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Abstract

The common product between two multisets, or functions represented as multisets (multifunctions) can be under-

stood as being analogue to the inner product in real vector or function spaces in spite of its non-linear nature. In

addition to other interesting features, the common product also allows respective correlations to be derived which, in

addition to their conceptual and computational simplicity, have been verified to be able to provide enhanced results in

tasks such as template matching, tending to yield peaks that are sharper and narrower than those typically obtained by

standard cross-correlation, while also attenuating substantially secondary matchings. The multiset-based correlations

based on the real-valued multiset Jaccard and coincidence indices are compared in this work, with encouraging results

which have immediate implications not only in pattern recognition and deep learning, but also in scientific modeling

in general. As expected, the multiset correlation methods, and especially the coincidence index, presented remarkable

performance characterized by sharper and narrower peaks while secondary peaks were attenuated, which was main-

tained even in presence of intense levels of noise. In particular, the two methods derived from the coincidence index

led to the sharpest and narrowest peaks, as well as intense attenuation of the secondary peaks. The cross correla-

tion, however, presented the best robustness to symmetric additive noise, which suggested a new combination of the

considered approaches. After a preliminary investigation of the relative performance of the multiset approaches, as

well as the classic cross-correlation, a systematic comparison framework is proposed and applied for the study of the

aforementioned methods. Several interesting results are reported, including the confirmation, at least for the considered

type of data, of the coincidence correlation as providing enhanced performance regarding detection of narrow, sharp

peaks while secondary matches are duly attenuated. The combined method also confirmed its good performance for

signals in presence of intense additive noise.

‘Deep inside the mirror, a whole universe of similarities.’

LdaFC

1 Introduction

Many concepts and methods in science, and in particular

in Physics, rely on operations capable of expressing the

similarity between two mathematical structures or data.

Of particular interest and importance has been the inner

product between two vectors or functions, which underlies

a vast quantity of concepts and results in Physics, espe-

cially when incorporated into the convolution and corre-

lation operations, which underly all linear systems.

The aforementioned concepts and operations play

a particulary important role in optics, mathematical

physics, semiconductors, complex systems, quantum me-

chanics and computing, magnetic resonance, astrophysics,

and neuronal networks, to name but a few possibilities.

The Jaccard index (e.g. [1, 2, 3]) has been exten-

sively used in many areas as an interesting and effec-

tive means for quantifying the similarity between any

two sets. A multiset Jaccard index, in which multisets

(e.g. [4, 5, 6, 7, 8, 9]) are taken instead of sets, has also

been used in similar applications, with the ability to take

into account the multiplicities of multiset elements. More

recently [3, 10, 11], several further generalizations of the

Jaccard index have been proposed based on respective

motivations. By taking into account real-valued data,

these developments also allowed the multiset concepts and

operations to be extended to real functions and signals,

which have been called multifunctions.

Reflecting an analogy with the traditional inner prod-

uct of vectors or functions, which can also be understood

as quantifications of similarity in the sense of multiset dif-

ferences, a respective operator has been proposed, called

the common product [3, 10]. Unlike the inner product in

vector and function spaces, the common product is non-
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linear and does not require algebraic products, and could

be understood as a first degree binary operator, while the

inner product would have a second degree characteristic.

The common product can be readily applied not only

to quantify the similarity between two clusters in pattern

recognition, but also be employed as a joint variation mea-

surement similar to the Pearson correlation coefficient.

Preliminary results [3] indicate that the common product

provides a purportedly quantification of joint variation be-

tween two random variables that is more compatible with

human intuition than product-based measurements such

as the Pearson correlation coefficient, especially given the

tendency of the latter to saturate as the correlation in-

creases [3].

From the common product between two functions, sev-

eral similarity indices can be derived, including the real-

valued Jaccard, addition-based Jaccard, and coincidence

indices [3]. Each of these indices lead to the definition of

a respective convolution/correlation between two multi-

functions [3, 10].

As with its real function counterpart, the multifunc-

tion convolution can be employed for typical signal pro-

cessing tasks, including but not being limited to filter-

ing, template matching (e.g. [12, 13]), and control the-

ory. Indeed, preliminary results [3, 10] have been ob-

tained that are particularly promising and encouraging.

