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The Grundy number of a graph is the maximum number of colours used by the “First-Fit” greedy colouring algorithm
over all vertex orderings. Given a vertex ordering σ : v1, . . . , vn, the “First-Fit” greedy colouring algorithm colours
the vertices in the order of σ by assigning to each vertex the smallest colour unused in its neighbourhood. By
restricting this procedure to vertex orderings that are connected, we obtain connected greedy colourings. For some
graphs, all connected greedy colourings use exactly χ(G) colours; they are called good graphs. On the opposite,
some graphs do not admit any connected greedy colouring using only χ(G) colours; they are called ugly graphs. We
show that no perfect graph is ugly. We also give simple proofs of this fact for subclasses of perfect graphs (block
graphs, comparability graphs), and show that no K4-minor-free graph is ugly. Moreover, our proofs are constructive,
and imply the existence of polynomial-time algorithms to compute good connected orderings for these graph classes.

Keywords: connected greedy colouring, perfect graphs, comparability graphs, K4-minor-free graphs, block graphs

1 Introduction
Optimally colouring a graph has been and remains a hard task: Karp [18] lists the CHROMATIC NUMBER
problem among his twenty-one NP-hard problems in 1972. Facing hard problems, a common tactic
consists in solving them for subclasses of graphs, but even deciding if a planar graph of maximum degree
4 admits a 3-colouring is an NP-complete problem [11, Section 2]. To deal with graph colourings and
their applications, heuristics have been designed. Greedy colouring, also called “First-Fit”, is among the
first heuristics that come to mind.
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Greedy colouring. A greedy colouring of a graph G relative to an ordering σ : v1, v2, . . . , vn of its
vertices is obtained by colouring the vertices in the order of σ and assigning to each vertex the smallest
positive integer that is unused in its neighbourhood. Let χ(G) denote the chromatic number of the graph
G and let χ(G, σ) denote the number of colours used when colouring G greedily with respect to the
ordering σ. Since any greedy colouring is proper (no two adjacent vertices have the same colour), we
may observe that χ(G) ≤ χ(G, σ) for any ordering σ of vertices of G. Actually the chromatic number is
always attained by some ordering (we call such orderings good). By noting S(G) the set of orderings on
the vertices of G, we have

χ(G) = min{χ(G, σ) : σ ∈ S(G)}. (1)

To see this, it is enough to consider an optimal colouring of G, thus using colours {1, . . . , χ(G)} and
take any ordering σ which ranks vertices with respect to their colours (first all the vertices coloured with
1, then with 2 and so on). Following this order, no vertex receives a colour strictly larger than the one
assigned by the optimal colouring.

Grundy number. Although greedy colourings have a chance to perform well, choosing σ with no care
could lead to bad choices. The Grundy number of a graph G, denoted by Γ(G), is a measure of the
worst possible choice among greedy colourings. It is the largest number of colours used among all greedy
colourings:

Γ(G) := max{χ(G, σ) : σ ∈ S(G)}. (2)

Greedy colourings have been called Grundy colourings by several authors referring to a note on combina-
torial games by Grundy [14] from 1939. Forty years later, Christen and Selkow [6] introduced the Grundy
number. They proved that for a graph G, we have Γ(H) = χ(H) for all induced subgraphs H of G if
and only if G is a cograph. Note that the Grundy number of a graph may be arbitrarily larger than its
chromatic number (for any fixed n, removing a perfect matching from the complete bipartite graph Kn,n

yields a graph Gn for which χ(Gn) = 2 and Γ(Gn) = n).

Connected orderings. An ordering σ : v1, v2, . . . , vn of the vertices of a (connected) graph G is called
a connected ordering if for each integer i between 1 and n, the subgraph induced by the vertices v1, . . . , vi
is connected. Greedy colourings using these connected orderings have been studied about thirty years ago
by Hertz and De Werra [15] and by Babel and Tinhofer [1]. Let Sc(G) be the set of connected orderings
of a graph G and define the connected greedy chromatic number of a connected graph G, denoted χc(G),
as the minimum number of colours used for connected orderings:

χc(G) := min{χ(G, σ) : σ ∈ Sc(G)}.

