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ABSTRACT

Context. The possibility of identifying co-natal stars that have dispersed into the Galactic disc based on chemistry alone is called
strong chemical tagging. It has been debated for a long time whether this is indeed feasible; it holds the promise of reconstructing the
detailed star formation history of a large fraction of stars in the Galactic disc.
Aims. We investigate the feasibility of strong chemical tagging using known member stars of open clusters.
Methods. We analysed the largest sample of cluster members that have been homogeneously characterised with high-resolution differ-
ential abundances for 16 different elements. We also investigated the possibility of finding the known clusters in the APOGEE DR16
red clump sample with 18 chemical species. For both purposes, we used a clustering algorithm and an unsupervised dimensionality
reduction technique to blindly search for groups of stars in chemical space.
Results. Even if the internal coherence of the stellar abundances in the same cluster is high, typically 0.03 dex, the overlap in the
chemical signatures of the clusters is large. In the sample with the highest precision and no field stars, we only recover 9 out of the 31
analysed clusters at a 40% threshold of homogeneity and precision. This ratio slightly increases when we only use clusters with 7 or
more members. In the APOGEE sample, field stars are present along with four populated clusters. In this case, only one of the open
clusters was moderately recovered.
Conclusions. In our best-case scenario, more than 70% of the groups of stars are in fact statistical groups that contain stars belonging
to different real clusters. This indicates that the chances of recovering the majority of birth clusters dissolved in the field are slim, even
with the most advanced clustering techniques. We show that different stellar birth sites can have overlapping chemical signatures,
even when high-resolution abundances of many different nucleosynthesis channels are used. This is substantial evidence against the
possibility of strong chemical tagging. However, we can hope to recover some particular birth clusters that stand out at the edges of
the chemical distribution.
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1. Introduction

The chemical tagging technique (Freeman & Bland-Hawthorn
2002) consists of grouping stars with similar chemical signa-
tures. Weak chemical tagging has been used to find stars that
were born in similar Galactic environments and that therefore
show similar chemical patterns. This is the case for the identifi-
cation of large structures such as the thick disc (Hawkins et al.
2015) and also for more particular stellar structures such as the
N-rich population in the inner Galaxy (Schiavon et al. 2017). In
contrast, the idea behind strong chemical tagging is to find stars
that were born in the same star-forming event, that is, in the same
birth cluster.

There is a consensus in the community that most of the stars
that we see today in the disc were born in stellar aggregates
(i.e. open clusters or unbound associations). Star formation sim-
ulations and observations tell us that in the process of forming
stars, parent molecular clouds undergo fragmentation, thus pro-
ducing hundreds of stars in the same burst (e.g., Krumholz et al.
2014). As the result of a number of dynamical processes, most
of these aggregates later tend to disperse into the disc in a few
∼100 Myr (Krumholz et al. 2019). However, the highly dissipa-
tive nature of the dynamical interactions in the disc prevents us
from using the observed kinematics of the individual stars to

track them back to their common formation sites. Nevertheless,
stars preserve their birth chemical information in their stellar
atmospheres for most chemical elements. Assuming a uniform
composition of the parent molecular cloud, we can therefore
hope to associate individual stars with their birth clusters using
chemistry alone. This is the idea behind strong chemical tagging,
and it has been one of the motivations of several spectroscopic
surveys, including APOGEE (Majewski et al. 2017), GALAH
(De Silva et al. 2015) or the Gaia-ESO survey (Randich et al.
2013; Gilmore et al. 2012). Known open clusters (OCs) are the
perfect testbed for studying the possibilities of strong chemi-
cal tagging because they are the only example of birth clusters
that have survived dynamical effects and remain gravitationally
bound today.

Two assumptions need to be confirmed in order to enable
strong chemical tagging: (i) the members of a birth cluster
should have a chemically homogeneous composition, and (ii)
each cluster should have a unique chemical signature to be able
to distinguish stars from different clusters.

The level of chemical homogeneity in OCs has been stud-
ied in recent years. It is known that in some cases, cluster
members at different stages of stellar evolution can present dif-
ferences in their abundances. This is for example the case of
turnoff stars (e.g., Bertelli Motta et al. 2018; Souto et al. 2019;
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Liu et al. 2019), where inhomogeneities as high as 0.1–0.2 dex
are attributed to diffusion. Additionally, the process of planet
formation can result in variations in surface chemical abun-
dances of the host star (Meléndez et al. 2009; Liu et al. 2016a;
Spina et al. 2018). This effect is usually small and has only been
detected using high-precision abundances of solar twins. Most
of the studies indicate that OCs have a uniform chemical com-
position of FGK main-sequence or red giant stars, at least up
to ∼0.02−0.03 dex (De Silva et al. 2006; Liu et al. 2016b; Bovy
2016; Casamiquela et al. 2020), which is below the level of the
uncertainties of large spectroscopic surveys.

The second requirement for the viability of strong chemical
tagging is yet to be proved. Some studies tried to chemically
tag stars in known OCs blingly using high-precision abundances
(Mitschang et al. 2013; Blanco-Cuaresma et al. 2015), finding it
difficult to identify co-natal groups of stars through automated
algorithms. Smiljanic & Gaia-ESO Survey Consortium (2018)
applied a hierarchical clustering algorithm to eight OCs with
FGK type stars in the Gaia-ESO survey data, finding some
chemical separation in only five out of eight clusters. Kos et al.
(2018) used the GALAH abundances and the algorithm t-
distributed stochastic neighbour embedding (t-SNE) to visually
identify nine known open and globular clusters within the field
stars. They concluded that t-SNE isolates the different clusters
in their chemical space well, even though they did not attempt
to run any clustering algorithm. Garcia-Dias et al. (2019) used
APOGEE DR14 data to test the capability of several non-
hierarchical clustering algorithms to distinguish 23 known open
and globular clusters with at least five members in different evo-
lutionary states. Their best results without constraining the num-
ber of clusters used DBSCAN1, which makes a homogeneity2

score of 0.853. They argued that the primary source of confu-
sion are clusters with similar ages. This means that the algorithm
can probably separate open from globular clusters well, but can-
not distinguish the different OCs of similar age. They concluded
that with the chemical information provided by APOGEE (abun-
dances obtained from the H-band spectra at a spectral resolution
of 22 000 García Pérez et al. 2016), it is not possible to com-
pletely distinguish all the stellar clusters from each other. After
these results, it might be wondered (1) what would happen in the
even more ideal case when higher resolution spectra of cluster
stars in exactly the same evolutionary stage were used (to avoid
systematic biases in the abundances). Could we distinguish clus-
ter stars in this case? Alternatively, (2) if field stars were included
in the known open cluster sample, this would possibly increase
the difficulty of the experiment, but would resemble the exercise
of finding dissolved clusters in the field better.