More specifically, when used for template matching, the

obtained peaks corresponding to the maximum similar-

ity between the object and template functions are not

only substantially sharper and narrower, but also the sec-

ondary matching peaks result much more attenuated [10].

The combination of these two features suggests that

the multifunction convolution has substantial potential

for applications in pattern recognition, neuronal networks

and deep learning, as well as in many other related areas

involving estimations of similarity and/or convolutions.

Actually, the linear part of neurons in artificial neuronal

networks and deep learning can be made to correspond

to common products, instead of the traditionally adopted

inner product of inputs.

For all the above reasons, it becomes of particular im-

portant to compare, in a quantitative and objective man-

ner, the performance of the several mentioned correla-

tion methods based on the multiset-based similarity in-

dices, including the real-valued Jaccard and coincidence

indices [3]. The classic cross-correlation operation should

also be taken into account as a reference method, given

its extensive application in the most diverse areas. This

constitutes the main purpose of the present work.

We start by reviewing the adopted indices, and then

proceed to a preliminary comparison related to tem-

plate matching between an object and a template func-

tion in presence of noise, in which it is identified that

the addition-based Jaccard and respectively associated

addition-based coincidence present performance similar to

the real-valued Jaccard and coincidence indices. Though

the classic cross-correlation led to matching results that

are worse than the original object function, it was veri-

fied to be more resilient to elevated levels ofnoise than the

other considered cross-correlation methods.

Given that the classic cross-correlation allowed good ro-

bustness to high levels of noise relatively to the similarity

index-based methods, we also propose a combine method

in which the former approach is applied prior to the latter

indices.

Guided by the aforementioned preliminary comparison,

attention is subsequently focused on the real-valued Jac-

card and coincidence indices, as well as on the classic

cross-correlation product. A systematic framework for

comparing similarity cross-correlations is then proposed

that can be understood as an ancillary contribution of

the present work. Several interesting results are obtained,

including the identification of the coincidence method as

the most effective, at least for the type of signals consid-

ered here. Then, we also found that the classic cross-

correlation turned out to be nearly hopeless regarding

as far as the width and relative height of the principal

matched peak detection is concerned. In addition, the

combined method confirmed its potential for enhanced

performance when the signals contain high levels of noise,

especially for smooth template functions.

We start by presenting the considered cross-correlation

methods, and then report on the preliminary compari-

son. The formal, systematic framework for comparing

cross-correlation methods is then presented and applied

for respective characterization of the considered cross-

correlation approaches.

2 The Considered Similarity In-

dices

We start with the classic cross-correlation between two

functions f(x) and g(x):

Corr(f, g)[y] =

ˆ ∞
−∞

f(x)g(x− y)dx (1)

The basic Jaccard index between two sets with non-

negative multiplicity can be defined as:

J (A,B) =
|A ∩B|
|A ∪B|

(2)

where A and B are any two sets to be compared. It

can be verified that 0 ≤ J (A,B) ≤ 1.

The homogeneity or interiority index can be expressed
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as:

I(A,B) =
|A ∩B|

min {|A| , |B|}
(3)

with 0 ≤ I(A,B) ≤ 1 and 0 ≤ J (A,B) ≤ H(A,B) ≤ 1.

The combination of the basic Jaccard and the interior-

ity indices yields the coincidence index, proposed in [3]

as:

C(A,B) = J (A,B) I(A,B) (4)

The Jaccard index extended to multisets with non-

negative multiplicities can be expressed as:

JM (A,B) =

∑N
i=1 min (ai, bi)∑N
i=1 max (ai, bi)

(5)

with 0 ≤ JM (A,B) ≤. Therefore, this index is capable

of taking into account the multiplicity of the elements in

the involved multisets.

The extension of the Jaccard index to real, possibly

negative-valued multiplicities, involves the following de-

velopments [3, 10].

In particular, the possibility to have positive and/or

negative multiplicity values now requires the application

of a binary operator analogous to the inner product in

function spaces, in which the multiplicities are properly

mirrored among the four quadrants depending on their

signs [3, 10]. This operator, which will be referenced here

as common product, can be expressed as:

� f(x), g(x)�=

ˆ ∞
−∞

sfsg min(sff(x), sgg(x))dx (6)

This binary operator (in the sense of taking two ar-

guments) corresponds to the direct counterpart of inner

product between multisets with non-negative multiplici-

ties.

