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We experimentally study the late time, highly nonlinear regime of the Rayleigh-Taylor Instability
in a decelerating phase. A series of laser-driven experiments is performed on the LULI2000 laser,
in which the initial Atwood number is varied by adjusting the decelerating medium density. The
high power laser is used in a direct drive configuration to put into motion a solid target. Its
rear side, which initially possesses a two-dimensional machined sinusoidal perturbations, expands
and decelerates into a foam leading to a Rayleigh-Taylor unstable situation. The interface
position and morphology are measured by time-resolved x-ray radiography. We develop a simple
Atwood dependent model describing the motion of the decelerating interface, from which its
acceleration history is obtained. The measured amplitude of the instability, or mixing zone width,
is then compared with late time acceleration dependent Rayleigh-Taylor instability models. The
shortcoming of this classical models, when applied to high energy density conditions, is shown.
This calls into question their uses for systems, where a shock wave is present, such as those found
in laboratory astrophysics or in Inertial Confinement Fusion.
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I. INTRODUCTION

Rayleigh-Taylor instability (RTI) [1, 2] is a seminal hy-
drodynamic instability, ubiquitous in the Universe, which
pervades at all scales from Bose-Einstein Condensates [3]
to astrophysical distances [4, 5]. This instability leads to
the growth of the perturbation at the interface between
fluids as soon as the scalar product between pressure and
density gradients is negative. On Earth, this necessary
condition is reached when a denser fluid rests on top of
one of lower density, or in case of interface acceleration.
RTI has therefore a great impact on fluids dynamics in
numerous systems [6–11].

Despite its apparent simplicity, RTI remains nowadays
an active field of study as testified by the recent reviews
[12–14]. This is partially due to the complexity of all
non-linear systems in fluid dynamics. Indeed, strikingly,
even the late-time growth of single mode RTI is not well
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understood [15]. After the linear phase of growth, the
instability pattern becomes asymmetric [16]. The heavy
fluid falls as spikes into the lighter fluid and the lighter
fluid rises as bubbles into the heavy fluid due to buoy-
ancy forces. A key parameter is the initial Atwood num-
ber At = (ρ1− ρ2)/(ρ1 + ρ2), ρi being the i-fluid density.
Based on the potential flow theory of Layzer [17], a ter-
minal bubble velocity was proposed by Goncharov for
any Atwood number [18]. However, this theory breaks
down for 3D single mode as numerically evidenced for
various Atwood number [19, 20]. A re-acceleration stage
is predicted to occur for the bubble velocity when the sec-
ondary Kelvin-Helmholtz instabilities develop along the
RTI spikes. Vorticity accumulates inside the RTI bubble
inducing its re-acceleration [21]. A similar phenomenon
was demonstrated at the ablation front in the context
of Inertial Confinement Fusion (ICF) [22]. RTI in the
acceleration [10, 11], or deceleration phase [23–25], re-
mains a major challenge towards a burning plasma in
ICF. From an experimental point of view, while RTI has
been widely studied in shock tubes experiments [26], a
parametric scan in Atwood requests different gas mix-
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FIG. 1. Example of obtained radiographies. The experimen-
tal radiographies (a), (b), (c) show the dynamic of the evolu-
tion of a 20 mg cm−3 foam. Similarly (d), (e), (f), corresponds
to radiographs of (100, 200 and 500) mg cm−3 foams taken
30 ns after laser shot. The initial wavelength, λ, is 120 µm.

tures [27, 28]. Furthermore, a precise control and knowl-
edge of the initial conditions remains challenging for any
RTI experiments [29, 30]. High Energy Density (HED)
settings allow to circumvent these intrinsic limitations
[31, 32].

In this article, we explore the Atwood-number depen-
dency of the RTI in HED conditions for the first time.
This study builds upon the classical scheme of a laser-
produced plasma expanding into a foam [33–36], with
different densities. This HED platform is much simpler
than traditional shock tube RTI platforms. Thanks to
this simplicity, data sets are obtained and a parametric
study, exploring different initial conditions, is performed.
Accurate measurements of acceleration and mixing zone
widths are made and compared to classical models which
failed to reproduce the measurements. Explanations are
suggested to understand the higher than expected RTI
growths, a trend already observed in previous HED RTI
settings [37, 38].