Linking the last idea, a recent study by Price-Jones et al.
(2020) claimed to have found several candidate star clusters that
were dissolved in the Galactic disc. They appied the DBSCAN
algorithm to the APOGEE DR16 sample. However, it is not clear
from this study whether their technique can recover the clusters
(see Donor et al. 2020) that are known to be present in APOGEE.
At this point, it is therfore mandatory to agree on the viability
or impossibility of strong chemical tagging to decide whether
the candidate star clusters that were found are reliably detected,
which applies also to those that may be found in future spectro-
scopic surveys.

1 Density-based spatial clustering of applications with noise
(Ester et al. 1996).
2 The homogeneity score measures at which level the predicted clus-
ters contain only data points that are members of one real cluster. A
value of 1 means that the clusters are perfectly homogeneous.

The present work aims to investigate the viability of strong
chemical tagging based on OCs. First, we present the best-
case scenario using a sample of 31 clusters with at least 4
stars in the same evolutionary stage characterised with strictly
line-by-line differential abundances. This represents the idea of
point (1) mentioned in the previous paragraph. We then blindly
test whether we can differentiate the known clusters present in
the APOGEE DR16 release with more than 4 observed stars,
following the idea (2). We use the red clump star sample defined
by Bovy et al. (2014), which includes field stars in the red clump
evolutionary stage (RC).

We organise the paper as follows. In Sect. 2 we give the
details of the abundance data we used and the quality cuts we
made. In Sect. 3 we explain the clustering method that we used.
Section 4 contains the results of the tests we made for case (1),
the high-precision sample, and Sect. 5 reports the results for the
APOGEE DR16 sample. Finally, we discuss the implications of
the results in Sect. 6, and the main conclusions of the paper are
summarised in Sect. 7.

2. Data

For the first part of our analysis (Sect. 4), we used the high-
precision abundance data published in Casamiquela et al. (2021)
for RC stars belonging to 47 OCs. In this study, the authors
analysed high-resolution spectra (>45 000) of high-probability
members in the RC phase belonging to different clusters. They
obtained 1D local thermodynamic equilibrium (LTE) abun-
dances of 25 different chemical species using spectral syn-
thesis fitting with an adapted pipeline that runs the public
spectroscopic software iSpec (Blanco-Cuaresma et al. 2014;
Blanco-Cuaresma 2019). We refer to the original paper for more
details concerning the analysis. The fact that the analysed stars
correspond to the same evolutionary stage combined with the
strictly line-by-line differential analysis allows us to erase most
systematic effects in the usual abundance computations (e.g.,
blends, non-LTE effects, and poor atomic characterisation).

For the present work, we used the subsample of clus-
ters that have 4 or more observed stars with complete chem-
ical information, considering 16 chemical species (which is a
compromise to maximise the number of stars). The restricted
chemical space consists of elements coming from different nucle-
osynthetic paths: Na, Al, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Fe,
Ni, Zn, Y, and Ba. Even though the results of Casamiquela et al.
(2021) included more chemical species, we selected the elements
that have lower uncertainties. Our final sample includes 175 stars
in 31 clusters. The individual abundance uncertainties in these ele-
ments are usually about 0.05 dex or lower, except for Zn, which is
typically between 0.10–0.15 dex (see Fig. 1). The distribution of
the cluster dispersions in abundances is plotted in the right panel
of Fig. 1. It shows that the internal coherence of the stellar abun-
dances in the same cluster is high, typically 0.03 dex. This sam-
ple (“high-precision sample”, hereafter) provides the best-case
scenario for testing chemical tagging: high-precision differential
abundances of 16 different elements, and high-probability mem-
ber stars at the same evolutionary stage.

For the second part of our analysis (Sect. 5), we used
APOGEE DR16 (Ahumada et al. 2020) data, which contain
detailed abundances from infrared spectra (at a spectral reso-
lution R ∼ 22 000) from over 100 000 stars across the Milky
Way computed with the APOGEE Stellar Parameters and Abun-
dances Pipeline (ASPCAP, García Pérez et al. 2016). The details
of the data reduction and calibration applied for DR16 data
are described in Jönsson et al. (2020). We used the APOGEE
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Fig. 1. Distribution of the abundance uncertainties of the different elements for the high-precision sample (Casamiquela et al. 2021). Left: abun-
dance uncertainties of individual stars. Right: cluster uncertainties taken to be the weighted standard deviation of the abundances for the cluster
members.

abundances obtained with astroNN (Leung & Bovy 2019), a
neural network that was trained on the results of ASPCAP from
APOGEE for spectra with a high signal-to-noise ratio (S/N).
astroNN produces high-precision parameters and abundances for
all stars in APOGEE. This was the sample of abundances that
Price-Jones et al. (2020) used as well, in which several candi-
date birth clusters were identified. We used the updated astroNN
results3, trained on APOGEE DR16 abundances.

The sample used in this study is the APOGEE DR16 RC
catalogue (Bovy et al. 2014; Ahumada et al. 2020). This sample
contains over 39 000 targets and was built by imposing several
criteria on the computed stellar atmospheric parameters, metal-
licities, and photometry. The sample contains abundances of
26 chemical species. We have applied quality cuts in the data:
S/N > 100, χ2 of the fit <25, and additional cuts to avoid tel-
luric objects, emission stars, etc.4. We additionally selected the
more reliable elements for the red giant stars: C, N, O, Na, Mg,
Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, and Ni. Additionally,
we used the element-wise flag “ELEMFLAG” to avoid problem-
atic abundances5. Hereafter, we refer to this cleaned sample as
the APOGEE DR16 RC sample.

We show in Fig. 2 the RGC-age distribution of the two sam-
ples of clusters. They span a range of galactocentric distance of
∼7−11 kpc, and they have ages mainly younger than 4 Gyr. Only
3 clusters are older than this. Three clusters are in common in
the two samples.

