
HAL Id: hal-03406848
https://hal.science/hal-03406848v1

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Fairness via Picking Sequences in Allocation of
Indivisible Goods

Laurent Gourvès, Julien Lesca, Anaëlle Wilczynski

To cite this version:
Laurent Gourvès, Julien Lesca, Anaëlle Wilczynski. On Fairness via Picking Sequences in Allocation
of Indivisible Goods. 7th International Conference on Algorithmic Decision Theory (ADT-21), Nov
2021, Toulouse, France. pp.258-272, �10.1007/978-3-030-87756-9_17�. �hal-03406848�

https://hal.science/hal-03406848v1
https://hal.archives-ouvertes.fr


On Fairness via Picking Sequences in Allocation
of Indivisible Goods?

Laurent Gourvès1, Julien Lesca1, and Anaëlle Wilczynski2
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Abstract. Among the fairness criteria for allocating indivisible re-
sources to a group of agents, some are based on minimum utility levels.
These levels can come from a specific allocation method, such as max-
imin fair-share criterion which is based on the cut-and-choose protocol.
We propose to analyze criteria whose minimum utility levels are inspired
by picking sequences, a well-established protocol for allocating indivisible
resources. We study these criteria and investigate their connections with
known fairness criteria, enriching the understanding of fair allocation of
indivisible goods.

Keywords: Fair division · Resource allocation · Computational Social
Choice.

1 Introduction

Fair division of indivisible goods is a fundamental and challenging question in
collective decision making that has been widely investigated [6, 10, 22]. Many
criteria have been proposed in the literature in order to evaluate the fairness of
an allocation when agents express preferences over bundles of goods via additive
utilities. A very natural criterion is envy-freeness (EF) [18, 30], a comparison-
based criterion which asks that no agent prefers the bundle assigned to another
agent over her own assigned bundle of goods. This criterion notably requires that
agents are aware of the other agents’ allocation. Alternatively, many criteria
simply impose, for an allocation to be considered fair, that each agent gets a
utility for her assigned bundle that is greater than or equal to a predefined
minimum utility level, called a fair guarantee [5]. As defined by Bogomolnaia et
al. [5], a fair guarantee for an agent is a utility level defined only according to
the utility function of the agent and the number of agents n. One can cite the
proportionality (Prop) fair guarantee [28] where each agent must get at least a
utility equal to her value for the whole set of goods divided by n. In addition,
a fair guarantee can be defined according to a given allocation procedure like,
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e.g., the maximin share (MMS) [13] or the min-max-fair-share (mFS) [9] which
are computed thanks to the cut-and-choose protocol. In this article, we define
several fairness criteria whose fair guarantee can be computed thanks to picking
sequences.

In the well-established allocation protocol of picking sequences (PS) [7, 12,
20], all goods are initially available and, given a sequence of agents (a.k.a. policy),
each agent picks at her turn an object among the remaining ones. Understanding
which allocations emerge from such a mechanism has been done, for example,
by Brams et al. [11], and Aziz et al. [4]. Moreover, picking sequences have been
widely studied in a strategic perspective where agents may choose not to pick
their best object [2, 8, 19, 29]. Non strategic agents are said to be sincere.

One of the main assets of picking sequences is their simplicity: everyone can
quickly understand how they work and they are easy to implement. Thus, they
are good candidates for sharing resources. If the final allocation is not built
with a picking sequence, then an agent may advocate for it and claim that her
utility must be as good as the one resulting from a picking sequence that she
has in mind. However, the number of possible policies is huge and, on top of
this, every agent can have her own policy in mind. This offers a number of
combinations which is undoubtedly too large. For a positive integer p bounded
by the number of agents, we propose a simple criterion named PSp in which the
fair guarantee of every agent is her utility for a subset of objects built as follows.
Rank the objects from best to worst under the agent’s preference, and keep the
items whose ranks are multiples of p. An agent would be endowed such a set
in a sincere picking sequence if her positions in the policy were multiples of p,
and if the other agents had the same preference. Indeed, without knowing the
others’ preferences, an agent may suppose that, in the worst case, everyone has
the same object ranking as hers. In PSp, the parameter p makes it possible to
move gradually between a very optimistic scenario where all the agents choose
first (p = 1), and a more pessimistic one where they all choose last (p = n).
PS criteria only rely on a very simple sequential allocation protocol, which is
commonly known (think about composition of sports teams at school). Moreover,
agents only need to know their assigned bundle, the number of agents and their
own preferences over goods. Therefore, these criteria are easy to understand and
can be naturally expressed as requirements by an agent.