We shall also adopt the following operator:

f(x) ◦ g(x) =

ˆ ∞
−∞

max(sff(x), sgg(x))dx (7)

From the above results, the multifunction convolu-

tion [3, 10] (mconvolution) of two functions can now be

derived:

f(x)�g(x)[y] =

ˆ ∞
−∞
� f(x)g(y − x)� dx (8)

Similarly, we derive the multifunction correlation, or

mcorrelation as:

f(x)�g(x)[y] =

ˆ ∞
−∞
� f(x)g(x− y)� dx (9)

It is also possible [10] to define:

f(x)©∗ g(x)[y] =

ˆ ∞
−∞

[f(x) ◦ g(x− y)] dx (10)

We also have:

Af =

ˆ ∞
−∞
|f(x)|dx (11)

Ag =

ˆ ∞
−∞
|g(x)|dx (12)

Now, the multifunction correlation, when normalized

by the above function, yields:

f(x)�g(x)[y] =

´∞
−∞ � f(x), g(x− y)� dx´∞
−∞ f(x)©∗ g(x− y)dx

(13)

observe that the integrand corresponds to the gener-

alized Jaccard index adapted to cope also with negative

multiplicities, here called negative multiset Jaccard index.

The interiority index also needs to be adapted to pos-

sibly negative multiplicities. First, we make:

� f(x), g(x)�+=

ˆ
S+

min(sff(x), sgg(x))dx (14)

where S+ = {x|sf (x)sg(x) > 0}, and then we can write:

I(f(x), g(x)) =
� f(x), g(x)�+

min {Af , Ag}
(15)

The respective combination with the interiority index

yields the coincidence index [3, 10], written as:

CN (f(x), g(x)) = JN (f(x), g(x)) I(f(x), g(x)) (16)

Now, when performing template matching between two

functions, it may be interesting to consider the interiority

also when sf (x)sg(x) < 0. In this case, it is possible to

take the absolute value of the object function as argument

of the interiority index above, which is the case considered

henceforth in this work.

The real-valued Jaccard index can be adapted for tak-

ing into account the sum of the two sets A and B, instead

of their respective union, which leads to the addition-based

real-valued Jaccard index :

JA(f(x), g(x)) =
2
´∞
−∞min (f(x), g(x))dx´∞
−∞ (f(x) + g(x)) dx

(17)

with 0 ≤ JS(f(x), g(x)) ≤ 1.

The addition-based real-valued Jaccard index can also

be combined with the interiority index, leading to the

respective addition-based coincidence index :

CA(f(x), g(x)) = JA(f(x), g(x)) I(f(x), g(x)) (18)

Each of these indices lead to respective multifunction

convolutions and correlations, which involve sliding one

function with respect to the other while calculating the

respective index, followed by the respective integration.
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Several other indices can be derived from those de-

scribed above by choosing other functionals for numer-

ator and denominator of the Jaccard index, as well as by

taking into account other product combinations of those

indices.

Table 1 summarizes the several similarity index under-

lying the correlation/convolution methods that will be

compared in the present work.

method definition

Classic cross-correlation Eq. 1

Real-valued Jaccard Eq. 13

Interiority Eq. 14

Coincidence Eq. 16

Addition-based real-valued Jaccard Eq. 17

Addition-based coincidence Eq. 18

Table 1: A summary of the similarity correlation/convolution meth-

ods adopted in this work respectively to their underlying indices,

also including their abbreviations and respective equations.

3 Preliminary Comparison

In order to have a first indication about the relative per-

formance of all the methods in Table 1 in presence of

increasing noise levels, we performed a respective prelimi-

nary comparison regarding the object and template func-

tions shown in Figure 1(a) and (b), respectively. Also

shown in that figure are the results of results of applying

the several types of correlations/convolutions considered

in the present work in the case of null noise.

As expected, the multiset-based correlations yielded

substantially enhanced results regarding the identifica-

tion of the peaks corresponding to the matches, leading

to sharper and narrower peaks and attenuation of sec-

ondary matches, while the standard cross correlation re-

sulted with peaks that are even wider than in the original

object.