3. Method: HDBSCAN

To group stars and find different clusters, we used a density-
based clustering algorithm that blindly searches for stellar
overdensities in the chemical space. We used a hierarchical
version of DBSCAN, which was previously used to identify sev-
eral hundreds of new OCs in the Gaia astrometric parameter
space (Castro-Ginard et al. 2018, 2019, 2020). DBSCAN relies
on two hyper-parameters, ε and min_cluster_size, to define
a density threshold and detect clusters with a density higher than
this threshold. In practice, it defines an ε-neighbourhood around
each star and searches for other stars within this neighbourhood.
If a sufficient number of stars, defined by min_cluster_size,
3 https://www.sdss.org/dr16/data_
access/value-added-catalogs/?vac_id=
the-astronn-catalog-of-abundances,-distances,
-and-ages-for-apogee-dr16-stars
4 ASPCAPFLAGS = [BAD, NO_ASPCAP]; TARGFLAGS =
[TELLURIC, SERENDIPITOUS, MASSIVE, EMISSION]; and
STARFLAGS = [BAD, COMMISSIONING, SUSPECT].
5 https://www.sdss.org/dr16/irspec/abundances/
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Fig. 2. RGC-age distribution of the samples of clusters. The high-
precision clusters are shown in blue, and the clusters in the APOGEE
DR16 RC catalogue are plotted in red.

fall in the ε-neighbourhood, this group is considered as a cluster.
The group grows by repeating the process for all stars that can
be reached (see details in Castro-Ginard et al. 2018). With these
properties, DBSCAN does not require an a priori number of clus-
ters to find, it can find clusters with arbitrary shapes, and it can
deal with stars that are not associated with any cluster (noise).
The main disadvantage is that DBSCAN is limited to a sin-
gle density threshold, which usually corresponds to the densest
cluster in the field. The hierarchical DBSCAN algorithm (HDB-
SCAN, Campello et al. 2013) takes advantage of the DBSCAN
method, but applies it over all the different ε possibilities. There-
fore HDBSCAN is able to find clusters with varying densities,
which solves the main disadvantage of DBSCAN while retain-
ing the remaining advantages.

We used the implementation of HDBSCAN in the python
library of the same name6. In this implementation, three param-
eters can be fine-tuned in the algorithm, which affects the clus-
tering. The main parameter, min_cluster_size, is the most
intuitive and refers to the smallest size grouping that we wish to
consider as a cluster, as in the aforementioned case of DBSCAN.
The other two parameters are due to the choice of the imple-
mentation. The min_samples parameter sets how conserva-
tive we wish the clustering to be: a low value will make the
algorithm sensitive to more local density fluctuations, while a
high value captures a more global picture. This parameter is
highly data dependent, but it is usually set by default as equal
to the min_cluster_size parameter. The last parameter that

6 https://github.com/scikit-learn-contrib/hdbscan
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Table 1. Selection of clusters, taken from the differential abundance
analysis of Casamiquela et al. (2021).

Cluster NumStars Age [Gyr] [Fe/H]

UBC 3 4 0.20 −0.081 ± 0.006
NGC 6705 12 0.30 0.047 ± 0.004
NGC 3532 5 0.39 −0.034 ± 0.012
UBC 215 5 0.44 −0.005 ± 0.023
NGC 2099 10 0.44 −0.003 ± 0.009
NGC 7245 4 0.58 −0.002 ± 0.013
NGC 6728 5 0.75 −0.065 ± 0.020
NGC 6997 6 0.64 0.096 ± 0.008
NGC 2632 4 0.69 0.118 ± 0.014
NGC 6633 4 0.70 −0.043 ± 0.005
NGC 2539 5 0.70 −0.012 ± 0.004
UBC 6 6 0.79 −0.030 ± 0.005
NGC 2266 5 0.81 −0.057 ± 0.025
NGC 2355 6 0.93 −0.138 ± 0.010
NGC 6811 6 1.09 −0.059 ± 0.007
NGC 7245 7 1.20 −0.053 ± 0.006
IC 4756 9 1.31 −0.063 ± 0.006
NGC 6940 6 1.38 0.009 ± 0.010
NGC 2354 6 1.44 −0.144 ± 0.018
Skiff J1942+38.6 4 1.51 −0.002 ± 0.009
NGC 7789 6 1.51 −0.047 ± 0.018
NGC 6991 4 1.62 −0.068 ± 0.009
NGC 6939 5 1.73 −0.032 ± 0.015
NGC 2420 7 1.95 −0.186 ± 0.017
NGC 7762 5 2.04 −0.051 ± 0.010
NGC 6819 4 2.23 −0.050 ± 0.010
FSR 0278 5 2.34 0.024 ± 0.007
Ruprecht 171 6 2.81 −0.041 ± 0.014
Ruprecht 147 4 3.09 0.053 ± 0.015
NGC 2682 6 4.16 −0.075 ± 0.007
NGC 188 4 7.07 −0.030 ± 0.015

Notes. We indicate the age, the mean cluster metallicity, and the number
of RC stars in each cluster.

we considered is the cluster_selection_epsilon. Setting a
value for it ensures that clusters below a given density thresh-
old defined as the number of stars in an ε-neighbourhood are not
split any further. This value depends on the given n-dimensional
distances among the different data points.

The choice of the free parameters of HDBSCAN is highly
dependent on the data that are used and on the purpose. We dis-
cuss our choice of the free parameters of HDBSCAN according
to our data in Sect. 4.1.

4. High-precision sample

Well-known OCs are the perfect test case for verifying chem-
ical tagging algorithms with the purpose of finding co-natal
stars. In this section, we use the differential chemical abundances
obtained by Casamiquela et al. (2021), described in the Sect. 2
as the high-precision sample. In Table 1 we list the 31 clusters
with their properties as listed in Casamiquela et al. (2021), and
the number of member stars in the RC.

In Fig. 3 we plot the cluster abundances [X/H] and [X/Fe]
for the full set of clusters. The cluster abundances were com-
puted using a mean weighted by star uncertainties, and the error
is the weighted standard deviation of the member stars. The
clusters are sorted by age in the different panels. The irregu-

lar distribution in age among the different panels complicates
a visual interpretation, but in a general picture, the analysed
OCs tend to have a nearly solar abundance pattern, except for
some chemical species, highlighting Zn, Y, and Ba. This is the
case for the youngest clusters, which show a remarkable deple-
tion in Zn abundance and an enhancement in the s-process ele-
ments Y and Ba, which returns to solar values with increas-
ing age. The s-process abundance enhancement, particularly that
of Ba, is a known effect that has been analysed before (e.g.,
D’Orazi et al. 2009; Maiorca et al. 2012; Magrini et al. 2018;
Casamiquela et al. 2021). It is interesting to include these ele-
ments in our abundance values because due to their special
behaviour with age, they might eventually help to distinguish
between clusters.

The abundance spread in each cluster is small, typically
below 0.03 dex (see the right panel of Fig. 1), thus the uncer-
tainties in Fig. 3 are usually smaller than the points. Visually,
we find that the chemical signatures of the analysed clusters
overlap widely and span a small range of abundances (−0.2 to
0.1 dex in [X/H]), with a few exceptions. Our sample of clus-
ters has a relatively wide range of age (200 Myr–7 Gyr), but the
highly overlapping signatures of the clusters make it difficult to
distinguish one cluster from the other. The analysed population
essentially represents the latest instants of the evolution of the
Milky Way disc. This indicates that in the latest billion years,
the interstellar medium from which these clusters formed was
well mixed. Our result is consistent with recent studies in other
spiral galaxies, such as Kreckel et al. (2020), who obtained a low
abundance scatter (0.02–0.03 dex) in several nearby disc galax-
ies. This implies that the spatial metallicity distribution is highly
correlated at scales <600 pc.