The fact that the agent appears recursively in the policy is inspired by round
robin, a well known method for allocating resources [3, 26]. Round robin falls into
the class of recursively balanced (RB) policies [4], where each sequence of agents
can be divided into rounds during which all the agents pick an object exactly once
(all rounds are identical in round robin). At any step of the sequence, the agents
have chosen almost the same number of objects. Without any prior knowledge on
the agents’ utility functions, letting the agents pick the same number of times,
leading then to an even-shares division, constitutes a natural first argument for
equity [10]. Moreover, it is known from Aziz et al. [3] that picking sequences with
RB policies generate allocations that are envy-free up to one good (EF1) [13, 23],
a well-accepted fairness criterion which relaxes envy-freeness.
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The round robin share criterion introduced by Conitzer et al. [17] in the
context of public decision making corresponds to PSn. The round robin share
provides a one half approximation to Prop1, a relaxed version of proportionality.
Conitzer et al. [17] focus on mechanisms that satisfy this criterion among others,
whereas we focus on the properties of the PS criteria.

Contribution and organization. Section 2 contains a formal definition of the
model, a review of classical fairness concepts, some common relaxations up to
some goods, and a map explaining how all these notions relate. We notably com-
plement the state of the art on the relations between relaxations of envy-freeness
and proportionality. The PS criteria are introduced in Section 3. Analogously to
many relaxed criteria based on the satisfaction of the fairness requirement up to
the addition of some goods in the agent’s bundle (like, e.g., EF1 for envy-freeness
or Prop1 for proportionality), we also study relaxations of the PS criteria up to
some goods. For a given allocation of goods, the satisfaction of a PS criterion
can be checked in polynomial time. We identify in Section 4 the PS criteria for
which a satisfying allocation always exists, and when it is not the case, we set-
tle the complexity of deciding the existence of a satisfying allocation in a given
instance. Contrary to many classical criteria, we identify two non-trivial PS cri-
teria, namely PSn and PS11 (the relaxation up to one good of PS1), for which
a satisfying allocation always exists. Afterwards, we provide a complete picture
of the implications that relate the PS criteria and the classical fairness concepts
(Section 5), as well as their relaxations up to some goods. All these results are
summarized in Figure 1. Finally, we complement our study with experiments
which give an intuition on how well fairness criteria can be compatible with
efficiency. Due to space limitation, some proofs are omitted.

PSn

PS1

MMS

Prop

mFS

EF

CEEI

EFX

EF1
PropX

Prop1

PS1X

PS11

Guarantee
of existence

Fig. 1. Summary of the relations among fairness criteria and their existence guarantee
(critX stands for the relaxation of the criterion crit up to any good). An arrow from
criterion A to criterion B means that A implies B (A is stronger than B). If there is
no path from A to B then A is not stronger than B.
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2 Fair Division of Indivisible Goods

2.1 The setting

We are given a set N = {1, . . . , n} of n ≥ 2 agents and a set M = {x1, . . . , xm}
of m indivisible resources (or objects) which are goods. The agents have cardinal
preferences over the bundles of objects, expressed via utility function ui : 2M →
R+ for each agent i. We assume that the utilities are additive, i.e., for each
bundle of objects O and each agent i, ui(O) =

∑
xj∈O ui({xj}). For the sake

of simplicity, we denote ui({x}) by ui(x). We represent the preferences by an
(n ×m)-matrix where the value in row i and column j corresponds to ui(xj).
Preferences are strict (on the objects) whenever ui(x) 6= ui(y) for every agent i
and pair of objects x and y. We denote by oki the kth most preferred object of
agent i, for 1 ≤ k ≤ m (an arbitrary order over the objects is used in case of ties).
We suppose, w.l.o.g., that the number of objects m is a multiple of the number
of agents n (dummy objects with utility 0 can be added if it is not initially the
case), and q denotes the quotient m/n.

An allocation σ is a mapping σ : N → 2M such that σ(i) ∩ σ(j) = ∅ for all
agents i and j, and

⋃
i∈N σ(i) = M , where σ(i) is the bundle assigned to agent i.

A denotes the set of all allocations. The n-vector u(σ) = (u1(σ(1)), . . . , un(σ(n)))
describes the utilities that the agents obtain from allocation σ.

In this article, [t] := {1, . . . , t} for all positive integers t.

2.2 Classical fairness criteria

For the sake of self-containedness, we recall some classical fairness criteria.
– Maximin share guarantee (MMS) [13]: Allocation σ is MMS iff ui(σ(i)) ≥
mmsi for every agent i, where mmsi = maxσ′∈Aminj∈N ui(σ

′(j)).
– Proportionality (Prop) [28]: Allocation σ is Prop iff ui(σ(i)) ≥ 1

n

∑
x∈M ui(x),

for every agent i.
– Min-max-fair-share guarantee (mFS) [9]: Allocation σ is mFS iff ui(σ(i)) ≥
mfsi:= minσ′∈Amaxj∈N ui(σ

′(j)), for every agent i.
– Envy-freeness (EF) [18, 30]: Allocation σ is EF iff ui(σ(i)) ≥ ui(σ(j)) for all
agents i and j.
– Competitive Equilibrium with Equal Incomes (CEEI) (see, e.g., Moulin [24]):
Allocation σ is CEEI iff there exists a price vector p ∈ [0, 1]m such that σ(i) ∈
arg maxO⊆M{ui(O) :

∑
o∈O po ≤ 1} for every agent i.