In general, χc(G) is not equal to χ(G); see [2, Theorem 2]. We similarly define the connected Grundy
number of a connected graph G, denoted Γc(G), as the maximum number of colours for connected order-
ings:

Γc(G) := max{χ(G, σ) : σ ∈ Sc(G)}.

Note that for any connected graph G, we have the following chain of inequalities:

χ(G) ≤ χc(G) ≤ Γc(G) ≤ Γ(G).
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Benevides, Campos, Dourado, Griffiths, Morris, Sampaio and Silva [2] have recently proven that χc(G)
cannot be arbitrarily large with respect to χ(G). The difference can be at most 1: χc(G) ≤ χ(G) + 1,
see [2, Theorem 3].

Introducing the good, the bad and the ugly. Following the terminology of Le and Trotignon [19], we
call a connected graph G satisfying χ(G) = Γc(G) good, that is, G is a graph for which any connected
ordering is good (gives an optimal colouring).(i) All other connected graphs are called bad.(ii) A connected
graph G for which no connected ordering achieves the optimal value χ(G), i.e. χc(G) > χ(G), is called
ugly.(iii) For any connected graph, a connected ordering of its vertices that yields an optimal colouring is
called a good connected ordering.

Known results. It can be observed that all bipartite graphs are good [2]. In [15], Hertz and De Werra
showed that all fish-free parity graphs are good. The fish and the gem graphs are bad; see Figure 1. In [19],
the authors characterized good claw-free graphs in terms of forbidden induced subgraphs.

v1

v2

v3

v4

v5

v6 v1v2 v3

v4 v5

Fig. 1: The fish and the gem, two bad graphs discovered in [1] and [15] (bad connected vertex-orderings are
v1, . . . , vn).

A planar cubic ugly graph was presented in [1]; see Figure 2. A claw-free ugly graph was also found
in [19] (in fact it is a line graph of a multigraph), and it can be modified to obtain an ugly line graph,
see Figure 3. These examples have triangles, but one can obtain ugly graphs of arbitrarily large girth.
Indeed, the building blocks of these examples are gadgets (here, diamonds) in which two specified vertices
must receive the same colour in any optimal colouring, and such gadgets of arbitrarily large girth can be
obtained by taking colour-edge-critical graphs of large girth and deleting an edge (the two endpoints of
that edge now need to receive the same colour in any optimal colouring).

Fig. 2: An ugly planar cubic graph from [1].

Clearly, every ugly graph is bad. It is coNP-hard to recognize ugly graphs [2], even for inputs that are
line graphs, or H-free with H not a linear forest, or H containing an induced P9 [20]. (This implies that

(i) Actually, in [19] a graph G is called good only if χ(H) = Γc(H) for every connected induced subgraph H of G. In this paper,
we consider only hereditary classes of graphs and we are interested in determining whether all graphs in the class are good or not,
so this difference in the definition is irrelevant in our context.

(ii) Bad graphs were called slightly hard-to-colour in [1].
(iii) Ugly graphs were called globally hard-to-colour in [1], but we prefer to follow the lines of the less lengthy terms of [19].
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(a) (b)

Fig. 3: (a) An ugly planar claw-free graph from [19]. (b) An ugly planar line graph.

for any such H , there exist H-free ugly graphs.) On the other hand, it is proved in [20] that for any H that
is an induced subgraph of P4 +K1 or P5, there are no H-free ugly graphs.

