0.119 ± 0.010 0.002 ± 0.025 0.158 ± 0.040 1.27
LOWZ N 0.117 ± 0.009 0.032 ± 0.024 0.098 ± 0.042 1.10
LOWZ S 0.095 ± 0.012 −0.080 ± 0.040 0.066 ± 0.073 0.95

CMASS N
W1

0.109 ± 0.010 0.012 ± 0.022 L 1.25

CMASS S
W1

0.109 ± 0.015 0.008 ± 0.040 L 1.20

LOWZ N W1 0.109 ± 0.014 0.025 ± 0.037 L 1.35
LOWZ S W1 0.091 ± 0.017 −0.116 ± 0.063 L 0.93

CMASS N
W2

0.116 ± 0.010 0.008 ± 0.024 0.224 ± 0.042. 1.31

CMASS S
W2

0.129 ± 0.017 −0.007 ± 0.042 0.284 ± 0.066 1.02

LOWZ N W2 0.133 ± 0.016 0.038 ± 0.039 0.070 ± 0.065 0.99
LOWZ S W2 0.100 ± 0.020 −0.025 ± 0.067 0.123 ± 0.121 1.25

CMASS N
W3

0.099 ± 0.010 0.001 ± 0.026 0.177 ± 0.037 1.42

CMASS S
W3

0.122 ± 0.016 0.028 ± 0.046 0.113 ± 0.062 1.18

LOWZ N W3 0.103 ± 0.016 0.030 ± 0.046 0.114 ± 0.064 0.86
LOWZ S W3 0.098 ± 0.023 −0.102 ± 0.079 0.043 ± 0.116 0.68

Planck 0.116 ± 0.001 L L L

Note. CMASS and LOWZ correspond to an overall fit of the functions
(Equation (34)) to the north and south data combined c c c c= + +2

1
2

2
2

3
2.

CMASS N/S and LOWZ N/S are fits of Equation (34) separately to each of
the four data sets. The following twelve rows are fitting (Equation (34))
separately to each data set and each MF. The final row is the Planck best fit and
1σ uncertainty on the parameter combination Ωch

2 ns, assuming ΛCDM.

Figure 5. One-dimensional marginalized probability distribution functions for
the parameters h2, h3,and h0 (top–bottom panels) for the CMASS N/S and
LOWZ N/S data (gold/green/blue/red solid lines, respectively). The vertical
matching color bars are the rms values of these parameters extracted from the
patchy mock data.
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We approximate the galaxy power spectrum in real space as
= +( ) ( ) ¯P z k b P z k n, , 1g

2
m , where b is the linear galaxy bias,

Pm is the underlying linear matter power spectrum, and n̄ is the
number density of the galaxy sample being utilized. We fix
b= 2 based on the mock catalogs, but our results will be
practically insensitive to variation of this parameter. This is a
valid assumption provided we restrict our analysis to scales at
which shot noise is negligible compared to the signal. We fix
zLOWZ= 0.3 and zCMASS= 0.5 in the power spectrum Pg(z, k),
but these values will not affect our conclusions. We fix the
baryon fraction and σ8 to their Planck values Ωbh

2= 0.0224,
σ8= 0.8288, as our statistics are only very weakly sensitive to
these parameters.

The quantities in Equations (23), (35) have been defined in
real space, but the measured MFs are in redshift space. To
account for this discrepancy, we correct the measured MF
curves by a constant factor αk= [0.99, 0.98, 0.97] for W1, W2,
andW3, respectively. These correction factors were obtained by
measuring the MF statistics in a mock galaxy snapshot box in
real and redshift space, and calculating the ratio of their
amplitudes. Because the redshift space correction is so small,
we do not expect any model dependence in this effect to be
significant. This point is discussed further in Appendix C.

In total, for each MF curve in each data set, we vary four
parameters Ωch

2, ns, a0, and a2 over the prior ranges given in
Table 4. We again perform the ck

2 minimization for each of the
four data sets separately, and each MF separately (for a total of
twelve sets of parameter constraints). We also combine the
information from W1, W2, W3 for each data set, by summing
their ck

2 values, to obtain four distinct measurements labeled
CMASS N, CMASS S, LOWZ N, and LOWZ S. Finally, we
combine the north and south results, by simply summing their
chi-squared values, to obtain overall CMASS and LOWZ
results.

In Figure 6, we present the two-dimensional contours for the
parameters Ωch

2, ns, a0, and a2 for CMASS N/S and LOWZ
N/S, (gold, green, blue, red filled contours), and the combined
CMASS and LOWZ results (dashed/solid black empty
contours). The a0,2 parameters are orthogonal to Ωch

2 and ns,
due to the orthogonal nature of the Hermite polynomials.
Therefore, we do not present a0,a2–Ωch

2,ns contours, as they
are not informative.

There exists a strong degeneracy between Ωch
2 and ns; this

was also observed in two-dimensional slices of the BOSS data
in Appleby et al. (2020). Since we cannot simultaneously
constrain these two parameters, we rotate the parameter plane
and obtain an effective one-dimensional constraint on the
Ωch

2 ns combination.15 The LOWZ S data presents a lower

value of both a0 and Ωch
2 ns, but the uncertainties are large due

to this data set occupying the smallest volume. In Table 3, we
present the one-dimensional marginalized best fit and 1σ
uncertainties on Ωch

2 ns, a0, and a2 for each data set, and the
corresponding reduced chi-squared values. We also present the
Planck best fit of the combination of parameters Ωch

2 ns
(Aghanim et al. 2020). Note that the combined CMASS N/S
and LOWZ N/S data are consistent with the Planck
cosmology, despite the LOWZ S data being systematically
low. This is because the north data simply possesses more
constraining power and is closer to the Planck cosmology. The
difference in a0 between LOWZ N and S (a0= 0.032± 0.024
and -0.080± 0.040) is the most significant discrepancy
observed in this work, and brings into question the suitability
of the expansion (Equation (23)) for the low-redshift galaxy
data. The cosmological parameters inferred from LOWZ N and
S are practically consistent (Ωch

2 ns= 0.117± 0.009 and
0.095± 0.012).