II. EXPERIMENTAL SETUP

The experiments were performed on the LULI2000
laser facility using the setup described in [35]. The
nano2000 laser beam (500 J, 2ω, 1.5 ns with a 470 µm
super-Gaussian focal spot) deposits its energy on a multi-
layer target, with an intensity of 2× 1014 W cm−2. The
target is composed of a 10 µm parylene ablator, a 1 µm
gold x-ray shielding layer, and a 40 µm modulated pusher
(C8H7Br). We employed three kind of modulations: a
sine curve (λ =120 µm wavelength, 10 µm amplitude),
the sum of two sine curves ((70 and 130) µm wavelengths,
(10 and 10) µm amplitudes), and flat targets. Here we
will focus on single-mode data, as no obvious difference
was observed between mono- and bi-mode [35]. As a

consequence of the target ablation by the laser, a shock-
wave is launched into the target and put it into motion.
The pusher expands into an external medium, a resorci-
nol formaldehyde (C15H12O4) foam. Four foam densities
were used: (20, 100, 200 and 500) mg cm−3, leading to an
initial Atwood number of 0.97, 0.87, 0.75 and 0.47 respec-
tively. Since the ablation pressure applied by the laser
is maintained only for ∼1.5 ns and since the foam has a
non-negligible density, the expanding pusher decelerates
resulting in a RT unstable situation.

To diagnose the interface between pusher and foam
x-ray radiographs were taken (see Fig. 1). Those radio-
graphs were performed by point projection [39], with an
x-ray source produced by the pico2000 laser (55 J, 10 ps)
focused on a 25 µm titanium wire (Kα x-ray emission line:
∼4.5 keV) and an imaging plate detector. This diagnos-
tic presents a static . 25 µm resolution [35]. It allows
us to distinguish between pusher and foam, the contrast
between the two being enhanced by the difference in den-
sity as well as the bromine doping of the pusher (∼40 %
in mass). From those radiographs, two parameters are
measured: the position of the central RTI spike, and po-
sition of the central bubble extremities (cf. Fig. 1 (f)).
We call the distance between spike and bubble extrem-
ities, mixing zone (MZ) width. In the case of the flat
targets, the only observed variable is the actual interface
position, which is needed to determine the RTI growth.
To obtain the overall dynamics, we combine different sin-
gle snapshot radiographs acquired from similar targets,
laser drive and initial conditions (see Fig. 1 (a,b,c)). To
compensate the laser energy fluctuations, we normalized
the time delays with respect to the laser energy as ex-
plained in [35, 40]: t̃ = t(E/E0)1/3. Here we take 500 J
as the reference laser drive energy (E0).

To build more confidence in the experiments, we have
conducted a series of radiation-hydrodynamics simula-
tions using FLASH (v.4.5) [41, 42]. We used it in a
2D Cartesian geometry in a hydrodynamic setup with
three temperatures and an adaptive mesh refinement
(paramesh4dev). We employed an “hllc” Riemann solver,
an “mc” slope limiter, with a second order data recon-
struction (type MUSCL-Hancock) and a cfl of 0.3 in an
unsplit solver scheme. The simulation domain, we em-
ployed, is a square with a length, which varies between
(800 and 1400) µm depending on the simulated case (far
reaching or not). It is divided in four main blocks, each
subject to adaptive mesh refinement (AMR) up to the
sixth order, and further divided in 16 cells in each spa-
tial direction. This leads to a maximal resolution vary-
ing between (0.8 and 1.4) µm depending on the domain
size. The AMR is based on the variation of density, tem-
perature (electronic and ionic) and pressure. The laser
intensity ('5× 1013 W cm−2) was adjusted to reproduce
the initial experimental velocity for the interface between
pusher and foam. And the laser pulse was model us-
ing 50 temporally equidistant points spanning from 0 to
2 ns. All the simulated plastic layers use the same ION-
MIX [43] tabulated equation of state (polystyrene) as
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well as their respective tabulated opacity calculated with
PROPACEOS [44] with 40 radiations groups. The dif-
ferent elements of the experiment except the gold layer,
which is too thin, are initialized in accordance with the
geometry of the experiment (vacuum, ablator, pusher,
foam and tube).

In addition to these simulations, 1D simulations in
Cartesian geometry were performed for the need of the
alteration of buoyancy-drag model discuss later. These
simulations employed the same parameters as the 2D
simulations except for the initial geometry and the laser
intensity, which need to be lowered to obtain the right
initial velocity.