An implication A⇒ B between criteria means that if an allocation satisfies
A for a given instance, then the same allocation also satisfies B for the same
instance. When such an implication holds, we say that criterion A is stronger, or
more demanding, than criterion B. All previous fairness criteria can be connected
w.r.t. such implications to form the following “scale of fairness” [9].

CEEI ⇒ EF ⇒ mFS ⇒ Prop⇒MMS (1)

An allocation satisfying MMS is guaranteed to exist for two agents [9]. How-
ever, starting from 3 agents, there may not exist an MMS allocation [21, 27].
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Common relaxations of envy-freeness and proportionality are based on sat-
isfying the criterion up to a fixed number c of goods, for c a positive integer.
Allocation σ is proportional up to c goods (Propc) [16] iff for every agent i, there
exists Xi ⊆ M \ σ(i) such that |Xi| ≤ c and ui(σ(i)) + ui(X

i) ≥ ui(M)/n. Al-
location σ is envy-free up to c goods (EFc) iff for all agents i and j, there exists
Xi ⊆ σ(j) such that |Xi| ≤ c and ui(σ(i)) + ui(X

i) ≥ ui(σ(j)). By definition,
Prop ⇒ Propc (resp., EF ⇒ EFc) holds for all c, and Propc ⇒ Propc′ (resp.,
EFc ⇒ EFc′) whenever c ≤ c′. In addition, we show that EFc ⇒ Propc holds
for all c.

Proposition 1. EFc⇒ Propc.

It follows that EFc⇒ Propc′ whenever c ≤ c′. The existence of an allocation
satisfying EF1 [13, 23] or Prop1 [17] i.e., c = 1, is guaranteed for every instance.
Relaxations up to one good have been strengthened to any good. Allocation
σ is proportional up to any good (PropX) [25] iff for every agent i, ui(σ(i)) +
ui(x) ≥ ui(M)/n holds for all x ∈ M \ σ(i). By definition we have Prop⇒
PropX⇒ Prop1. Allocation σ is envy-free up to any good (EFX) [15, 23] iff
ui(σ(i)) + ui(x) ≥ ui(σ(j)) for every pair of agents i and j and any object
x ∈ σ(j). It holds that EF⇒ EFX ⇒ EF1.

Though EFc implies Propc, we show that EFX does not imply PropX when
n > 2. Up to our best knowledge, this fact has not been explicitly stated before.

Proposition 2. If n = 2 then EFX ⇒ PropX, but EFX 6⇒ PropX when n > 2.

Proof. Suppose there are two agents. Take an instance and an EFX allocation σ.
Take the viewpoint of an agent, say agent 1. We have u1(σ(1))+u1(x) ≥ u1(σ(2))
for all x ∈ σ(2). Add u1(σ(1))+u1(x) ≥ u1(σ(2)) to u1(σ(1))+u1(x) ≥ u1(σ(1))
in order to get that 2(u1(σ(1)) +u1(x)) ≥ u1(σ(1)) +u1(σ(2)). By definition, we
also have u1(σ(1)) + u1(σ(2)) = u(M). Therefore σ satisfies PropX.

Suppose there are 3 agents and 5 objects {x1, . . . , x5} valued
(1, 1, 1, 0.25, 0.05) by agent 1. The utility of agents 2 and 3 is 1 for all objects.
Agents 1, 2 and 3 get {x1}, {x2, x3}, and {x4, x5}, respectively. This allocation
is EFX, but not PropX because 1.05 = u1(x1) + u1(x5) 6≥ u1(M)/3 = 1.1. We
can extend this instance to any number of agents n > 3.

3 Picking Sequence (PS) Fairness Criteria

We present new fairness criteria inspired by some picking sequences. A policy
π : {1, . . . ,m} → N is a sequence of agents of size m, denoted by π = 〈π(1), . . . ,
π(m)〉. A picking sequence is a sequential protocol asking agent π(t) to pick an
object within the set of remaining objects at stage t. A policy π is recursively
balanced (RB) [4] if π can be decomposed into q = m

n rounds, and each agent
chooses an object exactly once at each round. Round robin is a special RB policy
where all rounds are identical [3].

The PS fairness criteria use fair guarantees [5]. For every p ∈ [n], PSp imposes
that the utility of an agent i for her share is at least psp(i) where
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psp(i) :=
∑q
k=1 ui(o

(k−1)n+p
i ).

For example, agent i would get utility psp(i) in a sincere3 picking sequence
if her turns in π were all the multiples of p, and if the other agents had identical
preferences. Without knowing the preferences of the others, agent i considers the
worst case where all the other agents have the same induced ordinal preferences
as hers. In such a case, at each turn k, agent i can only get her ((k− 1)n+ p)th

most preferred available object, i.e., o
(k−1)n+p
i .