4.1. Chemical tagging with HDBSCAN

We have run HDBSCAN in the chemical space of 16 elements
described in Sect. 2. This is a controlled sample for which we
know which star belongs to which cluster. The sample contains
no field stars. Thus, it is the perfect case to evaluate the per-
formance of the clustering algorithm. For the reasons described
above, and in contrast to most situations in a blind clustering
search, we can apply different diagnostics that are informative
of how well the clusters are recovered. We used two indicators
defined below.

First: the V-measure (Rosenberg & Hirschberg 2007) mea-
sures how successfully the criteria of homogeneity and com-
pleteness are satisfied in the recovered groups7. A clustering
result satisfies homogeneity (h) if all of its groups contain only
data points that are members of a single OC. On the other hand,
completeness (c) is satisfied if all the data points that are mem-
bers of a given group are elements of the same cluster. The non-
weighted V-measure is defined as V = 2·h·c/h+c, it equals 1 for a
perfectly complete clustering. We refer to the original paper for
the mathematical definitions of the two quantities. Several other
papers have also used this indicator for the same purpose (e.g.,
Blanco-Cuaresma et al. 2015; Garcia-Dias et al. 2019)

Second: similarly to Price-Jones & Bovy (2019), we defined
the recovery fraction (RF) as the fraction of successfully recov-
ered groups with respect to the initial number of real clusters.
We considered a cluster successfully recovered if the group to
which it was assigned exceeded a given homogeneity and com-

7 Notation throughout the paper: we use clusters when we refer to real
open cluster stars, and we use groups to designate the clusters found by
the algorithm, which are not necessarily real open clusters.

A151, page 4 of 12



L. Casamiquela et al.: The (im)possibility of strong chemical tagging

Na AlMg Si Ca Sc Ti V CrMnCo Fe Ni Zn Y Ba
Element

−0.5

0.0

[X/H]

Na Al Mg Si Ca Sc Ti V CrMnCo Ni Zn Y Ba
Element

−0.25

0.00

0.25

[X/Fe]

UBC3 0.20 Gyr

NGC6705 0.30 Gyr

NGC3532 0.40 Gyr

UBC215 0.45 Gyr

NGC2099 0.45 Gyr

NGC7245 0.59 Gyr

NGC6997 0.65 Gyr

NGC2632 0.69 Gyr

Na AlMg Si Ca Sc Ti V CrMnCo Fe Ni Zn Y Ba
Element

−0.5

0.0

Na Al Mg Si Ca Sc Ti V CrMnCo Ni Zn Y Ba
Element

−0.25

0.00

0.25
NGC2539 0.71 Gyr

NGC6633 0.71 Gyr

NGC6728 0.75 Gyr

UBC6 0.79 Gyr

NGC2266 0.81 Gyr

NGC2355 0.93 Gyr

NGC6811 1.10 Gyr

NGC752 1.20 Gyr

Na AlMg Si Ca Sc Ti V CrMnCo Fe Ni Zn Y Ba
Element

−0.5

0.0

Na Al Mg Si Ca Sc Ti V CrMnCo Ni Zn Y Ba
Element

−0.25

0.00

0.25
IC4756 1.32 Gyr

NGC6940 1.38 Gyr

NGC2354 1.45 Gyr

NGC7789 1.51 Gyr

SkiffJ1942+38.6 1.51 Gyr

NGC6991 1.62 Gyr

NGC6939 1.74 Gyr

NGC2420 1.95 Gyr

Na AlMg Si Ca Sc Ti V CrMnCo Fe Ni Zn Y Ba
Element

−0.5

0.0

Na Al Mg Si Ca Sc Ti V CrMnCo Ni Zn Y Ba
Element

−0.25

0.00

0.25
NGC7762 2.04 Gyr

NGC6819 2.24 Gyr

FSR0278 2.34 Gyr

Ruprecht171 2.82 Gyr

Ruprecht147 3.09 Gyr

NGC2682 4.17 Gyr

NGC188 7.08 Gyr

Fig. 3. Mean [X/H] (left) and [X/Fe] (right) abundances of the sample of 31 clusters in the high-precision sample. Clusters are sorted by age
(increasing downwards) in the different panels. They are coloured by age from young (yellow) to old (black).

pleteness threshold. We first set a more restrictive threshold of
70%, which was the same as was used in Price-Jones & Bovy
(2019). However, we realised that in most test cases, this is too
restrictive, and only one cluster at most is recovered with this
threshold. Moreover, some clusters that were moderately recov-
ered were not taken into consideration as successful groups. This
was often the case for clusters with only a few stars. We therefore
also computed a less restrictive recovery fraction with a com-
pleteness and homogeneity threshold at 40%.

4.2. Fine-tuning the HDBSCAN parameters

The main free parameter in HDBSCAN, min_cluster_size,
fixes the minimum number of members in each group that are
to be considered a real group. We chose to fix this to 2. This is
a reasonable value in our case because it allows the recovery of
at least half of the stars of the real clusters that have the fewest
number of stars (four members).

As explained in Sect. 3, the performance of the algo-
rithm depends on the two parameters from HDBSCAN that
control how conservative the clustering is: min_samples and
cluster_selection_epsilon. To evaluate their effect, we
computed the homogeneity, completeness, V-measure, RF (at
40% and 70%), and the number of identified groups, sampling
4×7 different combinations of these two parameters. The results
are shown in Fig. 4 in the form of a heatmap.

The values of the quality indicators show that the clustering
appears to be more successful when the min_samples and the
cluster_selection_epsilon are small. Setting a low value
of these two parameters means that the clustering is less conser-
vative, allowing it to find groups in less dense areas. This results
in a larger number of groups that are found, most of them with
only two or three stars. When cluster_selection_epsilon
starts to grow (≥0.25), fewer groups are found, and typically one

of them contains most of the initial sample of stars, which in
reality belong to more than 25 clusters. The same happens for
min_samples≥ 2, where the algorithm persistently identifies a
large group of more than 50 stars belonging to more than 20 real
clusters, even if epsilon is small.

In the limit of the highest values of the two parameters, only
two or three groups are found. In this case, the algorithm always
correctly identifies most of the stars of the cluster NGC 6705 in
a single group with 100% homogeneity and a completeness usu-
ally higher than 80%. The other group typically contains more
than 100 stars belonging to more than 30 real clusters. In some
cases, however, the group of stars belonging to NGC 6705 is split
into two groups when cluster_selection_epsilon≤ 0.2:
both with 100% homogeneity, but the completeness ≤50%. A
compromise is needed to fix these two parameters. Lower val-
ues allow a larger fragmentation of the clustering space, which
enables the recovery of a larger number of real clusters with good
homogeneity, but low completeness. In contrast, higher values
allow the recovery of the clusters that stand out (NGC 6705 in
our case) with high completeness, but all the other few groups
that are found typically contain a mixture of stars from different
clusters.

