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Among the fairness criteria for allocating indivisible resources to a group of agents, some are based on minimum utility levels. These levels can come from a specific allocation method, such as maximin fair-share criterion which is based on the cut-and-choose protocol. We propose to analyze criteria whose minimum utility levels are inspired by picking sequences, a well-established protocol for allocating indivisible resources. We study these criteria and investigate their connections with known fairness criteria, enriching the understanding of fair allocation of indivisible goods.

Introduction

Fair division of indivisible goods is a fundamental and challenging question in collective decision making that has been widely investigated [START_REF] Bouveret | Fair allocation of indivisible goods[END_REF][START_REF] Brams | Fair division of indivisible items[END_REF][START_REF] Lang | Fair division of indivisible goods[END_REF]. Many criteria have been proposed in the literature in order to evaluate the fairness of an allocation when agents express preferences over bundles of goods via additive utilities. A very natural criterion is envy-freeness (EF) [START_REF] Foley | Resource allocation and the public sector[END_REF][START_REF] Varian | Equity, envy, and efficiency[END_REF], a comparisonbased criterion which asks that no agent prefers the bundle assigned to another agent over her own assigned bundle of goods. This criterion notably requires that agents are aware of the other agents' allocation. Alternatively, many criteria simply impose, for an allocation to be considered fair, that each agent gets a utility for her assigned bundle that is greater than or equal to a predefined minimum utility level, called a fair guarantee [START_REF] Bogomolnaia | Guarantees in fair division: general or monotone preferences[END_REF]. As defined by Bogomolnaia et al. [START_REF] Bogomolnaia | Guarantees in fair division: general or monotone preferences[END_REF], a fair guarantee for an agent is a utility level defined only according to the utility function of the agent and the number of agents n. One can cite the proportionality (Prop) fair guarantee [START_REF] Steinhaus | The problem of fair division[END_REF] where each agent must get at least a utility equal to her value for the whole set of goods divided by n. In addition, a fair guarantee can be defined according to a given allocation procedure like, e.g., the maximin share (MMS) [START_REF] Budish | The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes[END_REF] or the min-max-fair-share (mFS) [START_REF] Bouveret | Characterizing conflicts in fair division of indivisible goods using a scale of criteria[END_REF] which are computed thanks to the cut-and-choose protocol. In this article, we define several fairness criteria whose fair guarantee can be computed thanks to picking sequences.

In the well-established allocation protocol of picking sequences (PS) [START_REF] Bouveret | A general elicitation-free protocol for allocating indivisible goods[END_REF][START_REF] Brams | The win-win solution: guaranteeing fair shares to everybody[END_REF][START_REF] Kohler | A class of sequential games[END_REF], all goods are initially available and, given a sequence of agents (a.k.a. policy), each agent picks at her turn an object among the remaining ones. Understanding which allocations emerge from such a mechanism has been done, for example, by Brams et al. [START_REF] Brams | Efficient fair division: Help the worst off or avoid envy?[END_REF], and Aziz et al. [START_REF] Aziz | Possible and necessary allocations via sequential mechanisms[END_REF]. Moreover, picking sequences have been widely studied in a strategic perspective where agents may choose not to pick their best object [START_REF] Aziz | Complexity of manipulating sequential allocation[END_REF][START_REF] Bouveret | Manipulating picking sequences[END_REF][START_REF] Kalinowski | Strategic behavior when allocating indivisible goods sequentially[END_REF][START_REF] Tominaga | Manipulations in two-agent sequential allocation with random sequences[END_REF]. Non strategic agents are said to be sincere.

One of the main assets of picking sequences is their simplicity: everyone can quickly understand how they work and they are easy to implement. Thus, they are good candidates for sharing resources. If the final allocation is not built with a picking sequence, then an agent may advocate for it and claim that her utility must be as good as the one resulting from a picking sequence that she has in mind. However, the number of possible policies is huge and, on top of this, every agent can have her own policy in mind. This offers a number of combinations which is undoubtedly too large. For a positive integer p bounded by the number of agents, we propose a simple criterion named PS p in which the fair guarantee of every agent is her utility for a subset of objects built as follows. Rank the objects from best to worst under the agent's preference, and keep the items whose ranks are multiples of p. An agent would be endowed such a set in a sincere picking sequence if her positions in the policy were multiples of p, and if the other agents had the same preference. Indeed, without knowing the others' preferences, an agent may suppose that, in the worst case, everyone has the same object ranking as hers. In PS p , the parameter p makes it possible to move gradually between a very optimistic scenario where all the agents choose first (p = 1), and a more pessimistic one where they all choose last (p = n). PS criteria only rely on a very simple sequential allocation protocol, which is commonly known (think about composition of sports teams at school). Moreover, agents only need to know their assigned bundle, the number of agents and their own preferences over goods. Therefore, these criteria are easy to understand and can be naturally expressed as requirements by an agent.