Let psp be the n-vector (psp(1), . . . , psp(n)). An allocation satisfies a PS
criterion if it fulfills the PS fair guarantees for every agent and some common
position p. It is important to note that allocations satisfying a PS criterion do
not need to be generated by a picking sequence.

Definition 1 (PSp allocation). An allocation σ ∈ A is PSp if for every agent
i ∈ N , ui(σ(i)) ≥ psp(i).

By definition, PSp ⇒ PSp′ holds for every 1 ≤ p ≤ p′ ≤ n. In this article, we
pay particular attention to positions p = 1 and p = n, which correspond to an
optimistic and pessimistic view, respectively.

The PS fair guarantees are computable in polynomial time, by definition.
Therefore, checking whether a given allocation satisfies a PS criterion is com-
putationally easy. Whereas this polynomial-time verification also holds for pro-
portionality and envy-freeness, this is not the case for CEEI, nor for MMS and
mFS [9], although the two latter notions are also based on fair guarantees. Note
that, contrary to envy-based criteria, the verification of satisfaction of a PS
criterion does not even need to have access to other agents’ allocation.

Like EF and Prop, PSp can be relaxed up to some goods. Allocation σ satisfies
PSp up to c goods (PSpc) iff for every agent i, there exists Xi ⊆ M \ σ(i) such
that |Xi| ≤ c and ui(σ(i)) + ui(X

i) ≥ psp(i). By definition we have PSpc ⇒
PSp′c⇒ PSp′c

′ whenever p ≤ p′ and c ≤ c′. However, a PSp allocation may not
satisfy PSp−11, as stated below.

Proposition 3. PS2 does not imply PS11.

Proof. Consider an instance where n = 2 and m = 6. The utilities are:(
24 16 12 6 5 2

10 5 4 3 2 1

)
Allocation σ (circles) is PS2 since ps2 = (24, 9) and u(σ) = (24, 15). However,

it is not PS11 because u1(σ(1)) + maxx/∈σ(1) u1(x) = 24 + 16 < 41 = ps1(1).

Allocation σ satisfies PSp up to any good (PSpX) iff for every agent i,
ui(σ(i)) + ui(x) ≥ psp(i) holds for all x ∈ M \ σ(i). It holds that PSp ⇒
PSpX⇒ PSp1. However, no relaxation up to any good implies a PS criterion
with no relaxation, as stated below.

Proposition 4. PS1X does not imply PSn.

3 Agents always pick their favorite object.
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4 Allocations Satisfying PS Criteria

Observe first that a PSp allocation may not exist if p < n: Consider an instance
where n = m with agents having the same induced preference order and no
object with zero utility. Every agent should receive one object but no agent
wants the common least preferred object. However, when p = n, the existence is
guaranteed for every number of goods m because every allocation resulting from
a picking sequence with an RB policy is PSn.

Proposition 5. Every allocation resulting from a sincere picking sequence with
an RB policy is PSn.

Proof. Consider an allocation σ resulting from a sincere picking sequence with
an RB policy π, and take an arbitrary agent i. For each round k of π, let pi(k)
denote the position occupied by agent i in π during round k, while xk is the object
picked by agent i in round k. By definition, we have ui(σ(i)) =

∑
1≤k≤q ui(xk).

Since agent i is sincere and pi(k)−1 objects have been taken before agent i picks

at round k, it follows that ui(xk) ≥ ui(opi(k)i ) for every round k. Thus, ui(σ(i)) ≥∑
1≤k≤q ui(o

pi(k)
i ). By definition of an RB sequence, (k − 1)n+ 1 ≤ pi(k) ≤ kn

holds. Therefore, we get that ui(σ(i)) ≥
∑

1≤k≤q ui(o
kn
i ) = psn(i).

The converse of Proposition 5 is not true. That is, not every PSn allocation
can result from a picking sequence with an RB policy, as shown in the next
example. This notably shows that allocations satisfying the PS criteria do not
necessarily emerge from a picking sequence (in particular, agents do not neces-
sarily get the same number of objects).

Example 1. Consider an instance where n = 2 and m = 4. The utilities are:(
20 3 2 1

5 4 3 2

)
The encircled allocation σ is PSn since psn = (4, 6) and u(σ) = (20, 9).

However, this allocation cannot result from a picking sequence with an RB policy
since the two agents do not have the same number of objects.

Nevertheless, checking the existence of a PSp allocation is hard for every
constant p < n, even when m = 2n.

Theorem 1. Determining whether a PSp allocation exists is NP-complete, even
when m = 2n and p < n is a constant.

Moreover, checking the existence of a PS1 allocation is hard even when n = 2,
showing that even checking the existence of a PSn−1 allocation is hard.

Theorem 2. Determining whether a PS1 allocation exists is NP-complete, even
when n = 2.