5. Discussion

The MFs provide a complementary approach to extracting
information from cosmological data sets. In this work, we have
measured the MFs from the SDSS-III DR12 BOSS galaxy data.
To do so, we binned the point distribution onto a uniform
lattice and Gaussian smoothed the discrete field with comoving
scale RG= 35Mpc. At these large scales, the perturbative non-
Gaussian expansion (Equation (14)) can be used in principle.
After validating our analysis with GRFs, and mock galaxy

snapshot data, we measured the amplitude and shape of the MF
curves obtained from the BOSS data. The resulting analysis
yielded some quirks. Specifically, the LOWZ-South data
possesses systematically low MF amplitudes compared to
LOWZ north, and also low values of the shape parameter a0,
which contains information from the three-point cumulants.
The exact values can be found in Table 3. The significance of
these discrepancies is not high, because we must smooth over
relatively large scales to reconcile late universe measurements
of the large-scale structure with the perturbative non-Gaussian
expansion typically used in cosmology (Matsubara et al. 2020).
However, the presence of such anomalies could indicate either
some unknown systematics in the data or some physical
anisotropy in the low-redshift large-scale structure. The higher-
redshift CMASS data does not present any discrepancy
between northern and southern sky data. Similarly, the patchy
mock data is remarkably consistent between CMASS/LOWZ
north/south subsamples, which suggests that the problem does
not lie with our analysis pipeline. The LOWZ data considered
in this work lies at cosmological distances dc∼ 850–1600Mpc
relative to the observer, scales at which we expect the data to be
close to isotropic and homogeneous within the standard
cosmological model. Measurements of the MFs from earlier
large-scale structure catalogs support our findings (Kerscher
et al. 1997, 1998, 2001); the north and south sky data
consistently present different morphological properties.
If we overlook the north/south discrepancy and simply

combine the data sets into two overall catalogs (CMASS and
LOWZ), we find that the amplitude of the MFs are consistent
with the Planck ΛCDM best fit. This is primarily due to the
northern sky data simply occupying a larger volume, and the
curious southern sky results are mitigated. Also, we are only
using the two-point information contained within the

Table 4
Prior Parameter Ranges Used in Section 4.2

Parameter Range

Ωch
2 [0.05, 0.30]

ns [0.6, 1.2]
a0 [−1, 1]
a2 [−1, 1]

15 This is a different parameter combination than the two-dimensional results
of Appleby et al. (2020); this is due to the different parameter sensitivity in the
two- and three-dimensional statistics.
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amplitudes, and the two-point function is not sensitive to the
structure of the cosmic web.

The BOSS data has been exhaustively studied in the
literature (Manera et al. 2015; Ross et al. 2017; Slepian et al.
2017; Zhai et al. 2017; Colas et al. 2020; D’Amico et al. 2020;
Hamaus et al. 2020; Ivanov et al. 2020). A direct comparison to
our work and two-point correlation function and power
spectrum analyses is difficult, because different parameters
are varied, sampling choices are made, and typically north and

south data are not separately analyzed. However, the literature
consensus is that the BOSS data is consistent with the best-fit
Planck ΛCDM cosmology, when the two-point information is
extracted.16 We are in agreement with this conclusion. A
recent, comprehensive analysis of the BOSS power spectrum in
Ivanov et al. (2020) generated a constraint of
Ωch

2= 0.1127± 0.0046. This is consistent (both the best fit
and approximately the statistical uncertainty) with our
measurements if we fix ns= 0.965± 0.004 using a Planck
prior. Similarly, our results are consistent with a previous
analysis of the two-dimensional genus extracted from shells of
the BOSS data in Appleby et al. (2020). We provide a
comparison of these results in Table 5.
Regarding the north/south comparison, Tojeiro et al. (2014)

noted some tension between north and south sky data in
previous versions of the BOSS data, but the difference was not
deemed significant. In this work, the discrepancy between the
north and south sky is present predominantly in the non-
Gaussian, higher-point cumulants to which the MFs are
sensitive. The effect is modest, and future galaxy catalogs will
provide more information on the non-Gaussian nature of the
late-time gravitational field. In Sullivan et al. (2019), the MFs
of the BOSS data were extracted using a germ-grain method,
and the non-Gaussian properties were rigorously studied. The
authors of Sullivan et al. (2019) concluded that there is no
strong statistical evidence of any north/south discrepancy in
the DR12 data. In Figure 6 and Table 3 of that work, the
LOWZ data presents a small offset between the north and south
sky, which is most evident in the W1 MF. The significance is
low—the quoted p-value associated with the hypothesis that
the difference is consistent with random fluctuations is
p; 0.02, which is approximately in agreement with our 2σ
discrepancy in a0 from the LOWZ data. In contrast, the
CMASS data is fully consistent. The result is suggestive rather
than conclusive—given that other large-scale structure data sets
have presented north/south discrepancies (Kerscher et al.
1997, 1998, 2001), it would be interesting to study the low-
redshift galaxy density field in more detail.
There is increasing discussion in the literature on the

potential existence of a dipole in various data sets (Colin et al.
2019; Mohayaee et al. 2020; Luongo et al. 2021; Secrest et al.
2021), beyond the kinematic dipole observed in the CMB
(Aghanim et al. 2014). A related observational framework to
measure multipoles in low-redshift data can be found in
Heinesen (2021). The BOSS data is not a magnitude-limited
sample, and its complex selection criteria and incomplete sky
coverage make it difficult to relate our findings to other claims

Figure 6. Marginalized two-dimensional contours in the ns–Ωch
2 and a2–a0

planes. The gold/green/blue/red contours are the 68%–95% limits obtained
from the CMASS N/S and LOWZ N/S data, respectively. The unfilled black
dashed/solid lines are the contours obtained by combining north and south data
into two catalogs CMASS and LOWZ, respectively. The black star in the top
panel is the Planck best fit of these parameters, assuming ΛCDM.