III. INTERFACE MOTION

A. Measure of the position

We focus first on the motion of the interface between
pusher and foam. Here by interface, we mean the position
where the interface would be in the absence of RTI effects.
Indeed, this motion triggers the consequent RTI growth.
Since the interface is warped, due to the development of
hydrodynamic instabilities, we theoretically can’t follow
its motion except for the flat targets. As shown on Fig.
2 (a), the movement of the interface is equal to the move-
ment of the central RTI spike of the modulated targets.
The difference in position is too small to distinguish be-
tween the two with our experimental resolution. This is
also observed in simulations. On Fig. 2 (b), the length of
the spikes and bubbles is displayed. Here, this length is
calculated as the difference between their respective po-
sition and the position of the interface obtained through
simulation (xspike − xinterface and xinterface − xbubble). As
can be seen, the spike length is lower than 100 µm (except
for two out-of-curve experimental points), and has a min-
imal error of 25 µm, which is the ideal static case. Thus,
the experimental position of the spike and of the inter-
face can be hardly distinguished experimentally. This is
especially the case considering the experimental “length
of the interface” (black dots), which should be equal to
zero but is of the order of the length of the spikes. This
is mainly due to a defect in the spike growth resulting
from the proximity of the shock wave [45]. This fact is
obvious in simulation as shown on Fig.2 (c), where the
pressure and the interface morphology are displayed. The
RTI spikes are subject to an excessive pressure, which
reduces their growth. Thus, the position of the spikes
corresponds approximately to the interface one. As for
the bubbles, they are easily distinguished from the spikes
and interface.

The experimental data displayed on Fig. 3 (a) thus
correspond to the interface dynamics for each foam den-
sity. Each dynamics can be divided in two phases: bal-
listic and decelerating. The first phase corresponds to a
nearly constant interface velocity. If we compare our ex-
periment to the classical model of Supernovae Remnants
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FIG. 2. Comparison between RTI spike and interface po-
sition. (a) Temporal evolution of the position of the spike
(blue), bubble (magenta) and interface of a flat target (black)
both experimentally (points data) and in simulation for a
20 mg cm−3 foam. (b) Temporal evolution of the bubble and
spike lengths, which are calculated using the simulated in-
terface position from (a). (c) Simulated pressure map taken
25 ns after shock break out around the interface. The inter-
face between pusher and foam is depicted with a white full
line for the modulated case and a dashed line for a flat target.
(d) Map of the simulated vorticity in the z direction (curl of
velocity projected on z axis) in the modulated case.

(SNR) expansion [46, 47], this phase would correspond
to the free expansion where the mass of swept external
medium is still too small to influence the shock and inter-
face dynamics. Here, the interface velocity does not de-
pend on the foam density, but on the ablator composition
and on the momentum transmitted by the laser, both pa-
rameters kept constant. Following the SNR analogy, this
ballistic phase ends as soon as a sufficient mass of foam is
swept by the shock, which obviously happens sooner with
higher foam density. In the following phase, the interface
decelerates triggering the RTI growth. As expected, the
deceleration increases with higher foam density. This is
especially obvious with the two extreme cases ((20 and
500) mg cm−3): for the low density case, the motion re-



4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
os

iti
on

 (m
m

)

(a) 20 mg/cc
100 mg/cc
200 mg/cc
500 mg/cc

0 10 20 30 40 50 60 70

Time (ns)

1.25

1.00

0.75

0.50

0.25

A
cc

el
er

at
io

n 
(µ

m
/n

s2 )

(b)

FIG. 3. Temporal dynamics of the interface. (a) Evolution
of the interface position for the different foam densities (20,
100, 200 and 500) mg cm−3corresponding to At =0.97, 0.87,
0.75 and 0.47. The scattered data points correspond to the
obtained experimental results. The associated curves corre-
spond to the result of our model (1) with an initial velocity
fixed to 28 µm ns−1. (b) Acceleration of the interface deduced
from the model (ẍ(t)).

mains ballistic, whereas it becomes quasi-stationary for
the high one. Varying the initial foam density induces
two opposing effects expected from the linear approxi-
mation of the RTI growth: a high density leads to a high
deceleration, thus a high growth rate (∝ √g), and a low

Atwood number, thus a low growth rate (∝
√
At).

