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Abstract

Introduced recently, the common product between two multisets, or functions represented as multisets (multifunc-

tions), can be understood as being analogue to the inner product in real vector or function spaces, as well as other

spaces including scalar and vector fields. In addition to providing resources for quantifying joint variations, as well as

the similarity between clusters in pattern recognition, the common product also allows a respective multiset convolu-

tion/correlation to be derived which, in addition to its conceptual and computational simplicity, has been verified to

be able to provide enhanced results in tasks such as template matching, tending to yield peaks that are sharper and

narrower than those typically obtained by standard cross-correlation, while also attenuating substantially secondary

matching peaks. Given that the multiset convolution can be adapted to employ other similarity functionals, such as the

coincidence and addition-based multiset Jaccard index, it remains an interesting subject to compare the performance

of multifunction correlations based on these alternative implementations of the multifunction correlation. The present

work addresses this subject, with encouraging results that can have immediate applications not only in pattern recogni-

tion and deep learning, but also in scientific modeling in general. As expected, the multifunction convolution/correlation

methods presented enhanced performance, characterized by sharper and narrower peaks while secondary peaks were

attenuated, which was maintained even in presence of increasing levels of noise. In particular, the two methods derived

from the coincidence index led to the sharpest and narrowest peaks, as well as intense attenuation of the secondary

peaks. The cross correlation, however, presented the best robustness to symmetric additive noise, which suggested

a new combined method in which the cross-correlation is applied prior to the multifunction convolution methods,

therefore allying the best characteristics of each of these two families of methods.

‘Deep inside the mirror, a whole universe of similarities.’

LdaFC

1 Introduction

The Jaccard index (e.g. [1, 2, 3]) has been extensively

used in many areas as an interesting and effective means

for comparing any two sets. A multiset Jaccard index, in

which multisets (e.g. [4, 5, 6, 7, 8, 9]) are taken instead of

sets, has also been used in similar applications, with the

ability to take into account the multiplicities of multiset

elements. More recently [3], several further generaliza-

tions of the Jaccard index have been proposed based on

several respective motivations.

In another recent work [10], multisets have been ex-

tended to cope with negative and real-valued multiplici-

ties, which allowed the identification of the multiset uni-

verse as corresponding to the multiset with all multiplici-

ties null. As a consequence of the definition of the multiset

universe, the complementation operation becomes possi-

ble, allowing results such as the De Morgan theorem to

be incorporated into multiset theory, as well as several in

real functions and scalar fields spaces. In addition, these

two extensions paved the way to extending multisets to

represent generic functions and scalar/vector fields [3, 10],

leading to the concept of multifunctions.

Multifunctions, however, require an adaptation of the

inner product binary operation in order to properly take

into account the relative signs of the multifunctions. Re-

flecting an analogy with the traditional inner product of

vectors or functions, which can also be understood as

quantifications of similarity in the sense of multiset dif-

ferences, a respective operator has been proposed, called

the common product [3, 10]. Unlike the inner product in

vector and function spaces, the common product is non-

linear and does not require algebraic products, and could

be understood as a first degree binary operator, while the

inner product would have a second degree characteristic.

The common product can be readily applied not only
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to quantify the similarity between two clusters in pattern

recognition, but also be employed as a joint variation mea-

surement similar to the Pearson correlation coefficient.

Preliminary results [3] indicate that the common prod-

uct provides a purportedly quantification of joint varia-

tion between two random variables that is more compati-

ble with human perception than product-based measure-

ments such as the Pearson correlation coefficient, espe-

cially given the tendency of the latter to saturate as the

correlation increases [3].

The common product also allowed the definition of

a convolution/correlation between two multifunctions [3,

10]. As with its real function counterpart, the multifunc-

tion convolution can be employed for typical signal pro-

cessing tasks, including but not being limited to filtering,

template matching, and control theory. Indeed, prelimi-

nary results [3, 10] have been obtained that are particu-

larly promising and encouraging. More specifically, when

used for template matching, the obtained peaks corre-

sponding to the maximum similarity between the target

and template functions are not only substantially sharper

and narrower, but also the secondary matching peaks re-

sult much more attenuated [10].

The combination of these two features suggests that

the multifunction convolution has substantial potential

for applications in pattern recognition and deep learning,

as well as other related areas involving estimations of sim-

ilarity and/or convolutions. Actually, the linear part of

neurons in artificial neuronal network can be made to cor-

respond to common products, instead of the traditionally

adopted inner product of inputs.