However, an allocation satisfying the relaxation up to one good of PS1 always
exists.
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Proposition 6. Every allocation resulting from a sincere picking sequence with
an RB policy is PS11.

Proof. Consider the allocation σ built with the sincere picking sequence that

uses an RB policy. Take an agent i. Her objects are {of(1)i , o
f(2)
i , . . . , o

f(q)
i } for

some increasing function f : [q] → [m] where f(j) is the rank in the prefer-
ence order of i of the object picked by i during round j. Let r be the small-
est index such that ori /∈ σ(i). Agent i has in her share every object oji with

j < r. Thus, o
f(j)
i = oji for all j < r. We deduce that

∑
j<r ui(o

f(j)
i ) =∑

j<r ui(o
j
i ) ≥

∑
j<r ui(o

1+(j−1)n
i ) (2). The policy being RB, we also have

ui(o
f(j)
i ) ≥ ui(o

jn
i ) ≥ ui(o

1+jn
i ) for all j ∈ [q − 1], from which we deduce

that
∑q−1
j=r ui(o

f(j)
i ) ≥

∑q−1
j=r ui(o

1+jn
i ) =

∑q
j=r+1 ui(o

1+(j−1)n
i ) (3). Com-

bine (2) and (3) with ui(o
r
i ) ≥ ui(o

1+(r−1)n
i ) to get that ui(σ(i)) + ui(o

r
i ) ≥∑q

k=1 ui(o
1+(k−1)n
i ) = ps1(i). In other words, σ is PS11 for agent i.

Propositions 5 and 6, together with Proposition 1 from Aziz et al. [3], imply
that a sincere picking sequence with an RB policy produces an allocation that
simultaneously satisfies EF1, Prop1, PS11 and PSn.

By Proposition 6, a PSp1 allocation exists for every p ∈ [n]. It is not the case
for PSpX, even when p = n−1 for any number n of agents: Consider an instance
where m = 2n with the following preferences for every agent i: ui(xj) = 1 for
every j ∈ [n − 1], ui(xj) = 1/n for every n ≤ j ≤ 2n − 1 and ui(x2n) = 0. We
have psn−1(i) = 1 + 1/n for every agent i. To satisfy PSn−1X, each agent i must
be in one of the following situations: ui(σ(i)) ≥ 1 + 1/n, or σ(i) = {xk, x2n} for
some k ∈ [n− 1], or σ(i) = {xj : n ≤ j ≤ 2n}. Making n disjoint bundles under
such conditions is impossible.

Since a PS11 allocation always exists, there is no need to consider relaxations
up to c goods for p > 1 and c > 1. Combined with the fact that the existence of
PSpX allocations is not guaranteed even for p = n− 1, we can focus on stronger
relaxations and only consider criteria PS11 and PS1X.

5 Relations between Fairness Criteria

We compare in this section the PS criteria with the classical fairness criteria of
the literature given in Section 2.2. We will show that the ordered scale of fairness
(1), completed with known relaxations of envy-freeness and proportionality, can
be connected with the PS criteria as shown in Figure 1.

Surprisingly, the strongest requirement CEEI in the fairness scale (1) does not
even imply PSn−1 and PS11 which are among the least demanding PS criteria.

Proposition 7. CEEI 6⇒ PSn−1 for any number of agents n and CEEI 6⇒ PS11.

Proof. Consider an instance where m = 2n, and two integers α and β such
that βn > α > β(n − 1) and β > 1. The utilities are such that ui(xi) = α
and ui(xj) = 0 for every index j 6= i and every agent i ∈ {1, . . . , n − 2}, and
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un−1(xn−1) = un−1(x2n) = α and un−1(x) = 0 for every object x ∈ M \
{xn−1, x2n}. The utility function of agent n is such that un(xj) = α for every
index j ∈ {1, . . . , n − 1}, un(xj) = β for every index j ∈ {n, . . . , 2n − 1}, and
un(x2n) = 0. Let us denote by σ the allocation assigning object xi to every agent
i ∈ {1, . . . , n−2}, the bundle of objects {xn−1, x2n} to agent n−1 and the bundle
{xn, xn+1, . . . , x2n−1} to agent n. Observe that allocation σ is CEEI w.r.t. price
vector p given by pi = 1 for every i ∈ {1, . . . , n − 2}, pn−1 = n

n+1 , pi = 1
n for

every i ∈ {n, n + 1, . . . , 2n − 1} and p2n = 1
n+1 . However, allocation σ is not

PSn−1 because un(σ(n)) = βn < α + β = un(on−1n ) + un(o2n−1n ) = psn−1(n),
and thus is not PSp for any position p ∈ {1, . . . , n− 1}. For PS11, it suffices to
remark that the encircled allocation in the proof of Proposition 3 is CEEI w.r.t.
price vector p = (1, 0.75, 0.6, 0.2, 0.2, 0.25) but not PS11.

It follows that none of the criteria of the scale of fairness implies PSp when
p < n, meaning that PSp is not always “weaker” than any criterion of the scale
of fairness. However, all criteria of the scale of fairness imply the PSn criterion.