A graph is perfect if for each of its induced subgraphs, the chromatic number equals the clique number
(size of the largest clique). Colouring perfect graphs has been studied for decades. For some subclasses
of perfect graphs, the classic colouring algorithms actually work greedily on a connected ordering. For
example, an ordering σ of the vertices of a graph G is perfect if for every induced subgraph H of G,
the sub-ordering σH of σ induced by V (H) gives χ(H,σ) = χ(H) [7]. Graphs with such orderings are
called perfectly orderable; they are perfect and include all chordal graphs and all comparability graphs.
An ordering of G is called a perfect elimination ordering if for every i with i < n, the neighbours of
vi among {vi+1, . . . , vn} form a clique in G. A graph is known to be chordal if and only if it admits a
perfect elimination ordering, and such an ordering may be found in linear time O(m+ n) (where n is the
number of vertices and m is the number of edges) as the reversed order of the LexBFS algorithm [21].
It follows that for a graph G, there exists a perfect elimination ordering σ of V (G) whose reverse σ′ is
connected (since it corresponds to a BFS order) and gives χc(G, σ′) = χ(G), and this is also a perfect
ordering. Hence no chordal graph is ugly. An extension of this concept is the one of a semi-perfect
elimination ordering (see [17] for a definition). It is proved in [17] that every vertex-ordering of V (G)
that is the reverse of a LexBFS ordering (and thus, connected) is a semi-perfect elimination ordering if
and only if G has no house, no hole and no domino as an induced subgraph. Such graphs are called
HHD-free graphs; all chordal graphs and distance-hereditary graphs are HHD-free. It was proved in [16]
that the reverse of a semi-perfect elimination ordering is a perfect ordering, and thus, no HHD-free graph
is ugly. Yet another larger class of perfect graphs (containing HHD-free graphs) with connected orderings
is the class of Meyniel graphs (graphs where every odd cycle of length at least 5 has at least two chords).
In [22], a LexBFS-like O(n2) algorithm that produces a connected ordering σ of the vertices such that
χ(G, σ) = χ(G) is given.

Recently, connected greedy edge-colourings (equivalently, connected greedy colourings of line graphs)
have been studied in [3], and it was proved that there is no line graph of a bipartite graph that is ugly.(iv)

Such graphs are perfect.

(iv) Moreover, a careful analysis of the proof of [3] gives an algorithm running in time O(n4) to compute a good connected ordering
of any connected line graph of bipartite graph on n vertices.
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Our results. In this paper, we continue the hunt for graph classes containing only good connected
graphs, and for graph classes containing no ugly graphs. For a graph class of the latter type, given a
graph G of this class, we note that deciding whether χc(G) = χ(G) is trivially polynomial-time solvable
(always say ”yes”). Thus our work is related to the algorithmic work from [20].

We first show how to inductively create new good graphs out of good graphs in Section 2, with an appli-
cation to cactus graphs and block graphs (a block graph is a graph in which every biconnected component
induces a clique, and a cactus graph is a graph in which every biconnected component induces a cycle).
Using the inductive structure of K4-minor-free graphs in a similar manner, we then show (constructively)
in Section 3.1 that no member of this class is ugly. We also show constructively that no comparability
graph is ugly in Section 3.2. Finally, our main theorem is to generalize several known results about sub-
classes of perfect graphs by showing that no perfect graph is ugly (and a good connected ordering of a
perfect graph can be computed in polynomial time, using an algorithm for perfect graph colouring as a
black box). This is done in Section 3.3.

Definitions and notations. For standard definitions and notations of graph theory that are not recalled
in this article, we refer the reader to [8]. A (proper) k-colouring of a graph G = (V,E) is a function
c : V → {1, . . . , k} such that c(u) ̸= c(v) whenever uv ∈ E. A graph is k-colourable if it admits
a proper k-colouring. Its chromatic number χ(G) is the smallest integer k such that G is k-colourable,
and we call optimal colouring any χ(G)-colouring. A graph G is k-chromatic if k = χ(G). A graph is
bipartite if it is 2-colourable.

Given a graph G = (V,E) and a vertex v, the neighbourhood of v is the set N(v) = {u ∈ V | uv ∈ E},
and we call neighbours of v the elements in such a set. For a set of vertices S, we denote N(S) =
(∪v∈SN(v)) \ S. A clique in G is a set of pairwise adjacent vertices and a k-clique is a clique of size k.
An independent set is a set of pairwise non-adjacent vertices. Given a subset of vertices X , the subgraph
induced by X , denoted G[X], is the graph (X,E ∩ (X ×X)) obtained from G by removing the vertices
that are not in X . On the other hand G−X is the subgraph G[V \X] induced by V \X . When X = {v}
for some v ∈ V , we may write G − v instead of G − {v}. A subgraph of G is a graph G′ = (V ′, E′)
such that V ′ ⊆ V and E′ ⊆ E. An orientation of G is a directed graph obtained from G by transforming
each edge uv ∈ E into either the arc u → v or the arc v → u. An orientation is acyclic if it contains no
directed cycle.