Of particular interest is to observe the results of the

interiority-based convolution, yielding two sharp positive

peaks that are, however, less narrow than those obtained

for the other multifunction convolutions. This interest-

ing property contributed to the verified enhanced perfor-

mance of the two coincidence index-based multifunction

convolution methods, which yielded the sharpest and nar-

rowest matching peaks while almost eliminating the sec-

ondary matches.

Subsequent results considered the incorporation of pro-

gressive noise levels into the object function. More specifi-

cally, we added noised points at each of the x values drawn

from the symmetric, uniform density:

n(x) = L(u(x)− 0.5) (19)

where u() is the uniform random distribution in the

interval [0, 1] and L is the noise level.

The best results, in the sense of enhancing the main

peak while attenuating the secondary matches, resulted

from the application of the coincidence and addition-

based coincidence correlations.

It follows from the analysis of these results that all con-

sidered methods are robust to substantially high levels of

noise. Actually, the multiset based approaches results

combine a high-pass action in sharpening and enhancing

the peaks with a low-pass effect in substantially reducing

the high-frequency noise.

However, two effects are of particular importance.

First, we have that the added noised implied in slight

loss of sharpness in the case of all the multiset methods.

At the same time, the classic cross correlation accounted

for the best robustness to noise. These complementary

features motivated the combination of these two types of

methods as described in the following section.

4 Combining Cross Correlation

and Multifunction Correlations

We have seen that, while the multiset-based cross-

correlation methods allow enhanced performance com-

pared the classic cross-correlation, the latter is more ro-

bust to the highest considered noise levels. These com-

plementary features of these two families of methods mo-

tivate us to propose a combined method that would take

advantage of both interesting features, to be applied in

elevated levels of noise.

This can be immediately achieved by applying the

multiset methods after the two signals have been cross-

correlated, with the result being taken as the next object

function. However, the noise tolerance will depend on

the smoothness of the template function. It is also possi-

ble to apply low-pass filtering on the noise functions, but

this may not be necessary in case the template function

is itself smooth as in the case of the current examples.

Figure 2 illustrates the results obtained by application

of the above proposed methodology on the functions in

Figure 1, a situation which corresponds to the highest

levels of noise considered in this work. The obtained re-

sults corroborate the potential of the approach.
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Figure 1: Comparison of the several multifunction convolution methods with respect to two noiseless functions (a) and (b).

5 The Comparison Framework

In order to compare the performance of the considered

correlation methods in an objective and systematic man-

ner, it is first necessary to develop a formal and compre-

hensive respective framework taking into account all the

parameters of the object and template function, as well

as defining several suitable quantifications of the several

performance aspects of interest.

The preliminary performance investigation reported in

the previous section contributed to obtaining a more ef-

fective and objective systematic approach. For instance,

since the real-valued addition-based Jaccard and respec-

tive coincidence indices were fount to yield performance

very close to the real-valued Jaccard and coincidence

indices regarding the addressed operation of template

matching, only the two latter indices are taken into ac-

count in a more systematic manner. Also, given that the

interiority index is focused on providing a partial indi-

cation of the similarity between the template and object

functions, related mainly to the relative interiority be-

tween these two functions, the interiority index will also

not be considered further in our subsequent performance

evaluation.

However, despite its almost hopeless performance of the

classic cross-correlation approach, it will be considered as

a reference because of its extensive application in the most

diverse areas.

Figure 3 depicts the basic framework proposed in this

work for systematic comparison of the performance of the

application of the considered correlation methods to the

task of template matching.

The henceforth adopted object function in (a), corre-

sponding to the addition of two gaussians, incorporates

all the aspects of interest in our comparison approach.

Here, we have a principal peak with height hp and width

wp together with a secondary peak with respective hs and

ws. Each of these two gaussians are placed at respective
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Figure 2: Results of the combination of cross-correlation with multifunction convolutions. The cross correlation was first obtained between

the object signal with level noise L = 2 and respective template function, then followed by the several considered methods. It can be

readily observed that this respective methodology allowed the combination of the good characteristics of the classic cross correlation (higher

robustness to noise) with the enhanced peaks provided by the multifunction convolutions considered in the present work.

abscissae values xp and xs.