For the remainder of the paper, we choose the optimal
parameters that maximise the number of correctly recovered
clusters, as was done also by Price-Jones & Bovy (2019). This
will represent the best results we can obtain. We chose to prior-
itize the recovery of purer clusters (with a high homogeneity),
even if this implies that the recovered completeness will be low.
This resembles a blind chemical tagging experiment in a large set
of data better, where hundreds of real cluster stars are spread in
the field: even if an algorithm can group half of them, this would
already allow determining a birth cluster. We therefore chose
min_samples= 1 and cluster_selection_epsilon= 0.05.
We note that the clustering results are the same for
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Fig. 4. Heatmaps showing the results of the quality indicators for a sampling of the HDBSCAN free parameters min_samples and
cluster_selection_epsilon. The top row shows the homogeneity, completeness, and V-measure as defined by Rosenberg & Hirschberg
(2007). In the bottom row, we show the number of found groups and the RF with two different thresholds to the homogeneity and complete-
ness, 70% and 40%.

Table 2. Groups found by HDBSCAN in the full sample of clusters in
the high-precision sample (see also Fig. 5).

HDBSCAN group Real cluster(s) Comp. Hom.
(NFOUND) (NFOUND/NREAL)

H2 (7) NGC 6705 (7/12) 58% 100%
H3 (8) Ruprecht 147 (4/4) 100% 50%

NGC 188 (1/4) 25% 12%
FSR 0278 (3/5) 60% 37%

H4 (4) NGC 2420 (3/7) 42% 75%
NGC 2354 (1/6) 16% 25%

H5 (2) NGC 188 (2/4) 50% 100%
H7 (6) NGC 6997 (3/6) 50% 50%

NGC 6705 (1/12) 8% 16%
NGC 2632 (2/4) 50% 33%

H9 (4) NGC 6819 (2/4) 50% 50%
NGC 2682 (1/6) 16% 25%

Ruprecht 171 (1/5) 20% 25%
H10 (5) NGC 2682 (5/6) 83% 100%
H17 (2) UBC 3 (2/4) 50% 100%
H30 (4) NGC 752 (3/7) 42% 75%

NGC 6991 (1/4) 25% 25%

Notes. We only list the groups that represent real clusters at a 40%
threshold in completeness and homogeneity (highlighted in boldface).
The number of stars found in each group is indicated, (NFOUND), and
for each corresponding real cluster, we also indicate the number of stars
found with respect to the total number of cluster stars (NFOUND/NREAL).
For each recovered cluster, the completeness and homogeneity of the
recovery is also indicated.

cluster_selection_epsilon= 0.01, 0.05 because this
parameter defines the threshold up to which we allow two
points to be a group. Because the uncertainties in individual star
abundances are about 0.05 (see Fig. 1), it is more reasonable to
choose this last value.

NGC 6705 is recovered persistently in almost all possible
configurations. This cluster is known to be particularly enhanced

in α elements (e.g., Casamiquela et al. 2018; Magrini et al.
2017), taking into account its young age (∼300 Myr) and metal-
licity. It is therefore natural to expect a better recovery of its
stars because they are in a region in the chemical space that is
detached from the rest of stars. It is also the cluster with the
largest number of member stars, which facilitates the recovery.

4.3. HDBSCAN on the full sample

We ran HDBSCAN with the parameters min_cluster_size=
2, min_samples= 1 and cluster_selection_epsilon= 0.05.
This configuration finds 31 groups with global homogeneity
and completeness parameters of 49% and 63%, respectively,
and a V-measure of 55%. We find recovery fractions of
RF40 = 29% and RF70 = 3% for the 40% and 70% thresholds,
respectively, as explained in Sect 4.1. We show in Table 2
the nine groups found by HDBSCAN with more than 40%
completeness and homogeneity. Out of these, only NGC 2682
is retained when a threshold of 70% was set. Four of the
clusters are found with a homogeneity of 100%, that is, they
were not confused with stars from other clusters, although in
most cases, the group contains only two stars of the original
cluster.

In this configuration, the group H2 is selected because it con-
tains seven stars of the cluster NGC 6705. The group H1 contains
the other three stars of this cluster, with a 100% homogene-
ity but 25% completeness, but consequently, it is not selected
at a threshold of 40%. As explained in Sect. 4.2, these two
groups merge in some configurations with higher values of
cluster_selection_epsilon or min_samples. The com-
promise of lowering the values of the two free parameters to try
to recover as many real clusters as possible causes a fragmenta-
tion of this cluster.

To better visualise the groups found in the chemical space, we
used the algorithm: uniform manifold approximation and projec-
tion for dimension reduction (UMAP, McInnes et al. 2018), which
has a library8 implemented in python. It has similar objectives as

8 https://umap-learn.readthedocs.io/en/latest/
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Fig. 5. UMAP projections of the stars in the high-precision sample. The groups are coloured according to whether they were found by HDBSCAN
(left) or are real clusters (right). The grey points correspond to stars that were found as noise. The stars highlighted with black circles were
recovered in a group with at least 40% homogeneity and completeness (those in boldface in Table 2), and the corresponding cluster is labelled.

t-SNE or principal component analysis (PCA), which are used in
the literature for similar purposes. UMAP performs a reduction of
dimensions from 16 to 2, which in our case preserves the global
structure of the data to help visualisation and interpretation.

We show the two projections of UMAP for all the stars in our
sample in Fig. 5. The original clusters are coloured in the right
panel, and the groups found by HDBSCAN are coloured in the
left panel. The right panel shows that the central part of the dis-
tribution has a large mixture of stars from different clusters that
are confused, and by eye, it is extremely difficult to distinguish
any cluster. However, some structures can already be identified
as clumps in this space, for instance, NGC 6705, which stands
alone in the leftmost part of the plot.

In the left panel, we highlight with black circles the stars
from the groups detailed in Table 2, which are members of
a cluster recovered at the 40% threshold of completeness and
homogeneity (the clusters marked in boldface in the table).
These stars represent those that we consider correctly identified.
The plot clearly shows that in most cases, they belong to clusters
that are at the edges of the distribution, that is, more separated in
chemical space. This includes NGC 6705, but also NGC 2420,
the most metal-poor cluster in our sample. In several cases, the
stars identified as a group do not appear really clustered in Fig. 5,
such as NGC 188 and NGC 752, but we point out that in these
cases, their completeness (42% and 50%, respectively) is close
to the limit of our tolerance.

4.4. HDBSCAN on clusters with ≥6 members

We realised that some of the clusters that were successfully
recovered in the previous test are also those that have a larger

number of stars, in particular, NGC 6705. Several clusters in the
sample have four or five members, which might statistically be
more difficult to recover, and thus this could worsen the recovery
fraction. For this reason, we repeat the same experiment in this
subsection with a more restricted case in which only the clus-
ters with at least six members in the high-precision sample are
included. This makes a test case with 14 clusters and 99 stars in
total.