Proposition 8. MMS ⇒ PSn.

Proof. We prove that mmsi ≥ psn(i) for every agent i. Take an allocation where
the `th bundle (1 ≤ ` ≤ n) gathers all the (` + kn)th most preferred objects
of agent i for 0 ≤ k < q. The nth bundle, whose value is psn(i), is the least
preferred. Thus, mmsi ≥ psn(i) because mmsi is agent i’s maximum value for
the worst bundle for every possible allocation.

Conversely, for p > 1, the PS criteria are not stronger than any classical
criterion either. Indeed, PS2 does not imply MMS, the least demanding criterion
in the fairness scale (1) nor Prop1, thus no PS criterion with p > 1 does.

Proposition 9. 1. PS2 6⇒ MMS for any n,
2. PS2 6⇒ Prop1,
3. PS2 6⇒ Propc for large enough m and any c.

Sketch of proof. We only present case (2) here. Consider an instance where
n = 3 and m = 6. The utilities are: 24 16 15 14 8 7

1 2 3 4 5 6

2 4 6 8 10 12


The encircled allocation σ is PS2 since ps2 = (24, 7, 14). However, σ is not

Prop1 because u1(σ(1)) + maxx/∈σ(1) u1(x) = 24 + 16 < 42 = u1(M)/2.

However, PS1 implies the mFS criterion.

Proposition 10. PS1 ⇒ mFS.

Proof. For every agent i, ps1(i) = maxσ∈A′ maxj∈N ui(σ(j)) where A′ ⊆
A is the set of allocations giving to each agent exactly one object within
{okn+1
i , okn+2

i , . . . , okn+ni } for each 0 ≤ k < m/n. Thus, ps1(i) ≥ minσ∈A′

maxj∈N ui(σ(j)) ≥ minσ∈Amaxj∈N ui(σ(j)) = mfsi.
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Nevertheless, PS1 is not stronger than EF since it does not even imply EF1.

Proposition 11. PS1 6⇒ EF1, even under strict preferences over the objects.

Proof. Consider an instance where n = 4 and m = 12. The utilities are:
20 19 18 17 8 7 6 5 4 3 2 1

15 12 11 10 6 3 9 5 13 8 7 2

1 6 9 8 12 18 20 19 5 10 14 3

2 5 6 15 11 12 9 8 4 20 18 19


Allocation σ (circles), with u(σ)=(32, 33, 57, 57), is PS1 since ps1= (32, 31, 38,

38). But agent 1 envies agent 2, even if any object is removed from σ(2).

The fact that PS1 6⇒ EF1 may look surprising since fair guarantees of PS
criteria can be interpreted via RB sequences, which generate EF1 allocations.
However, satisfying a PS criterion does not impose to be the outcome of an RB
sequence but focuses on the fulfillment of associated minimum utility levels, that
are personal to each agent and do not need the inter-comparison between agents.

In their relaxed versions, PS1 and Prop remain connected.

Proposition 12. PS1c⇒ Propc.

Proof. Take an instance, an agent i, and a PS1c allocation σ. Recall that, w.l.o.g.,
m = qn. There exists Xi ⊆M \ σ(i) such that |Xi| ≤ c and ui(σ(i)) + ui(X

i) ≥
ui({o1i , o

1+n
i , . . . , o

1+(q−1)n
i }). Since ui({o1i , o

1+n
i , . . . , o

1+(q−1)n
i }) ≥ ui(M)/n, we

get that ui(σ(i)) + ui(X
i) ≥ ui(M)/n. Thus, σ satisfies Propc.

From Proposition 9, PSn cannot imply Propc when the number of objects m
is large enough. However, PSn implies Propc when m is at most (1 + c)n.

Proposition 13. If m ≤ (1 + c)n, then PSn ⇒ Propc.

Conversely, no “up to” relaxation of envy-freeness implies a PS criterion.

Proposition 14. EFX does not imply any PS criterion.

Proof. By Proposition 7, we have that EFX 6⇒ PS11. To prove that EFX 6⇒
PSn, consider an instance where n = 2 and m = 4. The utilities are:(

12 8 12 8

14 1 13 0

)
Allocation σ (circles) is EFX: agent 2 is not envious and agent 1 is not envious

if one good is removed from σ(2). However, σ is not PSn since psn = (20, 13).

Proposition 2 states that EFX 6⇒ PropX though EFc ⇒ Propc. We know
that PS11 ⇒ Prop1 and it turns out that PS1X ⇒ PropX.

Proposition 15. PS1X ⇒ PropX.
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Proof. Take an instance, an agent i, and a PS1X allocation σ. Recall that,

w.l.o.g., m = qn. We have ui(σ(i))+ui(x) ≥ ui({o1i , o
1+n
i , . . . , o

1+(q−1)n
i }) for all

x ∈M \ σ(i). Since ui({o1i , o
1+n
i , . . . , o

1+(q−1)n
i }) ≥ ui(M)/n, ui(σ(i)) + ui(x) ≥

ui(M)/n holds for all x ∈M \ σ(i). Hence, σ satisfies PropX.