The fact that the agent appears recursively in the policy is inspired by round robin, a well known method for allocating resources [START_REF] Aziz | The constrained round robin algorithm for fair and efficient allocation[END_REF][START_REF] Procaccia | Cake cutting algorithms[END_REF]. Round robin falls into the class of recursively balanced (RB) policies [START_REF] Aziz | Possible and necessary allocations via sequential mechanisms[END_REF], where each sequence of agents can be divided into rounds during which all the agents pick an object exactly once (all rounds are identical in round robin). At any step of the sequence, the agents have chosen almost the same number of objects. Without any prior knowledge on the agents' utility functions, letting the agents pick the same number of times, leading then to an even-shares division, constitutes a natural first argument for equity [START_REF] Brams | Fair division of indivisible items[END_REF]. Moreover, it is known from Aziz et al. [START_REF] Aziz | The constrained round robin algorithm for fair and efficient allocation[END_REF] that picking sequences with RB policies generate allocations that are envy-free up to one good (EF1) [START_REF] Budish | The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes[END_REF][START_REF] Lipton | On approximately fair allocations of indivisible goods[END_REF], a well-accepted fairness criterion which relaxes envy-freeness.

The round robin share criterion introduced by Conitzer et al. [START_REF] Conitzer | Fair public decision making[END_REF] in the context of public decision making corresponds to PS n . The round robin share provides a one half approximation to Prop1, a relaxed version of proportionality. Conitzer et al. [START_REF] Conitzer | Fair public decision making[END_REF] focus on mechanisms that satisfy this criterion among others, whereas we focus on the properties of the PS criteria.

Contribution and organization. Section 2 contains a formal definition of the model, a review of classical fairness concepts, some common relaxations up to some goods, and a map explaining how all these notions relate. We notably complement the state of the art on the relations between relaxations of envy-freeness and proportionality. The PS criteria are introduced in Section 3. Analogously to many relaxed criteria based on the satisfaction of the fairness requirement up to the addition of some goods in the agent's bundle (like, e.g., EF1 for envy-freeness or Prop1 for proportionality), we also study relaxations of the PS criteria up to some goods. For a given allocation of goods, the satisfaction of a PS criterion can be checked in polynomial time. We identify in Section 4 the PS criteria for which a satisfying allocation always exists, and when it is not the case, we settle the complexity of deciding the existence of a satisfying allocation in a given instance. Contrary to many classical criteria, we identify two non-trivial PS criteria, namely PS n and PS 1 1 (the relaxation up to one good of PS 1 ), for which a satisfying allocation always exists. Afterwards, we provide a complete picture of the implications that relate the PS criteria and the classical fairness concepts (Section 5), as well as their relaxations up to some goods. All these results are summarized in Figure 1. Finally, we complement our study with experiments which give an intuition on how well fairness criteria can be compatible with efficiency. Due to space limitation, some proofs are omitted.
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Fig. 1. Summary of the relations among fairness criteria and their existence guarantee (critX stands for the relaxation of the criterion crit up to any good). An arrow from criterion A to criterion B means that A implies B (A is stronger than B). If there is no path from A to B then A is not stronger than B.

Fair Division of Indivisible Goods

The setting

We are given a set N = {1, . . . , n} of n ≥ 2 agents and a set M = {x 1 , . . . , x m } of m indivisible resources (or objects) which are goods. The agents have cardinal preferences over the bundles of objects, expressed via utility function u i : 2 M → R + for each agent i. We assume that the utilities are additive, i.e., for each bundle of objects O and each agent i, u i (O) = xj ∈O u i ({x j }). For the sake of simplicity, we denote u i ({x}) by u i (x). We represent the preferences by an (n × m)-matrix where the value in row i and column j corresponds to u i (x j ). Preferences are strict (on the objects) whenever u i (x) = u i (y) for every agent i and pair of objects x and y. We denote by o k i the k th most preferred object of agent i, for 1 ≤ k ≤ m (an arbitrary order over the objects is used in case of ties). We suppose, w.l.o.g., that the number of objects m is a multiple of the number of agents n (dummy objects with utility 0 can be added if it is not initially the case), and q denotes the quotient m/n.

An allocation σ is a mapping σ : N → 2 M such that σ(i) ∩ σ(j) = ∅ for all agents i and j, and i∈N σ(i) = M , where σ(i) is the bundle assigned to agent i. A denotes the set of all allocations. The n-vector u(σ) = (u 1 (σ(1)), . . . , u n (σ(n))) describes the utilities that the agents obtain from allocation σ.

In this article, [t] := {1, . . . , t} for all positive integers t.

Classical fairness criteria

For the sake of self-containedness, we recall some classical fairness criteria.

-Maximin share guarantee (MMS) [START_REF] Budish | The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes[END_REF]: Allocation σ is MMS iff u i (σ(i)) ≥ mms i for every agent i, where mms i = max σ ∈A min j∈N u i (σ (j)).

-Proportionality (Prop) [START_REF] Steinhaus | The problem of fair division[END_REF]: Allocation σ is Prop iff u i (σ(i)) ≥ 1 n x∈M u i (x), for every agent i.