We ran HDBSCAN in the same configuration as in the
previous subsection. It found 13 groups in this case, with a
global homogeneity and completeness of 53% and 64% and a V-
measure of 58%. These values are very similar to those obtained
in the previous test: with a homogeneity of 49%, a complete-
ness of 63% and a V-measure of 55%. The recovery fractions
in this case are also very similar as before, but slightly larger:
RF40 = 35% and RF70 = 7% for the 40% and 70% thresh-
olds, respectively (to be compared with the RF40 = 29% and
RF70 = 3% obtained before). We represent the UMAP projec-
tions in Fig. 6. The details of the clusters that were successfully
recovered at the 40% threshold (RF40) are listed in Table 3.

In this experiment, four out of the five recovered clusters
were also recovered when the full high-precision sample was
used, and with similar completeness and homogeneity scores.
As an additional group, three out of the six stars of NGC 6940
are recovered in the H10, mixed with two stars from two other
clusters. Most of the clusters that were recovered in Sect 4.3 but
that do not appear here have fewer than six members and are not
part of the current experiment (Ruprecht 147, NGC 188, NGC
6819, UBC 3). We wish to highlight that of the three clusters
with more stars in the sample (NGC 6705 has 12 stars, NGC
2099 has 10 stars, and IC 4756 has 9 stars), only NGC 6705
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real clusters (right), and the groups found by HDBSCAN (left). The stars highlighted in black circles are those recovered in a group with at least
40% homogeneity and completeness (those in boldface in Table 3).

is recovered as a successful HDBSCAN group. The stars of the
other two are split among the different identified groups, most of
them in the H12, which gathers the central region of the UMAP
distribution in Fig. 6. Again, the successful groups are in general
those that are at the edges of the distribution.

We have further tried to run the algorithm using
min_cluster_size= 3 instead of 2, as we set in Sect. 4.3. This
would also be a consistent choice to allow the recovery of half
of the cluster members with the fewest number stars (which now
is 6 instead of 4). This configuration finds 9 groups instead of
13, but the clusters that are successfully recovered are the same
as the previous test (Table 3) and with equal homogeneities and
completeness.

We also tried to perform the same test using only the clus-
ters with seven or more members. This cut drastically reduces
the number of clusters to five, with a total of 44 stars. In this
case, at a 40% threshold on homogeneity and completeness, we
recover four clusters (RF40 = 80%), and at a 70% threshold, we
still only recover one case NGC 6705 (RF70 = 20%). Again, we
recover one group that represents the central part of the distribu-
tion, as shown in Figs. 5 and 6, with a balanced mixture of stars
from IC 4756 and NGC 752. However, we recall that this is a
highly unrealistic case of a sample of only a few clusters, which
is probably not statistically significant. Even in this case, we can
only recover one cluster with at least 70% on completeness and
homogeneity.

5. Finding known clusters in the APOGEE DR16 RC
sample

We now investigate the possibility of finding known clusters in a
large dataset for a blind strong chemical tagging experiment with
field stars, as designed by Price-Jones & Bovy (2019). We used
the APOGEE DR16 RC sample, described in detail in Sect. 2,
which contains 16 193 stars. This is the most adequate catalogue
for our purpose because it contains a large number of stars with
good-quality abundances in a very small bin in the HR diagram,

Table 3. Same as Table 2, but with the results of the HDBSCAN run on
the clusters with six or more members in the high-precision sample (see
also Fig. 6).

HDBSCAN group Real cluster(s) Comp. Hom.
(NFOUND) (NFOUND/NREAL)

H1 (5) NGC 6997 (3/6) 50% 60%
NGC 6940 (1/6) 16% 20%
NGC 6705 (1/12) 8% 20%

H2 (8) NGC 2682 (6/6) 100% 75%
Ruprecht 171 (2/6) 33% 25%

H4 (7) NGC 6705 (7/12) 58% 100%
H5 (4) NGC 2420 (3/7) 42% 75%

NGC 2354 (1/6) 16% 25%
H10 (5) NGC 6940 (3/6) 50% 60%

NGC 2099 (1/10) 10% 20%
NGC 7789 (1/6) 16% 20%

so that systematic abundance trends due to the evolutionary state
are minimised. This therefore mimics the selection of stars for
the clusters in Casamiquela et al. (2021) that we used in Sect. 4.

APOGEE DR16 contains several cluster members. We used
the list of observed stars from the 71 high-quality clusters
selected by Donor et al. (2020), which were selected using
Gaia DR2 proper motions and APOGEE radial velocities and
[Fe/H]. We cross-matched this table with the APOGEE DR16
RC sample, and we kept only the clusters for which four or
more stars were also present in the membership analysis of
Cantat-Gaudin et al. (2018). This selected only four clusters:
NGC 188 (4 stars), NGC 2682 (5 stars), NGC 6791 (6 stars),
and NGC 6819 (11 stars). All the selected stars have a probabil-
ity of membership of at least 0.7 in Cantat-Gaudin et al. (2018).

We show the two projections of UMAP for all the stars in our
sample in Fig. 7. The maps present clear patterns, some of which
correspond to substructures such as the thick disc (rightmost
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Fig. 7. UMAP projections of the APOGEE DR16 RC sample coloured by metallicity (left) and depending on the group found by HDBSCAN
(right). Member stars of the known OCs are highlighted with different colours and symbols in the left panel

blob). Very similar patterns are seen in t-SNE representations
of the solar vicinity chemical abundance space (Anders et al.
2018). The location of the members from the four highlighted
clusters indicates that most of their red clump stars have similar
abundances, as expected. However, the first impression is that the
clusters do not seem clumped enough to be identified as a clear
group in the abundance space of APOGEE. Remarkably, two of
the clusters (NGC 2682 and NGC 6819) appear to have a very
similar abundance pattern, which would make a blind identifica-
tion more difficult. The most distinctive cluster is NGC 6791. It
is located in the most metal-rich region.

5.1. HDBSCAN on the APOGEE DR16 RC sample

Similarly, as for the sample of high-precision clusters (Sect. 2),
we now ran HDBSCAN in the APOGEE DR16 RC sample in
the chemical space of 18 elements described in Sect. 5.

We performed a similar procedure as in Sect. 4.1 (Fig. 4)
to select the HDBSCAN parameters that maximised the recov-
ery of the clusters. The parameters min_cluster_size and
min_samples= 3 return the highest recovery fractions, and the
choice of cluster_selection_epsilon does not affect the
results if (0.01< cluster_selection_epsilon< 0.1).