The expected cross-correlation result is to emphasize

as much as possible the dominant peak while the sec-

ondary match is attenuated. More precisely, the ideal

result would correspond to a single Dirac’s delta peak at

position xp. However, the typical expected result will be

as indicated in Figure 3(b). The main resulting peak will

be positioned at x1, having height h1 and width w1. A

secondary peak is likely to be obtained at respective po-

sition x2, with height h2 and width h2. In addition, an

overlap region extending from x2 to x1 is also likely to be

obtained as result of the cross-correlation methods. The

shapes of the detected peaks will typically be different

from those of the respective original counterparts.

The width of the four peaks is determined by measuring

the extension of the respective slice at 75% of the respec-

tive height. We have not adopted the standard devia-

tion (other for initial specification of the peaks) because,

though it would be viable regarding the object function in

(a), it is impossible to be properly characterized from the

resulting matching profile s(x) in (b), as this would re-

quire some criterion and respective methodology for sep-

arating the two typically overlapping peaks.

We can take the following interesting additional param-

eters regarding the object function that can be used while

comparing and discussing the correlation methods:

∆x = xp − xs (20)

rh =
hp
hs

(21)

rw =
ws

wp
(22)

The first parameter, ∆x, specifies the separation be-

tween the two peaks. The ratio rh indicates how sec-
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Figure 3: The basic framework for comparison of correlation meth-

ods. The object function has two peaks, one principal (p) and an-

other secondary s). The result of the correlation yields two peaks,

one corresponding to the principal original peak (1), and the other

to the secondary original peak (2).

ondary the smaller peak is, while the ratio rw expresses

the relationship between the two widths. These parame-

ters correspond to those that are most likely to influence

the performance of the correlation approaches. Good re-

sults will be favored by relatively large values of ∆x and

rh. The influence of the ratio rw is not so straightforward.

Now that we have identified all relevant parameters,

we are in position to objectively define figures of merit

regarding the respective performance. Consider the pro-

totypical matching function depicted in Figure 3(b). The

adopted performance indicators are as follows:

rxp
=
xp − x1
xp

desirable low

rxs =
xs − x2
xs

desirable low

rh =
h1/h2
hp/hs

desirable high

rw,p =
w1

h1
desirable low

rw,s =
w2

h2
desirable high

α =

ˆ x1

x2

s(x)dx desirable low

The ratio rxp
quantifies how much the main resulting

peak displaces itself from the original principal peak. As

such, this corresponds to a relative error and should be as

small as possible in order to ensure accurate template de-

tection. The ratio rxs plays an analogue role respectively

to the secondary peaks, and therefore also should be as

small as possible.

The relationship between the relative heights of the

main and secondary original and detected peaks is quan-

tified by the relative index rh. The higher this value, the

most the main peak will differentiate in height from the

secondary peak. This immediately implies that the sec-

ondary peak will result relatively more attenuated. As

such, this index should be as high as possible.

The ratio rw,p quantifies how narrow the obtained de-

tected peak is and, as such, should be as small as pos-

sible. The index rw,s plays a similar role regarding the

secondary peak, and as such should be as high as possi-

ble.

The index α corresponds to the integral of the obtained

matching function s(t), therefore quantifying how intense

the resulting overlap is. Ideally, we should have α = 0, so

that the lower this value, the better the performance will

be.

6 Performance in Presence of Ad-

ditive Noise

The comprehensive systematic framework developed in

the previous section is now applied as a means for com-

paring the similarity-based correlation approaches. More

specifically, we will incorporated progressive levels of ad-

ditive noise to the object function as in Figure 3, with the

following parameters:

σp = 0.3

σs = 0.15

hp = 2

hs = 1

xp = 4.5

xs = 1.8

The 21 noise levels are as follows:

ns [v] =
v

20
[u(x)− 0.5] , with v = 0, 1, . . . , 20 (23)

While the first level correspond to noiseless object func-

tion, the noise level implied by v = 20 is markedly intense

on purpose.

A total of 300 realizations are obtained for each

of the noise levels above. The methods to be com-

pared are the classic cross-correlation, real-valued Jac-

card and coincidence indices, as well as the combination

of cross-correlation and coincidence indices-based cross-

correlations. In all cases, the template signal is a half

sine identical to that shown in Figure 1.
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Figure 4 presents the average ± standard deviation re-

sults obtained respectively to the real-valued Jaccard (re-

sults shown in salmon) and coincidence method (in blue).