-Min-max-fair-share guarantee (mFS) [START_REF] Bouveret | Characterizing conflicts in fair division of indivisible goods using a scale of criteria[END_REF]: Allocation σ is mFS iff u i (σ(i)) ≥ mfs i := min σ ∈A max j∈N u i (σ (j)), for every agent i.

-Envy-freeness (EF) [START_REF] Foley | Resource allocation and the public sector[END_REF][START_REF] Varian | Equity, envy, and efficiency[END_REF]: Allocation σ is EF iff u i (σ(i)) ≥ u i (σ(j)) for all agents i and j.

-Competitive Equilibrium with Equal Incomes (CEEI) (see, e.g., Moulin [START_REF] Moulin | Cooperative Microeconomics: A Game-Theoretic Introduction[END_REF]): Allocation σ is CEEI iff there exists a price vector p ∈ [0, 1] m such that σ(i) ∈ arg max O⊆M {u i (O) : o∈O p o ≤ 1} for every agent i.

An implication A ⇒ B between criteria means that if an allocation satisfies A for a given instance, then the same allocation also satisfies B for the same instance. When such an implication holds, we say that criterion A is stronger, or more demanding, than criterion B. All previous fairness criteria can be connected w.r.t. such implications to form the following "scale of fairness" [START_REF] Bouveret | Characterizing conflicts in fair division of indivisible goods using a scale of criteria[END_REF].

CEEI ⇒ EF ⇒ mF S ⇒ P rop ⇒ M M S (1) 
An allocation satisfying MMS is guaranteed to exist for two agents [START_REF] Bouveret | Characterizing conflicts in fair division of indivisible goods using a scale of criteria[END_REF]. However, starting from 3 agents, there may not exist an MMS allocation [START_REF] Kurokawa | When can the maximin share guarantee be guaranteed?[END_REF][START_REF] Procaccia | Fair enough: Guaranteeing approximate maximin shares[END_REF].

Common relaxations of envy-freeness and proportionality are based on satisfying the criterion up to a fixed number c of goods, for c a positive integer. Allocation σ is proportional up to c goods (Propc) [START_REF] Chakraborty | Weighted envyfreeness in indivisible item allocation[END_REF] iff for every agent i, there exists

X i ⊆ M \ σ(i) such that |X i | ≤ c and u i (σ(i)) + u i (X i ) ≥ u i (M )/n.
Allocation σ is envy-free up to c goods (EFc) iff for all agents i and j, there exists

X i ⊆ σ(j) such that |X i | ≤ c and u i (σ(i)) + u i (X i ) ≥ u i (σ(j))
. By definition, Prop ⇒ Propc (resp., EF ⇒ EFc) holds for all c, and Propc ⇒ Propc (resp., EFc ⇒ EFc ) whenever c ≤ c . In addition, we show that EFc ⇒ Propc holds for all c.

Proposition 1. EFc ⇒ Propc.
It follows that EFc ⇒ Propc whenever c ≤ c . The existence of an allocation satisfying EF1 [START_REF] Budish | The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes[END_REF][START_REF] Lipton | On approximately fair allocations of indivisible goods[END_REF] or Prop1 [START_REF] Conitzer | Fair public decision making[END_REF] i.e., c = 1, is guaranteed for every instance. Relaxations up to one good have been strengthened to any good. Allocation σ is proportional up to any good (PropX) [START_REF] Moulin | Fair Division in the Internet Age[END_REF] iff for every agent i, u i (σ(i)) + u i (x) ≥ u i (M )/n holds for all x ∈ M \ σ(i). By definition we have Prop⇒ PropX⇒ Prop1. Allocation σ is envy-free up to any good (EFX) [START_REF] Caragiannis | The unreasonable fairness of maximum Nash welfare[END_REF][START_REF] Lipton | On approximately fair allocations of indivisible goods[END_REF] iff u i (σ(i)) + u i (x) ≥ u i (σ(j)) for every pair of agents i and j and any object x ∈ σ(j). It holds that EF⇒ EFX ⇒ EF1.

Though EFc implies Propc, we show that EFX does not imply PropX when n > 2. Up to our best knowledge, this fact has not been explicitly stated before.

Proposition 2. If n = 2 then EFX ⇒ PropX, but EFX ⇒ PropX when n > 2.
Proof. Suppose there are two agents. Take an instance and an EFX allocation σ. Take the viewpoint of an agent, say agent 1. We have

u 1 (σ(1))+u 1 (x) ≥ u 1 (σ(2)) for all x ∈ σ(2). Add u 1 (σ(1)) + u 1 (x) ≥ u 1 (σ(2)) to u 1 (σ(1)) + u 1 (x) ≥ u 1 (σ(1)) in order to get that 2(u 1 (σ(1)) + u 1 (x)) ≥ u 1 (σ(1)) + u 1 (σ(2))
. By definition, we also have u 1 (σ(1)) + u 1 (σ(2)) = u(M ). Therefore σ satisfies PropX.