B. Analytical model

Before studying in detail the RTI growth, we develop
an analytical approach of the interface motion. The fol-
lowing 1D analysis is based on two hypothesis: (i) the
initial velocity of the interface, v0, is the same for ev-
ery foam density, (ii) the deceleration of the interface
depends on the swept mass of foam and on the interface
velocity. The first assumption is a given since the ini-
tial velocity of the interface depends on the momentum
transmitted by the shock wave, which is the same for ev-
ery targets (same target composition and laser intensity).
The dependence of the acceleration on the swept mass is
not a far stretch in 1D. Indeed, the shocked foam accu-
mulates at the pusher front leading to an increased mass
thus inertia. If we suppose the deceleration being pro-
portional to the swept mass then it will be proportional
to the shock (or interface) position (ẍ ∝ mswept ∝ xρ0).
Finally, the dependence of the deceleration on the inter-
face velocity can be understood when considering that
in a time step the pusher has to sweep a foam quantity
proportional to its velocity (ẍ ∝ ẋ). Therefore, the in-
terface dynamics should follow the differential equation:

ẍ = −Bxẋ, with B ∝ ρ0 a constant. This equation ad-
mits for solution:

x(t) =

√
2v0
B

tanh

√
Bv0

2
t (1)

Here, t = 0 corresponds to the shock break out (2.5 ns)
and x = 0 to the position of the interface at that time
(50 µm). This coordinate system is a space-time transla-
tion of the experimental coordinates. It is used only in
the following paragraph. We can fit this solution to our
experimental results as shown on Fig. 3 (a). If all fitting
parameters are unconstrained then the initial velocity,
v0 = ẋ(t = 0), varies between (25.9 and 29.3) µm ns−1

depending on the data set. Since this variation is small
and since all the initial velocities should be the same,
we impose a v0 of 28 µm ns−1, which corresponds to our
simulated data. B is then equal to (1.7± 0.2, 4.3± 0.1,
12.2± 0.4 and 20.3± 1.1)× 10−5 µm−1 ns−1 for foam
density of (20, 100, 200 and 500) mg cm−3 respectively.
As predicted we find that B is nearly proportional to the
foam density (B/ρ0 = (4.3± 1.0)× 105 µm2 mg−1 ns−1).
The observed variation might be linked to some inaccu-
racy on the foam density or on our experiments process.
Given our model, we can calculate the acceleration of
the interface as a function of time (see Fig. 3 (b)). The
temporal position of the maximum of each deceleration
can be calculated (log(2+

√
3)/
√

2Bv0), thus determining
the transition between the two phases (ballistic and de-
celerating). Here the maximal deceleration is attained at
(43, 27, 16 and 12) ns after shot break-through (2.5 ns) for
each respective density. The model was also tested on ex-
perimental results obtained on SACLA (Japanese XFEL)
for the same kind of target (100 mg cm−3) but with a
lower laser intensity, ∼1013 W cm−2 [36]. Despite the
lower initial interface velocity v0 = (10.5± 0.2) µm ns−1,
the model fit the data with the same B parameter as in
LULI2000.

We should mention that the deceleration exists from
the beginning of the interface motion according to our
model (see Fig. 2 c). In that sense, the first phase of
the evolution would be closer to the ejecta dominated
self-similar (we do not know if there is self-similarity in
our experiment) phase of the SNR dynamic [48, 49]. To
complete this parallel, we should add that the subsequent
Sedov-Taylor phase should start when the mass of swept
up foam equal the expanding pusher mass. Assuming
that our problem is mono-dimensional (no lateral expan-
sion) and that the whole depth of the pusher is put in
motion, then the phase will start (4.1, 10.6 and 21.9) ns
after shock break-out for the (500, 200 and 100) mg cm−3

foam respectively. In the case of the 20 mg cm−3, the
mass swept up in the foam is never equivalent to the
mass of the pusher, the later being too dense. This as-
sumes, however, that our model stay true even at long
time for this foam density.
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FIG. 4. (a) Evolution of the mixing zone (MZ) width as
a function of time for different foam density: (20, 100, 200
and 500) mg cm−3 corresponding to At =0.97, 0.87, 0.75 and
0.47. The vertical dotted lines indicate the time of maxi-
mum deceleration for each density, at (45.5, 29.5, 18.5 and
14.5) ns respectively. The dashed lines correspond to a mod-
ified buoyancy-drag model [50] using the experimental pa-
rameters (initial Atwood number and modulation) and the
deceleration from our model. The full lines correspond to the
addition of 1D expansion to the previous model [51, 52]. (b)
Number of e-foldings (with an extrapolation dashed) for each
foam.