Table 5
A Review of the Constraints on Ωch

2 in This Work (After Applying a Planck
Prior on ns), and Corresponding Measurements of the Same Parameter in Other

Works in the Literature

Measurement Ωch
2

CMASS (This work) 0.114 ± 0.005
LOWZ (This work) 0.114 ± 0.007
Ivanov et al. (2020) 0.113 ± 0.005
CMASS (Appleby et al. 2020) 0.121 ± 0.006
LOWZ (Appleby et al. 2020) 0.116 ± 0.008

16 With the caveat that the MF amplitudes are not sensitive to σ8, only the
shape of the power spectrum.
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in the literature. A study of the topology of all-sky density
fields is an interesting direction of future study.

At fixed comoving smoothing scales RG= 35Mpc, the
majority of information contained in the late universe density
field is washed out. Also, the MFs themselves are summary
statistics and do not contain all topological information. To
proceed further, we should unmoor ourselves from the model-
dependent non-Gaussian perturbative expansion in σ0 cumu-
lants (see footnote 2), and also consider the more complex class
of topological statistics that can be applied to a point
distribution. For point processes, a direct MF analysis using
the decoration of galaxies with Boolean grains without
constructing a density field, hence without extra smoothing,
provides an alternative strategy (Mecke et al. 1994; Kerscher
et al. 1997, 1998, 2001; Wiegand et al. 2014). This
methodology naturally contains boundary corrections accord-
ing to the GKF and is model-independent by construction.
Such an analysis is currently being pursued by the authors to
further determine the properties of the observed large-scale
structure.
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Appendix A
Geometry of Random Fields on Manifolds

Going under various names and orderings in different
settings, such as MFs, curvature integrals, intrinsic volumes,
and Lipschitz-Killing curvatures, there are (D+ 1) quantifiers
associated with the geometry of a D-dimensional manifold .
Taking VD to be the D-dimensional Lebesgue measure, which
quantifies the D-dimensional volume, and for convex , there
exist a set of numbers W0,K,WD known as Minkowski
functionals, which are associated with the volume of the tube
of radius ò around , where ò is small, through the tube
formula:
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Restricting to three dimensions, W0 measures the volume,
W1 measures the surface area, and W2 is associated with
contour length and measures the caliper diameter of . W3, or
equivalently WD of a D-dimensional manifold, is associated
with a purely topological quantity called the Euler
characteristic.
The MFs of the excursion sets of stochastic fields on

manifolds are defined in the usual sense of the tube formula in
Equation (A1), with the exception that the Lebesgue measure is
replaced by the probability measure, such that all measures of
size are weighted with respect to probability content, giving the
probabilistic version of the tube formula
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The above equation is a Taylor series expansion, in which
the coefficients  j

d are known as the Gaussian Minkowski
functionals; they play the role of the usual MFs and encode the
geometric properties of the manifold induced by the random
field u.
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Restricting to cubical Euclidean grids, the MFs of the
excursion sets are given via the Gaussian Kinematic Formula:
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In the above equation, λ is proportional to the second spectral
moment of the power spectrum, or equivalently, proportional to
the second-order gradient of the correlation function. The
combinatorial flag coefficients are defined by
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is the Gaussian tail probability.
The GKF describes the MFs for a field defined on a generic

manifold, in the presence of boundaries or otherwise. It is equal
to the curvature integrals (Equations (2)–(5)) only when the
field is boundaryless. Many works in the cosmological
literature (including this one) actually extract the curvature
integrals from data sets, such as Appleby et al. (2020),
Schmalzing & Gorski (1998), rather than the MFs Pra-
nav (2021).

Appendix B
Unbiased Estimators of the Curvature Integrals

For large-scale structure catalogs, one must account for
radial and angular selection functions, masks, and complex
survey geometries. Given that the ensemble averages quoted in

Section 2 apply only to the unbounded fields, we must carefully
construct unbiased estimators for these statistics when the data
is masked. In this section, we review our numerical algorithm
and then test our method by applying it to GRFs and mock
galaxy snapshot data.

B.1. Numerical Reconstruction of Minkowski Functionals

In Appleby et al. (2018b), we provided a detailed description
on an algorithm to extract the MFs from a discretized field on a
uniform lattice. To briefly review, the method requires a set of
field values uijk on a uniform lattice, where i, j, k subscripts
denote pixel identifiers in the x1,2,3 directions, respectively. We
then form pixel boxes from eight adjacent pixels (uijk, ui,j,k+1,
ui,j+1,k, ui,j+1,k+1, ui+1,j,k, ui+1,j,k+1, ui+1,j+1,k, ui+1,j+1,k+1).
Decomposing each individual pixel box into six nonoverlap-
ping tetrahedra, we linearly interpolate along edges of the
tetrahedra to find points at which u= ν, where ν is some
constant field value that we select. We then generate a
triangulated surface mesh of constant u= ν from these points.
This defines the excursion set boundary ¶ as a triangulated
mesh. Finally, we extract the MFs from the triangulated
boundary according to
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where V is the total volume occupied by the field; i, e, and v in
the summation denote the pixel box’s unique edge, and unique
triangle vertex in the triangulated surface mesh, respectively.
Vt,i is the volume contained within the ith pixel box that is
enclosed by the triangulated mesh, and At,i is the total area of
the triangulated mesh within the ith pixel box. |e| is the length
of the edge e, and αe is the angle subtended by the normal’s of
the two triangles that share the edge e. Finally, få ÎT v T