Since the multifunction convolution is based on the

functional of the common product for several relative dis-

placements between the two involved multifunctions, it

becomes of particular interest to adopt alternative simi-

larity indices, such as those proposed in [3]. That consti-

tutes the main purpose of the present work. More specif-

ically, we compare several multifunction convolutions de-

rived from the generalized Jaccard indices presented and

developed in [3].

We start by reviewing the adopted indices, then pro-

ceed to a numeric comparison of the respectively obtained

multifunction convolutions with respect to two multifunc-

tions, while also considering progressive levels of additive

noise.

2 The Considered Similarity In-

dices

We start with the traditional cross-correlation between

two functions f(x) and g(x):

Corr(f, g)[y] =

ˆ ∞
−∞

f(x)g(x− y)dx (1)

The basic Jaccard index between two sets with non-

negative multiplicity can be defined as:

J (A,B) =
|A ∩B|
|A ∪B|

(2)

where A and B are any two sets to be compared. It

can be verified that 0 ≤ J (A,B) ≤ 1.

The homogeneity or interiority index can be expressed

as:

I(A,B) =
|A ∩B|

min {|A| , |B|}
(3)

with 0 ≤ I(A,B) ≤ 1 and 0 ≤ J (A,B) ≤ H(A,B) ≤ 1.

The combination of the basic Jaccard and the interior-

ity indices yields the coincidence index, proposed in [3]

as:

C(A,B) = J (A,B) I(A,B) (4)

which can also be expressed in expanded form as:

C(A,B) =
|A ∩B|2

|A ∪B| min {|A| , |B|}
(5)

again with 0 ≤ C(A,B) ≤ 1.

The Jaccard index extended to multisets with non-

negative multiplicities can be expressed as:

JM (A,B) =

∑N
i=1 min (ai, bi)∑N
i=1 max (ai, bi)

(6)

with 0 ≤ JM (A,B) ≤. Therefore, this index is capable

of taking into account the multiplicity of the elements in

the involved multisets.

The extension of the Jaccard index to negative, real-

valued multiplicities, involves the following develop-

ments [3, 10]. In particular, the possibility to have posi-

tive and/or negative multiplicity values now requires the

application of a binary operator analogous to the inner

product in function spaces, in which the multiplicities are

properly mirrored among the four quadrants depending

on their signs [3, 10]. This operator, which will be refer-

enced here as common product, can be expressed as:

� f(x), g(x)�=

ˆ ∞
−∞

sfsg min(sff(x), sgg(x))dx (7)

We shall also adopt the following operator:

f(x) � g(x) =

ˆ ∞
−∞

max(sff(x), sgg(x))dx (8)
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This binary operator corresponds to the direct counter-

part of inner product between multisets with non-negative

multiplicities.

From the above results, the multifunction convolu-

tion [3, 10] (mconvolution) of two functions can now be

derived:

f(x)�g(x)[y] =

ˆ ∞
−∞
� f(x)g(y − x)� dx (9)

Similarly, we derive the multifunction correlation, or

mcorrelation as:

f(x)�g(x)[y] =

ˆ ∞
−∞
� f(x)g(x− y)� dx (10)

It is also possible [10] to define:

f(x)©∗ g(x)[y] =

ˆ ∞
−∞

[f(x) � g(x− y)] dx (11)

We also have:

Af =

ˆ ∞
−∞
|f(x)|dx (12)

Ag =

ˆ ∞
−∞
|g(x)|dx (13)

Now, the multifunction correlation, when normalized

by the above function, yields:

f(x)�g(x)[y] =

´∞
−∞ � f(x), g(x− y)� dx´∞
−∞ f(x)©∗ g(x− y)dx

(14)

observe that the integrand corresponds to the gener-

alized Jaccard index adapted to cope also with negative

multiplicities, here called negative multiset Jaccard index.

The interiority index also needs to be adapted to pos-

sibly negative multiplicities. First, we make:

� f(x), g(x)�+=

ˆ
S+

min(sff(x), sgg(x))dx (15)

where S+ = {x|sf (x)sg(x) > 0}, and then we can write:

I(f(x), g(x)) =
� f(x), g(x)�+

min {Af , Ag}
(16)

The respective combination with the interiority index

yields the negative multiset coincidence, written as:

CN (f(x), g(x)) = JN (f(x), g(x)) I(f(x), g(x)) (17)

Now, when performing template matching between two

functions, it may be interesting to consider the interiority

also when sf (x)sg(x) < 0. In this case, it is possible to

take the absolute value of the target function as argument

of the interiority index above, which is the case considered

henceforth in this work.