2 Making good graphs out of good graphs
In this section, we show a natural way of building new good graphs by gluing them through a cut-vertex.
A vertex v in a connected graph G is a cut-vertex if its removal disconnects G. A biconnected graph is
a connected graph without any cut-vertex. A biconnected component of a graph G is an inclusion-wise
maximal set of vertices inducing a biconnected graph.

In order to get the desired result, we will need to strengthen the hypothesis and introduce for that
purpose great graphs. A great graph is a connected graph G such that for every connected ordering
σ : v1, . . . , vn of its vertices and every positive integer i, we may colour vertex v1 with colour i, apply the
greedy colouring algorithm to v2, . . . , vn and only use colours between 1 and χ(G) among the vertices
v2, . . . , vn. Of course, a great graph is also good since v1 may be coloured 1. Notice that complete graphs,
bipartite graphs and cycles are great. For great graphs, we can thus find a good connected ordering in linear
time using a standard graph traversal algorithm such as Depth-First Search.
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Lemma 1. If all biconnected components of a connected graph G induce a great graph, then G is great.

Proof: We proceed by induction on the number of biconnected components. Let v be a cut-vertex of G.
Let G1, . . . , Gk be the subgraphs induced by the connected components of G−v, together with v, meaning
that Gi = G[Vi∪{v}] where Vi is a connected component of G−v. Observe that each Gi has strictly less
biconnected components than G. Let σ : v1, . . . , vn be a connected ordering of G and assume without
loss of generality that v1 belongs to G1. We consider the sub-orderings σ1, . . . , σk of σ, where σi contains
only the vertices of Gi. Note that each ordering σi is a connected ordering of Gi, starting with v1 if i = 1,
or with v if i > 1. Let us call c the greedy colouring relative to σ starting from any colour α on v1. Then c
will agree on each Gi with the greedy colouring relative to σi starting from c(v) on v if i > 1, or starting
from α on v1 if i = 1. Since each Gi is great by induction hypothesis, this colouring will not use more
than max{χ(Gi) : 1 ≤ i ≤ k} colours, which is equal to χ(G).

Corollary 2. Every connected block graph and every connected cactus graph is great.

3 Classes of graphs with no ugly member
In this section, we exhibit two classes of non-ugly graphs, i.e. classes of graphs admitting good connected
orderings: the class of K4-minor-free graphs and the class of perfect graphs. We also give a simple
and constructive proof for comparability graphs (which are perfect). Note that there exist bad graphs in
these graph classes, consider for example the fish graph, which is K4-minor-free and comparability; see
Figure 1.

3.1 K4-minor-free graphs
A graph H is a minor of G if H can be obtained from G by a series of vertex deletions, edge deletions,
edge contractions (replacing two adjacent vertices u, v by a single vertex adjacent to all neighbours of u
and v). A graph G is K4-minor-free if K4 is not a minor of G.

The class of K4-minor-free graphs has been extensively studied in different contexts and inherited many
different names such as Series-Parallel graphs, partial 2-trees, or graphs with treewidth at most 2 [5]. We
shall observe a simple fact about those graphs that will help us in the search of a good ordering. For this
we need to define the notion of 2-tree. A 2-tree is any graph obtained from K3 and then repeatedly adding
vertices in such a way that each added vertex has exactly two neighbours which are adjacent to each other.
A graph G is K4-minor-free if and only if it is a partial 2-tree, that is, a subgraph of a 2-tree [5]. Such
graphs are easily seen to be 3-colourable [10].

Lemma 3. Any K4-minor-free graph G on at least two vertices has two vertices of degree at most 2.

Proof: Let G be a K4-minor-free graph. Let Ĝ be a 2-tree having G as a subgraph. Since Ĝ is chordal
and has more than two vertices, it is known to have two simplicial vertices [9]. Since the maximum clique
has order at most 3 in Ĝ, these two simplicial vertices have degree at most 2 in Ĝ. Therefore, they have
degree at most 2 in G.

Lemma 4. Any connected K4-minor-free graph G on at least two vertices has a vertex of degree at most
2 whose removal leaves G connected.
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Proof: If there is a vertex of degree 1, then its removal definitely leaves G connected. So, we may assume
that the minimum degree of G is 2.