Several interesting and important results can be verified.

First, we have that both these methods yielded quite

similar performance regarding the accuracy for identifi-

cation of the original position of the peaks (Fig. 4(a,b))

which, in both cases, are nearly zero, which is a quite good

result. However, when we move to the ratio rh shown in

(c), which should correspond to a high value, the coinci-

dence method outperforms the real-valued Jaccard by a

large margin.

The performance ratio rwp, which should have low val-

ues, again revealed the enhanced relative performance of

the coincidence index. The relative performance for the

index rws resulted even more striking, further corroborat-

ing the special characteristics of the coincidence method.

The index α obtained for the coincidence method,

shown in Figure 4(f), resulted nearly half of that observed

for the real-valued Jaccard approach, again revealing en-

hanced performance of the former methodology.

Though it could be expected from our preliminary anal-

ysis that the coincidence correlation method would out-

performed the real-valued Jaccard correlation approach,

the obtained results indicate that the relative advantage is

surprisingly significant. This is especially so in the case of

the ratio rh, which indicates that the coincidence method

attenuates substantially the secondary peaks.

Still regarding the results in Figure 4, it is interesting

to observe that the real-valued Jaccard and coincidence

methods tend to have more similar performance as the

added noise level increases. This is expected because too

high noise levels tend to completely undermine the pat-

terns in the object function, as illustrated in the object

function in Figure 5 , which is respective to the highest

considered noise level.

Figure 6 presents the performance figures obtained for

the classic cross-correlation method. As already hinted

by the preliminary results described in Section 3, this

method is nearly hopeless for identification of the pat-

terns in terms of narrow, sharp peaks, while the secondary

peaks are duly attenuated. Except for the rh index in Fig-

ure 6(c), all other indices resulted almost constant with

the noise levels. Though a slight performance improve-

ment can be observed in (c), its values are far away from

those allowed by the real-valued Jaccard and coincidence

methods.

Figure 7 presents the results obtained for the combina-

tion of correlation as preliminary processing before the ap-

plication of the real-valued Jaccard or coincidence meth-

ods, as proposed in Section 4.

The obtained results confirm the previous expectative

that, in the average in case of object functions with in-

tense level of noise it can be advantageous to apply the

real-valued Jaccard or coincidence correlations after the

object function is filtered by the classic cross-correlation.

Indeed, though the obtained performance figures are all

worse in the case of low level noise, they become neverthe-

less better than would be otherwise obtained by not using

a priori correlation in the case of the highest considered

levels of noise. However, larger error bars are observed

for more intense noise leves.

Another interesting result has been obtained in which

the unfolding of the several merit figures became much

more straight or linear along the levels of noise At the

same time, the combined coincidence correlation approach

resulted substantially better than the combined real-

valued Jaccard method for all levels of noise.

It should be kept in mind that these results concern

situations where the template function is smooth, being

therefore capable of incorporating respective low-pass fil-

tering action.

In order to complete our comparative performance anal-

ysis, we shown in Figure 8 the two main axis obtained by

principal component analysis (PCA [14, 15]) of the per-

formance figures for the real-valued Jaccard, coincidence,

and classic cross-correlation methods. Three PCA projec-

tions are shown, corresponding to the second lowest (a),

middle (b), and highest (c) considered noise levels.

Several interesting results are revealed from the PCA

projections in Figure 8. First, we have the fact that a

substantial deal of the original data variance (about 70%

as indicated in parentheses in the axes labels) has been

explained by the two main PCA axes, which indicates

that the PCA projection is particularly representative of

the original data distribution. Second, it becomes clear

that, in all noise levels, the performance of the classic

correlation method is well separated from that of the two

other multiset-based methods.

Particularly important is to observe the relative dis-

persions of each of the three groups, with the coincidence

index yielding the largest dispersion, followed by the real-

valued Jaccard, and then the classic correlation approach.

These dispersions of the performance figures reflect di-

rectly the sensitivity of each method to the specificities

of the object function, being also related to the accuracy

of the methods, in the sense that a method that always

produce a same meaningless result independently of the

shape of the object function would have null dispersion.