EFX⇒PS1X cannot hold because EFX6⇒ PropX and PS1X⇒ PropX. More-
over, PS1 X⇒ EFX cannot hold because it would contradict Proposition 11.

Note that PSn gives a 1
n -approximation for MMS, like EF1 [1]. The approx-

imation ratio of a PSp allocation can be generalized to n−p+1
n for all p ∈ [n].

Proposition 16. ∀(p, i) ∈ [n]×N , psp(i) ≥ n−p+1
n mmsi.

6 Efficiency of Fair Allocations

It is long known that there is a tension between the two goals of computing
efficient and fair allocations [14, 26]. In this section we propose an empirical
analysis of how the PS criteria go together with efficiency, and a comparison
with the classical fairness criteria.

An allocation is Pareto-efficient if there is no other allocation σ′ that Pareto-
dominates it, i.e., such that ui(σ

′(i)) ≥ ui(σ(i)) for each agent i, and the inequal-
ity is strict for at least one agent. The social welfare (SW) is another efficiency
measure. The utilitarian SW of allocation σ is equal to

∑
i∈N ui(σ(i)), the egal-

itarian SW to mini∈N ui(σ(i)), and the Nash SW to
∏
i∈N ui(σ(i)).

It is easy to see that a Pareto-efficient allocation may not satisfy a PS crite-
rion, and vice versa. Similarly, maximizing the social welfare and achieving PS
fairness may be disconnected, as illustrated in the next example.

Example 2. Consider the instance given in the proof of Proposition 14. The
allocation σ (circles), which is the unique allocation maximizing the utilitarian,
egalitarian and Nash SW, is not even PSn since u1(σ(1)) = 16 < 20 = psn(1). It
is surprising since an allocation maximizing the Nash SW is known to be EF1
and to provide a good approximation to MMS [15]. Alternatively, the unique PS1

allocation (frames) is different and thus does not maximize any social welfare.

We study how often “fair” allocations are efficient. We run 1,000 instances
with n = 3 agents where m ranges from 6 to 9 (adding dummy objects can make
m a multiple of n). The valuations of the agents over the objects are integers
between 0 and 100 generated following a uniform distribution and then normal-
ized. All the nm possible allocations are considered. We compare in Table 1 the
percentage of allocations satisfying classical and PS fairness criteria, and the
proportion of these allocations that are Pareto-efficient. Moreover, we compare
in Fig. 2 the average of the utilitarian and egalitarian SW among the allocations
satisfying a given fairness criterion (the behavior for Nash SW is similar).

In practice, the set of PS1X allocations is almost the same as the set of PS1

allocations, where PS1 is very demanding, even though less than CEEI. A signif-
icant proportion of allocations are PSn (≈20%). This is less than the proportion
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Table 1. Percentage of allocations satisfying fairness criteria and percentage of these
allocations that are Pareto-efficient for n = 3

% fair allocations % Pareto-eff. alloc. / fair alloc.

m 6 7 8 9 6 7 8 9

MMS 9.73 6.69 5.35 4.53 20.54 13.50 8.37 4.80
Prop 3.64 3.67 3.67 3.51 30.85 18.29 10.38 5.56
mFS 2.20 2.60 2.94 3.06 38.00 21.77 11.73 6.05
EF 0.83 0.86 0.82 0.77 51.15 32.44 20.22 11.67

CEEI 0.39 0.25 0.13 0.07 86.31 80.34 80.21 82.28

Prop1 79.28 72.99 68.50 64.49 7.94 4.43 2.33 1.19
PropX 4.87 4.5 4.37 4.13 23.02 14.72 8.58 4.71

EF1 18.65 17.04 15.42 14.21 13.65 7.90 4.30 2.22
EFX 2.85 2.33 1.88 1.66 29.03 18.85 12.25 7.11

PS3 30.69 18.43 17.46 18.94 11.77 8.03 4.31 2.12
PS2 4.01 4.27 5.42 3.73 28.38 16.76 8.25 5.61
PS1 0.15 0.43 0.22 0.26 83.67 50.26 44.63 26.02

PS11 46.76 49.53 36.48 34.60 9.16 5.13 2.97 1.51
PS1X 0.16 0.50 0.26 0.30 82.36 41.72 33.52 22.14

of PS11 allocations (≈40%), and even significantly less than the proportion of
Prop1 allocations (≈70%). Among these 3 criteria which can be satisfied for any
instance, our experiments show that PSn is the most selective one.

We observe that the proportion of efficient allocations among fair allocations
seems to be dependent on the number of fair allocations. In particular, the
proportion of PS1 allocations that are Pareto-efficient is superior to the same
quantity for EF allocations, and the utilitarian SW for PS1 is also better in
average than the SW for EF. EF1 and PSn, which are both always satisfiable,
seem to be equivalent regarding efficiency.