For a contradiction, suppose that every vertex of degree 2 disconnects the graph. For each such vertex,
let us look at the number of vertices in the smallest connected component of G after its removal: let u
be a vertex of degree 2 minimizing this quantity. Vertex u has two neighbours x and y. Without loss of
generality, we may assume that in G − u, the component containing x is the smallest. Let us call the
graph induced by this component Gx. Graph Gx has at least two vertices (or x has degree 1 in G). By
Lemma 3, Gx has two vertices of degree at most 2, one of which is distinct from x. Let it be z. Observe
that z has same degree in Gx and in G. So z has degree 2 in G and by our assumption, it must disconnect
G. One of the connected components after removal of z from G has fewer vertices than Gx, which is a
contradiction to the choice of u.

Theorem 5. No K4-minor-free graph is ugly, and a good connected ordering of any connected K4-minor-
free graph on n vertices can be computed in time O(n2).

Proof: We prove the first part of the statement by induction on the number of vertices of G.
If G has two vertices or less, then it is trivial. Let us consider a connected K4-minor-free graph G on

n vertices, n ≥ 3. If G is bipartite, then it is good and hence any connected ordering gives a 2-colouring.
Let us thus assume that G is not bipartite. Since G is 3-colourable [10], it implies that G has chromatic
number 3. By Lemma 4, there is a vertex u of degree at most 2 whose removal gives a connected graph
on n − 1 vertices. By the induction hypothesis, there is a connected ordering of G − u which yields an
optimal colouring of G− u. By adding u at the end of this ordering, we obtain an optimal colouring of G
(since u has at most two neighbours, it receives a colour among 1, 2 and 3).

To obtain a good connected ordering in polynomial time, if G is bipartite, one can use any connected
ordering (this can be done in linear time using a standard graph traversal algorithm). Otherwise, it suffices
to iteratively find a vertex of degree at most 2 whose removal gives a connected graph, and reverse the
obtained ordering. This process can be done in O(n2) time.

3.2 Comparability graphs
This section is devoted to proving that the class of comparability graphs is not ugly. A graph G = (V,E)
is a comparability graph if there exists an acyclic orientation of G that is transitive. An orientation is
called transitive if it contains the arc a→ c whenever it contains the arcs a→ b and b→ c. The class of
comparability graphs forms a strict subclass of perfect graphs [12].

A comparability graph, together with a transitive orientation, naturally encodes the relations of a par-
tially ordered set (poset for short). A poset P = (V,≺) is a binary relation ≺ defined on a ground set
V that is reflexive (∀x ∈ V, x ≺ x), anti-symmetric (∀x, y ∈ V × V, (x ≺ y) and (y ≺ x) ⇒ x = y)
and transitive (x ≺ y and y ≺ z ⇒ x ≺ z). It is called a total order if ∀x, y ∈ V × V we have either
x ≺ y or y ≺ x. A comparability graph and one of its transitive orientations are presented in Figure 4. An
element x ∈ V is called maximal (resp. minimal) if there exists no element y ∈ V \ {x} such that x ≺ y
(resp. y ≺ x). A chain in a poset is a set of elements that induces a total order. Let us remark that a chain
corresponds to a complete graph in the associated comparability graph.

We call a subgraph H of a graph G dominating if any vertex of V (G)\V (H) has at least one neighbour
in V (H). Moreover, if H is connected, then it is called a connected dominating subgraph of G. To prove
the theorem of this section, we will use the following lemma, which is a special case of [20, Proposition 2].
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a
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d e
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g

Fig. 4: A comparability graph (left), and a transitive orientation where minimal elements are represented by white
disks and maximal elements by white squares (right).

Lemma 6 ([20]). Let G be a graph with an optimal colouring c of G such that there exists a connected
dominating subgraph H and a connected ordering σH of V (H) such that the greedy colouring of H
relative to σH agrees with c on V (H). Then, G is not ugly.

An optimal greedy colouring algorithm for colouring comparability graphs is known, see [12, Chap-
ter 5.7]. This yields an ordering σ of the vertices with χ(G, σ) = χ(G); however σ may not be connected.
Here we present a connected variant.

Theorem 7. No comparability graph is ugly, and a good connected ordering of any connected compara-
bility graph on n vertices and m edges can be computed in time O(mn).