Suppose there are 3 agents and 5 objects {x 1 , . . . , x 5 } valued (1, 1, 1, 0.25, 0.05) by agent 1. The utility of agents 2 and 3 is 1 for all objects. Agents 1, 2 and 3 get {x 1 }, {x 2 , x 3 }, and {x 4 , x 5 }, respectively. This allocation is EFX, but not PropX because 1.05 = u 1 (x 1 ) + u 1 (x 5 ) ≥ u 1 (M )/3 = 1.1. We can extend this instance to any number of agents n > 3.

Picking Sequence (PS) Fairness Criteria

We present new fairness criteria inspired by some picking sequences. A policy π : {1, . . . , m} → N is a sequence of agents of size m, denoted by π = π(1), . . . , π(m) . A picking sequence is a sequential protocol asking agent π(t) to pick an object within the set of remaining objects at stage t. A policy π is recursively balanced (RB) [START_REF] Aziz | Possible and necessary allocations via sequential mechanisms[END_REF] if π can be decomposed into q = m n rounds, and each agent chooses an object exactly once at each round. Round robin is a special RB policy where all rounds are identical [START_REF] Aziz | The constrained round robin algorithm for fair and efficient allocation[END_REF].

The PS fairness criteria use fair guarantees [START_REF] Bogomolnaia | Guarantees in fair division: general or monotone preferences[END_REF]. For every p ∈ [n], PS p imposes that the utility of an agent i for her share is at least ps p (i) where

ps p (i) := q k=1 u i (o (k-1)n+p i ).
For example, agent i would get utility ps p (i) in a sincere 3 picking sequence if her turns in π were all the multiples of p, and if the other agents had identical preferences. Without knowing the preferences of the others, agent i considers the worst case where all the other agents have the same induced ordinal preferences as hers. In such a case, at each turn k, agent i can only get her ((k -1)n + p) th most preferred available object, i.e., o (k-1)n+p i . Let ps p be the n-vector (ps p (1), . . . , ps p (n)). An allocation satisfies a PS criterion if it fulfills the PS fair guarantees for every agent and some common position p. It is important to note that allocations satisfying a PS criterion do not need to be generated by a picking sequence.

Definition 1 (PS p allocation). An allocation

σ ∈ A is PS p if for every agent i ∈ N , u i (σ(i)) ≥ ps p (i).
By definition, PS p ⇒ PS p holds for every 1 ≤ p ≤ p ≤ n. In this article, we pay particular attention to positions p = 1 and p = n, which correspond to an optimistic and pessimistic view, respectively.

The PS fair guarantees are computable in polynomial time, by definition. Therefore, checking whether a given allocation satisfies a PS criterion is computationally easy. Whereas this polynomial-time verification also holds for proportionality and envy-freeness, this is not the case for CEEI, nor for MMS and mFS [START_REF] Bouveret | Characterizing conflicts in fair division of indivisible goods using a scale of criteria[END_REF], although the two latter notions are also based on fair guarantees. Note that, contrary to envy-based criteria, the verification of satisfaction of a PS criterion does not even need to have access to other agents' allocation.

Like EF and Prop, PS p can be relaxed up to some goods. Allocation σ satisfies PS p up to c goods (PS p c) iff for every agent i, there exists X i ⊆ M \ σ(i) such that |X i | ≤ c and u i (σ(i)) + u i (X i ) ≥ ps p (i). By definition we have PS p c ⇒ PS p c ⇒ PS p c whenever p ≤ p and c ≤ c . However, a PS p allocation may not satisfy PS p-1 1, as stated below. Proposition 3. PS 2 does not imply PS 1 1.

Proof. Consider an instance where n = 2 and m = 6. The utilities are: 24 16 12 6 5 2 10 5 4 3 2 1 Allocation σ (circles) is PS 2 since ps 2 = (24, 9) and u(σ) = [START_REF] Moulin | Cooperative Microeconomics: A Game-Theoretic Introduction[END_REF][START_REF] Caragiannis | The unreasonable fairness of maximum Nash welfare[END_REF]. However, it is not PS 1 1 because u 1 (σ(1)) + max x / ∈σ(1) u 1 (x) = 24 + 16 < 41 = ps 1 (1).

Allocation σ satisfies PS p up to any good (PS p X) iff for every agent i, u i (σ(i)) + u i (x) ≥ ps p (i) holds for all x ∈ M \ σ(i). It holds that PS p ⇒ PS p X⇒ PS p 1. However, no relaxation up to any good implies a PS criterion with no relaxation, as stated below. Proposition 4. PS 1 X does not imply PS n .

Allocations Satisfying PS Criteria

Observe first that a PS p allocation may not exist if p < n: Consider an instance where n = m with agents having the same induced preference order and no object with zero utility. Every agent should receive one object but no agent wants the common least preferred object. However, when p = n, the existence is guaranteed for every number of goods m because every allocation resulting from a picking sequence with an RB policy is PS n . Proposition 5. Every allocation resulting from a sincere picking sequence with an RB policy is PS n .