v is the

Figure 7. Two examples of pixel boxes that highlight our numerical algorithm. The black/white points are pixels in the discrete field lattice δijk that are inside/outside
the excursion set. The red triangles are the triangulated mesh of constant field value δ = ν that our algorithm generates. The normal vectors, edges, and vertices of
triangles are presented in the left and right panels. The quantity αe, used in the extraction of W2, is presented in the middle panel. The middle panel is the same box as
the left panel, rotated such that the line of sight is parallel to the green edge. The images presented here are modified versions of Figures 8, 9 in Appleby et al. (2018b).
© AAS. Reproduced with permission.
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sum of internal angles of all triangles T that share the common
vertex v. The quantities αe and fT

v are presented pictorially in
Figure 7, which is reproduced from Appleby et al. (2018b).

This methodology was applied to “complete” fields with no
masked regions and periodic boundary conditions in Appleby
et al. (2018b). We now highlight the modifications required to
reconstruct the same statistics from a restricted field. As before,
we define a field on some regular three-dimensional lattice uijk,
but now some of the domain is masked. We assign all masked
pixels a particular bad value ub ; uijk= ub. We restrict our
analysis only to pixel boxes for which all eight vertices (uijk,
ui,j,k+1, ui,j+1,k, ui,j+1,k+1, ui+1,j,k, ui+1,j,k+1, ui+1,j+1,k,
ui+1,j+1,k+1) are not masked (that is, not assigned value ub).
We call such pixels boxes as unmasked. We denote the total
number of pixel boxes in the entire volume V as N and the total
number of unmasked pixel boxes used in our analysis as ℓ� N.
The total volume of the domain is = DV N g

3, and the
corresponding masked volume is = DV ℓℓ g

3, where Dg
3 is the

volume of a single pixel box (the resolution along each x1,2,3
dimension is Δg).

For each unmasked pixel box, we perform the standard
marching tetrahedron algorithm, generate six tetrahedra,
interpolate along their edges to points at which u= ν, and
construct a triangulated mesh internal to this particular pixel
box. From this, we can calculate the triangulated surface area of
isofield value u= ν, and also the fractional volume enclosed by
this triangulated surface. Hence the volume and surface area of
the excursion set can be estimated locally within each pixel
box. Our estimates of volume of the excursion set W0 and
surface area of its boundary W1, per unit volume, are therefore
given by
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where the sums are over all unmasked pixel boxes iä ℓ, At,i is
the total area of all triangles constructed within the ith pixel
box, and Vt,i is the volume enclosed by the triangulated mesh in
the ith box. At,i and Vt,i can be calculated using trigonometry
from the tetrahedral decomposition.

The remaining MFs—W2, W3—are also local quantities and
can be estimated from a masked subset of data. However,
unlike W0 and W1, they require information from adjacent
boxes as they are determined by triangles in the surface mesh
that share common edges and vertices. Each triangle edge can
be shared by a maximum of two adjacent pixel boxes, and
triangle vertices can be shared by a maximum of four adjacent
pixel boxes. To estimate W2, we only consider pixel boxes that
are at least two pixels away from any mask or boundary, to
ensure that all edges counted in the W2 reconstruction have two
matching triangles. This is necessary to construct αe in
Equation (B3). The estimator is simply
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where ¢ℓ identifies the set of all pixel boxes at least two pixels
from the boundary ( ¹ ¢ℓ ℓ ), å ¢e represents the sum of all
triangle edges within this subset of pixel boxes, and = ¢D¢V ℓℓ g

3.

For W3, we adopt the following modified estimator
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where now the sum is over ṽ, which is all triangle vertices
extracted using the marching tetrahedral algorithm, which
counts vertices multiple times. For example, if a triangle vertex
is generated on the surface/edge of a pixel box, then it will be
counted two/four times in the ṽ sum, respectively, because the
marching tetrahedron algorithm will extract it from two/four
pixel boxes. If a triangle vertex is generated internally to a pixel
box, then it will be counted once. To remove the multiple
counting, we weight each triangle vertex in the reconstruction
by ˜wv, where =˜w 1, 1 2,v and 1/4 depending on the vertex
being internal, on the surface, or on the edge of a pixel box,
respectively. If we are considering a field without any
boundary, then Equation (B8) is equivalent to Equation (B4).
In the presence of a mask, a triangle vertex may not contribute
a total of unity to the first term in the sum (Equation (B8)),
because the algorithm now skips masked boxes. However, we
still obtain an unbiased reconstruction of W3, because the sum
over f ˜