IV. GROWTH OF THE RTI

We now consider the actual RTI growth, and measured
MZ width dynamics. As clearly shown by the Fig. 4 (a),
the growth of the MZ (which here corresponds approxi-
mately to the growth of the bubble) is faster with a high
Atwood number. On Fig. 4 (a), we draw in vertical dot-
ted lines the deceleration time for each foam density as
calculated previously with our model. As seen on Fig.
3 (b), the deceleration attains its maximum at this time
so should the RTI growth rate. When comparing the dif-
ferent RT growths, we can clearly see that the instability
grows faster with the lower density foam (20 mg cm−3)
than with the higher one (500 mg cm−3). This shows the
preponderance of the effect of the foam density over the
Atwood number compared to the deceleration. Two main
explanations could be envisioned: either the difference in
deceleration is too small to compensate for the difference
in Atwood number, or non-linear effects affect the growth
of the instability.

Let us consider the first hypothesis. If we take
into account only the extreme foam values, (20 and
500) mg cm−3, their maximal decelerations are respec-
tively (0.33± 0.02 and 1.15± 0.03) µm ns−1, according to
our model. Now if we consider their respective Atwood
number unchanged (same compression and relaxation of
the pusher and foam) then the growth rate of the higher
density foam should be higher (Atgmax ∼ 0.54 µm ns−2

versus 0.32 for the 20 mg cm−3 foam). This is obviously
not the case, even for early times (their deceleration cross
only after ∼35 ns). Thus the first hypothesis does not
hold.

The second hypothesis is much more likely as the defor-
mation of the interface is already well developed after a
few nanoseconds, with an amplitude exceeding 0.1λ, the
usual criteria for the appearance of non-linear effects [13].
As a result of non-linear effects, the RTI growth should
become linear in time (more consistent with our late time
results) and the bubble velocity should tend to an asymp-
totic value [17, 18] proportional to ((ρ1 − ρ2)g)0.5. The
difference in density is obviously lower for higher foam
density and the deceleration, which is initially higher,
is quicker to tend towards zero. Since the deceleration
is not sustained for high density foam, the RTI can not
quite develop itself.

This asymptotic behavior in the RTI growth encoun-
ters a limit in the form of a re-acceleration [53]. Such
phenomenon should theoretically happen when the am-
plitude of the instability reaches the value of its wave-
length and the number of e-folding is around 8 (the e-
folding is defined as the integral of the growth rate n(t)
as a function of time) [19, 21]. As shown in Fig. 4 (b),
this value is not yet reached. However, those conditions
should be reachable with our experimental design after
70 to 80 ns for the lighter foams (with the 500 mg cm−3

foam it will never be reached). This fact is also consis-
tent with our simulations. As shown in Fig. 2 (d) the
vorticity, as predicted after 25 ns of evolution, is mostly
concentrated around the spike’s head (so at the bottom
of the bubble), yet the re-acceleration phenomenon is be-
lieved to be a consequence of the vorticity accumulation
at the tip of the bubble. All these elements confirm that
the re-acceleration stage has been approached but not
yet reached.

We also notice that our MZ width measurements do
not match classical buoyancy-drag models as presented
in [13, 54, 55], neither improved ones taking into account
time-dependent accelerations [50, 56]. In every cases,
taking our modelled acceleration as an input, the MZ
is under-estimated by a factor higher than two. Further-
more, the obtained order for the MZ growth as a func-
tion of the foam density is contrary to the experiment:
a quicker growth of the 500 mg cm−3 compared to the
20 mg cm−3 is predicted. This can be seen on Fig. 4 (a),
where the model, which bear the best results [50], is dis-
played in dashed line.

The MZ width evolution, however, is not solely due
to RTI growth. Material expansion should also be taken
into account and may represent a large fraction of the
MZ [14]. In contrary, pure, non-HED, RTI develops in
the absence of shock waves so there is no interaction with
a shock or expansion to consider. Following the proce-
dure described in [51, 52], the background decompression
contribution is evaluated by considering the velocity di-
vergence taken from 1D FLASH4 simulations [57]. This
leads to values closer to our experimental observations
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(see Fig. 4 (a) plain lines), but it does not reorder the
curves as needed. In particular, the 20 mg cm−3 remains
underestimated. This could be due to inaccuracy in the
foam EOS for this low-density material [58]. However,
our results at At ' 1 corroborate recent works showing
that RTI spikes exhibit a strong dependence on the At-
wood number in HED [27, 56]. Spikes could enter in
a free-fall regime for any acceleration profile at lower
Atwood than predicted by all models. The presence of
self-generated magnetic field (Biermann-battery effects)
is also not taken into account in the models. Magnetic
fields wrap around the RTI spikes [33], laterally confin-
ing and sharpening them, enhancing their growth. The
actual bubble morphology, as observed in Fig. 1, with
a thin wedge like extremity at late time (b-c), is con-
sistent with such interpretation. We can also note that
this structure is more prominent in the lighter foam case.
Investigating further low density foams (At ' 1) in the
deep nonlinear stage is relevant for ICF. A higher than
expected RTI growth was also observed and remains un-
explained in highly nonlinear ablative RTI experiments
[37, 38].