Proof. Consider an allocation σ resulting from a sincere picking sequence with an RB policy π, and take an arbitrary agent i. For each round k of π, let p i (k) denote the position occupied by agent i in π during round k, while x k is the object picked by agent i in round k. By definition, we have u i (σ(i)) = 1≤k≤q u i (x k ). Since agent i is sincere and p i (k) -1 objects have been taken before agent i picks at round k, it follows that

u i (x k ) ≥ u i (o pi(k) i ) for every round k. Thus, u i (σ(i)) ≥ 1≤k≤q u i (o pi(k) i
). By definition of an RB sequence, (k -1)n + 1 ≤ p i (k) ≤ kn holds. Therefore, we get that

u i (σ(i)) ≥ 1≤k≤q u i (o kn i ) = ps n (i).
The converse of Proposition 5 is not true. That is, not every PS n allocation can result from a picking sequence with an RB policy, as shown in the next example. This notably shows that allocations satisfying the PS criteria do not necessarily emerge from a picking sequence (in particular, agents do not necessarily get the same number of objects). [START_REF] Kohler | A class of sequential games[END_REF][START_REF] Bouveret | Characterizing conflicts in fair division of indivisible goods using a scale of criteria[END_REF]. However, this allocation cannot result from a picking sequence with an RB policy since the two agents do not have the same number of objects.

Nevertheless, checking the existence of a PS p allocation is hard for every constant p < n, even when m = 2n. Theorem 1. Determining whether a PS p allocation exists is NP-complete, even when m = 2n and p < n is a constant.

Moreover, checking the existence of a PS 1 allocation is hard even when n = 2, showing that even checking the existence of a PS n-1 allocation is hard. Theorem 2. Determining whether a PS 1 allocation exists is NP-complete, even when n = 2.

However, an allocation satisfying the relaxation up to one good of PS 1 always exists. Proposition 6. Every allocation resulting from a sincere picking sequence with an RB policy is PS 1 1.

Proof. Consider the allocation σ built with the sincere picking sequence that uses an RB policy. Take an agent i. Her objects are {o

f (1) i , o f (2) i , . . . , o f (q) i
} for some increasing function f : [q] → [m] where f (j) is the rank in the preference order of i of the object picked by i during round j. Let r be the smallest index such that o r i / ∈ σ(i). Agent i has in her share every object o j i with j < r. Thus, o f (j) i = o j i for all j < r. We deduce that j<r u i (o

f (j) i ) = j<r u i (o j i ) ≥ j<r u i (o 1+(j-1)n i ) (2)
. The policy being RB, we also have

u i (o f (j) i ) ≥ u i (o jn i ) ≥ u i (o 1+jn i
) for all j ∈ [q -1], from which we deduce that

q-1 j=r u i (o f (j) i ) ≥ q-1 j=r u i (o 1+jn i ) = q j=r+1 u i (o 1+(j-1)n i ) (3). Com- bine (2) and (3) with u i (o r i ) ≥ u i (o 1+(r-1)n i ) to get that u i (σ(i)) + u i (o r i ) ≥ q k=1 u i (o 1+(k-1)n i ) = ps 1 (i).
In other words, σ is PS 1 1 for agent i.

Propositions 5 and 6, together with Proposition 1 from Aziz et al. [START_REF] Aziz | The constrained round robin algorithm for fair and efficient allocation[END_REF], imply that a sincere picking sequence with an RB policy produces an allocation that simultaneously satisfies EF1, Prop1, PS 1 1 and PS n .

By Proposition 6, a PS p 1 allocation exists for every p ∈ [n]. It is not the case for PS p X, even when p = n -1 for any number n of agents: Consider an instance where m = 2n with the following preferences for every agent i: u i (x j ) = 1 for every j ∈ [n -1], u i (x j ) = 1/n for every n ≤ j ≤ 2n -1 and u i (x 2n ) = 0. We have ps n-1 (i) = 1 + 1/n for every agent i. To satisfy PS n-1 X, each agent i must be in one of the following situations: u i (σ(i)) ≥ 1 + 1/n, or σ(i) = {x k , x 2n } for some k ∈ [n -1], or σ(i) = {x j : n ≤ j ≤ 2n}. Making n disjoint bundles under such conditions is impossible.

Since a PS 1 1 allocation always exists, there is no need to consider relaxations up to c goods for p > 1 and c > 1. Combined with the fact that the existence of PS p X allocations is not guaranteed even for p = n -1, we can focus on stronger relaxations and only consider criteria PS 1 1 and PS 1 X.

Relations between Fairness Criteria

We compare in this section the PS criteria with the classical fairness criteria of the literature given in Section 2.2. We will show that the ordered scale of fairness (1), completed with known relaxations of envy-freeness and proportionality, can be connected with the PS criteria as shown in Figure 1.