7 Conclusion

We have introduced some criteria whose fair guarantees are inspired by picking
sequences where every agent supposes that her turns are the multiples of p. By
the simplicity of the picking sequence protocol and the definition of the PS fair
guarantee, PS criteria can be easily expressed by an agent as a fairness require-
ment. Moreover, even without knowing how the rest of goods is allocated, it is
easy for an agent to check whether she can be satisfied with her own assigned
bundle according to a PS criterion. The two extreme criteria (PS1 and PSn) are
well connected with the ordered scale of fairness. More precisely, PS1 implies
mFS, MMS implies PSn, whereas PS11 and PS1X imply Prop1 and PropX, re-
spectively. In light of the fact that EFX 6⇒ PropX, the connection of relaxed
PS1 with relaxed proportionality is interesting and highlights that PS criteria
and proportionality are conceptually close. We have proved that allocations sat-
isfying PSn and PS11 can always be found whereas, as showed via our extensive
comparative study of PS criteria with classical fairness criteria, these two cri-
teria are far from being trivial. This positive result regarding the possibility of
satisfaction is appealing since only a few known fairness criteria (EF1 and Prop1
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Fig. 2. Average of the utilitarian and egalitarian social welfares within the set of fair
allocations for n = 3 and m ∈ {6, 7, 8, 9}

among those studied here) are always satisfiable. The whole picture of existence
and interactions between fairness criteria is depicted in Figure 1. Combined
with the experiments which explore the compatibility of the PS criteria with
efficiency, our work contributes to the understanding of how the fairness criteria
for allocating indivisible goods interact.

The fact that EFX 6⇒ PropX when n > 2 (Proposition 2) calls for the
following less restrictive notion of envy-freeness: Allocation σ is broadly EFc
(bEFc) iff for every pair of agents i and j, there exists Xi ⊆ M \ σ(i) such
that |Xi| ≤ c and ui(σ(i)) + ui(X

i) ≥ ui(σ(j)). Allocation σ is broadly EFX
(bEFX) iff for every pair of agents i and j, ui(σ(i)) + ui(x) ≥ ui(σ(j)) holds for
any x ∈ M \ σ(i). Then, EFc ⇒ bEFc ⇒ Propc, bEFX ⇒ EFX, and bEFX ⇒
PropX hold. Obviously, EFX and bEFX coincide when n = 2.

Several research directions can be derived from this work. Alternative defi-
nitions of fair guarantees can be explored like what some agent i would get in a
picking sequence with a balanced alternation policy 〈1, . . . , n | n, . . . , 1 | . . .〉. An-
other possibility would be to consider a probability distribution over the possible
positions taken by the agent in round robin. By using a uniform distribution,
we fall back to the definition of proportionality. One can also suppose that p in
PSp is not the same for all agents.

We have focused on a particular type of relaxation of a fairness criterion
F , namely when F can be satisfied up to some good(s). Other relaxations can
be studied. For example, F can be satisfied for any given subset of t privileged
agents. Another type of relaxation consists of satisfying F up to a multiplicative
factor. We know that PSn can always be satisfied (Proposition 5) but when
p < n, no positive α guarantees the existence of an allocation σ such that
ui(σ(i)) ≥ αpsp(i) for all i ∈ N .



Bibliography

[1] Amanatidis, G., Birmpas, G., Markakis, E.: Comparing approximate relax-
ations of envy-freeness. In: Proc. of IJCAI’18. pp. 42–48 (2018)

[2] Aziz, H., Bouveret, S., Lang, J., Mackenzie, S.: Complexity of manipulating
sequential allocation. In: Proc. of AAAI’17. pp. 328–334 (2017)

[3] Aziz, H., Huang, X., Mattei, N., Segal-Halevi, E.: The constrained
round robin algorithm for fair and efficient allocation. arXiv preprint
arXiv:1908.00161 (2019)

[4] Aziz, H., Walsh, T., Xia, L.: Possible and necessary allocations via sequential
mechanisms. In: Proc. of IJCAI’15. pp. 468–474 (2015)

[5] Bogomolnaia, A., Moulin, H., Stong, R.: Guarantees in fair division: general
or monotone preferences. arXiv preprint arXiv:1911.10009 (2019)

[6] Bouveret, S., Chevaleyre, Y., Maudet, N.: Fair allocation of indivisible
goods. In: Handbook of Computational Social Choice, chap. 12, pp. 284–
310. Cambridge University Press (2016)

[7] Bouveret, S., Lang, J.: A general elicitation-free protocol for allocating in-
divisible goods. In: Proc. of IJCAI’11. pp. 73–78 (2011)

[8] Bouveret, S., Lang, J.: Manipulating picking sequences. In: Proc. of
ECAI’14. pp. 141–146 (2014)
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