Proof: It is known [12, Chapter 5.7] that given a comparability graph G on n vertices and m edges, we can
compute in time O(mn) a partial order P on the vertices of G whose transitive closure yields G, as well as
a height function h on P defined by h(v) = 1 if v is minimal in P , and h(v) = 1 + max{h(w) : w ≺ v}
otherwise. This can be done by computing a transitive orientation of G and conducting a Depth-First
Search. Furthermore, such a function yields an optimal proper colouring of G. In the following, by height
of P we mean maxv∈V (G) h(v).

Let G be a connected comparability graph and P be one of its associated partial orders. Clearly the
statement holds if the height of P equals 2, as G is bipartite in that case. Let us assume that P is of height
k ≥ 3 and consider the poset P ′ obtained from P by removing all maximal elements of P , as well as the
graph G′ associated to P ′ (note that it may not be connected). Since h restricted to P ′ defines a height
function of P ′, it yields a (k − 1)-colouring of G′. We extend it to a colouring of P as follows. First, we
colour all maximal elements of P with colour k, and then, we swap the colour classes 2 and k. Thus, we
have obtained an optimal colouring of G where all maximal elements of P are coloured 2 and all minimal
elements are coloured 1. This colouring process is depicted in Figure 5.

Now, observe that the subgraph H induced by the colour classes 1 and 2 is bipartite and forms a
dominating subgraph of G, since every element of P that is neither maximal nor minimal is comparable
with some maximal and some minimal element.

We furthermore show that H is connected. Let us assume that this is not the case and let A,B be two
distinct connected components of H . Since G is connected, there exists some path in G connecting a
vertex in A to a vertex in B. Among all such possible paths between A and B, let Q be one with smallest
length and call a ∈ A and b ∈ B its extremities. Clearly we are done if Q is an edge. Otherwise, let
x be the neighbour of a in Q and b′ be its successor (with possibly b = b′). Two symmetric cases arise
depending on whether a ≺ x or x ≺ a. Let us assume without loss of generality that a ≺ x, hence that a
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Fig. 5: The situation of Theorem 7; (i) a colouring obtained with the method of Golumbic (ii) the same colouring
restricted to non-maximal elements (iii) the colouring obtained by swapping colours 2 and k.

is minimal in P . Since Q is a shortest path, a and b′ are non-adjacent, thus incomparable and hence a ≺ x
and b′ ≺ x. Let x′ be a maximal element of P such that x ≺ x′. Since x′ ≻ a we have that x′ belongs to
A and as x′ ≻ b′ it is connected to b′. But then taking x′b ∈ E(G) and then following the rest of Q from
b′ to b is a shorter path to reach b from A, compared to Q that starts with ax then xb′. We have exhibited
a path shorter than Q connecting A to B, a contradiction to the choice of Q.

Now, since H is connected and bipartite, for any connected vertex-ordering of H that starts with a
minimal element of P , the greedy algorithm produces a colouring that agrees with c on H . Hence, we can
apply Lemma 6 to G, c and H , which shows that G is indeed not ugly. As a connected vertex-ordering of
H can be obtained in linear time using a standard graph traversal algorithm, and a colouring of G′ may
be computed in O(mn) time [12, Chapter 5.7], we conclude to the desired time bound of O(mn) for the
computation of a good connected ordering of G.

3.3 Perfect graphs
We now prove our main result, that there are no ugly perfect graphs. This generalizes the same fact which
was previously proved for Meyniel graphs [22] (a class which contains chordal graphs, HHD-free graphs,
Gallai graphs, parity graphs, distance-hereditary graphs...) and line graphs of bipartite graphs [3]. Our
proof is a generalization of the proof of the latter result by Bonamy, Groenland, Muller, Narboni, Pekárek
and Wesolek [3, Theorem 2], and our presentation is based on theirs.

Theorem 8. No perfect graph is ugly.

Proof: We will consider only connected perfect graphs, and show that there exists a good connected
ordering of their vertices. The proof will use induction on the chromatic number of the graphs. As usual
for inductive proofs, we shall adapt the induction hypothesis: we want it as weak as possible to ease its
proof, and at the same time as strong as possible since it is our basic hypothesis. We shall prove the
following statement, which implies the theorem.