V. CONCLUSION

In summary, we report on a parametric study of the
RTI in decelerating phase. We performed experiments
on the LULI2000 high power laser facility using a di-
rect drive approach to put into motion the modulated
rear side of a solid target. The expansion of this target
into a foam, used as a deceleration medium, is RT un-
stable. In these HED experiments, we changed the foam
density resulting in both a variation of initial Atwood
number across the interface and a variation interface de-
celeration. Both effects have an opposite contribution to
the RTI growth, leading to a competition between them.
By analogy with SNR case and by proceeding to some
physical consideration, we developed an analytic model
to describe the interface motion. Strikingly, this sim-
ple model reproduces our experimental data reasonably
well with regards to the motion of this interface. Con-
cerning the RTI growth, we note that the perturbation
has a faster growth with a low density foam, so in the
case of high Atwood number and low deceleration. How-
ever, given the acceleration obtained by derivation of our
model, the obtained growths cannot be explained using
classical RTI models such as the buoyancy-drag model.
We attribute this fact to the specificity of the HED phys-
ical domain. Mainly, the pressure gradient, due the prox-
imity of the shock and expansion of the plasma, modifies
the classical RTI growth, in particular by obstructing
the spike growth. We ascertain the role of this gradi-
ent, using FLASH4 simulations, and add its effect to the
classical RTI growth model. The result is closer to the
experiment, but still the agreement is not perfect. Other
phenomena, such as the effect of the magnetic field or
the re-acceleration, might also play a role and should be

considered in future work.
We believe that scaling this platform on MJ scale lasers

facilities [53] in association with high resolution x-ray
imaging diagnostics [36] could provide an accurate tool
to study the heretofore inaccessible role of vorticity in
late time RTI growth [21].
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Appendix A: Errors and Uncertainties

In this article, error bars and uncertainties appear in
several place, but they do not always hold the same mean-
ing. We should distinguish between three kind of error
bars. The first one is linked to the measure of different
position (spike, bubbles) on the radiographs and simu-
lations. The figures 2 (a) and 3 (a) possess this kind
of error bar. The second kind corresponds to the error
of the value calculated from the data of the first cate-
gory. This error is directly derived from the first one
and can be seen as the propagation of the previous error.
This mainly concerns the figure 4 (a). Finally the error,
which are linked to the model and the regression, make
the third kind.

1. Error on the interface position

The error in the measure position on the experimen-
tal x-ray radiographs has several origin. First the x-ray
radiograph have some limitation in resolution. This is
partly due to the photo-cascade inside the image plate,
which broaden the zone being illuminated. Another point
to consider is the geometry of the radiography system, a
point projection scheme. Due to the shadow and penum-
bra geometrical property the resolution is limited to the
size of the source, ∼25 µm. The temporal deterioration
of the resolution due to motion blurring is here negligible
compared to the other phenomenon as the exposure time
is of the order of 10 ps for a shock velocity lower than
30 µm ns−1.

To the previous effects, which are intrinsic to the ra-
diography technique employ, we should add the possible
spatial variation of the lighting. These variations are due
to phenomena of self-shadowing of the back-lighter, and
other variation that may affect the x-ray source (inter-
action of a titanium wire and a picosecond laser). This
leads to spatial non-uniformity is the lighting, which may
be a source of error for our measure in some specific cases,
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FIG. 5. Position of the spike and asymmetric error bars.
A line-out performed is performed on a x-ray radiograph of
a 100 /mg/cm3 bi-mode target, 30 ns after laser shot. This
line-out centered on the spike position shows an asymmetry
on its intensity profile. This asymmetry is used to define the
error bars.

where an abrupt variation coincide with the interface po-
sition.