8



Figure 4: The performance results in terms of the considered level noise obtained while comparing the real-valued Jaccard (shown in salmon)

and coincidence (in blue) methods. Except for the localization of the peaks, which resulted in similar indices (b,c) in both methods, the

coincidence correlation approach revealed substantially superior relative performance. The plots correspond to the average values for 300

realizations, ± the respective standard deviations.

Figure 5: Example of object function incorporating the maximum

considered level of noise (i.e. = 20). The original, noiseless version

of the object function is also shown in dashed blue for comparison

purposes.

Yet, relatively smaller dispersions resulted in the cases of

more typical lower noise levels considered in this work.

As expected, as the noise effectively changes the shape

of the object function, higher dispersions will be obtained

by more accurate and sensitive methods respectively to

higher levels of noise. It is also interesting to realize that

it is the relative insensitivity of the classic correlation

method that paves the way to its respective combination

with the real-valued Jaccard and coincidence correlations

in the case of particularly high levels of noise.

Yet, despite the larger fluctuations of the coincidence

method, the respective performance values are largely

higher than those obtained by the real-valued Jaccard ap-

proach and much less so by the extensively used classic

cross-correlation. Observe also the confirmation of the

already verified tendency of the performances of the coin-

cidence and real-valued Jaccard correlations to merge for

the highest levels of noise.

9



Figure 6: Performance figures obtained for the classic correlation method. Except for the localization of the peaks in (a) and (b), this

method resulted almost hopeless regarding all other performance indices. The plots correspond to the average values for 300 realizations, ±
the respective standard deviations.

7 Concluding Remarks

The operation of cross-correlating two functions or signals

constitutes an important mathematical resource that has

been extensively applied for the most diverse scientific and

technological purposes.

Though the classic cross-correlation approach relies on

successive inner products between one function displaced

relatively to the other, it is also possible to apply multiset-

based approaches [3, 10, 11] to derived respective cross-

correlation methodologies that have several intrinsic ad-

vantages, including being mainly based on the non-linear

binary operations (in the mathematical sense of taking

two arguments) of minimum and maximum, both of which

being intuitive and requiring low computational costs.

A set of multiset-based cross correlation approaches has

been recently introduced [3, 10, 11] that includes the real-

valued Jaccard, interiority, coincidence, addition-based

real-valued Jaccard, as well as the addition-based coinci-

dence correlations. Preliminary results [10, 11] indicated

that these operations, except the interiority index which

is used as an ancillary resource in the definition of the

coincidence indices have, when compared with the classic

cross-correlation approach, substantially enhanced poten-

tial for accurate and detailed similarity quantification, in-

cluding in tasks such as filtering and template matching.

In the present work, we set out at developing a com-

prehensive and systematic comparison approach between

the performance allowed by the above mentioned cross-

correlation methods with respect to the important pat-

tern recognition task of template matching, which can be

readily understood as a kind of filtering.

After presenting the adopted multiset concepts and re-

spectively derived cross-correlation approaches, we per-
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Figure 7: Performance indices obtained for the combination of correlation prior to the real-valued Jaccard (dark green) and coincidence

(dark blue) methods. As expected, though this approach is less effective than the respective methods without the a priori correlation for

low noise levels, relatively better results are observed for the largest levels of noise. These results corroborate the advantage of combining

correlation and the real-valued Jaccard or coincidence methods in the case of very noisy object functions. Also of particular interest is that

the several of the obtained curves present a markedly more linear variation with the noise level than for the other correlation configurations

considered in this work. The plots correspond to the average values for 300 realizations, ± the respective standard deviations.

formed a preliminary comparison aimed at providing an

overall appreciation of the relative potential of the several

considered methods. The results clearly corroborated the

enhanced potential of the multiset methods respectively

to the classic cross-correlation. In addition, it was veri-

fied that the addition-based methods led to similar per-

formances to those obtained by the real-valued Jaccard

and coincidence approaches. These preliminary results

also indicated that the interiority approach is not par-

ticularly powerful when considered without being com-

bined with the Jaccard index in order to obtain the co-

incidence method. These findings allowed us to narrow

the focus of our comparison on three main alternative

cross-correlation methods: the real-valued Jaccard, coin-

cidence, and classic cross-correlation approaches.