For any positive integer k, any connected k-chromatic perfect graph G and any initial vertex
v of G, there is a connected ordering starting with v that produces a greedy colouring with k
colours.

If k = 1, then the graph is just a single vertex and the statement is true. We now suppose that k ≥ 2
and that the induction hypothesis is true for all k′ strictly smaller than k.
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Let G be a connected k-chromatic perfect graph with some initial vertex v, and φ : V (G)→ {1, . . . , k}
be a proper k-colouring of the vertices of G such that v does not get colour k (this is possible since k ≥ 2).
For any vertex u, we say that v reaches u if there is a path v = s0, . . . , sp = u such that for every
1 ≤ i ≤ p, if φ(si) = k, then the edge si−1si is part of a k-clique. We first prove the following.

Claim A. G has a k-colouring such that v reaches all other vertices of G.
Proof of claim. Consider a colouring φ maximizing the number of vertices reached from v. Let A be the
set of vertices reached from v (including v) and B the remaining vertices. If B is empty, we are done. If
not, we build a better colouring. In this case, observe that any edge xy from A to B must be such that
φ(y) = k and the edge xy does not belong to any k-clique.

Let u be some vertex in B such that u has a neighbour in A. The graph G[B] induced by B is perfect
(since G is perfect). Pick any optimal colouring ρ of G[B] such that u does not receive colour k and let
SB be the independent set of vertices of B getting colour k by ρ. Let SA be the independent set of vertices
in A getting colour k by φ. Note that there is no edge between SA and B, so SA ∪ SB is an independent
set: indeed recall that every edge xy with x ∈ A and y ∈ B is such that y is coloured k by φ, but the
vertices in SA are also coloured k by φ. Thus, x being in SA would contradict the fact that φ is a proper
colouring of G.

Since no edge between A and B is part of a k-clique, each k-clique of G is included either in A or in
B and thus intersects the set SA ∪ SB . Hence, G − (SA ∪ SB) has clique number at most k − 1 and by
the perfectness of G, there is a (k− 1)-colouring γ of G− (SA ∪ SB). Since SA ∪ SB is an independent
set, we can extend γ to the whole graph by assigning colour k to all vertices in SA ∪ SB . We have that:

• all vertices in A remain reachable in γ, as we can consider the same path as for φ in A, since colour
class k is the same in φ and γ;

• the vertex u is now reachable, as it has a neighbour in A and is not coloured k by γ.

Thus, we have strictly increased the number of reachable vertices, which contradicts the choice of φ.
Therefore, there exists φ such that v reaches the whole graph, and the proof of the claim is complete. ⌟

Let φ be a k-colouring of G such that v reaches all other vertices of G (obtained from Claim A)
and let S be the set of vertices coloured k by φ. The graph G − S can be decomposed into connected
components C1, . . . , Cℓ. Let C1 be the component containing v. By connectivity of G, and after a possible
renumbering of C2, . . . , Cℓ, we may find for each index i between 1 and ℓ− 1

two vertices ui in C1 ∪ . . . ∪ Ci and si in S ∩N(Ci+1)

such that v reaches si through ui (thus, the edge uisi is part of a k-clique).
Now we can use the induction hypothesis to greedily colour the whole graph G in a connected fashion.

Since C1 induces a perfect connected graph of chromatic number at most k − 1, by induction, there is a
good connected ordering of C1 starting from v. This means that u1 is coloured. Since u1s1 is in a k-clique,
the other members of this clique (except s1) are in C1. Thus, they use all colours among 1, . . . , k − 1.
The greedy colouring continuing with s1 will then assign colour k to it. Now, s1 has a neighbour in C2.
By induction, there is a connected greedy (k − 1)-colouring of G[C2] starting with colour 1 from any
vertex, so we can colour G[C2]. We iterate the process through all connected components. At last, we
colour the uncoloured vertices of S. This process yields a connected greedy k-colouring of G.
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Note that the proof of Theorem 8 is constructive; it directly yields an algorithm for finding a good
connected ordering of any input connected perfect graph G with n vertices. But in order to be able to
find a good connected ordering of G, we must be able to compute a k-colouring of G such that v reaches
all other vertices of G (Claim A in the proof of Theorem 8). This can be done by computing an optimal
colouring of G (since G is perfect, a colouring of G using ω(G) colours can be found in polynomial time
O(nc) for some c ∈ N using the ellipsoid method [13]), and repeatedly applying the argument of the proof
of Claim A to extend the set of vertices that can be reached from v. This is formalized by Algorithm 1.
The size of the maximum clique of Line 7 is computed in O(nc) time using the algorithm in [13], bringing
the total time complexity of Algorithm 1 to O(nc+2).