Finally the diffusion of the plasma at the interface be-
tween pusher and foam lead to the apparition of absorp-
tion gradients. As a result, there is no sharp interface at
late time.

Two approaches, which bear sensibly the same results,
were employed to measure the interface position. The
simplest one, described in [40], consists on finding the
interface by eye. The appreciation of each image in its
entirety allow surprisingly good results for this method.

The second method consist on performing line-out on
the spike and bubble axis (see Fig. 5). On these line-out
the signal above the pusher (Vp) is different than the one
above the foam (Vf > Vp). The interface correspond to
the transition between both. We should mention here
that this transition is not always symmetric. In such a
case, we define the position of the interface (xi) at the
mid-value (V (xi) = (Vp + Vf )/2) and we measure both
positive (σ+ = x+ − xi, with V (x+) = 0.9Vf + 0.1Vp)
and negative (σ− = xi − x−, with V (x−) = 0.1Vf +
0.9Vp) error bars. These results in asymmetric errors.
Some other methods exist [32, 59] but they could not be
employed in the present experiments.

2. Mixing zone - error composition

To obtain the mixing zone width, we subtracted the
bubble position to the position of the spike. Since both
possess asymmetric error, the error on the mixing zone is
a composition of both error [60]. Here we define the error

on the mixing zone as: σ±MZ =

√(
σ±spike

2
+ σ∓bubble

2
)
/2.

This formula is leads to an over-estimation of the error.

3. Fitting and error

The last type of error previously mentioned are the
uncertainties related to the model and the value of its

fitting parameters. These parameters are obtained by
fitting data with asymmetrical errors. To do so we sup-
posed that the asymmetric error bars correspond to two
half-normal deviation. We randomly takes a value for
each data point using such probability distribution and
proceed to the fitting of the data using a least square
method. We repeat this process 2000 times and ob-
tained a distribution of possible values for each parame-
ters. This allow us to define the value of each parameter
and their asymmetric error bars. In this paper we only
keep the higher value for their error making it symmetric.

Appendix B: Buoyancy-drag model application

One of the unexpected results of this article is the
non-compliance of the experiment to the buoyancy-drag
model or as shown on fig. 4 (a) to an improve version
of it. This came as a surprise since these models can
be used to describe the global growth of the RTI, even
though they are more often used to describe late time
evolution of the instability.

1. Model and method

The model evolution displayed on fig. 4 (a) in dashed
lines is a direct application of the improve buoyancy-drag
model with time dependent acceleration directly taken
from [50]. In this model, the following equation is solved:

θ̈L − g(t)kLALθL = 0 (B1)

with θL ≡ ekL(η−η0), kL ≡ (c(1 + c)(1 + At)k)/(2 + 2c+
2cAt− 2At), AL ≡ 2At/(1 + c+ cAt−At). Here, η is the
the amplitude of the modulation, η0 = η(t = 0) its initial
value, g is the opposite of the acceleration of the interface
obtained through our model (−ẍ), k is the wave-vector of
the perturbation, and At the Atwood number. c is a pa-
rameter, which depends on the dimension of the problem
being equal to 2 in 2D and 1 in 3D. In fig. 4 (a), c is taken
equal to 1, but there is no significant difference when us-
ing its other value. The definition of g as the opposite of
the acceleration is taken in order to be consistent with
[50]’s definition (positive Atwood and an acceleration of
the interface, g, defined positive when pointing toward
the high density medium).

To solve this model, a fourth order Runge-Kutta al-
gorithm was implemented. The initial parameters were
taken to correspond to the experiment. The initial At-
wood number was used as is, not taking into account the
compression due to the shock and the following expan-
sion. The same was done for the interface perturbation,
which was initialized with a 10 µm amplitude and no ini-
tial velocity. On that topic, we should report the use of
others initial parameters, whose results are not displayed
in this article. Indeed, we also tried to use for the initial
amplitude and velocity the value obtained in our simu-
lations after shock breakthrough, as well as other value
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in between. The addition of a initial velocity allows us
to reproduce the initial RTI growth up to approximately
10 ns, when fine tuned. However, the model gives result
similar to those displayed on fig. 4 (a) for later time. The
initial velocity just adds a slight concavity at the begin-
ning of the curve before it transition to its first convexity.

Classical buoyancy-drag model were also tried with-
out more success. They were solved using a fourth order
Runge-Kutta algorithm and used the same initial param-
eters as reported above. The only exception is the accel-
eration which should be fixed for this classical models
and was thus taken to its mean value (we also tried a
time dependent one).