T
v in Equation (B8) only includes the triangle angles in

the unmasked pixel boxes.
We present an example of two pixel boxes used in our

analysis in Figure 7. The solid black/white points denote pixels
in the lattice that are in/out of the excursion set (that is, they
have values such that δijk> ν and δijk< ν, respectively). The
pixel boxes are decomposed into six nonoverlapping tetrahedra
as described in Appleby et al. (2018b), and a triangulated mesh
of δ= ν is generated (red triangles in the figure). αe is
presented in the middle panel, which is the pixel box in the left
panel rotated to align with the green triangle edge. In the left
panel, the green triangle edge is completely internal to the pixel
box, and hence both triangles incident to it are internal. This
means that αe for the green edge can be obtained within the
box, from the normal vectors n1 and n2. On the contrary, the
blue triangle edges lie on the surfaces of the pixel box, and
each require a triangle in adjacent boxes to define their
corresponding αe. For this reason, this pixel box will only be
used to calculate W2 if all adjacent pixel boxes also contain no
bad pixels.
In the left panel, the volume enclosed is the volume occupied

between the red triangles and the black pixel and the surface
area is the total area of the triangles. These are the contributions
to W0 and W1 from this particular pixel box.
In the right panel of Figure 7, we present a different pixel

box. The triangulated surface δ= ν is presented as a set of red
triangles, and the triangle vertices are colored green/blue/red.
The green vertex in the center is completely internal to the pixel
box, and hence will contribute w= 1 to Equation (B8), and all
incident triangles are present. The red dots are triangle vertices
on the surface of the pixel box, and will contribute w= 1/2
when this particular box is encountered in the algorithm. The
blue dots lie on the edges of the box and will contribute w= 1/
4, as they are potentially shared by four other boxes. All
triangle internal angles in the Figure are counted in the ∑f
term in Equation (B8).
Our methodology can be used to extract the local properties

of a surface per unit volume. To perform this numerical
calculation, we do not need to sample the entire data domain;
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hence the presence of a mask is practically irrelevant. Due to
the local nature of the curvature integrals, they can be extracted
by sampling a subset of the surface, and hence our numerical
algorithm can provide an unbiased estimate of the Edgeworth
expansion of Wk. Only local statistics can be extracted in an
unbiased manner using our methodology—the average curva-
ture per unit volume, for example. Global properties such as
topology cannot be extracted using this approach.

Next, we verify that our estimators provide an unbiased
estimate of the curvature integrals on an unbounded domain, by
applying them to masked GRFs and mock galaxy snapshot
boxes. We also address the separate issue of smoothing masked
fields.

B.2. Gaussian Random Fields

To confirm that the estimators described above can be used
to reconstruct the underlying curvature integrals, we generate
mock data. Initially, we take realizations of a GRF in a periodic
box. We draw the random fields from a linear ΛCDM matter
power spectrum with parameters given in Table 1, in a periodic
box of volume V= (3.15 Gpc)3. We adopt a resolution of
Δ= 6Mpc and smooth the field with a Gaussian kernel of
scale RG= 35Mpc. We denote the unmasked, smoothed field
δijk. We then mask the field. First, we set all vertices within
distance RG of the boundary of the (periodic) volume to
δijk= δb, where δb is some arbitrary bad pixel value. We then
generate 200 cylinders through the box in the x3 direction, of
radius rn and center x1,n, x2,n, where 1� n� 200. The values of
0< rn< 200Mpc and 0< x1,n< 3150Mpc,
0< x2,n< 3150Mpc are randomly generated from a uniform
distribution. Any δijk vertex within the cylinders is also
assigned a bad pixel value δijk= δb. This simple mask is
representative of an angular mask on the sky, which generates
cylinders through data in the distant observer limit (more
precisely, cones but we do not pursue this distinction here). We
measure the MFs of the unmasked GRFs and the masked
equivalents.

In Figure 8, we present the mean and standard deviation of
the MFs for Nreal= 50 GRF realizations. The dark gray dashed
lines (labeled “Mask I”) represent the mean of the masked
fields extracted using the algorithms described in Section B,
and the solid black lines are the corresponding MFs extracted
from the full, unmasked data. The gray solid region is the rms
fluctuations of the statistics from the masked realizations. We
observe no systematic deviation between the bounded and
unbounded domains, and the solid and dashed lines practically
overlap.

Following the main body of the text, we then extract the
amplitudes Ak,G and a0,2 from each realization using
Equations (27)–(29). In Figure 9, we present the mean and
rms values obtained from the unmasked/masked data (black/
dark gray diamonds and error bars, respectively, labeled “No
Mask” and “Mask I”). In the top panel, we also present the
Edgeworth expansion, Gaussian expectation values of Ak,G

from the expression (Equation (8)) as brown dashed horizontal
lines. In all instances, the masked data is consistent with the
unmasked equivalents, and consistent with the ensemble
expectation value. The a0,2 parameters should be consistent
with zero for a Gaussian field, and this expectation is recovered
in our analysis. There is a 1% systematic discrepancy in a0
extracted from the W3 curve (lower left panel, right-hand side);
this is due to our method of extracting this parameter. For W3,

a0 is the coefficient of the cubic Hermite polynomial H3, which
has a relatively large tail in the high |νA| regime; whereas we
truncate the integrals in Equations (27)–(29) at |νA|= 4.

B.3. Mock Galaxy Catalogs

A GRF is a special example in the sense that all information
is contained in the underlying power spectrum. In terms of the
MFs, all information in Wk is contained within the Hk−1