Surprisingly, the strongest requirement CEEI in the fairness scale (1) does not even imply PS n-1 and PS 1 1 which are among the least demanding PS criteria. Proof. Consider an instance where m = 2n, and two integers α and β such that βn > α > β(n -1) and β > 1. The utilities are such that u i (x i ) = α and u i (x j ) = 0 for every index j = i and every agent i ∈ {1, . . . , n -2}, and u n-1 (x n-1 ) = u n-1 (x 2n ) = α and u n-1 (x) = 0 for every object x ∈ M \ {x n-1 , x 2n }. The utility function of agent n is such that u n (x j ) = α for every index j ∈ {1, . . . , n -1}, u n (x j ) = β for every index j ∈ {n, . . . , 2n -1}, and u n (x 2n ) = 0. Let us denote by σ the allocation assigning object x i to every agent i ∈ {1, . . . , n-2}, the bundle of objects {x n-1 , x 2n } to agent n-1 and the bundle {x n , x n+1 , . . . , x 2n-1 } to agent n. Observe that allocation σ is CEEI w.r.t. price vector p given by p i = 1 for every i ∈ {1, . . . , n -2}, p n-1 = n n+1 , p i = 1 n for every i ∈ {n, n + 1, . . . , 2n -1} and p 2n = 1 n+1 . However, allocation σ is not

PS n-1 because u n (σ(n)) = βn < α + β = u n (o n-1 n ) + u n (o 2n-1 n ) = ps n-1 (n),
and thus is not PS p for any position p ∈ {1, . . . , n -1}. For PS 1 1, it suffices to remark that the encircled allocation in the proof of Proposition 3 is CEEI w.r.t. price vector p = (1, 0.75, 0.6, 0.2, 0.2, 0.25) but not PS 1 1.

It follows that none of the criteria of the scale of fairness implies PS p when p < n, meaning that PS p is not always "weaker" than any criterion of the scale of fairness. However, all criteria of the scale of fairness imply the PS n criterion.

Proposition 8. MMS ⇒ PS n .
Proof. We prove that mms i ≥ ps n (i) for every agent i. Take an allocation where the th bundle (1 ≤ ≤ n) gathers all the ( + kn) th most preferred objects of agent i for 0 ≤ k < q. The n th bundle, whose value is ps n (i), is the least preferred. Thus, mms i ≥ ps n (i) because mms i is agent i's maximum value for the worst bundle for every possible allocation.

Conversely, for p > 1, the PS criteria are not stronger than any classical criterion either. Indeed, PS 2 does not imply MMS, the least demanding criterion in the fairness scale (1) nor Prop1, thus no PS criterion with p > 1 does. The encircled allocation σ is PS 2 since ps 2 = (24, 7, 14). However,

σ is not Prop1 because u 1 (σ(1)) + max x / ∈σ(1) u 1 (x) = 24 + 16 < 42 = u 1 (M )/2.
However, PS 1 implies the mFS criterion.

Proposition 10. PS 1 ⇒ mFS.

Proof. For every agent i, ps 1 (i) = max σ∈A max j∈N u i (σ(j)) where A ⊆ A is the set of allocations giving to each agent exactly one object within

{o kn+1 i , o kn+2 i , . . . , o kn+n i } for each 0 ≤ k < m/n. Thus, ps 1 (i) ≥ min σ∈A max j∈N u i (σ(j)) ≥ min σ∈A max j∈N u i (σ(j)) = mfs i .
Nevertheless, PS 1 is not stronger than EF since it does not even imply EF1. 

     
Allocation σ (circles), with u(σ)=(32, 33, 57, 57), is PS 1 since ps 1 = (32, 31, 38, 38). But agent 1 envies agent 2, even if any object is removed from σ(2).

The fact that PS 1 ⇒ EF1 may look surprising since fair guarantees of PS criteria can be interpreted via RB sequences, which generate EF1 allocations. However, satisfying a PS criterion does not impose to be the outcome of an RB sequence but focuses on the fulfillment of associated minimum utility levels, that are personal to each agent and do not need the inter-comparison between agents.

In their relaxed versions, PS 1 and Prop remain connected.

Proposition 12. PS 1 c ⇒ Propc.

Proof. Take an instance, an agent i, and a PS 1 c allocation σ. Recall that, w.l.o.g., m = qn. There exists

X i ⊆ M \ σ(i) such that |X i | ≤ c and u i (σ(i)) + u i (X i ) ≥ u i ({o 1 i , o 1+n i , . . . , o 1+(q-1)n i }). Since u i ({o 1 i , o 1+n i , . . . , o 1+(q-1)n i }) ≥ u i (M )
/n, we get that u i (σ(i)) + u i (X i ) ≥ u i (M )/n. Thus, σ satisfies Propc.

From Proposition 9, PS n cannot imply Propc when the number of objects m is large enough. However, PS n implies Propc when m is at most (1 + c)n.

Proposition 13. If m ≤ (1 + c)n, then PS n ⇒ Propc.
Conversely, no "up to" relaxation of envy-freeness implies a PS criterion. Proposition 14. EFX does not imply any PS criterion.