In the configuration described above, HDBSCAN finds 272
groups, which are represented in the right plot of Fig. 7 with the
UMAP projections. We find that stars from two different clusters
appear in some of the groups that are listed in Table 4. The recov-
ery is very poor. Only the cluster NGC 188 is above the thresh-
old of 40% on completeness and homogeneity, and no cluster is
recovered above the threshold of 70%.

5.2. Restricting the chemical space

For the purpose of chemical tagging, it is not clear whether using
several chemical elements that are representative of the same
nucleosynthetic path improves or worsens the results.

For instance, Price-Jones et al. (2020) chose to restrict the
APOGEE chemical space to eight abundance ratios, [Mg/Fe],
[Al/Fe], [Si/Fe], [K/Fe], [Ti/Fe], [Mn/Fe], [Ni/Fe], and [Fe/H],
for their chemical tagging. This selection was made based on a
simulation that tested the median homogeneity of the recovered

Table 4. Groups found by HDBSCAN that contain any star from the
original clusters in the APOGEE DR16 RC sample.

HDBSCAN group Real cluster(s) Comp. Hom.
(NFOUND) (NFOUND/NREAL)

H230 (3) NGC 188 (2/4) 50% 66%
H240 (11) NGC 6819 (3/11) 27% 27%
H242 (6) NGC 6819 (1/6) 9 % 16%

Notes. The columns are the same as in Table 2.

groups as a function of the dimensions of the chemical space.
With this selection, they included elements coming from mainly
SN type II (Mg), others with also a partial contribution from SN
type I (Si and Ti), odd-Z elements (K and Al), and iron-peak
elements primarily produced by SN type I with an additional
contribution from SN type II (Mn, Ni, and Fe). However, in their
simulations, they showed that very similar homogeneity scores
are also obtained for higher dimensions of the chemical space,
up to 15 dimensions.

Recently, Ting & Weinberg (2021) concluded that at least
seven elements have to be considered in APOGEE to remove
residual correlations with the purpose of Galactic archaeology
studies. They proposed that using Fe, Mg, O, Si, Ca, Ni, and
Al might allow them to explain the diversity of abundance
patterns of their data, which are composed of disc stars with
approximately solar metallicity. The proposed elements are also
those with the best measurement uncertainties in APOGEE. The
authors mentioned that this is a lower conservative limit in the
possible elements to be used and that an analysis including ele-
ments produced by other processes will exhibit a richer structure
in the data.

We wish to test whether restricting the number of elements
to the most significant ones can have a positive effect on clus-
ter recovery. This might be important if the inclusion of certain
elements introduces noise in the chemical space due to the uncer-
tainties underlying the computation of abundances (NLTE, faint
lines, and poor atomic characterisation).

We ran HDBSCAN in the same configuration as in Sect. 5.1
using the chemical space proposed by Price-Jones et al. (2020),
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Table 5. Same as Table 4, but with the results of the HDBSCAN run
on the set of abundances of Price-Jones et al. (2020) (top) and those of
Ting & Weinberg (2021).

HDBSCAN group Real cluster(s) Comp. Hom.
(NFOUND) (NFOUND/NREAL)

H284 (9) NGC 188 (1/4) 25% 11%
H293 (4) NGC 6819 (1/11) 9% 25%
H328 (5) NGC 2682 (1/5) 20% 20%
H330 (6) NGC 2682 (1/5) 20% 33%
H405 (5) NGC 6819 (2/11) 18% 40%
H411 (6) NGC 6819 (1/11) 9% 16%
H430 (3) NGC 2682 (1/5) 20% 33%
H463 (9) NGC 188 (1/4) 25% 25%

and that proposed by Ting & Weinberg (2021). The algorithm
finds 365 and 483 groups, respectively. The results of the groups
that contain any star from a real cluster are detailed in Table 5.
The results for both sets of abundances do not seem to improve
with respect to the previous test, shown in Table 4. The only
cluster that seemed moderately recovered in the previous test
using all abundances in terms of our indicators (NGC 188) now
is not recovered. For cluster NGC 6819, for which three stars
were grouped before, now only two stars are grouped. Appar-
ently, the larger the chemical space, the better the performance.
However, it is difficult to really judge the performance of the
three sets of abundances given the poor recovery fractions of the
results in any case. Moreover, the recovery of one or two stars of
the input clusters from more than 300 groups might be attributed
to chance rather than to a real spotting or identification of the
clusters.

6. Discussion

We have tested the possibilities of chemical tagging using known
OCs in two distinct scenarios. The first scenario was the ideal
case of high-precision differential chemical abundances of 175
highly probable member stars from 31 clusters (Sect. 4). We
tested the recovery fractions of HDBSCAN on this sample with
16 chemical species and also restricted this to the subsample of
clusters with more member stars. As a second test case, we stud-
ied the possibility of recovering known clusters in the APOGEE
DR16 RC sample (Sect. 5). In this case, we tested the effect of
using different chemical spaces, according to recent results by
Price-Jones & Bovy (2019) and Ting & Weinberg (2021). Our
main findings from these experiments can be summarised as
follows:

1. We have shown that in the high-precision sample (consid-
ered as the best-case scenario, Sect. 4), we can recover only 9
out of the 31 analysed clusters, as shown in Table 2 and Fig. 5.
This is obtained when a relaxed threshold of 40% in the recov-
ered completeness and homogeneity was set, meaning that some
of the correctly recovered clusters have fewer than half of the
real number of cluster stars. The other 22 groups do not rep-
resent real clusters and contain a mixture of stars belonging
to different clusters. With a more restrictive threshold of 70%
(Price-Jones & Bovy 2019), only one cluster is recovered.

2. The possibility of recovering known clusters in the chem-
ical space of 18 elements in APOGEE is a less favourable
scenario with larger uncertainties. However, it lets us test the
performance of the clustering in the presence of field stars. Out

of the four clusters with more members in APOGEE, only one is
recovered at a threshold of 40%. We investigated how this per-
formance might change when fewer elements were used, but the
representation of most nucleosynthetic paths was kept. In this
case, the recovery was even poorer. No cluster was correctly
recovered.

These results point to a difficult interpretation of the eventual
groups obtained from a blind clustering search of a large sample
of field stars. According to our tests in (1), we can expect that
70% of the detected groups are statistical overdensities that have
arisen from the confusion of the cluster signatures in the chem-
ical space. For case (2), the statistics are even lower, with only
one out of 272 groups being a real known cluster.

As a drawback of our experiment, only few of the known
OCs in both cases contain a large number of member stars: for
instance, there are only five clusters with seven or more mem-
bers in scenario (1). In Sect. 4.4, we therefore repeated the same
experiment restricted to the most populated clusters (five clusters
and 44 stars), which allowed us to test whether it might be easier
to find clusters when they have a large number of stars. In this
case, we obtained a recovery fraction of 20% (at a threshold of
70% for the homogeneity and completeness), which we consider
still very poor in this unrealistic and simplistic case.