Hermite polynomial coefficient. The matter density field in the
late universe is not well described by a GRF, even when
smoothing on large scales RG∼ 35Mpc. We now check that
our estimators are also unbiased for gravitationally evolved,
nonlinear matter fields.
To this end, we repeat our test on a mock galaxy snapshot

box, gravitationally evolved to z= 0. Specifically, we use
Horizon Run 4 (HR4)—a cosmological N-body simulation
containing N= 63003 particles in a volume of
V= (3150Mpc/h)3. The simulation uses a modified GOTPM
code.17 The cosmological parameters used are h= 0.72,
ns= 0.96, Ωm= 0.26, Ωb= 0.048. Details of the numerical
implementation and the method by which mock galaxies are
constructed can be found in Hong et al. (2016). The mock
galaxies are defined using the most bound halo particle galaxy
correspondence scheme, and the survival time of satellite
galaxies post merger is estimated via a modification of the
merger timescale model described in Jiang et al. (2008).
We use the mock galaxy snapshot box at z= 0, making no

redshift space corrections to the galaxy positions. We bin the
galaxies into a regular lattice and generate a mean-subtracted
number density field -( ¯) ¯n n nijk , where nijk is the number of
galaxies in (i, j, k)-pixel and n̄ is the mean number of galaxies
in all pixel boxes. We smooth the field with Gaussian kernel,
and then mask the data using the same procedure as for the
GRFs. Defining the smoothed field as d̃ijk, we finally define a
mean-subtracted, unit variance field d d m s= -(˜ )ijk ijk , where
μ, σ are the mean/rms of d̃ijk. Despite only having a single
realization of the data, we generate subsamples by repeating the
masking procedure over Nreal= 50 realizations, each time
drawing a different set of masked cylinder positions and radii.
Each time, we measure the MF curves, and resulting Hermite
polynomial coefficients. Although the resulting error bars will
underrepresent the true statistical uncertainty because the
samples are not independent, we can use the mean values to
confirm that the masked MFs are unbiased with respect to the
MFs of the full unbounded field. We present the results in
Figure 10. The dark solid curves are the MFs obtained from the
full, unmasked box. The dark violet solid region is the 1σ
uncertainty of the statistics over the Nreal= 50 resamplings. We
observe no statistically significant bias in our reconstruction of
the full data from the masked subsets, indicating that our
methodology can be used to extract the Edgeworth expansion
theoretical prediction from the masked data. We also present
the parameters Ak,G and a0,2 in Figure 11 (top panels, bottom
left, and right, respectively). The darkest diamonds are the
results from the unmasked, periodic field, and the dark pink
diamonds/error bars (labeled “Mask I”) are the mean and rms
from the masked field. All parameters are consistent between
masked and unmasked data. The dashed horizontal lines in the

17 For a description of the original GOTPM code, please see Dubinski et al.
(2004). A description of the modifications introduced in the Horizon Run
project at https://astro.kias.re.kr/~kjhan/GOTPM/index.html.
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top panels are the Gaussian expectation values of the
amplitudes, which are consistent with the galaxy data.

B.4. Smoothing a Masked Field

In the previous section, we took a complete data set (that is,
unmasked and with periodic boundary conditions), smoothed
the field, then applied a mask. The goal was to confirm that the
MF reconstruction used in this work is unbiased. However, in
realistic situations, we cannot mask the data after smoothing,
but rather must smooth the masked data. This introduces an
additional complication, as the true field is not well
reconstructed in regions close to the boundary after smoothing.

We must therefore cut a region in the vicinity of the boundary
from our analysis. We now quantify this statement.
Initially returning to GRFs, we perform the following steps.

We generate a discrete field δijk within a periodic box, and then
apply the same masking procedure as in the previous
subsection. We define the field as δijk. We also define a
discrete mask field Mijk, where Mijk= 0 if δijk= δb is masked
and Mijk= 1 otherwise.
We then smooth both the masked field δijk and the mask Mijk,

both with the same Gaussian smoothing kernel and scale
RG= 35Mpc. We denote the smoothed fields as d̃ijk and M̃ijk.
We then apply the smoothed mask to the smoothed data, taking
d d=˜

ijk b if <M̃ Mijk cut, where Mcut is some arbitrary value

Figure 8. The MFs obtained from Nr = 50 realizations of a Gaussian random field (GRF) with ΛCDM linear matter power spectrum. The solid gray region is the ±1σ
statistical uncertainty from the “Mask I” realizations. The black solid lines/dark-gray dashed lines/light-gray dashed lines are the mean values of the statistics obtained
from the full unmasked field, and the result of two masking procedures explained in Sections B.2 and B.4.
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selected to be Mcut= 0.9. Increasing Mcut increases the volume
of data in the vicinity of the boundary that is cut during this
second masking procedure. We then measure the MFs of the
double-masked field d̃ijk. The results are presented in Figures 8
and 10 for GRFs and the HR4 mock galaxy snapshot box at
z= 0, respectively (light gray dashed line, pale pink filled
region, labeled “Mask II”). We again observe an unbiased
reconstruction of the MFs of the unmasked field. The

parameters Ak,G and a0,2 are also presented in Figures 9 and
11, labeled “Mask II.” The parameter reconstruction is
unbiased within the uncertainties of the measurements.
We stress that the issues described in the previous subsection

and here are not related. The former relates to the ability to
reconstruct the MF statistics from a masked field, and the latter
is the ability to faithfully reconstruct a field from a masked
domain. We have shown that both issues can be ameliorated,

Figure 9. The amplitudes of the MFs (top three panels) and a0, a2 extracted from the Nr = 50 realizations of a GRF. The brown dashed lines in the top panels are the
Gaussian expectation value from the Edgeworth expansion, and the black/dark gray/light gray diamonds and error bars are the mean and rms fluctuations of the
quantities numerically extracted from the unmasked and masked data, respectively. For a GRF, a0 = a2 = 0.

Figure 10. The MFsW1,W2,W3 extracted from the Horizon Run 4 (HR4) snapshot box at z = 0. The purple line is the value obtained from the unmasked box, and the
lighter solid regions are the 1σ rms fluctuations obtained from Nreal = 50 random realizations of the masking procedures outlined in Sections B.2 and B.4.
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with a judicious choice of statistical estimator and smoothing
algorithm, respectively.