The multiset Jaccard index generalized to negative mul-

tiplicities can be adapted for taking into account the sum

of the two sets A and B instead of their respective union,

which leads to the addition-based multiset Jaccard index :

JA(f(x), g(x)) =
2
´∞
−∞min (f(x), g(x))dx´∞
−∞ (f(x) + g(x)) dx

(18)

with 0 ≤ JS(f(x), g(x)) ≤ 1.

As with the original Jaccard index, the addition-based

multiset Jaccard index can be combined with the interi-

ority index, leading to the respective addition-based coin-

cidence index :

CA(f(x), g(x)) = JA(f(x), g(x)) I(f(x), g(x)) (19)

Each of these indices lead to respective multifunction

convolutions and correlations, which involve sliding one

function with respect to the other while calculating the

respective index, followed by the respective integration.

Several other indices can be derived from those described

above by choosing other functionals for numerator and

denominator of the Jaccard index, as well as by taking

into account other product combinations of those indices.

Table 1 summarizes the several similarity index under-

lying the correlation/convolution methods that will be

compared in the present work.

method definition

Traditional cross-correlation Eq. 1

multifunction correlation Eq. 10

Multiset Jaccard, neg. mult. Eq. 14

Multiset coincidence, neg. mult. Eq. 17

Addition-based multiset Jaccard Eq. 18

Addition-based multiset coinc. Eq. 19

Table 1: A summary of the similarity correlation/convolution meth-

ods adopted in this work respectively to their underlying indices,

also including their abbreviations and respective equations.

3 Results

Figure 1 presents the results of applying the several types

of correlations/convolutions considered in the present

work to the matching between a target (f(x)) and a tem-

plate (g(x)) function.

As expected, the multifunction convolutions yielded

substantially enhanced results regarding the identifica-

tion of the peaks corresponding to the matches, leading

to sharper and narrower peaks and attention of secondary

matches, while the standard cross correlation resulted in

peaks that are even wider than in the original target.
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Figure 1: Comparison of the several multifunction convolution methods with respect to two noiseless functions (a) and (b).

Of particular interest is to observe the results of the

interiority-based convolution, yielding two sharp peaks

that are, however, less narrow than those obtained for the

other multifunction convolutions. This interesting prop-

erty contributed to the verified enhanced performance of

the two coincidence index-based multifunction convolu-

tion methods, which yielded the sharpest and narrowest

matching peaks while almost eliminating the secondary

matches.

Subsequent results considered the incorporation of pro-

gressive noise levels into the target function. More specifi-

cally, we added noised points at each of the x values drawn

from the symmetric, uniform density:

n(x) = L(u(x)− 0.5) (20)

where u() is the uniform random distribution in the

interval [0, 1] and L is the noise level.

Figures 2 to 2 present the obtained results respectively

to noise levels 0.2, 0.5, 1 and 2.

It follows from the analysis of these results that all con-

sidered methods are robust to the applied levels of noise.

Actually, in an analogous manner to the inner product of

a target function with a smooth template, a low-pass fil-

tering action can be observed that attenuates the added

noise to a good extent.

However, two effects are of particular importance.

First, we have that the added noised implied in slight loss

of sharpness in the case of all the multifunction methods.

At the same time, the cross correlation accounted for the

best robustness to noise. These complementary features

motivated the combination of these two types of methods

as described in the following section.

4 Combining Cross Correlation

and Multifunction Convolutions

The complementary advantages of the cross correlation

and multifunction convolutions respectively to template

matching and filtering can be combined so as to harness

their respective best features. This can be immediately

achieved by applying the multifunction methods after the
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Figure 2: Comparison of the several multifunction convolution methods with respect to two noise level 0.2.

two signals have been cross-correlated, with the result be-

ing taken as the next target function. It is also possible

to apply low-pass filtering on the noise functions, but this

may not be necessary in case the template function is it-

self smooth as in the case of the current examples.

Figure 6 illustrates the results obtained by application

of the above proposed methodology on the functions in

Figure 5, a situation which corresponds to the highest

levels of noise considered in this work, and the obtained

results corroborate the effectiveness of the approach.

5 Concluding Remarks

We have presented a comparison among several multi-

function correlations applied to detecting the similarity

between two functions f(x) and g(x) according to in-

creasing levels of noise. This operation relates directly

to template matching as well as filtering. The consid-

ered methods consisted of the multifunction correlation

as well as its adaptation with respect to the several sim-

ilarity index described in [3], as well as the traditional

cross-correlation, which is directly related to the cosine

similarity.

The results can be understood to be markedly encour-

aging and promising. First, we have that the multifunc-

tion convolutions yield sharper and narrower peaks, while

attenuating secondary peaks. Therefore, the local similar-

ity between the two functions can be effectively quantified

by using the multifunction correlations.