Proof. By Proposition 7, we have that EFX ⇒ PS 1 1. To prove that EFX ⇒ PS n , consider an instance where n = 2 and m = 4. The utilities are: 12 8 12 8

14 1 13 0 Allocation σ (circles) is EFX: agent 2 is not envious and agent 1 is not envious if one good is removed from σ(2). However, σ is not PS n since ps n = [START_REF] Kohler | A class of sequential games[END_REF][START_REF] Budish | The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes[END_REF].

Proposition 2 states that EFX ⇒ PropX though EFc ⇒ Propc. We know that PS 1 1 ⇒ Prop1 and it turns out that PS 1 X ⇒ PropX. Proposition 15. PS 1 X ⇒ PropX.

Proof. Take an instance, an agent i, and a PS 1 X allocation σ. Recall that, w.l.o.g., m = qn. We have

u i (σ(i)) + u i (x) ≥ u i ({o 1 i , o 1+n i , . . . , o 1+(q-1)n i }) for all x ∈ M \ σ(i). Since u i ({o 1 i , o 1+n i , . . . , o 1+(q-1)n i }) ≥ u i (M )/n, u i (σ(i)) + u i (x) ≥ u i (M )
/n holds for all x ∈ M \ σ(i). Hence, σ satisfies PropX. EFX⇒PS 1 X cannot hold because EFX ⇒ PropX and PS 1 X ⇒ PropX. Moreover, PS 1 X⇒ EFX cannot hold because it would contradict Proposition 11.

Note that PS n gives a 1 n -approximation for MMS, like EF1 [START_REF] Amanatidis | Comparing approximate relaxations of envy-freeness[END_REF]. The approximation ratio of a PS p allocation can be generalized to n-p+1 n for all p ∈ [n].

Proposition 16. ∀(p, i) ∈ [n] × N , ps p (i) ≥ n-p+1 n mms i .

Efficiency of Fair Allocations

It is long known that there is a tension between the two goals of computing efficient and fair allocations [START_REF] Caragiannis | The efficiency of fair division[END_REF][START_REF] Procaccia | Cake cutting algorithms[END_REF]. In this section we propose an empirical analysis of how the PS criteria go together with efficiency, and a comparison with the classical fairness criteria.

An allocation is Pareto-efficient if there is no other allocation σ that Paretodominates it, i.e., such that u i (σ (i)) ≥ u i (σ(i)) for each agent i, and the inequality is strict for at least one agent. The social welfare (SW) is another efficiency measure. The utilitarian SW of allocation σ is equal to i∈N u i (σ(i)), the egalitarian SW to min i∈N u i (σ(i)), and the Nash SW to i∈N u i (σ(i)).

It is easy to see that a Pareto-efficient allocation may not satisfy a PS criterion, and vice versa. Similarly, maximizing the social welfare and achieving PS fairness may be disconnected, as illustrated in the next example.

Example 2. Consider the instance given in the proof of Proposition 14. The allocation σ (circles), which is the unique allocation maximizing the utilitarian, egalitarian and Nash SW, is not even PS n since u 1 (σ(1)) = 16 < 20 = ps n (1). It is surprising since an allocation maximizing the Nash SW is known to be EF1 and to provide a good approximation to MMS [START_REF] Caragiannis | The unreasonable fairness of maximum Nash welfare[END_REF]. Alternatively, the unique PS 1 allocation (frames) is different and thus does not maximize any social welfare.

We study how often "fair" allocations are efficient. We run 1,000 instances with n = 3 agents where m ranges from 6 to 9 (adding dummy objects can make m a multiple of n). The valuations of the agents over the objects are integers between 0 and 100 generated following a uniform distribution and then normalized. All the n m possible allocations are considered. We compare in Table 1 the percentage of allocations satisfying classical and PS fairness criteria, and the proportion of these allocations that are Pareto-efficient. Moreover, we compare in Fig. 2 the average of the utilitarian and egalitarian SW among the allocations satisfying a given fairness criterion (the behavior for Nash SW is similar).

In practice, the set of PS 1 X allocations is almost the same as the set of PS 1 allocations, where PS 1 is very demanding, even though less than CEEI. A significant proportion of allocations are PS n (≈20%). This is less than the proportion of PS 1 1 allocations (≈40%), and even significantly less than the proportion of Prop1 allocations (≈70%). Among these 3 criteria which can be satisfied for any instance, our experiments show that PS n is the most selective one.

We observe that the proportion of efficient allocations among fair allocations seems to be dependent on the number of fair allocations. In particular, the proportion of PS 1 allocations that are Pareto-efficient is superior to the same quantity for EF allocations, and the utilitarian SW for PS 1 is also better in average than the SW for EF. EF1 and PS n , which are both always satisfiable, seem to be equivalent regarding efficiency.