Our results contrast with the findings by Price-Jones & Bovy
(2019). It is true, however, that all the candidate birth clusters
found by Price-Jones & Bovy (2019) have at least 15 members.
This is probably because there was no selection of the RC in their
search. In our test case, all clusters have fewer members because
there are very few OCs with more than about seven members in
the RC. Only the oldest and most massive clusters have more
than this number of members. The cross-match between the 360
candidate cluster members by Price-Jones & Bovy (2019) with
our APOGEE DR16 RC sample gives 17 stars. Only 5 of these
stars appear in the groups found in Sect. 5, and each is assigned
to a different group.

A possible point of view might be that if this algorithm were
applied to a large sample of stars, it might be easier to deter-
mine real dissolved clusters if they were very massive, which
would mean that more stars would represent them. The draw-
back of this idea is, however, that generally, stars in the same
evolutionary state are required to perform a meaningful cluster-
ing. The retrieved chemical abundances might otherwise have
biases among different stars, in addition to the uncertainties due
to limited precision. In real life, this is only feasible by selecting
the RC stars according to a compromise of them being bright
(so that larger distances can be reached and a larger sample of
stars can be obtained) and providing among the highest preci-
sion abundances (needed for strong chemical tagging). A similar
precision is also retrieved for GK dwarfs, but these are in gen-
eral faint and thus limit the sample. Additionally, only old and
massive clusters have a prominent RC population. However, it
has been shown that the more massive the cluster, the lower the
chance to be dissolved (e.g., Lamers et al. 2005), but the survival
probability also depends on the orbit (see Martinez-Medina et al.
2018). By a blind strong chemical tagging search, we can there-
fore probably only hope to find either dissolved clusters that have
some chemical peculiarity, or the very few old and massive clus-
ters that are expected to be dissolved in the field. This is shown
in our first experiment in Sect. 4, where we successfully recov-
ered the clusters NGC 6705 (moderately metal rich and alpha
enhanced) and NGC 2420 (the most metal-poor cluster) with
the highest rates, even with different configurations of the HDB-
SCAN free parameters. However, we might be able to find more
clusters using kinematical information in addition to chemistry.
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This is still to be tested and probably would only be possible
with the youngest clusters, where the dissipative processes of the
Galatic disc have still not fully erased the kinematical similarity
of individual stars.

Nevertheless, we add a word of caution to strong chemi-
cal tagging: when clusters in a sample are searched for, it is
highly probable that clusters are found. However, it is very diffi-
cult to understand whether they were once gravitationally bound.
Our experiment tells us that we can expect that at least 70%
of the groups are not real birth clusters. This percentage will
possibly have a high dependence on the clustering method and
abundance precisions involved. In any case, our results do not
prevent the use of clumpiness of the chemical space to under-
stand underlying processes of star formation and chemical evo-
lution (Ting et al. 2016).

In conclusion, we are not able to fully identify which stars
belong to which cluster using chemistry alone, even in the
best-case scenario of high-quality chemical abundances of 16
chemical species. This result challenges the prospects of strong
chemical tagging, at least using the current abundance precision
obtained from the available wavelength range at high resolution.

7. Conclusions

Well-known clusters provide the best test case to investigate
whether strong chemical tagging is possible. Being able to chem-
ically tag groups in a large sample of field stars would pro-
vide a way to allow temporal sequencing of a large fraction of
stars in our Galaxy in a manner analogous to building a family
tree (Freeman & Bland-Hawthorn 2002; Jofré et al. 2017). The
promise of chemical tagging has been one of the strongest argu-
ments used to justify current and future spectroscopic surveys. It
is therefore important to study it with controlled samples. Two
assumptions are needed for it to work: the members of a birth
cluster should have a chemically homogeneous composition, and
each cluster should have a unique chemical signature to be able
to distinguish stars from different clusters. We find strong evi-
dence against the second hypothesis.

We investigated the feasibility of strong chemical tagging
using two samples of known clusters to test two possible sce-
narios.

In the first case, we used chemical abundances of 175 stars
in 31 clusters obtained by Casamiquela et al. (2021), with ages
ranging from 200 Myr to 7 Gyr. The chemical space consisted
of elements coming from different nucleosynthetic paths: Na,
Al, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Fe, Ni, Zn, Y, and Ba.
All stars corresponded to red clump stars, and individual stellar
abundances are smaller than 0.05 dex. No field stars were present
in this sample. Even when the internal coherence of the stellar
abundances in the same cluster was high, typically 0.03 dex, we
observed that the overlap in the mean chemical signatures of the
clusters is large.

We applied the clustering algorithm HDBSCAN in our sam-
ple. We fine-tuned the free parameters of the algorithm to obtain
the best results in terms of completeness, homogeneity, and
recovery fraction of the groups found. Our best results have
an overall completeness, homogeneity, and V-measure of 63%,
49%, and 55%, respectively. In terms of how the individual clus-
ters were recovered, we considered 29% of the sample recovered
(nine clusters) at a 40% threshold on completeness and homo-
geneity, and only one cluster was recovered (NGC 2682, 3% of
the sample) at a threshold of 70%. The UMAP representation of
the chemical space clearly shows that there is a large mixture of
stars from similar clusters in the central parts of the distribution.

The clusters recovered in HDBSCAN groups are preferentially
found at the edges of the distribution in the UMAP space.

In the second case, we used the APOGEE DR16 RC sample
with the abundances computed by astroNN. We tried to recover
the known clusters embedded in this catalogue using the same
algorithm, HDBSCAN. Using the chemical space of 18 ele-
ments, the algorithm found 272 groups. Only one is considered
recovered at a threshold of 40% homogeneity and completeness.
In this case, we also tested whether the restriction of the chem-
ical space can help in the identification of real clusters. We find
that there is no improvement in the results.

Overall, our results show that the chances of recovering a
large fraction of clusters dissolved in the field are slim because
in our best-case scenario without field stars, more than 70% of
the groups of stars are in fact statistical groups that contain stars
belonging to different real clusters. This is probably because
the overlap in the chemical signatures of OCs is large, and the
chemistry of the thin disc has a very small range in abundance
compared with the precision. We showed, however, that some
clusters are persistently recovered. They have the particularity
of being at the edges of the distribution in the UMAP projec-
tions (e.g., NGC 2420, NGC 6705, and NGC 2682). Thus, we
can hope to recover some of the birth clusters that have a partic-
ular chemistry that stands out of the general distribution of the
thin disc.

This shows how challenging it is to apply a blind clustering
search to the chemical space of a large group of field stars from
a large spectroscopic survey. We conclude that it will be difficult
to interpret if the recovered groups come from real birth clusters,
or if in fact they are statistical overdensities.
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