Appendix C
Redshift Space Distortion

RSD presents some difficulty with MF analysis. In
Matsubara (1996), the effect was first theoretically predicted
in the Kaiser limit and under the plane-parallel approximation.

Figure 11. The amplitudes of the MFs and a0, a2 parameters extracted from the HR4 snapshot box. The deep purple diamond is the value obtained from the unmasked
box (a single realization; no error bar) and the lighter purple diamonds/error bars are the values of the statistics from the Nreal = 50 realizations of the mask. The error
bars will not represent the true statistical uncertainty, as we are not accounting for cosmic variance by using a single data realization. The horizontal dashed lines in the
top panel are the Gaussian expectation values (Equation (8)) assuming HR4 cosmological parameters.

Figure 12. The MFs obtained from the HR4 z = 0 snapshot box in real (pink dashed line) and redshift (black solid line) space. The effect of redshift space distortion is
to decrease the amplitude of the MFs.
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The analysis was continued in Codis et al. (2013), in which the
Kaiser approximation was applied to higher-order cumulants.
This represents the current state-of-the-art development in MF
analysis. However, two outstanding issues remain. One is that
the Finger-of-God effect could also impact the statistics, even
on relatively large scales, as the cumulants σ1 and σ0 are
integrated quantities. Second, large area sky surveys gener-
ically violate the plane-parallel, distant observer approx-
imation, which breaks the homogeneity of the RSD signal.

Fortunately, the effect of RSD on the three-dimensional MFs
is small. In Figure 12, we present the MFs of the HR4 mock
galaxy snapshot box at z= 0 in real and plane-parallel redshift
space. To generate the redshift space box, we perturb the

galaxies along an arbitrary x3 direction according to

 +
+( )

( )
( )x x

z v

H z

1
, C13 3

b 3

b

where zb= 0, and v3 is the galaxy velocity in the x3 direction.
In Figure 12, the pink dashed/black solid lines are the MF
statistics extracted from the real/redshift space boxes,
respectively. We extract the amplitudes of these functions
using the integral in Equation (27). We define the ratio
a = ( ) ( )A Ak k k,G

s
,G
r , where r/s superscripts denote the amplitudes

in real/redshift space, respectively. We find α1= 0.991,
α2= 0.981, and α3= 0.971. Our results indicate that the effect
of RSD constitutes an approximately 1%, 2%, 3% decrease in
the amplitude of W1,2,3, respectively. In the main body of the

Figure 13. The best fit and 1σ uncertainties of the amplitudes of the MFsW1,W2,W3 (top–bottom panels) obtained by varying the assumptions made in the main body
of the paper and repeating our analysis. “Fid” represents the fiducial analysis in the paper, and I-IV are the four variations of our analysis discussed in Appendix D.
The solid gold/green/blue/red regions are the 1σ uncertainties from the fiducial analysis of the CMASS N/S and LOWZ N/S data, respectively.
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text, we correct the theoretical expectation Ak,G MF amplitudes
by αk to convert them into redshift space.

Predicting the consequences of the breakdown of the plane-
parallel approximation is beyond the scope of this work, and
will be considered elsewhere. However, if the overall effect on
the MFs due to RSD is ~( )few% on quasi-linear scales, we
can expect this subtlety to not significantly affect our
conclusions. Similarly, we expect the cosmological parameter
dependence of the RSD effect to be a small correction to αk,
which is itself a small correction. We therefore treat αk as
constant correction factors in the main body of the paper.

Appendix D
Testing for Systematics

Finally, we consider the various systematics that could
impact our measurements of the MFs, to test the robustness of
our measurements. We perform a number of stress-tests on our

results by significantly varying the assumptions made. Each
time, we vary a single assumption used in the main body of the
paper, and run the new data through our analysis pipeline. We
fit the functional form in Equation (23) to the data sets, and
present the best fit and 1σ marginalized uncertainties on Ak,G.
We identify the following potential issues:

I. The galaxy weights significantly affect the MF
reconstruction.

II. Our estimator of the MFs is affected by the mask/
boundaries of the data.

III. Changing the sampling method will yield subsamples of
galaxies with different properties.

IV. Finite pixel resolution effects.

We consider each point in turn.
The galaxy weights are one possible issue. We have

accounted for systematic variations in the galaxy number

Figure 14. Same as Figure 13, but with parameters a0 and a2 (left/right panels).

Table 6
Marginalized Best Fit and 1σ Uncertainties on the Parameters [ ]Alog k,G , a0,2, and h0,2,3 Obtained by Fitting the Functions in Equations (30)–(32) to the Data by

Minimizing the χk
2 Function (Equation (24))

Data/MF [ ]Alog k,G a0 a2 h0 h2 h3

CMASS N W1 −6.281(−6.281) ± 0.010 0.013(0.013) ± 0.022 L L 0.000 ± 0.005 L
CMASS S W1 −6.284(−6.283)± 0.017 0.010(0.018) ± 0.041 L L 0.023 ± 0.007 L
LOWZ N W1 −6.287(−6.286) ± 0.016 0.024(0.025) ± 0.038 L L −0.007 ± 0.007 L
LOWZ S W1 −6.317(−6.315) ± 0.026 −0.110(−0.110) ± 0.062 L L 0.020 ± 0.011 L

CMASS N W2 −11.211(−11.225) ± 0.025 0.006(0.008) ± 0.025 0.216(0.225) ± 0.042 L L 0.012 ± 0.011
CMASS S W2 −11.145(−11.192) ± 0.036 −0.021(−0.013) ± 0.041 0.244(0.276) ± 0.066 L L 0.043 ± 0.015
LOWZ N W2 −11.215(−11.190) ± 0.038 0.039(0.035) ± 0.039 0.075(0.076) ± 0.066 L L −0.017 ± 0.016
LOWZ S W2 −11.227(−11.288) ± 0.058 −0.029(−0.033) ± 0.064 0.100(0.104) ± 0.116 L L 0.050 ± 0.023