Conclusion

We have introduced some criteria whose fair guarantees are inspired by picking sequences where every agent supposes that her turns are the multiples of p. By the simplicity of the picking sequence protocol and the definition of the PS fair guarantee, PS criteria can be easily expressed by an agent as a fairness requirement. Moreover, even without knowing how the rest of goods is allocated, it is easy for an agent to check whether she can be satisfied with her own assigned bundle according to a PS criterion. The two extreme criteria (PS 1 and PS n ) are well connected with the ordered scale of fairness. More precisely, PS 1 implies mFS, MMS implies PS n , whereas PS 1 1 and PS 1 X imply Prop1 and PropX, respectively. In light of the fact that EFX ⇒ PropX, the connection of relaxed PS1 with relaxed proportionality is interesting and highlights that PS criteria and proportionality are conceptually close. We have proved that allocations satisfying PS n and PS 1 1 can always be found whereas, as showed via our extensive comparative study of PS criteria with classical fairness criteria, these two criteria are far from being trivial. This positive result regarding the possibility of satisfaction is appealing since only a few known fairness criteria (EF1 and Prop1 among those studied here) are always satisfiable. The whole picture of existence and interactions between fairness criteria is depicted in Figure 1. Combined with the experiments which explore the compatibility of the PS criteria with efficiency, our work contributes to the understanding of how the fairness criteria for allocating indivisible goods interact. The fact that EFX ⇒ PropX when n > 2 (Proposition 2) calls for the following less restrictive notion of envy-freeness: Allocation σ is broadly EFc (bEFc) iff for every pair of agents i and j, there exists X i ⊆ M \ σ(i) such that |X i | ≤ c and u i (σ(i)) + u i (X i ) ≥ u i (σ(j)). Allocation σ is broadly EFX (bEFX) iff for every pair of agents i and j, u i (σ(i)) + u i (x) ≥ u i (σ(j)) holds for any x ∈ M \ σ(i). Then, EFc ⇒ bEFc ⇒ Propc, bEFX ⇒ EFX, and bEFX ⇒ PropX hold. Obviously, EFX and bEFX coincide when n = 2.

Several research directions can be derived from this work. Alternative definitions of fair guarantees can be explored like what some agent i would get in a picking sequence with a balanced alternation policy 1, . . . , n | n, . . . , 1 | . . . . Another possibility would be to consider a probability distribution over the possible positions taken by the agent in round robin. By using a uniform distribution, we fall back to the definition of proportionality. One can also suppose that p in PS p is not the same for all agents.

We have focused on a particular type of relaxation of a fairness criterion F , namely when F can be satisfied up to some good(s). Other relaxations can be studied. For example, F can be satisfied for any given subset of t privileged agents. Another type of relaxation consists of satisfying F up to a multiplicative factor. We know that PS n can always be satisfied (Proposition 5) but when p < n, no positive α guarantees the existence of an allocation σ such that u i (σ(i)) ≥ αps p (i) for all i ∈ N .

Example 1 .

 1 Consider an instance where n = 2 and m = 4. The utilities are: The encircled allocation σ is PS n since ps n = (4, 6) and u(σ) =

Proposition 7 .

 7 CEEI ⇒ PS n-1 for any number of agents n and CEEI ⇒ PS 1 1.

Proposition 9 . 1 .

 91 PS 2 ⇒ MMS for any n, 2. PS 2 ⇒ Prop1, 3. PS 2 ⇒ Propc for large enough m and any c. Sketch of proof. We only present case (2) here. Consider an instance where n = 3 and m = 6. The utilities are:

Proposition 11 .

 11 PS 1 ⇒ EF1, even under strict preferences over the objects.Proof. Consider an instance where n = 4 and m = 12. The utilities are:

Fig. 2 .

 2 Fig. 2. Average of the utilitarian and egalitarian social welfares within the set of fair allocations for n = 3 and m ∈ {6, 7, 8, 9}

Table 1 .

 1 Percentage of allocations satisfying fairness criteria and percentage of these allocations that are Pareto-efficient for n = 3

		% fair allocations	% Pareto-eff. alloc. / fair alloc.
	m	6	7	8	9	6	7	8	9
	MMS 9.73 6.69 5.35 4.53 20.54 13.50	8.37	4.80
	Prop 3.64 3.67 3.67 3.51 30.85 18.29 10.38	5.56
	mFS 2.20 2.60 2.94 3.06 38.00 21.77 11.73	6.05
	EF	0.83 0.86 0.82 0.77 51.15 32.44 20.22 11.67
	CEEI 0.39 0.25 0.13 0.07 86.31 80.34 80.21 82.28
	Prop1 79.28 72.99 68.50 64.49 7.94	4.43	2.33	1.19
	PropX 4.87 4.5 4.37 4.13 23.02 14.72	8.58	4.71
	EF1 18.65 17.04 15.42 14.21 13.65	7.90	4.30	2.22
	EFX 2.85 2.33 1.88 1.66 29.03 18.85 12.25	7.11
	PS3 30.69 18.43 17.46 18.94 11.77	8.03	4.31	2.12
	PS2	4.01 4.27 5.42 3.73 28.38 16.76	8.25	5.61
	PS1	0.15 0.43 0.22 0.26 83.67 50.26 44.63 26.02
	PS11 46.76 49.53 36.48 34.60 9.16	5.13	2.97	1.51
	PS1X 0.16 0.50 0.26 0.30 82.36 41.72 33.52 22.14
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