Among the latter type of methods, we have that the

multifunction convolution tended to have similar per-

formance when compared to its normalized version and

addition-based convolution. However, the two approaches

incorporating the interiority index were capable of empha-

sizing even further the matching peaks while attenuating

secondary matches.

In case the secondary peaks need to be also identified,

it is always possible to employ a recursive procedure in

which the largest peaks are removed from the target sig-

nal, and new detections involving the multifunction con-

volutions are employed.

The application of the correlation methods in presence

of noise also yielded remarkable results, revealing a sub-

stantial robustness of all considered methods up to rel-

atively high levels of additive uniform noise. Neverthe-
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Figure 3: Comparison of the several multifunction convolution methods with respect to two noise level 0.5.

less, the noise has been observed to imply wider match-

ing peaks, and also to affect the multifunction correla-

tions slightly more than the traditional cross-correlation,

which presented the best resilience to the considered type

of noise.

The superior robustness of the cross-correlation moti-

vated a new method in which the multifunction convolu-

tions are applied not directly onto the target and template

signals, but on their respective cross correlation. This

method therefore combines both advantages of the cross-

correlation (or cosine similarity-based methods) with the

enhanced performance of the multifunction convolutions

for peak detection.

The results reported in this work corroborate the po-

tential of the multifunction convolutional methods for en-

hanced pattern recognition, filtering, as well as other re-

lated tasks. Sharper peak identification has frequently

been pursued while considering non-linear methods. In-

terestingly, the proposed methodology is also non-linear

(the use of minimum and maximum functions), but de-

manding minimal computational expenses when com-

pared to more sophisticated methodologies involving com-

plex variables, differentiation, etc.

Indeed, in addition to the observed good performance,

we also have that the multifunction methods are concep-

tually, mathematically, and computationally simple, re-

quiring only comparisons between values and additions

instead of the products involved in the traditional cross-

correlation and cosine distance-based methods.

In addition, the identified enhanced performance of the

multifunction correlation methods is believed to provide

insights also about the performance of the directly asso-

ciated approach of using the common product as a mea-

surement of the similarity between two clusters [3, 10],

or as a quantification of joint variation of two random

variables [3].

That is so because the multifunction convolution meth-

ods consists in the repeated application of indices such as

the common product. Therefore, the sharper and nar-

rower peaks obtained, as well as the attenuation of sec-

ondary peaks, provides a direct indication that the use

of the common product for similarity quantification and

joint variation will provide more discrimination between

the possible relative locations of the compared clusters or

correlation. In other words, convolutional quantification

of the similarity between two multifunctions actually cor-
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Figure 4: Comparison of the several multifunction convolution methods with respect to two noise level 1.

responds to repeated estimations of similarity, represent-

ing a more systematic and demanding task that measur-

ing the similarity between two multisets. Therefore, the

performance of similarity index will be closely related to

the performance of respectively convolution approaches.

If a similarity index is good when applied through convo-

lution, it should be expected to be good also for the direct

similarity quantification between two multisets.

Two of the considered indices, namely the coincidence

and addition-based coincidence, correspond to the prod-

uct of two other indices, namely the interiority and Jac-

card. The fact that these two indices led to the best per-

formance for peak identification motivates further combi-

nation of indices, as it is indeed the case with the combina-

tion of cross correlation and multifunction convolutions.

This possibility expands combinatorially among the sev-

eral adopted similarity indices, expanding further in case

other similarity indices (e.g. [11]) are also taken into ac-

count.

One point of particular interest is to contemplate to

which extent similar methods could be employed in natu-

ral recognition systems involving neuronal cells, as moti-

vated by their relative simplicity and low computational

cost. In addition, the results reported in this work have

direct implications in pattern recognition and deep learn-

ing, motivating new neuronal architectures and respective

convolutional methods.

As future works, It would be interesting to consider

other types of functions, as well as to study the effect of

the relative function magnitudes and other types of noise

on the results. Related research is being conducted and

results are to be published opportunely.
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Figure 5: Comparison of the several multifunction convolution methods with respect to two noise level 2.
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Figure 6: Results of the combination of cross-correlation with multifunction convolutions. The cross correlation was first obtained between

the target signal with level noise L = 2 and respective template function in Figure 5, then followed by the several considered methods. It can

be readily observed that this respective methodology allowed the combination of the best characteristics of the traditional cross correlation

(higher robustness to noise) with the enhanced peaks provided by the multifunction convolutions considered in the present work.
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