CMASS N W3 −15.838(−15.836) ± 0.038 0.003(0.003) ± 0.026 0.180(0.0175) ± 0.038 −0.002 ± 0.019 L L
CMASS S W3 −15.757(−15.752) ± 0.058 0.019(0.017) ± 0.047 0.099(0.097) ± 0.065 −0.006 ± 0.029 L L
LOWZ N W3 −15.837(−15.838) ± 0.062 0.030(0.029) ± 0.046 0.116(0.114) ± 0.065 0.008 ± 0.034 L L
LOWZ S W3 −15.873(−15.879) ± 0.108 −0.097(−0.106) ± 0.086 0.062(0.046) ± 0.129 0.025 ± 0.064 L L

Note. The values inside the brackets are the corresponding fiducial values with h0,2,3 = 0.
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density by weighting each galaxy, as detailed in Reid et al.
(2016). We have also removed areas of the data in which the
completeness is below 90%. Due to the high completeness of
the sample, and the large smoothing scales adopted, we do not
anticipate that our conclusions will be affected by the galaxy
weighting scheme. However, to test this, we repeat our analysis
on each of the data sets without weighting the galaxies with any
observational systematic correction, assuming that each galaxy
contributes a total of unity to the number density. This is
obviously an inappropriate procedure, but will inform us of
how significant the effect of the galaxy weights are on our
conclusions.

Given that the northern/southern sky data possess very
different survey geometries, it is possible that our methodology
is affected by the boundaries of the data. However, this seems
unlikely given that our treatment of the boundary is repeated
exactly for the patchy mock data, and all subsets of the mock
catalogs present excellent consistency. To test the impact of the
mask further, we decrease the mask cut Mcut applied to the data
to be Mcut= 0.8, to test the sensitivity of our results to this
parameter. As we lower Mcut, we are including the regions
closer to the survey boundary, where the field may not be well
reconstructed.

Regarding the sampling, in principle the MFs are insensitive
to galaxy sampling and linear bias. This implies that on large
scales any dependence on linear galaxy bias drops out.
However, in practise this is not always precisely true because
the presence of shot noise in a field reconstructed from a point
distribution makes the measured power spectrum the sum of
two distinct quantities—the cosmological and noise power
spectra. The ratio between these two contributions will impact
the MF amplitudes, and is a function of the matter power
spectrum amplitude and galaxy bias. To test the sensitivity of
the statistics to sample selection, we randomly select galaxies
in the CMASS and LOWZ data to match the fiducial number
density = ´ - -n̄ 6.25 10 Mpc5 3, rather than mass selecting as
in the main body of the paper. It was shown in Kim et al.
(2014) that the difference between randomly and mass
selecting galaxies can significantly impact the genus statistic.
However, for the BOSS data, we do not expect such a
pronounced difference because the entire data set constitutes
mostly massive, highly biased galaxies, and with our number
density cut, we are using the majority of the sample over the
range 0.2< z< 0.4 and 0.45< z< 0.6. Hence randomly and
mass selecting the galaxies will yield a similarly biased sample.

Finally, we consider finite resolution pixel effects. This is
also an unlikely source of contamination because we are
Gaussian smoothing over at least four pixels in each data set,
and also the patchy mock catalogs are subject to the same pixel
resolution and are self-consistent. However, we repeat our
analysis, using the same box sizes as in Table 2 but with
resolutions Δ= 5.5, 4.3, 4.0, 3.1 Mpc for the CMASS N/S and
LOWZ N/S data, respectively. This corresponds to a change
from 5123 to 7683 pixels within the uniform lattices onto which
we aggregate the data.

The results of these tests are presented in Figure 13 for the
amplitudes Ak,G and Figure 14 for s0 and s2, respectively (left/
right panels). We present a combined fit of five parameters
Ak,G, s0, s2 to W1,2,3 extracted separately from the CMASS/
LOWZ N/S data. That is, we fit the functional form in
Equation (23) to W1,2,3, by minimizing c c c c= + +2

1
2

2
2

3
2,

with ck
2 defined in Equation (24). The black diamonds and error

bars are the result of repeating our analysis in the main body of
the paper, relaxing each assumption made in points I–IV above.
The “Fid” points in the figures are the fiducial values obtained
in the main text body, and the solid gold/green/blue/red filled
areas are the ±1σ ranges of the parameters from the fiducial
analysis for CMASS N/S and LOWZ N/S, respectively,
included as a visual guide.
The CMASS N/S and LOWZ N/S data present self-

consistent results for Ak,G and a0,2 for practically all tests
performed in this section. The only seemingly significant
peculiarity is the low value of a2 in the CMASS N data for test
III (randomly sampling the galaxies; right panel in Figure 14).
However, it is clear that a2 is the least well measured quantity
that we extract from the data, and it is not clear if we are
obtaining a systematically high value of this quantity in the
CMASS N data. This could also simply be a statistical
fluctuation, as the discrepancy between this point and the
fiducial measurement is not high (less than 2σ). The amplitudes
that we use for the cosmological parameter estimation present
excellent stability when we modify our analysis, which
indicates that they are robust cosmological measurements.
Finally in this appendix, we include the results of including

h0,2,3 when fitting a Hermite polynomial expansion to the
BOSS MF curves. In Table 6, we present the best fit and 1σ
uncertainties in all parameters with h0,2,3 included in the fits.
Also included are the best-fit values with h0,2,3= 0 (shown in
brackets).
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