In addition, the identification of the enhanced robust-

ness of the classic cross-correlation to intense noise lev-

els observe in the preliminary comparison also motivated

the proposal of a method in which the cross-correlation is

performed prior to the application of the multiset-based

mehtods as means to reduce the noise as a preparation

for the matching detection.

In order to characterize and understand better the re-

spective performance of the three chosen methods, we pro-

posed a formal and comprehensive framework to be used

for systematic performance comparison. This framework,

which can also be understood as an additional contribu-

tion of the present work, takes into account several im-

portant quantitative indices expressing the performance

of the cross-correlation with respect to several relevant

features characterizing good performance.

The application of the proposed comparison framework

led to several interesting results.

First, we have that the real-valued Jaccard and coinci-
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(a) (b) (c)

Figure 8: Principal component analysis (PCA) of the performance figures obtained for the real-valued Jaccard (shown in salmon), coincidence

(blue) and classic cross-correlation (green) for the second lowest (a), middle (b) and highest considered level noises. Observe the good variance

explanation indicated in parentheses on the respective axes. The fact that larger dispersions have been obtained for the real-valued Jaccard

and coincidence indices respectively to the classic correlation reflects the greater ability of the two former methods, and especially the

coincidence cross-correlation, to capture information about the original object function specificities. These three PCA projections also

clearly indicate the substantial relative between the multiset-based correlations and the classic correlation, which is far away. Observe also

the confirmation that the real-valued Jaccard and coincidence methods tend to allow similar performance for the highest noise leves.

dence methods allowed the best overall template matching

performance respectively to the classic cross-correlation,

therefore corroborating further the preliminary expecta-

tions. The performance was also observed not to be sig-

nificantly undermined even by intense levels of additive

noise.

Among the two multiset-based approaches, the coinci-

dence method resulted significantly more effective, lead-

ing to best performance with respect to virtually every

considered index. The proposed cross-correlation method

combining the classic cross-correlation before the appli-

cation of the multiset-based methods was also found to

constitute an interesting alternative in cases of intense

noise.

Additional characterization of the obtained perfor-

mance indices by using principal component analysis pro-

vided further understanding the potential of each investi-

gated method. It was therefore confirmed that the real-

valued Jaccard and coincidence cross-correlation methods

have performance markedly different from that of the clas-

sic cross-correlation. In addition, the sensitivity of the

two multiset-based methods was confirmed by the obser-

vation of larger respective dispersions in the PCA space

that are consequence of their enhanced sensitivity to the

modifications implied by the noise on the specific shape

of the object function. These complementary results also

substantiated that the coincidence method provided the

best overall performance at least for the type of data and

problem addressed in our comparative analysis.

The reported concepts, methods, and results have im-

portant and wide implications for many areas dependent

of the cross-correlation or the related convolution op-

erations, including signal processing (e.g. [16, 17, 18]),

pattern recognition (e.g. [19, 20, 21]), shape analysis

(e.g. [13]), complex networks (e.g. [22, 23, 24])) as well

as deep learning (e.g. [25, 26]), among many other fields.

One point of particular interest is to contemplate to

which extent similar methods could be employed in natu-

ral recognition systems involving neuronal cells, as moti-

vated by their relative simplicity and low computational

cost. An interesting related issue regarding the possi-

ble eventual neuronal operations that would be correlate

to the multiset-based methods addressed in the present

work.

Given the importance of similarity concepts and meth-

ods in the physical sciences, not to mention virtually every

other scientific and technological fields, the implications

of the methods results reported in the present work are

particularly ample, paving the way to a large number of

further developments. Indeed, every current concept or

method based on similarity, inner products, and/or con-

volution and correlation can be re-assessed in the light

of the presented results indicating the enhanced perfor-

mance of the Jaccard and multiset-derived methods rela-

tively to the extensively applied classic cross-correlation,

as well as related concepts including the cosine similarity

and inner product.

As more immediate future developments more close and

specifically related to the issues addressed in the present

work, it would be interesting to consider other types of

functions and cross-correlation based methods, higher di-

mensional vector and function spaces, as well as to study

the effect of the relative function magnitudes and other

types of noise on the results. Related research is being

12



conducted and results are to be published opportunely.
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