2. 1D expansion

As report in the article, one of the downfalls of the
previous model is its inability to take into account HED
phenomena, such as the pressure gradient resulting from
the presence of a shock and the expansion of the material.
To take into account such expansion, we followed the
method described in [51, 52, 57]. This method follow
several steps.

First at least four simulations should be performed.
Two are 2D simulations, one of which should reproduce
the experimental results with the modulated target, the
other one uses a flat target. The simulation with a modu-
lated target is both used to fine tune the laser energy used
in simulations, and to obtain a better time discretization
for the temporal position of both spike and bubbles. The
other simulations are 1D simulations. Since the modu-
lation of the interface cannot be reproduce in 1D, three
value for the initial thickness of the pusher can be chosen:
the spike (30 µm), the bubble (50 µm), or the interface
in between (40 µm). Since the simulation code will give
slightly different results in 1 and 2D, we fine tune the
laser energy used in 1D using the 2D simulation of the
flat target and the 1D with a 40 µm pusher. Finally, the
1D simulation using a 50 µm pusher is performed. The
30 µm pusher simulation can also be performed at that
point, but it holds less value in our case, since the RTI
growth comes mainly from the bubbles.

The second step consists on extracting the fluid veloc-
ities at the right position from the 1D simulations. By
using 1D simulations the fluid velocity depends only on
the expansion of the material and it does not contained
the RTI contribution, contrary to 2D simulations. The
“right” position is the position of the bubbles, spikes, in-
terface taken from the 2D simulations and reported on
their respective 1D simulations. In other words, we ex-
tract the fluid velocity from the 1D simulations at the
position, where an element characterizing the RTI is ex-
pected to be with more dimensions. Since the time steps
might not match exactly between 1D and 2D, and since
the spatial resolution will also differ due to the AMR,
we proceed to two consecutive cubic interpolations. The
first one on the temporal evolution of the RTI elements

as seen in 2D, so we can find its position for each time
step of the corresponding 1D simulation. The second one
is on the spatial velocity variation of the 1D simulations,
to obtain its value at the right position.

From the previously obtained velocities, an expansion
velocity is calculated. It consist on the 1D velocity differ-
ence between interface and bubble or interface ans spike.
By integrating this expansion velocity, time dependent
spatial expansions, E(t) are obtained both in the bubble
and spike direction.

Ebubble(t) =

∫ t

0

(vinterface(t
′)− vbubble(t′)) dt′ (B2)

This spatial expansion is simply add to the results of the
buoyancy-drag model. Thus, the resulting RTI ampli-
tude, η̃, is equal to η̃(t) = η(t) + E(t) (reusing previous
notation).

Appendix C: Physical parameters

Thereafter some physical parameters that character-
ized this experiment are displayed in a table. They were
obtained through our 2D simulations.
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Parameter Formula 20 mg cm−3 500 mg cm−3

Shocked foam density (ρ, mg cm−3) Simulated 0.4 to 0.6 0.8 to 8.7
Temperature (Te = Ti, eV) Simulated 5.3 4.9
Pressure (Mbar) Simulated 0.05 0.11
Ionization (Z) Thomas-Fermi model 1.16 1.29
Ion density (ni, 1010 µm−3) ρ/mi 3.1 6.2
Electron density (ne, 1010 µm−3) niZ 3.6 8.0
Coulomb logarithm (ln Λ) [61] 2.7 2.2
Ion thermal collision frequency (τi, 105 ns−1) 4.8 · 10−8Z4ni ln Λ/((mi/u.a.)

0.5T 1.5
i ) 2.1 5.6

Ion thermal velocity (vi, µm ns−1) 9.79 · 105(Ti/(mi/u.a.))
0.5 7.9 7.6

Ion collisional length (10−5 µm) vi/τi 3.8 1.4
Electron thermal collision frequency (τe, 107 ns−1) 2.91 · 10−6ne ln ΛT−1.5

e 2.3 4.6
Electron thermal velocity (ve, 102 µm ns−1) 4.19 · 107T 0.5

e 9.7 9.3
Electron collisional length (10−5 µm) ve/τe 4.2 2.0
Radiative cooling time (104 ns) [62] eq. (22) 9.9 2.5

TABLE I. Different physical parameters obtained from the FLASH simulations 30 ns after laser shot. The shock foam density
shows the variation of density from the shock to the place near the expanding pusher. ua is the atomic mass unit.
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