Algorithm 1: Given a perfect graph G on n vertices, an optimal colouring of G and a vertex v,
compute the set of vertices that are reached from v.

Input: A perfect graph G = (V,E), an optimal k-colouring of the vertices of G where k = ω(G)
and a vertex v of G.

Output: The set of vertices reachable from v.
/* Construct the directed graph D of direct reachability from v. */

1 Let D be a directed graph with V (D) = V (G) and no arc.
2 for each edge uw ∈ E(G)
3 if neither u nor w is coloured k then Add both u→ w and w → u.
4 else
5 Without loss of generality, let u be the vertex coloured k.
6 Add the arc u→ w to D.
7 Let q = ω(G[N(u) ∩N(w)]).
8 if q = k − 2 then Add the arc w → u to D.

9 Let A be the set of vertices visited during a traversal of D starting from v.
10 return A

Then, Algorithm 1 is used as a sub-routine in Algorithm 2 to compute an optimal connected colouring
of G, leading to the next corollary.

Corollary 9. A good connected ordering of any connected perfect graph on n vertices can be computed
in time O(nc+4) provided that an optimal colouring of a perfect graph can be obtained in O(nc) time.

Note that the time bound of the above corollary relies to date on the complexity of the polynomial-time
algorithm from [13], whose precise exponent has not been made explicit by the authors and which is most
probably large. This is in contrast to the algorithm for comparability graphs given by Theorem 7 which
runs in O(mn) time. Concerning other subclasses of interest, as mentioned in the introduction, the same
task can be done in time O(m + n) for chordal graphs using the LexBFS algorithm [21], for Meyniel
graphs this can be done in time O(n2) using a variant of LexBFS [22], and a careful inspection of the
proof in [3] gives an O(n4) algorithm for line graphs of bipartite graphs.
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Algorithm 2: Compute an optimal connected colouring of a given perfect graph.
Input: A perfect graph G = (V,E).
Output: A good connected ordering of the vertices of G.

1 Let φ : V → N be an optimal k-colouring of G where k = ω(G).
/* Computed with a complexity of |V |c for some constant c ∈ N. */

2 Let v be a vertex of V such that φ(v) ̸= k and A be the set of vertices reached from v.
/* Computed with Algorithm 1 as a subroutine. */

3 while there exists some vertex not in A
4 Let u be a vertex not in A with a neighbour in A and B = V \A.
5 Compute an optimal colouring ρ of G[B] with at most k colours.
6 Let SA (resp. SB) be the independent set of vertices in A (resp. B) coloured k by φ (resp.

coloured k by ρ).
7 Let G′ = G[V \ (SA ∪ SB)] and compute an optimal colouring γ of G′ with at most k − 1

colours.
8 Extend γ by assigning colour k to the vertices in SA ∪ SB .
9 φ← γ

10 Recompute the set A of vertices reached by v in φ.
/* From now on, v reaches all the vertices of G. */

11 Let S be the set of vertices coloured k by φ in G.
12 Let C1, . . . , Cℓ be the connected components of G[V \ S].

/* Computed in O(|E|). */

13 v1 ← v
14 for i in {1, . . . , ℓ}

/* Recursive call : */

15 Compute a good connected ordering of G[Ci] starting in vi, using k − 1 colours; add it to the
final connected ordering σ to be outputted.

16 if i ̸= ℓ then
17 Let ui in C1 ∪ . . . ∪ Ci and si in S ∩N(Ci+1) be two vertices such that v reaches si

through ui.
18 Assign colour k to si and add it to σ.
19 Let vi+1 be a neighbour of si in Ci+1.

20 Add the uncoloured vertices of S to the ordering σ
21 return the good connected ordering σ of G using k colours.
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